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In (5) and (6) we studied certain subgroups of infinite dimensional linear groups
over rings. In particular we investigated how the structure of the subgroups was
related to the structure of the rings over which the linear groups were defined.
It became clear that it might prove useful to study generalised nilpotent pro-
perties of rings analogous to Baer nilgroups and Gruenberg groups. We look
briefly at some classes of generalised nilpotent rings in this paper and obtain a
lattice diagram exhibiting all the strict inclusions between the classes.

1. Notation

We shall use the notation o/ for the class of rings with zero multiplication
and A" for the class of nilpotent rings. The class of rings which are the sum of
their nilpotent ideals we shall denote by #.

A subring S of a ring R is a subideal of R if there exist subrings Sy, S;, S,,
<oy S, of R with

§=S5,£5,€5,¢...€85,=R,
where S;_, isan ideal of §;, 1 £ i < n.

Notice that in a nilpotent ring every subring is a subideal. For, if Re &

then R = (0) for somen = 1. Put S; = S+R’. Then

§=§5,€85,-15...€85; =R,

where S; is an ideal of S;_,. Since, if s;,+r,€S+R'and s,+r,_,€S+R"!
then (sy+7)(sp+rimy) =515+ (iS4 537y +rir—y)
and s,s, €S while (r;s, 45,7, +r7;_;)eR".

Let A4,, A€ A, be a collection of subsets of a ring R. We shall denote by
Rg{(A, | 2 € A) the smallest subring of R which contains the set theoretic union
of the A,’s. If R = Rg{A;|Ae A) we say that R is generated by 4;, 1€ A.

We shall use the notation %, for the class of rings which are generated by
their «/-subideals. We shall prove later that the class of rings which are
generated by their A4 -subideals coincides with the class #.

A subring S of a ring R is a meta ideal of R if there exist subrings S, of R
with

S=SIESZE...ES;_S...S”=R,
where S, is an ideal of S, for ali A<y and if 4 is a limit ordinal S, = () S,.

a<i
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We shall use the notation ¢, and %, for the classes of rings which are
generated by their &/-meta ideals and their A -meta ideals respectively. Finally
we shall define the class & by: Re % if and only if R has an ascending chain
of ideals

0=4c4,c..€A4,€...S4,=R,
where RA,,; < A, for all A<y and if 4 is a limit ordinal 4, = | ] 4,. The

a<i
class of locally nilpotent rings, that is rings in which every finite set of elements

is contained in a nilpotent subring, we shall denote by £.A4".

2. Inclusions between classes

We shall prove in this section that the inclusion relations between the classes
we have defined are as given by the following lattice diagram. This diagram
shows only strict inclusions between the classes and there are no inclusions other
than those shown.

%,
*
s
~
Yo o * ¥ [ ]
(-4
o v
Bo
.o

All these classes are contained in the class Z.A4".

These inclusions are all obvious except perhaps for Z, € F, & < %, and
4, = LA. See(4) page 4 for a characterisation of nilpotent rings which gives
N e Z.
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Theorem 1. The ideal of a ring generated by a nilpotent subideal is nilpotent.
Proof. Let I be a subideal of a ring R. Then
I=A0§A1§...EA,,=R,

where A;_, is an ideal of 4,, 1 £ i < n. Call I an n-step subideal. Let I be
the ideal of R generated by /. We shall show that I*” = I. We use induction
on n. If Jis the ideal of A, generated by I, then

JESA,c A, =...€4,=R,

and J is an n—1 step subideal. Hence by induction, J>"~' < J, where J is the
ideal of R generated by J. But then since I = 4; € A, and J is the ideal of 4,
generated by I, J* < I, by Andrunakievic’s Lemma. Then J?" = J3 < I. How-
ever IcJ<1soJ =1giving I = I. Therefore, if I™ = 0, we have (I*")" = 0
so I3™ = 0, proving that I is nilpotent.

Corollary. R e & if and only if R is generated by its N -subideals.

Proof. If Re & then it is clear that R is generated by its A -subideals.
Conversely, suppose R is generated by its ./ -subideals. Then

R =Rg{N,| AeA, N;e N and N, a subideal of R).
But by the theorem N, € 4" for all 1€ A and so
R=Rg{N, | eA, N,eN, N, an ideal of R).

Hence R is the sum of its nilpotent ideals; so Re Z.
It now follows immediately that

Corollary. %, = &.

Theorem 2. The ideal of a ring generated by a locally nilpotent meta ideal is
locally nilpotent.

Proof. Let S be a meta ideal of a ring R. Then
S=AogA1§...EAAE...EA#=R,

where A, is an ideal of A4,,, for A<y and for limit ordinals 1, 4, = (J 4,.
Now let M, be the ideal of A, generated by S. Then ==

S=M1§M2g..._C_MAg---EM”§R.

Now M, ,, € A, S A, since M, , is the smallest ideal of 4, , containing S.
Since M, = M,,, we get M, an ideal of M, ;.

We must show that M, is locally nilpotent. Suppose not. Then since S is
locally nilpotent there is a first A with M, not locally nilpotent. Now A is not a
limit ordinal for then M, = () M, and M,, a<2, is locally nilpotent. This

a<i

gives M, is locally nilpotent which is a contradiction. Now if 2 is not a limit
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ordinal A —1 exists and M,_, exists and M,_, is an ideal of M, which is itself
an ideal of 4,. So if J is the ideal generated by M,_, in A; we have
JieM,_,.
But M, is the ideal generated by Sin 4, so M, = J. Hence M3 < M,_,. But
M, _, is locally nilpotent so M3 is locally nilpotent. Then if X is any finitely
generated subring of M, we have
X3 = M3, X3 finitely generated.

But then X? is nilpotent, say (X*)™ = (0). This shows that X is nilpotent and
so M is locally nilpotent giving a contradiction.

Corollary, 9, =« £ A .

Proof. Let Re %,. Then

R =Rg{N,;| AeA, Ne ¥, N, a meta ideal of R>.
But then N,, the ideal generated by N, is in ZA4". Thus
R =Rg{N,|leA, N;e LN, N, an ideal of R).
Hence R= ) N,, giving Re LN .
AeA

A ring in which every subring is a meta ideal is called a U-ring. In (2)
Freidman proved that every nil U-ring is locally nilpotent and since a nil U-ring
is clearly in ¢, this result is a special case of the above corollary. It is also
worth noting that the class ¢, strictly contains the class of nil U-rings. For,
consider the vector space R over GF(p), p a prime, with basis the set of symbols

{a, | A a rational, 0<i<1}.

Now R can be made into an algebra over GF(p) by defining multiplication on
the basis elements by

aa, = a,,, if A+u<l.
=0if A+pu = 1.
Then R is an F-ring since A4,, the ideal generated by a,, is nilpotent and
R= ) A, HenceRe¥, butRisnota U-ring; see (1) for a proof of this
2¢(0,1)
result.

The next result shows that every Z-ring is a nil U-ring.
Theorem 3. Every subring of a %-ring is a meta ideal.
Proof. Let Re &. Then we have a chain of ideals
0 =4 c4c..c4,c..c4, =R,
with RA,,, € A, for A<p and 4, = U‘1 A, for limit ordinals 1. Suppose S
a<

is a subring of R. Then define S; = S+ A4;. We have

S=SIQSZE..-_C_S;_§...§S”=R.
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Now S, is an ideal of S,,,. For, given s+aeS+ A4, and s,+a,e S+4,4,
then
(s+a)(s; +a,) = ss;+(as; +sa, +aa,).

But ss, € S and (as, +sa, +aa,) € A,; so we have the result.
Corollary. Z < 9,.

Proof. Clearly it will be sufficient to prove that if R € & then R is a nil ring.
For then, by the theorem, R € ¢, since every element will generate a nilpotent
subring which must be a meta ideal.

Letae R. Consider T = {a,a? a°,...}. Ifa" # Oforanyn = 1 then there
is a first A, with 4,nT = & while 4,, nT + . Let @"e€ 4,,,. Since
RA,., € A, we have aad"e€ A, so TnA, + ¢J, which is a contradiction.
Hence a is nilpotent.

3. Examples

To show that the inclusions in the lattice diagram of Section 2 are proper we
look at subrings of infinite dimensional matrices. Let Q be any totally ordered
set and R an arbitrary ring. Let Mg(R) denote the matrix ring of Q x Q matrices
over R, the matrices differing from the zero matrix in at most a finite number of
places. We shall look first at the subring, Ro(F), of upper zero triangular
matrices of Mq(F), where F'is a field. We shall use the notation xe,, for the
matrix in Mq(R) whose only non-zero entry is x € R in the (4, p)th position.

Theorem 4. Ry (F) € B, for any field F and any totally ordered set Q.

Proof. Let xe;, € Ro(F), where x € F, A, pe Q with A<pu. Let E,, denote the
ideal generated by xe;, in Ro(F). Now
(xe; e p€E,, for any f>p.
Hence xe;z € E;, for f = u. Also
(yx~'e,,)(xep) € E;, for any a<A and yeF.
Hence ye,z € E;, for any o < A<pu < f and y e F. But then clearly we have
E;u=Rg{yey|la=i<u=<B, yeF),

since this subring is an ideal of Ry(F).

However, then Rg{xe,,> is an ideal of E,, which itself is an ideal of Ro(F).
Since Rg{xe;,> € & this shows that R(F) is generated by its &/-subideals.
Hence Ry(F) € B,.

Now if Q fails to possess either a greatest or a least element, Ry(F) has
trivial annihilator. For, suppose

A = ann Ry(F) and

lI[\/_]:

n
x;e;,,€A with Y xe, , #0.
1 i=1
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If Q has no greatest element choose p>p;, i = 1, ..., n. Then

n
( Z xielm:) Cup = Z x.ieljp # 0’
i=1 jelJ

where J = {j| p;=p;, 1 £j < n}.
Similarly, if ©Q has no least element we can choose o<;, 1 £i £ n, and
then

27 (Z xie;.,#i) # 0,

i=1

We now get immediately the following result.
Lemma 5. If Q is infinite then Ry(F) ¢ Z.

Proof. Since Q is infinite we can choose a subset A of Q, the set A either
failing to possess a greatest element or failing to possess a least element. Then
RA(F) ¢ & and since Ry\(F) £ Rq(F) and a subring of a Z'-ring is a Z-ring this
gives Ro(F) ¢ Z.

. Hence if Q is infinite and F is any field, Ro(F) € 8B, but Ro(F) ¢ #". Also
Ro(F) e %, but Ro(F)¢ &. To see that & £ Z notice that for any field F

=] 0
@D R(F)eZbut @ R(F)¢N
n=1 n=1
since R,(F) is nilpotent of class ».

The only other inclusions that it is not trivial to show proper are B,<%,
and & «¥,. The next results are aimed at proving that these are in fact the
case.

Theorem 6. If Q is a densely ordered set then (Ro(F))? = Ro(F).

Proof. Rq(F) is generated by elements of the form ae;,, ac F, 1, peQ
with A<pu. Since Q is densely ordered there is an element p € Q with A<p<pu.
Then

ae;, = (ae,,)e,, €(Ro(F))>.
The result follows.

Suppose R is any ring and A is an ideal of R. For Q a totally ordered set
define Mg(R, A) to be the subring of Mg(R) consisting of those matrices of
M(R) which are upper zero triangular when the entries are taken modulo A4.
Then

Mq(R, R) = Mo(R) and M(R, (0)) = Ro(R).

If R is any ring denote by R*, the usual ring with a 1 containing R as an ideal,
see (3) page 11.

Theorem 7. If Re & then My(R*, R)e ¥9,.
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Proof. Let Re #. To show My(R*, R) e %, we show first that
H= H).p(r*) = Rg<MQ(R)a relu> egls

where r* is a fixed element of R* and A, u are fixed elements of Q with A<u.
Since H is a subideal of My(R*, R) this will show that the .#"-meta ideals of H
are A -meta ideals of My(R*, R). However, Mo(R*, R) is generated by sub-
rings H,,(r*) as A, u vary through Q with A<y and r* varies through R*. This
gives Mq(R*, R) € ¢, as required.

To show H € %, it is sufficient to prove that Rg(r*e,,> is a meta ideal of H.
For certainly M(R) is an ideal of H and is generated by .4 -ideals since R is
the sum of its A -ideals. Hence H will be generated by the .4 -subideals which
generate Mo(R) and the o/-meta ideal Rg{r*e;,>.

Since R € &#, R has a chain of ideals

O)=MycsM, c...cMc..cM,=R,
with M2, = M, for all t<s and, for limit ordinals t, M, = (j M,, because it
x<t

is well known that an &-ring is a Baer lower radical ring.
To prove Rg{r*e,,> is a meta ideal of H define

. . HO = Rg<r*elp>,
for a non-limit ordinal ¢, .

Hj;, = Rg{H;,_q, ré€.p |B#A a#pu reMy,
Hj, .y = Rg{Hj,, re;;, re,, | reM,p,
Hj o = Rg{Hj, 11, Teyp, Te,, [TEMD,

and for limit ordinals ¢ define
H, = U H..

x<t
Then for any ordinal ¢ we have H, an ideal of H,,, and H= () H,. The
t

result follows.
Theorem 8. If Q is infinite and R is a ring with R* = R then Mo(R*, R) ¢ &.
Proof. Let S be the subring of Mo(R*, R) defined by
S = Rg{e,,, re;p | reR, A<y, A, p fixed).

Then it is sufficient to show that S¢ &Z.
Let T be the ideal of S generated by e,,. Then given any «, 8 € Q choose y,
deQ with o, f % v, 8 and 9, § &= A, p. Then given r € R we have

n
r = Z rurﬂ.
i=1

But this gives

n
re,; = .Zl T1i€,0€ap7 2:€55€ T.
&
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Similarly re,; € T and so T = §. But S¢ .4 for Q infinite since Ro(R*) ¢ A"

Hence Mo(R*, R) ¢ &.
As a corollary to Theorems 7 and 8 we have

Corollary. % + 9,.
A straightforward modification of the proof of Theorem 7 gives
Theorem 9. If Re %, then Mo(R*, R) € %,
From Theorems 4 and 6, if Q is densely ordered and F is any field,
Ro(F)e#B, and Ro(F)? = Ry(F).
Hence for any infinite totally ordered set A,
M \(Ro(F)*, Ra(F))e%,.

But, by Theorem 8,
M \(Ro(F)*, Ro(F)) ¢Z.

Since B, < % this shows that Z, + %, as required.

Finally we give examples to show 4 & %, and & ¢ & to complete the
proof that there are no hidden inclusions in the lattice inclusion diagram.
The ring 2Z/8Z provides an example that A $ Y.

To show & & F let R = (—B R, (F). We have shown that Re & and it is
straightforward to check that M ,(R* R)ye & but M,(R*, R)¢ F
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