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Abstract. We present an a posteriori shock-capturing finite volume method algorithm called
GP-MOOD. The method solves a compressible hyperbolic conservative system at high-order
solution accuracy in multiple spatial dimensions. The core design principle in GP-MOOD is to
combine two recent numerical methods, the polynomial-free spatial reconstruction methods of
GP (Gaussian Process) and the a posteriori detection algorithms of MOOD (Multidimensional
Optimal Order Detection). We focus on extending GP’s flexible variability of spatial accuracy to
an a posteriori detection formalism based on the MOOD approach. The resulting GP-MOOD
method is a positivity-preserving method that delivers its solutions at high-order accuracy,
selectable among three accuracy choices, including third-order, fifth-order, and seventh-order.
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1. Introduction

The modern trend in designing numerical methods for astrophysical flow simulations
bears critical design principles driven by the vital need for high-performance computing
(HPC). In today’s HPC, the hardware progression of the memory capacity per compute
core has become gradually saturated. This hardware trend pushes the HPC community
to put vast efforts to find more efficient ways to best exercise computing resources in
pursuing computer simulations. From the mathematical perspective, one desirable way is
developing highly efficient numerical algorithms, which has become an important subject
in computational fluid dynamics (CFD) research fields as part of utilizing HPC resources
as efficiently as possible.

In this paper, we delve into advancing high-arithmetic-intensity numerical approxima-
tion by using the Gaussian Process (GP) modeling. This work has been reported in a
series of papers, which have appeared in our past studies by Reyes et al. (2018a, 2019);
Reeves et al. (2021); Bourgeois and Lee (2022). Our approach is based on the theory of
GP regression that furnishes a polynomial-free method, extended to both finite difference
and finite volume methods as a conservative high-order solver. In our former studies, we
showed that GP can deliver high-order accuracy at (2R+ 1)th order, where R is an inte-
ger value that represents the GP stencil radius in the unit of grid-scale, e.g., Δx. We
designed GP as an alternative to the conventional high-order polynomial-based recon-
struction algorithms, featuring attractive algorithmic benefits such as GP’s selectable
order of accuracy within a single algorithmic framework.
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In designing high-order algorithms for astrophysical simulations, it is necessary to
implement stable shock-capturing mechanisms to advance discrete solutions stably in
the vicinity of sharp gradients. A majority of well-known shock-capturing methods rely
on the so-called a priori shock-detection paradigm. This is the classical approach in
most of the widely-used polynomial-based reconstruction schemes, in which each method
detects the magnitude of local flow gradients in an a priori fashion before updating the
solution, to evolve it stably while meeting underlying physical principles (e.g., positivity,
conservation). The mathematical treatments relevant to a priori shock detection mecha-
nisms are truly nonlinear, demanding to calculate cell-by-cell local switches, such as slope
limiters, to prevent the evolution of unphysical oscillations near strong gradients. The
use of nonlinear limiters accounts for an important portion of the computational cost of
the simulation at the price of numerical stability, which is essential for non-smooth flow
simulations. Putting this into a different perspective, one gains simulation speed-up by
deactivating the nonlinear limiters of a shock-capturing algorithm in smooth flow simula-
tions. For instance, our 2D smooth flow experiments show that one can obtain a factor of
two or three gain, revealing the added expense of executing nonlinear switches in modern
shock-capturing schemes. Another undesirable consequence of nonlinear limiters is the
inherent numerical dissipation. It is the main operational mechanism of nonlinear limiters
to gain stability at the cost of adding numerical dissipation by switching to a more stable
low-order approximation at shocks and discontinuity. The study in Kent et al. (2014)
shows that a large increase in numerical diffusion and dispersion errors are observed at
the first time step in limited schemes, significantly reducing the effective grid resolution
compared to the corresponding unlimited schemes.

The above discussion leads us to consider a completely different shock-capturing
paradigm, called an a posteriori scheme. The first a posteriori shock-capturing method
was proposed in Clain et al. (2011) and further investigated in Diot et al. (2012, 2013);
Diot (2012). Referred to as the MOOD (Multidimensional Optimal Order Detection)
method, the new paradigm advances shock-dominant discontinuous solutions via the a
posteriori fashion of “repeat-until-valid.” The main focus of this paper is to combine
GP’s high-order linear spatial reconstruction methods for enhanced solution accuracy
and the MOOD approach for an a posteriori shock-capturing strategy within GP. In
what follows, we provide a brief description on how these two methods can be integrated
to a new a posteriori GP-MOOD algorithm.

2. GP-MOOD: a positivity-preserving high-order method

2.1. GP linear spatial reconstruction

By being a polynomial-free, radial kernel-based algorithm, GP is well-suited to recon-
struct a pointwise fluid value at any arbitrary location using volume-averaged fluid
quantities in a local stencil, called a GP stencil of radius R. A GP stencil is genuinely
multi-dimensional. Its shape resembles a blocky-diamond centered at the (i, j) cell in the
case of 2D, and a blocky-octahedron centered at the (i, j, k) cell in 3D. See Fig. 1 for
two simple examples in 2D. The solution accuracy of the GP reconstruction on these
GP stencils in Fig. 1 follows linearly as (2R+ 1)th accurate, which is achieved easily by
varying the size of the local GP stencil radius, R= 1, 2, . . . . The (2R+ 1)th order GP
reconstructor is primarily derived by formulating a GP kernel. In our former studies, we
have used one of the popular GP kernels called the square exponential kernel (or SE),
denoted by K and defined by

K(x, y) =KSE(x, y) = exp

[
− (x− y)2

2�2

]
, (2.1)
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Figure 1. (top) The five-point GP stencil of radius R= 1 for the 3rd-order GP method.
(bottom) The 13-point GP stencil of radius R= 2 for the 5th-order GP method. In both, the
ordered labeling illustrate how to reshape the volume-averaged cell variables at t= tn into a
long one-dimensional array, qij = (q1, . . . , qN ), where N = 5 in (a) and 13 in (b).

where the length hyperparameter, �, controls the characteristic length scale of the func-
tions in the GP function space distributed with a prior mean function m(x) and a prior
covariance function K(x, y). With this SE kernel, one applies the conditioning property of
Bayes’ theorem to the joint Gaussian distribution on the given grid cell data qij to make
GP’s inference on f(x∗) given qij . Denoted as x∗ �= xi is a new point at which GP makes
a probabilistic prediction of a function evaluation f(x∗). For example, x∗ = xi±1/2,j if one
solves Riemann problems at cell face-centers. Here, the choice of functions f is agnostic
and is only available probabilistically in GP in the sense of GP regression. Assuming a
zero mean, the conditioning property furnishes a new pointwise posterior mean function
m̃(x∗) given by

m̃(x∗) = kT∗ K
−1qij = zT∗ qij , (2.2)
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where [K]mn ≡K(xm, xn) and [k∗]m ≡K(x∗, xm). The data-independent vector zT∗ =
kT∗ K

−1 is called the prediction vector, following the same convention in Reyes et al.
(2018b, 2019); Reeves et al. (2021).

To use GP for finite volume methods where the input data qij is given as volume-
averaged quantities (rather than pointwise quantities qij in finite difference methods),
we further integrate the kernels k∗ and K in Eq. (2.2) (see Reyes et al. (2018a, 2019);
Reeves et al. (2021); Bourgeois and Lee (2022) for details). The output is a new GP finite
volume reconstructor,

m̃(x∗) = tT∗ C
−1qij = zT∗ qij , (2.3)

where z∗ and C are the integral versions of k∗ and K, respectively. We note here that Eq.
(2.3) is a linear reconstruction without any limited switches, unlike the conventional non-
linear limited polynomial-based reconstructions. The resulting GP reconstruction varies
its order of accuracy depending on the size of the GP stencil (see Fig. 1) where the local
data qij is sampled from. The sizes of the GP kernels, k∗ and K, change accordingly
to the size of the GP stencil, which are N × 1 and N ×N , respectively. In the case of a
uniform grid calculation, they need to be computed, transposed, inverted, and saved at
the initial step only once when a computational grid is configured. They are then reused
during simulations. For adaptively varying grid configurations such as adaptive mesh
refinements (AMR), one can pre-compute them on each expected AMR grid resolution,
save them once-and-for-all and reuse them during simulations. In both, it is shown that
GP provides computational efficiency in computing (2R+ 1)th accurate reconstructed
pointwise Riemann states at any arbitrary locations, x∗. This paper adopts multiple
Gaussian quadrature points along each cell face.

2.2. The a posteriori MOOD shock-capturing method

The GP-MOOD method builds upon the existing MOOD methods by Clain et al.
(2011); Diot et al. (2012, 2013); Diot (2012). The primary difference between our GP-
MOOD and the conventional MOOD approaches are two-fold, including (i) how the
multidimensional spatial reconstruction is calculated (i.e., high-order GP vs. high-order
polynomials) and (ii) the new addition of “Compressibility-Shock Detection” or CSD
criterion to the MOOD iterative loop. See Fig. 2.

As displayed in Fig. 2, GP-MOOD bears the baseline “order-decrement” architec-
ture of the original MOOD loop, which selectively re-calculate pointwise Riemann states
Un
ij,gm

on “failed cells” according to the following three failed-cell detection crite-
ria: (i) PAD (Physical Admissible Detection): positivity preservation on density and
pressure variables, (ii) NAD (Numerical Admissibility Detection): numerical validity
that monitors CAD (Computer science Admissibility Detection, i.e., NAN & Inf) and
DMP (Discrete Maximum Principle) that monitors any excessive numerical oscillations,
(iii) CSD (Compressibility-Shock Detection): compressibility and shock strengths, i.e.,
∇p/p > σp and ∇ ·V<−σv, where σp > 0 and σv > 0 are (heuristically) tunable thresh-
old parameters. The GP-MOOD method uses these detection checks and drops GP’s
reconstruction order from the highest 7th-order GP-R3, to 5th-order GP-R2 and 3rd-
order GP-R1, and down to the safest (also most diffusive and positivity-preserving)
first-order. In general, the highest order solution in GP-MOOD can be any arbitrary
high-order (2R+ 1)th accurate GP scheme beyond the current choice of 7th-order, which
needs to extend the GP stencil size further, e.g., the 41-point blocky-diamond stencil for
the 9th-order GP-R4. Such an increase in the GP stencil size will result in higher arith-
metic intensity, thereby slowing down the overall time-to-solution. Interested readers are
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Figure 2. The logical flow of the solution updating procedure in the MOOD loop. (top) The
flow chart in the existing a posteriori polynomial MOOD method. The solution accuracy of a
group of unlimited polynomial data reconstruction methods cascades down from high to low
until all the MOOD criteria are met in each troubled cell. (bottom) The flow chart of the GP-
MOOD method. A new CSD condition that checks the strength of flow compressibility (the
yellow diamond) is added between the positivity/NAN & Inf check (i.e., PAD and CAD in the
top sky blue diamond) and the rest MOOD criteria on DMP (the bottom sky blue diamond).
In both, Un

ij,gm denotes the pointwise Riemann states at each Gaussian quadrature point gm;

U
∗
ij denotes a volume-averaged, pre-validated candidate solution using the highest-order method

available in each MOOD cascading loop.

encouraged to follow our recent study (Bourgeois and Lee 2022) for further details on
GP-MOOD.

3. Results and Conclusion

We display two numerical results in Fig. 3. Shown on the left panel is a grid convergence
result, tested on the 2D nonlinear isentropic vortex advection problem Shu (1998). The
results of L1 errors are reported on four different grid resolutions, Nx =Ny = 50, 100, 200,
and 400. As shown, the convergence rates of the three GP-MOOD methods on the cor-
responding diamond GP stencil follow the analytical convergence rates (dotted lines) of
(2R+ 1), showing the expected 3rd-, 5th-, and 7th-order rates.

On the right, we present a 1D shock-tube test called the Shu-Osher problem
(Shu and Osher 1989). Simulated results are displayed in a zoomed-in view of the entire
profile to focus on the solution comparison over the high-frequency region. Overall, all
results produce acceptable density profiles capturing the assumed high-frequency ampli-
tudes reasonably well, conforming with the reference solution. The amplitude closest to
the reference profile is achieved by GP-MOOD7, followed by GP-MOOD5, GP-MOOD3,
and POL-MOOD3. It is pretty impressive to see how closely the solutions produced
by GP-MOOD5 and GP-MOOD7 follow the reference profile, with only on the grid
resolution 16 times lower than the reference solution.

Next, we test GP-MOOD on a highly compressible astrophysical problem involving
strong shocks and discontinuities to demonstrate our method’s robustness and shock-
capturing capability. The test problem initializes two Mach 800 jets, one at the top of
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Figure 3. (left) Convergence study on the 2D isentropic vortex advection for three different
radii, stencils, and reconstructions. (right) Result of the Shu-Osher shock tube test at t=
1.8 using the 3rd-order GP-MOOD3, 5th-order GP-MOOD5, and 7th-order GP-MOOD7 with
CFL =0.8, resolved on 256 grid cells. The GP solutions are plotted along with the 3rd-order
POL-MOOD3 solution on the same grid resolution. The reference solution is computed using
POL-MOOD3 with SSP-RK3 without reducing Δt on Nx = 4096.

Figure 4. The double Mach 800 jet collision problem is resolved on a 600 × 600 grid resolution.
Density profiles are displayed. The results are computed using GP-MOOD7. From left to right
the densities are plotted at t= 0.002, 0.003, and 0.005.

the square domain [0, 1.5] × [0, 1.5], and the other at the bottom. There are two nar-
row slits, 0.7 ≤ x≤ 0.8, at y= 0 and 1.5, through which the Mach 800 jets are injected
into the domain via the inflow boundary condition fixed by the jet condition. See
Bourgeois and Lee (2022) for more details. The two jets undergo a head-on collision,
producing highly turbulent fluid motions that are progressively amplified as the two jets
continue to make their ways in the opposite directions for t≥ 0.003. The results in Fig. 4
illustrate that GP-MOOD can produce highly accurate turbulent flow dynamics of the
two highly compressible jet evolution dynamics closely relevant to astrophysical appli-
cations. We remark that the algorithm’s accuracy, stability, and positive-preserving are
extremely crucial to successfully run this test problem.

We conclude this paper with a summary. We have developed a new GP-MOOD algo-
rithm for a high-order hyperbolic algorithm. GP-MOOD combines (i) the high-order
solution property of the GP linear reconstruction schemes (thereby furnishing affordable
computational approximation cheaper than the conventional nonlinear limited recon-
struction methods) and (ii) a new improved MOOD a posteriori strategy (thereby
reducing numerical dissipation in the MOOD detection criteria). Our GP-MOOD is a
strong positivity-preserving method by design, and monitors shocks and discontinuities
by detecting a sequence of conditions in the MOOD loop in the a posteriori fashion.
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A comprehensive study on GP-MOOD, including extensive results and mathematical
analysis, is available in Bourgeois and Lee (2022).
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