
RECURRENT TRANSFORMATION GROUPS 

R. A. CHRISTIANSEN 

1. Introduction. Let (X, T, ir) denote a flow, where X is a compact 
topological space metrizable by d, and T is a closed non-trivial subgroup of the 
reals under addition. T is recurrent if and only if for each e > 0 and s > 0, 
there exists t > s such that x ^ X implies d(x, xt) < e. If T is almost-periodic, 
then T is both recurrent and distal. In §§ 4 and 5, it is shown that, under more 
stringent hypotheses, the recurrence of T is neither a necessary nor a sufficient 
condition for T to be distal. Let S be a closed non-trivial subgroup of T. I t is 
shown in § 3 that T is recurrent if and only if 5 is recurrent. From this result, 
we obtain a solution to a problem posed by Nemyckiï (16, p. 492, Problem 6). 
In § 3, topological conditions necessary and sufficient for T to be recurrent are 
also given, thus solving another problem raised by Nemyckiï (16, p. 492, 
Problem 5). 

2. Preliminaries. The basic references are (11) and (14). Right-hand 
(#/, oca) notation for functions and relations will generally be used. R, Z, N, 
and P will denote the reals, integers, non-negative integers, and positive 
integers, each with the usual normed structure. We begin with a summary of 
some known, but somewhat inaccessible, material. 

2.1. Bebutoff spaces. 

LEMMA 1. Let Y be a topological space and (X, °tt) a uniform space. Suppose 
that E is a set of continuous functions from Y to X. 

(a) The topology ^ on E of uniform convergence on compacta is the compact 
open topology. 

(b) Suppose that Y is locally compact and either Hausdorff or regular. If 
yn-^y in Y and /„ —>/ in ^TC1 then ynfn —> yf in X. 

(c) Suppose that f and the net fn are such that if fni is a subnet of fn and 
y m -* y, then ynifni —» yf. Thenfn - > / in ^ c. 

Proof, (a) is (14, p. 230, Theorem 11). (b) then follows from (14, p. 223, 
Theorem 5). We prove (c). Suppose that for s o m e / n , / satisfying the premises 
of (c), fn -T^ f in 3TC. Passing to a subnet, there exist a f f and a compact 
subset C of Y such that 

(f,fn) € «c = i(g,h) eEXE; (eg, ch) e a for all c £ C\. 
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Passing to a subnet, there exist cn —» c € C such that (cnf, cnfn) d a. S ince/ is 
continuous, cnf —> cf. cnfn —> cf by hypothesis. Hence, (^/, cnfn) £ a eventually, 
a contradiction. 

Suppose that a locally compact topological group T and a uniform space 
(X, ^ 0 are given. Let F be the set of all continuous functions from T to X. 
Let °UC and J ^ be the uniformity and the topology on F of uniform conver­
gence on compacta. Define the shift operator w: F X T —>XT by (f, t)ir = g, 
where sg = (te)/. Briefly, s/* = te/. Then ft € F, fe = / , and/(r t ) = (fr)t. By 
Lemma 1, 7r is continuous. Hence, ((F, &c), T, IT) is a transformation group, 
called the Bebutoff space associated with T and (X, °/é). 

Suppose now that T is a locally compact Hausdorff topological group 
satisfying the second axiom of countability and (X, %) is a separable, metriz-
able, and complete uniform space. Then (F, ÛJ/C) is separable metrizable 
(3, p. 41, Corollaire), and complete (14, p. 231, §§ 12, 13). Since T is locally 
compact, separable, and metrizable (14, p. 186, § 13), there exists (13, p. 76, 
Theorem 2-61) a metric a for T such that a closed subset of T is compact if 
and only if it is cr-bounded. For each s > 0, let Cs = {t £ T; a(t, e) ^ s}. Cs 

is compact. Let d be a metric for (X, %). If / , g £ F and s > 0, define 
d(f,g;s) = sup{d(tf,tg);te C,}. Define p: f X F - > [0, oo ) by p(f,g) = 
sups>o min{d(f, g; 5), 1/s}. Straightforward arguments show that: 

(a) p is a metric, called a Bebutoff metric for F; 
(b) d(ef,eg) £p(f,g); 
(c) If d(f, g; s) g 1A, then p(/, g) £ 1/s; 
(d) If p(f, g) < 1/s, then d(f,g; s) < 1/s; 
(e) If d(f, g;s) = 1/s, then p(f, g) = 1/s; 
(f) ^ P = <2?e. 

If T is a closed subgroup of the reals under addition and a is the usual metric 
for T, then a will be called the usual Bebutoff metric. 

2.2. Basic properties of transformation groups. Suppose that a transformation 
group (X, T, 7r) is given. If t £ T, then -K1\ X —» X, defined by #7r* = atf, is a 
self-homeomorphism of X. t—^-ir1 defines a homomorphism of J" onto the 
abstract group G = {ir1; t £ T) of translations of X. T is effective if and only if 
t —•> ir1 is one-to-one. A subset F of X is invariant if and only if F r C F. If F 
is invariant, then so is Y~. If 5 is a subgroup of T such that YS C F, then 
(F, S, 7r| F X 5) is itself a transformation group, denoted by (F, 5, 7r). A 
subset F of X is minimal if and only if F is closed, non-empty, and invariant, 
but no proper subset of F is closed, non-empty, and invariant. F is minimal if 
and only if F = xT~ for each x 6 F. 

Let i b e a subset of T. A is replete if and only if for each compact subset 
C of T there exists £ 6 T such that /C C A. If T is a non-trivial subgroup of 
the reals under addition, then a semigroup A in T is replete if and only if A 
contains a ray in T. A is extensive if and only if A intersects each replete semi­
group of T. A is left syndetic if and only if there exists some compact subset 
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C of T such that AC = T. If A is left syndetic, then A is extensive, x is an 
almost-periodic point of X if and only if for each neighbourhood U of x there 
exists a left syndetic subset 4̂ of T such that xyl Ç U. Let X be regular and 
xT~ be compact. Then x is an almost-periodic point if and only if xT~ is 
minimal (11, p. 31, §§4.05, 4.07). 

T is periodic if and only if there exists a left syndetic subgroup 5 of T such 
that x Ç X implies xS = {x}. Suppose that X is uniformizable by °tt. T is 
almost-periodic if and only if for each a ^ °U there exists a left syndetic subset 
A of T such that x £ X implies xA Ç xa. 2" is recurrent if and only if for each 
a f f there exists an extensive subset A oi T such that i f I implies 
xA Ç xa (this generalizes the definition given in the introduction). T is 
periodic implies T is almost-periodic, which implies T is recurrent. T is distal 
if and only if whenever x ^ y ^ X, there exists a € ^ such that / t r 
implies y/ (? #fo. Suppose that X is compact and Hausdorff. If T is almost-
periodic, then T is distal. If T is distal, then (4, p. 402, Theorem 1) T is point-
wise almost-periodic. 

3. Positive results on recurrent transformation groups. 

3.1. The basic results. Remarks 1 and 2 are analogues of corresponding 
results for almost-periodic transformation groups. 

REMARK 1. Let (X, T) be a transformation group uniformizable by °tt. Let Y 
be an invariant subset of X. If T is recurrent on Y, then T is recurrent on Y~. 

Proof. Let a Ç °tt. There exists a symmetric /3 G tft such that /33 ÇZ a. 
There exists an extensive subset A of T such that y £ Y and a ^ A imply 
(y, y a) £ 0. Let x £ Y" and a £ A. By the continuity of ira, there exists 
7 £ % such that 7 ^ / 3 and ya Ç xa/3 whenever y Ç #7. There exists 
y £ xy C\ Y. Then (x, xa) = (x, y) (y, ya) (ya, xa) Ç /33 Ç a. 

Suppose that T — Z and X = {0, 1, . . ., k} carries the usual discrete 
metric. (F, Z), the Bebutoff space associated with Z and X, is called a symbol 
space. Since Z is discrete, F = Xz and J^Tis the product topology. Hence, ^Tc 

is compact. 

REMARK 2. Let (X, Z) &£ a symbol space, with Y an invariant subset of X. If 
Z is recurrent on Y, then Z is periodic on Y. 

Proof. Corresponding to e = 1, there exists k Ç P such t h a t / G Y implies 
p(f,fk) < 1. Let / Ç F and m G Z. p(/m, (fm)k) < 1 implies \mf — mfk\ = 
|0/m — 0/(m + &)| < 1, which implies m/ = mfk. T h u s / = /&. 

3.2. The inheritance problem. 

THEOREM 1. Suppose that a transformation group (X, T) is given, where X 
is compact and uniformizable by % and T is an abelian group such that for some 
compact neighbourhood C of e, T = \J{C"",n(iP}. Let S be a closed syndetic 
subgroup of T. Then T is recurrent if and only if S is recurrent. 
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Proof. The proof is suggested by the proof of the corresponding problem for 
regional recurrence (11, p. 65, § 7.12; p. 67, § 7.21). If 5 is recurrent, we apply 
(11, p. 59, § 6.19). Suppose that Tis recurrent. Let a G %'. By the compactness 
of X and the local compactness of T, there exist a_i G & and a compact 
symmetric neighbourhood V of e such that if x G X, then xa^iV ÇI xa. Let 
A = {a G 5 ; (x, xa) G « for all x Ç l ) . We show that A is 5-extensive by 
letting B be a replete semigroup of 5 and proving that A intersects B. By 
(11, p. 60, § 6.20), there exists a replete semigroup D of T such that 
DV r\ S Ç; B. There exist a0 G % and do ^ D such that a0

2 £ a_i and x £ X 
implies (x, xd0) G aQ. Suppose that for j = 0, 1, . . ., i — 1 we have defined 
<Xj G ^ and dj G D such that a / C a^_i and x £ X implies (x, xdj) G ajm 

There exist at G °ll and dt £ D such that c^2 Ç a ^ i and i f I implies 
(x, xdi) G «j. Hence, we obtain sequences {at} and {a7*}. 

There exists a compact subset C of J1 such that 5C = J*. Let dt = $*£*. By 
(11, p. 60, § 6.22), there exist n G N and i0 < ix < . . . < in G N such that 
cioczl . . . cin = s'v G «SF. By passing to subsequences, we may suppose that 
h = i» 0 = i = w- Let 5 = s0Si . . . sn. Since T is abelian, d0di . . . dnv~l = 
ss' G J9 V C\ S C £ . Let q = ss' and x G X. It suffices to show that (x, xg) G a. 
Now (x, xdw) G a , C On2 C aw_i and (xdw, xdndn-.i) G a»-i. Hence (x, xdn4-i) G 
«n-i 2£ «n-2. Continuing as indicated, we obtain (x, xdndn-\ . . . d0) G a_i. 
Then (x, xq) = (x, xdndn-i . . . aV - 1) G a. 

LEMMA 2. Ze£ T be a locally compact, abelian, Hausdorff topological group and 
X a complete uniform space. Let Fc be the Bebutqff space associated with T and X. 
Then f G Fc is uniformly continuous and totally bounded if and only if fT~ is 
compact. 

Proof. See (11, p. 97, §11.32). 

By classical Bebutqff space we mean the Bebutoff space associated with R 
and R. If/: Z —» R, then/*, the linear extension of/, is the element of classical 
Bebutoff space such that if k G Z, then kf* = kf and f*\[k, k + 1] is a line 
segment. The restriction to any fixed symbol space of the map/—>/* is a 
unimorphism into classical Bebutoff space such that (fk)* = f*k. 

Let us for the moment call a transformation group (X, T) pseudo-minimal 
if and only if T is recurrent on X and there exists x G X such that xT~ = X. 
We are now able to solve a problem raised by Nemyckiï (16, p. 492, Problem 6) : 
Find an example (in classical Bebutoff space) of a compact minimal transfor­
mation group which is not pseudo-minimal. Le t / be the Morse function (15) in 
the symbol space on {0, 1}. Let/* be the linear extension of/. Then X = (f*R)~ 
is compact by Lemma 2. Since/is an almost-periodic point of symbol space, /* 
is an almost-periodic point of classical Bebutoff space. Hence, X is minimal. 
Now/ is not periodic; hence, by Remark 2, Z is not recurrent on/Z. Thus, Z is 
not recurrent on/*Z, whence Z is not recurrent on X. Finally, by Theorem 1, 
R is not recurrent on X. 
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3.3. Topological characterizations of recurrence. In (16, p. 492, Problem 5), 
Nemyckiï raised the problem of finding topological characterizations of 
recurrent flows. This problem is solved in Theorem 2 by using topologies on 
the group G of translations irl of X. As a by-product, Theorem 3 contains 
topological characterizations of periodic flows. Other characterizations of 
recurrent flows may be found in (8). 

LEMMA 3. Let S be an abstract group and ^ a topology for S such that (S, ^") 
is a topological group and for some compact neighbourhood C of e, we have 
S = [J{Cn;n Ç P). Let (5, <^~*) be a locally compact Hausdorff topological 
group. If3~* Ç ^ - , then^* = ^ 

Proof. Apply (12, p. 42, § 5.29) to the identity function from (S, ̂ ~) onto 

For the remainder of this section, suppose given a transformation group 
(X, T, 7r) with X uniformizable by °k'. LetJ^~ be the topology for T, and 5 the 
underlying abstract group of T. Let H = {t Ç T; xt = x for all x 6 X) be the 
period of T (an invariant subgroup) and p: S —> G defined by t —» -wK p is an 
abstract group epimorphism with kernel H. Let &~' be the quotient topology 
for G determined by^7" and p. T' = (G,^') is a topological group, the topo­
logical isomorph of T/H. Let £TC and 3TX denote the topologies on G of 
uniform convergence on compacta and of uniform convergence. Let 
$: X X G —> X be defined by (x, w1)^ = XT1 = xt. If Ĵ ~* is a topology on G, 
then (X, (G,^~~*), 0) is a transformation group if and only if (G, jT~*) is a 
topological group and $ is continuous. 

LEMMA 4. ^ 2 ^ 

Proof. We first show that (AT, 2"', 0) is an effective transformation group by 
proving the continuity of <f>. Let fn —» 7r* in J7 and xn —» x in X. Let [ /be a 
neighbourhood of xt. There exist open neighbourhoods V of x and W oî t such 
that FW Ç U. Eventually, xn Ç 7. Since T7# G ^ and Wpp"1 = Wiï, we 
have Wp £ ^7"/. Eventually, fn is in I7£; thus, there exists tn £ W such that 
fn = Ttn. Thus, xnfn = xntn £ U eventually, and '</> is continuous. Now let 
fn —>/ in J^"'. If xni —» x, then #ni/Wl- —> x/. Hence/n —>f in t ^ by Lemma 1 (c). 

THEOREM 2. Let (X, T) be an effective transformation group such that X is a 
Hausdorff space uniformizable by °tt and T is a closed non-trivial subgroup of R. 
Consider the following statements: 

(a) T is recurrent; 
(b) $~' is not a subcollection of t3~x; 
(c) 2TC is a proper subcollection of 3T'; 
(d) 2TC is not locally compact. 

Then (a) is equivalent to (b), (b) implies (c), and (c) is equivalent to (d). If X is 
compact, then (a), (b), (c), and (d) are pairwise equivalent. 
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Proof. Let C be a compact symmetric non-trivial neighbourhood of 0. 
Assume (a). We prove (b). For each a G ^ and n G P , there exists a (a, w) G 
T ~ nC such that x £ X implies {x, xa{a, n)) G a. Consider the net 7ra(a'w) in 
G with domain the directed set tfl X -P. Given 0 G ^ , let ao — ft and «o = 1. 
Suppose that a ÇI «0 and w > w0. If # € X, then (#, xa{a, n)) G ce C £. Thus, 
„.«(«.n) ç ^ o ^ a n d ^ (« .n ) _> ^o j n ^ S i n c e r j s effective and a{a, n) -A 0 in 

.^", we conclude that 7ra(a'n) -/> TT0 in J r / . T h u s , ^ ' is not a subcollection of ttx-
Assume (b). We prove (a). There exist IT1 and a net irtn —» TT' in ^ 5 such 

that 7r'n -/» 7r' in^" ' . Suppose that there exists i such that ^ is eventually in iC. 
Since tn -A J, there exist s 9e t and a subnet /nJfc such that tnk —> s. For each 
x Ç l , x4& —> xs and x/WJfc —> xt. Since X is Hausdorff, xs = atf. Since P is 
effective, s = t, a contradiction. For each symmetric a G tff, there exists n0 

such that n > no and x f l imply that {xt, xtn) G a. Let 

E = {±{t- tn);n> no}. 

Thus n > n0, s G E, and x G X imply {x, xs) G a. If there exists 7 such that 
tn — t G j C for each w > no, then choose an i such that / + jC C iC to deduce 
a contradiction. Hence E is extensive. 

That (b) implies (c) follows from Lemma 4 and ttc C ^ x . That (d) 
implies (c) follows from Lemma 4 and the local compactness of tt'. If X is 
compact, then (c) implies (b). Assume (c). We prove (d). Suppose that ttc is 
locally compact. Then (G, tt) is a locally compact Hausdorff topological 
space with an abelian abstract group structure such that if fn —>f in tt, then 
gfn —» gj'in ^ . Hence (5, Theorem 2), (G, ^7) is a topological group. Applying 
Lemmas 3 and 4, ^""' = ^ , a contradiction. 

THEOREM 3. Let {X, T) be a transformation group, where X is a Hausdorff 
space uniformizable by %, and T is a closed non-trivial subgroup of R. The 
following are then equivalent: 

(a) T is not effective; 
(b) T is periodic; 
(c) tt' is compact; 
(d) ttc is compact. 

Proof. That (a) implies (b) is clear. Assuming (b), we will prove (c). 
There exists a syndetic subset A of T such that x £ X implies xA = {x}. 
There exists a compact subset C of T such that A + C = T. p is a continuous 
map from {C,tt\C) onto {G,tt'). Hencett' is compact. That (c) implies (d) 
follows from Lemma 4. Assuming (d), we will prove (a). (G. ttc) is a locally 
compact Hausdorff topological space with an abelian abstract group structure 
such that if /„ - » / in ^ c , then gfn-*gfin tt- Applying (5, Theorem 2) again, 
(G, tt) is a topological group. Applying Lemmas 3 and 4, tt' = J?7. Since J?7"" 
is not compact, T cannot be effective. 

Let us assume that (X, T) is a transformation group such that X is a 
compact Hausdorff space and T is a closed non-trivial subgroup of R. Then X 
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is uniformizable (14, p. 198, § 30). Using Theorems 2 and 3, we see that T is 
recurrent if and only if 2TC is either compact or is not locally compact. 

4. T is recurrent does not imply T is distal. 

4.1. Synopsis. I give an example of a compact minimal subflow X of 
classical Bebutoff space such that R is recurrent on X but R is not distal on X. 
The quite lengthy and delicate construction and analysis of X is outlined after 
some preliminary definitions. 

Given a transformation group (X, 7'), with x £ X. x is a regularly almost-
periodic point if and only if, for any neighbourhood U of x, there exists a left 
syndetic invariant subgroup A of T such that x i Ç JJ.x is an isochronous point 
if and only if, for any neighbourhood U oi x, there exist a left syndetic invariant 
subgroup A of T and an s G T such that xs.4 C [7. x is a locally almost-periodic 
point if and only if, for any neighbourhood U of x, there exist a neighbourhood 
F of x and a left syndetic subset A of T such that F 4̂ C U. If X is uniformiz­
able, then T is uniformly equicontinuous if and only if the group G of transla­
tions TT1 of X is a uniformly equicontinuous family of functions. 

We now outline the construction of X, a compact minimal subset of classical 
Bebutoff space on which R is pointwise isochronous, pointwise locally almost-
periodic, recurrent, but not distal. We will construct/: Z —> [0, 1] such that in 
the Bebutoff space associated with Z and R, Z is recurrent on /Z , Z is not 
uniformly equicontinuous on fZ, and / is an isochronous point. 

Then let/*: R —» [0, 1] be the linear extension of / in classical Bebutoff space. 
f* is uniformly continuous and bounded; hence, by Lemma 2, X — (f*R)~~ is 
compact. R is recurrent on f*R; hence, by Remark 1, R is recurrent on X. R is 
not uniformly equicontinuous on X, or equivalently, R is not almost-periodic 
on X (11, p. 37, §§ 4.35, 4.38). f* is an isochronous, hence an almost-periodic 
point of X, and therefore X is minimal. By (11, p. 54, § 5 24), R is pointwise 
locally almost-periodic. By (11, p. 53, §§ 5.20, 5.23), R is pointwise isochronous. 
By (9, p. 710, Theorem 1), R is not distal. Note that by (11, p. 53, § 5.23), 
X = (gR)~~ for some regularly almost-periodic point g. 

4.2. Construction preliminaries. If X and Y are sets, let 

X ~ Y = {x;x 6 X, x £ Y}. 

A block is a subset of i£2 which is a function with domain of [i, j] Pi Z for some 
i ^ j . U m £ N, an m-block is a block 5 containing 3W elements. With each 
m-block B we have associated a centre c, namely the centre of domain B. A 
standard m-block is an m-block with centre divisible by 3W. Given m £ N and 
m-blocks J5, £ ' , there exists/ € Z such that domain B = domain [Z*' + (/, 0)]. 
Let d(B,B') = max{\iB - i[Br + (/, 0)]\;i Ç domain 5 } . J is a pseudo-
metric on the collection of all m-blocks. Let f:Z—>R and m Ç N. The 
m-partition of / is the partition of / into standard m-blocks. That is, the 
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m-partition of / is {BnitT\r G Z}, where 

Bn.r = f\[rZm - (3W - l ) /2 , r3™ + (3™ - l ) /2] 

is a standard m-block with centre at r3m. Then symbolically: 

f = . . . Bm^2Bmt-iBmBmtiBm>2. . . , 

where i3w,o = J5TO. Likewise, we write 

Z = . . . Ami-.2Amt-.iAmAmtiAm>2 . . . , 

where Am>o = ^4W. We adopt in the following the convention that for each 
k G N: n = n(k) = 2\ m = m(k) = 2* - 1, k' = k + 1, ri = w(ft'), w' = 
m(k'), tit = n(kt), mt = m(ki). Let & G TV. Define kAm = JO}. Suppose that 
0 g &o < k, and &0'̂ m> • • • , kAm are defined. Define 

k0Am = {j3m»;j G Z\ nAm~V{PAm;ko' S P S k). 

Since m(0) = 0, {P̂ 4W; 0 g /> ^ &} is a partition of ^4m. For each r £ Z and 
0 g p S k, let PAm,r = vAm + (rSk, 0). Then {pAm,r;0 ^ p ^ k} is a partition 
of Am,r. If Bm>r is a standard m-block with centre at r3m, then {vAmJ\ 0 ^ >̂ ^^} 
induces, via the map i —» (i, j ) , a partition {pT3m)7.;0 ^ £ ^ &}, called the 
frasic partition of the standard m-block Bm>r. vBm>r is symmetric if and only if 
(i, y) £ pBmfT whenever (2 • r3m — i, y) G PBm>r. pAm>r is symmetric. For each 
k G TV and r G Z, we define functions 5: ^4m,r —» Aw,r and a: Am>r —> A7', called 
the ease and accessibility functions, respectively. Define r3mb = r3m, f3ma = 0. 
Suppose that 0 S k0 < k and b and a are defined on U{PAm,r; k$ S p tk k). 
For each i G fc0^4w,r, there exists a unique standard mo'-block Am^tS such that 
i G ^4mo',«- There exists a unique j (z Z such that i + j'3m° = s3m°. Define 
ib — s3m° and ia = | j | . 6 = bmtT and a = am,r are now defined as desired. 

LEMMA 5. If k G TV, and w(k) is the number of standard m-blocks in 
TV C\ Am> ~ Am, then: 

(a) w(k) = (3* - l ) / 2 ; 
(b) If k à 3, then w(k) > 2£2W. 

Proof. In terms of standard m-blocks, 

Am> = ^4Wf_t0(^) . . . Am^^Am^zAm^—2Am^\AmAm^Am^Am^Am^ . . . AmtW(k). 

{Ai+i~Ai;m^i^mf — 1} is a partition of 4̂m> ^ ^4m. AT" P\ yl i+i ~ A t 

contains 3*~m standard m-blocks. Now m! — 1 — m = (2fc+1 — 1) — 1 — 
(2* - 1) = 2k - 1 = m. Thus, 

w(*) = E { 3 ^ w ; m S iS. m' - 1} = 3° + 31 + . . . + Sm 

= (3W+1 - l ) / ( 3 - 1) = (3W - l ) / 2 , 

establishing (a). Now k ^ 3 implies 6k < (3/2)2k, hence ^ 3 implies 
2k < (32& - l ) / ( 2 • 22"), from which (b) follows. 

4.3. Construction off. The function/: Z -* R described in § 4.1 will now be 
constructed and analyzed. We will define/ = U{Bm; k G TV}, where Bm is a 
standard m-block with centre at 0, and Bm C Bm>. It will be readily seen from 
the inductive definition of Bm that range Bm C [0, 1] and if £m0)7. C ^ w and 

https://doi.org/10.4153/CJM-1969-064-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-064-1


572 R. A. CHRISTIANSEN 

0 ^ p ^ ko, then pBm0tT, hence BmQtT, is symmetric. We will show that if 
Bmo,rBmo,r+i C J5W, then d(Bm0tT, BmQtT+i) ^ 1/2W°, from which the recurrence 
of Z on fZ can be easily deduced. 

Let Bo = {(0, 0)}. Suppose that Bm has been defined satisfying the desired 
properties. We define Bm> after first defining an auxiliary function 

g: Am,i. . . AmtW(k) —•> i£ 

as follows: Let 1 g r ^ w(&) and let AmtT = U{*4TOtr; 0 S P ^ k} be the 
basic partition of Am,r. Let b = bm>T and a = am,r be the associated base and 
accessibility functions. Let i G kAm,r. Then i = r3m. If 0 < r ^ 2W, define 
^ = f/2». If 2W < r ^ 2^+S define ig = (2^ - r)/2n. If 2n+l <r^w(k), 
define ig = 0. Suppose that g has been defined on U{pAm,T; ko è p ^ k). If 
i G jc0Am,r, define ig = ibg - m/2w°. Let Cm,r = g|4TOff, A»,r = #m + (r3w, 0), 
Bm,r = max{Cm,r, JDW I ,} , 5 m i _ r = Bm,T + ( —2r3m, 0), and Bmt0 = Bm. Define 
BTO' = U { 5 W i i ; - w ( i ) ^ j ^ «;(*)}. 

We next show that if Cwo,r and Cmo,T+i are standard ra0-blocks contained in 
g, then d(Cmo,r, Cmo,T+i) ^ 1/2W°. Suppose first that k0 = k. We will prove, for 
future use, that d(Cm,r, Cm%s) = \r3mg — s3mg\, from which d(Cm,r, Cm,r+i) ^ 
1/2W follows. Let & = &TO,r, a = amtT,bf = &m,sanda' = am>s. For each i G ^4w,r, 
let 7 = i + (s — r)3m be the corresponding element of Am,s. Assume for each 
* € U{PAm,r; U ^ P S k\ that \ig - jg\ = |r3wg - sSmg\ and let * G , 1^w , r . 
Then ia = ja ' , whence |*g — jg| = \(ibg - ia/2Wl) — (jb'g — jaf/2ni)\ = 
\ibg-jb'g\ = \r&g-s3rg\. 

Suppose next that d(CmilT, Cmil7+i) g l/2Wl for ki = ko', . . . , £. If 

and Cm0tT+i Q Cmo>,s+i, then let CmQft be the first standard m0-block in Cmo',«. 
By the symmetries of Cmo'.s and by the induction assumption on k0, 
d\(-"mo,ri ^mo,r+l) = ^ K ^ r a o . n ^ w . 0 t t) "T &\l~"mo, tj ^mo,r+l) = " "T~ ^ l ^ m o ' . i i ^ m o ' ,s+ly = 

1/2"° < 1/2B°. If Cmo,r and Cmo >r+i are both subsets of some Cmo',s> then they 
are both subsets of some Cm,t. Let b = bm>t and a = am,*« Let i G ̂ 4mo,r 
and j — i + 3m°. Assume first that i = rSm°. If neither i nor j equals s3m°\ then 
i& = 3̂™°' = jb and \ia — ja | = 1/2W°, from which \ig — jg| = 1/2W°. On the 
other hand, if, without loss of generality, i = s3m°, then jg = ig — 1/2"°, whence 
h ~" h = 1/2W°. Assume finally that \ig — jg\ ^ 1/2W° for 

i e U{pAmo>r; ki' S p g &o}, 

and let i € Aî mo.r- Then ia = ja , whence |ig — jg\ = \igb — jgb\ ^ 1/2W°. 
This completes the proof of the desired inequality. 

We now show that d(Bm, Bm>1) ^ 1/271. Let i G Antl. If 

*J5w,i ^ (i - 3W)^W = iDm,l9 

then 1/2W ^ ^ = iBm>1 > (i - Zm)Bm ^ 0, thus 0 < iBmtl - (i - Zm)Bm ^ 
\/2n. Hence rf(Bm, Bmtl) g 1/2W. Now let m0 < m, Bmo>r C Bro> and 
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Just as in a previous argument, the symmetries of Bm and the inequality 
d(Bn, 5Wli) ^ 1/2» together imply that d(BmQ>rj Bmo,r+1) g 1/2*°. 

To show that d(Bmo,rj Bmo>r+1) ^ 1/2W° whenever Bm0trBm0t7+l C 5ro,f 

it thus suffices to let BmQiTBmQ,r+i C 5TOfl . . . BmtW(k) and to show that 
d(BmQtT, BmQ>T+i) ^ 1/2W°. Using the induction assumption thatd(Bmo>rBmQtS) ^ 
1/2W° if BmQtr and -Smo,s are standard mo-blocks in Bmi one establishes that 
d(Dmo>r,Dm0tT+i) g l/2n°. The inequality d(Cmo,r, Cmo,r+i) ^ 1/2"° has already 
been established. Hence d(BmQtT1 BmQjr+i) g l/2n°. 

By Lemma 5(b), k ^ 3 implies that o/(fe) > 3 • 2 \ Hence, 3 • 2n3mg = 
2 • 2nSmg = 0, which we have seen implies d(Cm,^2n, Cw,2-2«) = 0. From this we 
conclude that d(Bm>z.<in, Bm>2-2n) = 0. Since dCBm.2-2», Bm^n) = 1, Z is not 
uniformly equicontinuous on fZ. 

We now show t h a t / is an isochronous point. Referring to our synopsis, our 
analysis will then be complete. For each e > 0, there exists (Lemma 5(b)) 
k e N such that 3m ^ 2/e and w(ife) > 2n+1. If £ € Z, let £ p = / | W™,̂ *) + 
p3m']. Hie Am,w{k), then ig ^ 7*;(&)3wg = 0. Thus CmMk) ^ 0, whence 
d(Bm, E0) = 0. By various symmetries, d(Epy E_p) = 0. Now to show t h a t / i s 
an isochronous point, it suffices to show that d(Bm, Ep) = 0 for each integer p. 
By our observations just made, it suffices to let p £ P such that \q\ < p 
implies d(Eg, E0) = 0, and to show that d(EP, £0) = 0. There exists k0 > k 
such that Ep Ç BkQ> ~ Bk0. There exists r € (1, w(k0)] such that EP C Bmo<r. 
Let i = centre Ep = w(k)Sm + pZm'. If î g ^mo.n then 

3w'|i, 3|w(&),3|(3w - l ) / 2 , 3|1, 

an impossibility. Let b = bm0tT and a = amG>r. Since ia = w(k) > 2n, we 
conclude that ig = i&g — ia/2n < 0. For each j Ç domain E^, we then have 
jg£ig<0, which implies that jf = (j - r3w<0/. If £ff = / | [4 m . w ( « + 
(£3™' - r3W0)], then we have just seen that d(Ep, Eq) = 0. Since d(EQ, E0) = 0 
by the induction assumption on p, we have d(Ep, E0) = 0. 

4.4. Miscellaneous examples. Using the techniques illustrated above, I have 
constructed various other functions f:Z-+R such that if /*: R—>R is the 
linear extension of / , then /* (considered as a point of classical Bebutoff space 
Fc) has the properties given below. Details may be found in my dissertation. 
We let X = (f*R)~. 

(a) R is recurrent on X, X is compact, and /* does not have mean value. 
(/* is not an almost-periodic point of Fc.) 

(b) R is recurrent on X, f* is neither uniformly continuous nor bounded, 
hence (Lemma 2) X is not compact. (/* is not an almost-periodic point of Fc.) 

(c) /* and g* are uniformly continuous bounded recurrent functions, 
however/* + g* is not a recurrent function. (An example with these properties 
is also found in (2, p. 26).) R is then recurrent on the compact spaces X and 
Y = (g*R)~. If R were recurrent on X X F, then/* + g* would be a recurrent 
function. (/* and g* are not almost-periodic points of Fc.) 
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(d) /* is an isochronous point of Fc, bu t / * is neither uniformly continuous 
nor bounded. (J* is not a recurrent function.) 

5. T is distal does not imply T is recurrent. In (7, p. 478), Furstenberg 
gives an example of a minimal, distal, non-equicontinuous discrete flow on the 
torus. We will show that this flow is not recurrent by slightly modifying his 
proof that it is not equicontinuous. By embedding this discrete flow in a 
continuous flow, we will show that distal does not imply recurrent, even for 
continuous flows on compact minimal topological manifolds. 

Let S1 be the set of points in the complex plane having norm 1, and let 
X = S1 X S1 be the torus with the induced coordinatization. Let 0 be a fixed 
real number. For each continuous function / : 5 1 —> S1

1 define h: X —> X by 
(w, z)h — (eidw, wf - z). h is one-to-one continuous onto X, hence h is a self-
homeomorphism of X. h induces a discrete flow (X, Z, T) such that TT1 = h. 
We denote ((w, z),n)ir by (w, z)n. 

Suppose that (w, z) 9^ (wf, zf) £ X. If w = w' and j 6 Z, then d((w, z)j, 
(wf, zf)j) = d({w, z), (V', z')). Hw j£ w! and j £ Z, thenrf((w, z)j, (w\ zf)j) ^ 
d {we ije,wfeijd) =d(w,w'). From these considerations, we see that Z is distal on X. 

Now let 0 be a real number which is not a rational multiple of w, let 
/ : S1 —» S1 be the identity function, and let (X, Z, w) be the corresponding 
discrete distal flow of Furstenberg described above. By (6, p. 582, Remark), 
X is minimal. An inductive argument shows that for each j Ç Z, 

(w, z)j = (weijd, wjz exp[ij(j — 1)0/2]). 

Suppose that Z is recurrent on X. Fix (w, z) G X. There exists p Ç P such that 
q > p implies d((weiT/g, z), (w, z)) < 1/3. There exists q > p such that 
(w',zf) € X impliesd((w',zT), (w',z')q) < 1/3. Thus, 

d((weiT/Q,z)q, (w,z)q) < 1. 

However, the second entries of (weiir/Q, z)q and (w, z)q are 

wqeiTz exp[iq(q - 1)0/2] 

and wQz exp[iq(q — 1)0/2], respectively. Hence, we conclude thsitd((weiir/Q, z)q, 
(w, z)q) è 2, a contradiction. 

For the moment, let (X, Z, w) be any discrete flow. The corresponding 
cylinder flow, (F, R, </>), is defined as follows. Let h = w1. Let Y be the 
partition of X X [0, 1] whose elements are {(x, t)} if x (£ X and 0 < t < 1 and 
{(x, 1), (xh, 0)} if x G X and / = 1. Let F have the quotient topology induced 
by the projection p. Define <t>: Y X R —> Y as follows: Let y G Y and t 6 i£. 
There exist q (z Z and w f [0, 1) such that 2 = g + u. Let (x, u) G 3/. If 
« + v e [0, 1], define (y, i)<t> = (xhQ, u + v)p. If u + v 6 (1, 2), define 
( j , t)<f> = (xhQ+1, u -\r v — l)p. Once one can visualize geometrically this 
definition, it is readily seen that <j> is well-defined and indeed does define a 
continuous flow. It is also easy to see that if X is an w-manifold, then Y is an 
(n + l)-manifold. 

https://doi.org/10.4153/CJM-1969-064-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-064-1


RECURRENT TRANSFORMATION GROUPS 5 / 0 

Now let (F, R, 0) be the cylinder flow corresponding to the discrete flow 
(X, Z, T) of Furstenberg described above. F is compact metrizable (13, p. 126, 
Theorem 3-23) and a 3-manifold. Since Z is distal on X, R is distal on F. Since 
X is minimal, F is minimal. If R is recurrent on F, then (Theorem 1) Z is 
recurrent on F, whence Z is recurrent on X, a contradiction. 

Suppose that a transformation group (X, T), with X a manifold, is given. 
Let x f I be an almost-periodic point. Then xT~~ is compact (11, p. 32, 
§ 4.09). Hence, T is almost-periodic on xT~ if and only if T is equicontinuous 
on xT~ (11, p. 37, §§ 4.35, 4.38). A conjecture by G. D. Birkhoff was shown by 
Gottschalk (10, p. 984) to be equivalent to asserting that if a continuous flow 
on a manifold X is pointwise almost-periodic, then the flow is equicontinuous 
on each orbit-closure. Ellis (4, p. 405) posed the following question: If X is a 
compact Hausdorff space minimal under R, and R is distal on X, must R be 
equicontinuous on X? Both questions have negative answers since examples 
have been known for several years of compact, minimal, manifold flows which 
were distal but not equicontinuous (see the Furstenberg example above or 
(1, Chapter 4)). We have shown that a compact, minimal, distal continuous 
flow on a topological 3-manifold need not even be recurrent. 
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