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In (5) and (6) we studied certain subgroups of infinite dimensional linear groups
over rings. In particular we investigated how the structure of the subgroups was
related to the structure of the rings over which the linear groups were defined.
It became clear that it might prove useful to study generalised nilpotent pro-
perties of rings analogous to Baer nilgroups and Gruenberg groups. We look
briefly at some classes of generalised nilpotent rings in this paper and obtain a
lattice diagram exhibiting all the strict inclusions between the classes.

1. Notation
We shall use the notation s/ for the class of rings with zero multiplication

and Jf for the class of nilpotent rings. The class of rings which are the sum of
their nilpotent ideals we shall denote by J5".

A subring S of a ring R is a subideal of R if there exist subrings So, Su S2,
..., Sn of R with

S = So £ Si £ 52 <= ... <= Sn = R,

where Sj_! is an ideal of Sit 1 ^ i ^ n.
Notice that in a nilpotent ring every subring is a subideal. For, if R e Jf

then R" = (0) for some n ^ 1. Put St = S+R\ Then

where St is an ideal of S;_!. Since, if s1 + r ieS + .Ri and s2 + ri_ieS + R'

and SjS26S while (ris2+s1ri^1 + riri

Let Ax, X e A, be a collection of subsets of a ring R. We shall denote by
^KAA | X e A> the smallest subring of R which contains the set theoretic union
of the Ax's. If R = Rg(Ak \ X e A> we say that R is generated by Ax, X e A.

We shall use the notation SS0 for the class of rings which are generated by
their ^/-subideals. We shall prove later that the class of rings which are
generated by their Jf -subideals coincides with the class $F.

A subring S of a ring R is a meta ideal of R if there exist subrings Sx of R
with

S = S 1 g S 2 c . . . c S i g ... sp = R,

where Sx is an ideal of Sx+l for all X<fi and if A is a limit ordinal SA = ^J Sa.
tx<X
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266 EDMUND F. ROBERTSON

We shall use the notation ^ 0 and ^ for the classes of rings which are
generated by their j/-meta ideals and their J^-meta ideals respectively. Finally
we shall define the class 2£ by: R e 2£ if and only if R has an ascending chain
of ideals

(0) = At £ A2 £ ... £ Ax £ ... c ^ = i?,

where iL4A+1 £ v4A for all A</* and if A is a limit ordinal Ak = \J Aa. The

class of locally nilpotent rings, that is rings in which every finite set of elements
is contained in a nilpotent subring, we shall denote by &Jf.

2. Inclusions between classes

We shall prove in this section that the inclusion relations between the classes
we have defined are as given by the following lattice diagram. This diagram
shows only strict inclusions between the classes and there are no inclusions other
than those shown.

All these classes are contained in the class S£Jf.
These inclusions are all obvious except perhaps for 3S0 £ SF, 2 £ 0 t and

^ ! £ JSf̂ T. See (4) page 4 for a characterisation of nilpotent rings which gives
JT £ 3£.
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Theorem 1. The ideal of a ring generated by a nilpotent subideal is nilpotent.

Proof. Let / be a subideal of a ring R. Then

I = AocAl £... cAn = R,

where Ax-X is an ideal of Ah 1 g, i g n. Call / an n-step subideal. Let / be
the ideal of R generated by /. We shall show that P" £ /. We use induction
on n. If / is the ideal of A2 generated by /, then

J ^A2^A3^ ... zAn = R,

and / is an n — 1 step subideal. Hence by induction, J3""1 £ J, where J is the
ideal of R generated by / . But then since / £ Ax £ A2 and J is the ideal of A2

generated by /, J3 £ / , by Andrunakievic's Lemma. Then J3" £ J3 £ /. How-
ever / £ . / £ / s o J = 7 giving I3" £ /. Therefore, if Im = 0, we have (/3")m = 0
so 73"m = 0, proving that I is nilpotent.

Corollary. Re fF if and only if R is generated by its Jf-subideals.

Proof. If R e $F then it is clear that R is generated by its ^K-subideals.
Conversely, suppose R is generated by its ./T-subideals. Then

R = Rg(Nx | XeA, NxejV and Nx a subideal of #>.

But by the theorem Nx e JV for all X e A and so

R = Rg(Nx \XeA,NxeJ^,Nx an ideal of R}.

Hence R is the sum of its nilpotent ideals; so R e 2F.
It now follows immediately that

Corollary. @0 c J .̂

Theorem 2. The ideal of a ring generated by a locally nilpotent meta ideal is
locally nilpotent.

Proof. Let S be a meta ideal of a ring R. Then

S = Ao £ Ai S ... £ Ak £ ... £ A^ = R,

where Ax is an ideal of Ax+1 for X<p and for limit ordinals X, Ax = (J Aa.

Now let Mk be the ideal of Ax generated by S. Then

S = A*! £ M2 £ ... £ MA £ ... £ MM £ /?.

Now M i + 1 £ Ax £ J4A+1 since MA+1 is the smallest ideal of Ax+l containing S.
Since Mx £ Mx+1 we get AfA an ideal of Mx+l.

We must show that MM is locally nilpotent. Suppose not. Then since S is
locally nilpotent there is a first X with Mx not locally nilpotent. Now X is not a
limit ordinal for then Mx = (J Ma and Ma) a<X, is locally nilpotent. This

gives MA is locally nilpotent which is a contradiction. Now if X is not a limit
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ordinal X — \ exists and Mx-X exists and MA_t is an ideal of Mx which is itself
an ideal of Ax. So if J is the ideal generated by M^_x in Ax we have

But Mx is the ideal generated by S in Ax so Mx c / . Hence M\ s MA_j. But
MA_j is locally nilpotent so M\ is locally nilpotent. Then if X is any finitely
generated subring of Mx we have

X3 ^M\,X3 finitely generated.

But then X3 is nilpotent, say (X3)m = (0). This shows that X is nilpotent and
so Mx is locally nilpotent giving a contradiction.

Corollary. <SX <S J2VT.

Proof. Let ReiSy. Then

.R = i*0<iVA UeA, NxeJr, Nx a meta ideal of R}.

But then JV̂ , the ideal generated by Nx is in 3?Jf. Thus

£ = Rg<Nx \XeA, Nxz<£Jf, Nx an ideal of R}.

Hence i? = £ JVA, giving ^ e ^ ? ^ .

A ring in which every subring is a meta ideal is called a £/-ring. In (2)
Freidman proved that every nil C/-ring is locally nilpotent and since a nil C/-ring
is clearly in ^ this result is a special case of the above corollary. It is also
worth noting that the class <$x strictly contains the class of nil E/-rings. For,
consider the vector space R over GF(p), p a prime, with basis the set of symbols

{ax | A a rational, 0<A<l}.

Now R can be made into an algebra over GF(p) by defining multiplication on
the basis elements by

= Oif X+n ^ 1.

Then R is an ^"-ring since Ax, the ideal generated by ax, is nilpotent and
R = Y, Ax. Hence R e ^ but i? is not a {/-ring; see (1) for a proof of this

result.

The next result shows that every S£-x\ng is a nil {/-ring.

Theorem 3. Every subring of a 2£-ring is a meta ideal.

Proof. Let R e £Z. Then we have a chain of ideals

(0) = A £ ^ £ ••• £ 4t £ - £ 4 , = .R,

with /?v4A+1 £ 4̂A for A</i and /4A = \J Aa for limit ordinals A. Suppose 5
a<X

is a subring of R. Then define Sx = 5+^A. We have
S = S 1 £ S 2 £ . . . c S j l c ... ^Sll = R.
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Now Sx is an ideal of Sx+l. For, given s+ae S+Ax and s1 + al e S+Ax+1

then
(s + a)(s1 + al) = ssl+(asl+sal + aal).

But sSi e S and (qsl + sal+aal) e Ax; so we have the result.

Corollary. 2T c #, .

Proof. Clearly it will be sufficient to prove that if R e 2H then R is a nil ring.
For then, by the theorem, Re<8x since every element will generate a nilpotent
subring which must be a meta ideal.

Let aeR. Consider T = {a, a2, a3,...}. If a" 4= 0 for any n ^ 1 then there
is a first /4a with v4anr = 0 while y4a+1nr=t= 0 . Let a"eAa+l. Since
JL4a+1 £ Aa we have co" e Aa so 7n^a # 0 , which is a contradiction.
Hence a is nilpotent.

3. Examples

To show that the inclusions in the lattice diagram of Section 2 are proper we
look at subrings of infinite dimensional matrices. Let Cl be any totally ordered
set and R an arbitrary ring. Let Mn(R) denote the matrix ring of Q x Q matrices
over R, the matrices differing from the zero matrix in at most a finite number of
places. We shall look first at the subring, Ra(F), of upper zero triangular
matrices of Mn(F), where F is a field. We shall use the notation xeXlt for the
matrix in Ma(R) whose only non-zero entry is x e R in the (A, /*)th position.

Theorem 4. Rn(F) e 3S0 for any field F and any totally ordered set Q.

Proof. Let xeXfle Ra(F), where xeF, l,y.e O. with X <fi. Let EXfl denote the
ideal generated by xeXfl in Ra{F). Now

(xe^e^eE^ for any p>/i.

Hence xexp e EX/1 for p ^ fi. Also

{.yx~leaX){xexe)eEXft for any a.<X and yeF.

Hence yex0 e EXfl for any a ^ k ( j ^ | and yeF. But then clearly we have

£*„ = RQ<ye« \oi^k<n^p, yeF},
since this subring is an ideal of Rn(F).

However, then Rg(xeXfl~) is an ideal of EXfl which itself is an ideal of Rn(F)-
Since Rg^xe^y e s/ this shows that Ra(F) is generated by its ^/-subideals.
Hence Rn(F) e @0.

Now if il fails to possess either a greatest or a least element, Rn(F) has
trivial annihilator. For, suppose

n n

A = ann fln(F) and £ x,eXmieA with £ xteXilll # 0.
; i i
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If Q has no greatest element choose p>fih i = 1, ..., n. Then

\i= 1 / j 6 J

where J = {j | ^- = /*,-, 1 g j g «}.

Similarly, if Q has no least element we can choose CT<A,-, 1 ̂  i ^ n, and
then

/ n \

#0,
\> = 1

We now get immediately the following result.

Lemma 5.I/Q, is infinite then Rn(F) $ 2£.

Proof. Since Q. is infinite we can choose a subset A of Q, the set A either
failing to possess a greatest element or failing to possess a least element. Then
RA(F) $ % and since RA(F) <; Rn(F) and a subring of a ^T-ring is a S'-ring this
gives Rn(F) $ S£.
. Hence if Q is infinite and F is any field, Rn(F) e 380 but Ra{F) $ JV. Also

i?n(i0 e ^O but i?n(^) £ %• To see that ./T # JT notice that for any field F

ut © Rn{F)iJf
n = 1 n = 1

since /?n(F) is nilpotent of class n.
The only other inclusions that it is not trivial to show proper are 380 <= 0O

and ^ c ? , . The next results are aimed at proving that these are in fact the
case.

Theorem 6. 7/Q is a densely ordered set then (i?n(F))2 = Rn(F).

Proof. Rn(F) is generated by elements of the form aeXft, aeF, X, / ieQ
with X<\i. Since Q is densely ordered there is an element p e Q with
Then

The result follows.
Suppose R is any ring and A is an ideal of R. For fi a totally ordered set

define Mn(R, A) to be the subring of Mn(R) consisting of those matrices of
Ma(R) which are upper zero triangular when the entries are taken modulo A.
Then

Mn(R, R) = Ma(R) and Mn(R, (0)) = R^R).

If R is any ring denote by R*, the usual ring with a 1 containing R as an ideal,
see (3) page 11.

Theorem 7. I/Re^'thenMii(R*,R)e^1.
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Proof. Let R e J5". To show Ma(R*, R) e ^ we show first that

where r* is a fixed element of i?* and 1, /z are fixed elements of £1 with
Since H is a subideal of Ma(R*, R) this will show that the ./F-meta ideals of H
are ./K-meta ideals of Mn(R*, R). However, Ma(R*, R) is generated by sub-
rings HXll(r*) as X, n vary through SI with A<// and r* varies through i{*. This
gives Mn(R*, R) e <8X as required.

To show HB1S1 it is sufficient to prove that Rg(r*eXll) is a meta ideal of H.
For certainly Ma(R) is an ideal of H and is generated by ./^-ideals since R is
the sum of its ^"-ideals. Hence H will be generated by the J^-subideals which
generate Mn(R) and the jaZ-meta ideal Rg(r*eXlty.

Since Re !F, R has a chain of ideals

(0) = M0^Ml<= ... SM,<= ... <=MS = R,

with M?+l £ M, for all t<s and, for limit ordinals t, M,= \J Mx, because it

is well known that an J^-ring is a Baer lower radical ring.
To prove Rg(r*eXll} is a meta ideal of H define

for

and

a non-limit ordinal

H3t

H3t+l

for limit ordinals i

t,

= Rg<H3t.u

= Rg(H3t, re

= Rg<H3t+1,
' define

rexP\

u, re,

revp>

= u

)S # A, a #

w | r e M ( > ,
A*.

Then for any ordinal / we have H, an ideal of Ht+1 and H = \J Ht. The

result follows.

Theorem 8. IfCl is infinite and R is a ring with R2 = R then Mn(R*, R) $ &.

Proof. Let S be the subring of Mn(R*, R) defined by

S = Rg(eXli, reap \ reR, X<\i, X, \i fixed).

Then it is sufficient to show that 5 $ IF.
Let Tbe the ideal of S generated by eXli. Then given any a, /? e Q choose y,

deQ. with a, /? ^ y, 5 and y, 5 #= X, \i. Then given /• e i? we have
n

But this gives
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Similarly reaP e T and so T = S. But S $ Jf for Q infinite since RQ(R*) $ Jf.
Hence Mn(R*, R) £ &.

As a corollary to Theorems 7 and 8 we have

Corollary. & #= &t.

A straightforward modification of the proof of Theorem 7 gives

Theorem 9. If R e @0 then Mn(R*, R) e &0.

From Theorems 4 and 6, if Q is densely ordered and F is any field,

tfn(F)e^0 and Rn(F)2 = Ra(F).
Hence for any infinite totally ordered set A,

M^Ra(F)
But, by Theorem 8,

MA(*n(F)

Since H80 ^ 3F this shows that 3B0 4= ^ 0 as required.
Finally we give examples to show Jf $ ^ 0 and ,2f $ J^ to complete the

proof that there are no hidden inclusions in the lattice inclusion diagram.
The ring 2Z/8Z provides an example that J/~ $ ^0.

OO *

To show S£ $ & let R = © £n(F). We have shown that R e 2£ and it is
n = 1

straightforward to check that M2(R*, R)s2£ but M2(R*, R) <£ &.
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