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HILBERT-KUNZ MULTIPLICITY OF
THREE-DIMENSIONAL LOCAL RINGS

KEI-ICHI WATANABE aAnD KEN-ICHI YOSHIDA

Abstract. In this paper, we investigate the lower bound suk (p,d) of Hilbert-
Kunz multiplicities for non-regular unmixed local rings of Krull dimension d
containing a field of characteristic p > 0. Especially, we focus on three-
dimensional local rings. In fact, as a main result, we will prove that suk (p, 3) =
4/3 and that a three-dimensional complete local ring of Hilbert-Kunz multi-
plicity 4/3 is isomorphic to the non-degenerate quadric hypersurface k[[X,Y,
Z,W])/(X? +Y? + Z? + W?) under mild conditions.

Furthermore, we pose a generalization of the main theorem to the case of
dim A > 4 as a conjecture, and show that it is also true in case dim A = 4 using
the similar method as in the proof of the main theorem.

Introduction

Let A be a commutative Noetherian ring containing an infinite field
of characteristic p > 0 with unity. In [15], Kunz proved the following
theorem, which gives a characterization of regular local rings of positive
characteristic.

KuNz’ THEOREM. ([15]) Let (A, m, k) be a local ring of characteristic
p > 0. Then the following conditions are equivalent:
(1) A is a regular local ring.

(2) A is reduced and is flat over the subring AP = {aP : a € A}. In other
words, the Frobenius map F : A — A (a +— aP) is flat.

(3) 1a(A/mld) = ¢¢ for any ¢ = p°, e > 1, where mld = (a? : a € m) and
la(M) denotes the length of an A-module M.
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Furthermore, in [16], Kunz observed that [4(A/mld)/¢? (¢ = p°) is a
reasonable measure for the singularity of a local ring. Based on the idea of
Kunz, Monsky [18] proved that there exists a constant ¢ = ¢(A) such that

La(A/mldy = eq? + 0% )

and defined the notion of Hilbert-Kunz multiplicity by enx(A) = c¢. In
1990’s, Han and Monsky [10] have given an algorism to compute the Hilbert-
Kunz multiplicity for any hypersurface of Briskorn-Fermat type

A=k[Xo, ..., X,]/(Xo 4 ... 4 Xdn),

See e.g. [1], [2], [4], [24] about the other examples. Hochster and Huneke [11]
have given a “Length Criterion for Tight Closure” in terms of Hilbert-Kunz
multiplicity (see Theorem 1.8) and indicated the close relation between
tight closure and Hilbert-Kunz multiplicity. In [22], the authors proved a
theorem which gives a characterization of regular local rings in terms of
Hilbert-Kunz multiplicity:

THEOREM A. ([22, Theorem 1.5]) Let (A,m,k) be an unmized local
ring of positive characteristic. Then A is regular if and only if eyk (A) = 1.

Many researchers have tried to improve this theorem. For example,
Blickle and Enescu [3] recently proved the following theorem:

THEOREM B. (Blickle-Enescu [3]) Let (A,m,k) be an unmized local
ring of characteristic p > 0. Then the following statements hold:

(1) If enx(A) <1+ -, then A is Cohen-Macaulay and F-rational.
(2) Ifenx(A) <14 ﬁ, then A is regular.

So it is natural to consider the following problem:

PrROBLEM C. Let d > 2 be any integer. Determine the lower bound
(suk(p,d)) of Hilbert-Kunz multiplicities for d-dimensional non-reqular un-
mixed local rings of characteristic p. Also, characterize the local rings A
for which exk (A) = suk(p,d) holds.

In case of one-dimensional local rings, it is easy to answer to this prob-
lem. In fact, suk(p,1) = 2; eax(A) = 2 if and only if e(4) = 2. In case of
two-dimensional Cohen-Macaulay local rings, the authors [23] have given a
complete answer to this problem. Namely, we have suk(p,2) = % by the
theorem below.
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THEOREM D. (see also Corollary 2.6) Let (A,m,k) be a two-dimen-
sional Cohen-Macaulay local ring of positive characteristic. Put e = e(A),
the multiplicity of A. Then the following statements hold:

(1) enx(A) > <HL.

(2) Suppose that k = k. Then enx(A) = <5L holds if and only if the
associated graded ring gr.,(A) is isomorphic to the Veronese subring

kX, Y],

In the following, let us explain the organization of this paper. In Sec-
tion 1, we recall the notions of Hilbert-Kunz multiplicity and tight closure
etc. and gather several fundamental properties of them. In particular, Goto-
Nakamura’s theorem (Theorem 1.9) is important because it plays a central
role in the proof of the main result (Theorem 3.1).

In Section 2, we give a key result to estimate Hilbert-Kunz multiplicities
for local rings of lower dimension. Indeed, Theorem 2.2 is a refinement of
the argument in [23, Section 2]. Also, the point of our proof is to estimate
I4(mld /719y (where .J is a minimal reduction of m) using volumes in R

In Section 3, we prove the following theorem as the main result in this

paper.

THEOREM 3.1. Let (A,m,k) be a three-dimensional unmized local ring
of characteristic p > 0. Then the following statements hold.

(1) If A is not regular, then exg(A) > +.
(2) Suppose that k = k and char k # 2. Then the following conditions are
equivalent:
(a) €HK(A) = %
(b) A= E[[X,Y,Z,W]]/(X2+Y2 4 22+ W?).
Also, we study lower bounds on epk(A) for local rings A having a given
(small) multiplicity e. In particular, we will prove that any three-dimen-
sional unmixed local ring A with epgx(A4) < 2 is F-rational.

In Section 4, we consider a generalization of Theorem 3.1 and pose the
following conjecture:

CONJECTURE 4.2. Letd > 1 be an integer and p > 2 a prime number.
Put o
Ap,d = Fp[[X()?Xla s 7Xd”/(Xg +ooet Xs)
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Let (A,m, k) be a d-dimensional unmized local ring with k = F,. Then the
following statements hold.

(1) If A is not regular, then enx(A) > enx(Apq) > 1+ o (see 4.2 for
the definition of cq). In particular, suk(p,d) = enx(Ap.q)-

(2) Ifenx(A) = enk(Ap,q), then the m-adic completion A of A is isomor-
phic to Ay q as local rings.

Also, we prove that this is true in case of dim A = 4. Namely we will
prove the following theorem.

THEOREM 4.3. Let (A,m, k) be a four-dimensional unmized local ring
of characteristic p > 0. Also, suppose that k = k and chark # 2. Then
enk(A) > 2 if e(A) > 3. Also, the following statements hold.

. 2
(1) If A is not regular, then enk(A) > enk(Apa) = gigﬁrg .

(2) The following conditions are equivalent:
(a) Equality holds in (1).
(b) eHK(A) < %

(c) A is isomorphic to Apy.

81. Preliminaries

Throughout this paper, let A be a commutative Noetherian ring with
unity. Furthermore, we assume that A has a positive characteristic p, that
is, it contains a prime field IF, = Z/pZ, unless otherwise specified. For every
positive integer e, let ¢ = p°. If I is an ideal of A, then Il9 = (a?:a € I)A.
Also, we fix the following notation: 4 (M) (resp. pa(M)) denotes the length
(resp. the minimal number of generators) of M for any finitely generated
A-module M.

First, we recall the notion of Hilbert-Kunz multiplicity (see [15], [16],
[18]). Also, see [17] or [20] for usual multiplicity.

DEFINITION 1.1. (multiplicity, Hilbert-Kunz multiplicity) Let (A, m, k)
be a local ring of characteristic p > 0 with dimA = d. Let I be an m-
primary ideal of A, and let M be a finitely generated A-module. The
(Hilbert-Samuel) multiplicity e(I, M) of I with respect to M is defined by

dl
e(I M) = lim — 14(M/T"M).
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The Hilbert-Kunz multiplicity epk (I, M) of I with respect to M is defined
by
Ia(M/I9 M)

ek (I, M) = lim yi

q—00 q
By definition, we put e(I) = e(I, A) (resp. enx({) = enx (I, A)) and e(A) =
e(m) (resp. epk(A4) = epx(m)).

We recall several basic results on Hilbert-Kunz multiplicity.

PROPOSITION 1.2. (Fundamental properties (cf. [13], [15], [16], [18],
[22])) Let (A,m, k) be a local ring of positive characteristic. Let I, I’ be
m-primary ideals of A, and let M be a finitely generated A-module. Then
the following statements hold.

(1) If I C I, then e (I) > enx(I').
(2) enx(A) > 1.

(3) dim M < d if and only if enx (I, M) = 0.

4 If 0 = L - M — N — 0 is a short exact sequence of finitely
generated A-modules, then

€HK(I, M) = eHK(I, L) + eHK(I, N)
(5) (Associative formula)

GHK(I,M) = Z eHK(I’A/p) 'lAp(MP)’
peAssh(A)

where Assh(A) denotes the set of prime ideals p of A with dim A/p =
dim A.

(6) If J is a parameter ideal of A, then enx(J) = e(J). In particular,
if J is a minimal reduction of I (i.e., J is a parameter ideal which
is contained in I and I"TY = JI" for some integer r > 0), then

eHK(J) = 6(1).
(7) If A is regular, then ek (I) = 1a(A/I).

(8) (Localization) enk(Ap) < enx(A) holds for any prime ideal p such
that dim A/p + height p = dim A.

(9) If x € I is A-regular, then eax(I) < enx(I/zA).
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(10) If (A,m) — (B,n) is a flat local ring homomorphism such that B/mB
is a field, then epk(I) = enx(IB).

Remark 1. Also, the similar result as above (except (6), (7)) holds for
usual multiplicities.

Let (A,m,k) be any local ring of positive dimension. The associated
graded ring gr.,(A) of A with respect to m is defined as follows:

grn(A) == Pm"/m™ .

n>0

Then G = gr,,(A) is a homogeneous k-algebra such that 9t := G is the
unique homogeneous maximal ideal of G. If char A = p > 0 and dim A = d,
then Gy is also a local ring of characteristic p with dim Goy = d.

ProPOSITION 1.3. (][22, Theorem (2.15)]) Let (A,m,k) be a local ring
of positive characteristic. Let G = gr(A) the associated graded ring of A
with respect m as above. Then epk(A) < enx(Gom) < e(A).

Remark 2. We use the same notation as in the above proposition. Al-
though e(A) = e(Gon) always holds, ek (A) = enx(Gom) seldom holds.

PROPOSITION 1.4. (cf. [13]) Let (A,m,k) be a local ring of positive
characteristic with d = dim A. Let I be an m-primary ideal of A. Then

e(l)
d!

Also, if d > 2, then the inequality in the left-hand side is strict; see [9].

<epx(I) <e().

We say that a local ring A is unmized if dim ﬁ/p = dim A holds for
any associated prime ideal p of A. The following theorem is an analogy of
Nagata’s theorem ([20, (40.6)]), which is a starting point in this article.

THEOREM 1.5. ([22, Theorem (1.5)]) Let (A, m, k) be an unmized local
ring of positive characteristic. Then A is reqular if and only if eyx (A) = 1.

It is not so easy to compute Hilbert-Kunz multiplicities in general.
However, one has simple formulas for them in case of quotient singularities
and in case of binomial hypersurfaces; see below or [4, Theorem 3.1].
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THEOREM 1.6. (cf. [22, Theorem (2.7)]) Let (A, m) — (B, n) be a mod-
ule-finite extension of local domains of positive characteristic. Then for
every m-primary ideal I of A, we have

eHK(IB)
[Q(B) : Q(A)]
where Q(A) denotes the fraction field of A.

enk (1) = -[B/n: Afm],

Now let us see some examples of Hilbert-Kunz multiplicities which are
given by the above formula. First, we consider the Veronese subring A
defined by

A=E[[X{P X5 i, ig >0, iy = 7).

Applying Theorem 1.6 to A — B = k[[X1,..., X4]], we get

(L.1) enk(4) = %(djii 1)-

In particular, if d = 2, r = e(A), then egx(4) = 6(A2)+1 :

Next, we consider the homogeneous coordinate rings of quadric hy-
persurfaces in IP’%. Let k£ be a field of characteristic p > 2, and let R
be the homogeneous coordinate ring of the hyperquadric @) defined by
qg=q(X,Y,Z,W). Put M = R,, the unique homogeneous maximal ideal
of R, and A = Rgy ®4, k. By suitable coordinate transformation, we may
assume that A is isomorphic to one of the following rings:

k[[X,Y, Z, W]/(X?), if rank(q) = 1,
(1.2) K[[X,Y,Z,W]]/(X? -YZ), ifrank(q) =2,

E[[X,Y,Z,W]|/(XY — ZW), if rank(q) = 3.
Then epk (A) = 2, %, or %, respectively.

In order to state other important properties of Hilbert-Kunz multiplic-
ity, the notion of tight closure is very important. See [11], [12], [13] for
definition and the fundamental properties of tight closure. In particular,
the notion of F-rational ring is essential in our argument.

DEFINITION 1.7. ([6], [11], [12]) Let (A, m, k) be a local ring of positive
characteristic. We say that A is weakly F-regular (resp. F-rational) if
every ideal (resp. every parameter ideal) is tightly closed. Also, A is F-
regular (resp. F-rational) if any local ring of A is weakly F-regular (resp.
F-rational).
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Note that an F-rational local ring is normal and Cohen-Macaulay.
Hochster and Huneke have given the following criterion of tight closure
in terms of Hilbert-Kunz multiplicity.

THEOREM 1.8. (Length Criterion for Tight Closure (cf. [11, Theorem
8.17])) Let I C J be m-primary ideals of a local ring (A,m,k) of positive
characteristic.

(1) If I* = J*, then eux(I) = enx(J).

(2) Suppose that A is excellent, reduced and equidimensional. Then the
converse of (1) is also true.

The following theorem plays an important role in studying Hilbert-
Kunz multiplicities for non-Cohen-Macaulay local rings.

THEOREM 1.9. (Goto-Nakamura [8]) Let (A,m,k) be an equidimen-
stonal local ring which is a homomorphic image of a Cohen-Macaulay local
ring of characteristic p > 0. Then

(1) If J is a parameter ideal of A, then e(J) > 1a(A/J*).

(2) Suppose that A is unmized. If e(J) = la(A/J*) for some parameter
ideal J, then A is F-rational (hence is Cohen-Macaulay).

The next corollary is well-known in case of Cohen-Macaulay local rings
(e.g. see [13]).

COROLLARY 1.10. Let (A, m, k) be an unmized local ring of character-
istic p > 0. Suppose that e(A) = 2. Then A is F-rational if and only if
enk (A) < 2. When this is the case, A is an F-rational hypersurface.

Proof. Since any Cohen-Macaulay local ring of multiplicity 2 is a hy-
persurface, it suffices to prove the first statement.

We may assume that A is complete and k is infinite. We can take a
minimal reduction J of m. First, suppose that egk(A) < 2. Then we show
that A is Cohen-Macaulay, F-rational. By Goto-Nakamura’s theorem, we
have 2 = e(J) > [4a(A/J*). If equality does not hold, then [4(A/J*) = 1,
that is, J* = m. Then epx(4) = enx(J*) = eux(J) = e(J) = 2 by
Proposition 1.2. This is a contradiction. Hence e(J) = [4(A4/J*). By
Goto-Nakamura’s theorem again, we obtain that A is Cohen-Macaulay, F-
rational.
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Conversely, suppose that A is a complete F-rational local ring. Then
since A is Cohen-Macaulay and J* = J # m, we have epgk(A) < epx(J) =
e(J) = 2 by the Length Criterion for Tight Closure. 0

The next question is open in general. However, we will show that it is
true for dim A < 3; see Section 3.

QUESTION 1.11. If A is an unmized local ring with egk(A) < 2, then
is it F-rational ?

§2. Estimate of Hilbert-Kunz multiplicities

In this section, we will prove the key result to find a lower bound on
Hilbert-Kunz multiplicities. Actually, it is a refinement of the argument
which appeared in [22, Section 5] or in [23, Section 2]. The point is to use
the tight closure J* instead of “a parameter ideal J itself”. This enables
us to investigate Hilbert-Kunz multiplicities of non-Cohen-Macaulay local
rings. In Sections 3, 4, we will apply our method to unmixed local rings
with dim A = 3, 4.

Before stating our theorem, we introduce the following notation: Fix
d > 0. For any positive real number s, we put

d
Vg 1= vol{(xl,...,xd) € [O,I]d : sz < s}, vl =1 — v,
=1

where vol(TW) denotes the volume of W C R?. Then it is easy to see the
following fact.

Fact 2.1. Let s be a positive real number. Using the same notation as
above, we have

(1) vs+0l, =1.

(2) vg

(3) Vd/2 = Ud/g

(4) If 0<s<1, thenvs:sd—l!i.

Using the above notaion, the key result in this paper can be written as
follows:
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THEOREM 2.2. Let (A,m, k) be an unmized local ring of characteristic
p>0. Putd=dimA > 1. Let J be a minimal reduction of m, and let r
be an integer with v > pa(m/J*), where J* denotes the tight closure of J.
Also, let s > 1 be a rational number. Then we have

s — d
(2.1) erc(A) ze(A){vs—r.%}.

Remark 3. When 1 < s < 2, the right-hand side in Equation (2.1) is
equal to e(A)(vs — 7 - vs_1).

Before proving the theorem, we need the following lemma. In what
follows, for any positive real number «, we define I := I", where n is the
minimum integer which does not exceed a.

LEMMA 2.3. Let (A,m,k) be an unmized local ring of characteristic
p >0 withdim A=d > 1. Let J be a parameter ideal of A. Using the same
notation as above, we have

sq d sq [d]
lim AT DT z%%) = e(J) -Vl

g—00 q® d 7 ¢

Proof. First, note that our assertion holds if A is regular and J = m.
We may assume that A is complete. Let x1,..., x4 be a system of param-
eters which generates J, and put R := k[[z1,...,2z4]], n = (21,...,24)R.
Then R is a complete regular local ring and A is a finitely generated R-
module with A/m = R/n. Since the assertion is clear in case of regular
local rings, it suffices to show the following claim.

Cram. Let T = {I;}q=pe be a set of ideals of A which satisfies the
following conditions:
(1) For each q = p®, I, = J4A holds for some ideal J; C R.
(2) There exzists a positive integer t such that w'? C J, for all ¢ = p°.
(3) limy—o LR(R/J,)/q% exists.

Then

lim 7ZA(A/L1) =e(J) - lim 7ZR(R/J(1) .

q—0o0 q® q—0o0 q®
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In fact, since A is unmixed, it is a torsion-free R-module of rank e :=
e(J). Take a free R-module F' of rank e such that Ay = Fy, where
W = R\ {0}. Since F and A are both torsion-free, there exist the following
short exact sequences of finitely generated R-modules:

0—-F—-A—-C;—0, 0A—F—Cy—0,

where (C1)w = (C2)w = 0. In particular, dim Cy < d and dim Cy < d.
Applying the tensor product — ®r R/J, to the above two exact se-
quences, respectively, we get
A(A/Ig) < Ir(F/JgF) +1r(C1/J4Ch),
IR(F/JgF) <1a(A/1y) +1r(C2/J,Co).
In general, if dimg C' < d, then
lr(C/J,C) Ir(C/ntC)
q* g
Thus the required assertion easily follows from the above observation. []

—0 (g— 0).

<

Proof of Theorem 2.2. For simplicity, we put L = J* and e = e(A).
We will give an upper bound of I4(m@/Jl4). First, we have the following
inequality:

q] sq
4l / 7lal mT +mT
lA(m /J )§1A< 7 )

mld) o+ msa Ll o msa
— 1y <_L[q] e ) * ZA( Ll 4 Joa )
Ll 4 jsq Jla 1 gsa
i (m) i ZA(T)
=: 01+ by + 03+ {y.

Next, we see that £1 < r-14(A/JE=D9) +0(¢41). By our assumption,
we can write m = L + Aaj + - -+ Aa,. Since m(s_l)qag C ms C ms 4 Lla

we have
] sq r q ] sq
mla +m Aa! + L9 +m
_ < 7
4 ZA< Lld 4+ msa > - Z;ZA< Ll 4 msa >

= Z la (A/ (LY + m*1) - a?)

=1
< lg(A/mbmh),
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Since J is a minimal reduction of m, we have I 4 (m(s=14¢/j(s=Na) = O(g¢-1).
Thus we have the required inequality. Similarly, we get

L[(ﬂ + ms? s o .
o= s (T ) < Lt/ ) = Ofa ).

Also, we have 14(L[4/Jl9) = O(¢*') by Length Criterion for Tight
Closure. Hence £3 = O(q%"') and thus

Jld o jsa

La(mldl /g1y < o1, (A)00619) +ZA< i

> +0(¢").

It follows from the above argument that

o < . . 3 —_
enk(J) —eax(m) <r thgo q° T qlg& q® Jldl

— 1)
:T.e.u_i_e.v,

d! &

Ia(A/)J5=Da) 1 l <J[‘J] _|_qu>
A/ ) g

Since ek (J) = e(J) = e, eax(A) = egx(m) and v, = 1 — v,, we get the
required inequality. 0

The following fact is known, which gives a lower bound on Hilbert-Kunz
multiplicities for hypersurface local rings.

Fact 2.4. (cf. [1], [2], [22]) Let (A,m, k) be a hypersurface local ring of
characteristic p > 0 with d = dim A > 1. Then

enk (A4) > By - e(A),

where Bg+1 18 given by the following equivalent formulas:
1 [ [sing 4™
— de;
(a) m /oo( g > ’
5] d+1
(-Did+1 - zz)d( ) ) ;
=0

1 2
d—1 d+1
(c) Vol{ge[O,l]d: Sg xiSL}—l—Udl — vy
2 2

(®) 24!
¢
2 2
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TABLE 1.
d 01213 4 5 6
Batr | 1)1 % % % % 15F53230

Remark 4. The above inequality is not best possible in general. In
case of d > 4, one cannot prove the formula in the above fact as a corollary
of our theorem. See also Proposition 3.9 and Theorem 4.3.

The following lemma is an analogy of Sally’s theorem: If A is a Cohen-
Macaulay local ring, then pa(m/J) = pa(m) —dim A <e(A4) — 1.

LEMMA 2.5. Let (A,m, k) be an unmized local ring of positive charac-
teristic, and let J be a minimal reduction of m.

(1) palm/J?) < e(4) - 1.
(2) If A is not F-rational, then pa(m/J*) <e(A)— 2.

Proof. We may assume that A is complete and thus is a homomorphic
image of a Cohen-Macaulay local ring.

(1) By Goto-Nakamura’s Theorem, we have that pa(m/J*) <l4(m/J*)
<e(J)—1l=e—1.

(2) If A is not F-rational, then [4(A/J*) < e(J) —1 = e — 1. Thus
pa(m/J*) <e—2, as required. U

Using Theorem 2.2 and Lemma 2.5, one can prove the following corol-
lary, which has been already proved in [23] in the case of Cohen-Macaulay
local rings.

COROLLARY 2.6. (cf. [23]) Let (A,m,k) be a two-dimensional unmized
local ring of characteristic p > 0. Put e = e(A). Then
e+1
5
Also, suppose k = k. Then the equality holds if and only if gr,(A) is iso-
morphic to the Veronese subring k[X,Y]®) = k[X¢, X1y, ... XYl ye].
Moreover, if A is not F-rational, then we have

(2.2) enk(A4) >

2

() 2 5y
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EXAMPLE 2.7. (Fakhruddin-Trivedi [7, Corollary 3.19]) Let E be an
elliptic curve over a field k = k of characteristic p > 0, and let £ be a
very ample line bundle on E of degree e > 2. Let R be the homogeneous
coordinate ring (the section ring of £) defined by

R=PH(E L.
n>0
Also, put A = Rgy, where 9t be the unique homogeneous maximal ideal of
2
R. Then we have epk(A4) = ﬁ
§3. Lower bounds in the case of three-dimensional local rings
In this section, we prove the main theorem in this paper, which gives
the lower bound of Hilbert-Kunz multiplicities for non-regular unmixed
local rings of dimension 3.

THEOREM 3.1. Let (A, m,k) be a three-dimensional unmized local ring
of characteristic p > 0. Then
(1) If A is not regular, then exk(A) > +.

(2) Suppose that k = k and char k # 2. Then the following conditions are
equivalent:

(a) CHK(A) = %
(b) A= K[X,Y, Z,W]]/(X2+ Y2+ 22+ W?2).

(0) grm(A) 2 E[X,Y, Z,W]/(X2+Y2+Z24W?2). That is, gry(A) =
KXY, Z,W]/(XY — ZW).

PROPOSITION 3.2. Let (A,m, k) be a three-dimensional unmized local
ring of characteristic p > 0. If egx(A) < 2, then A is F-rational.

From now on, we divide the proof of Theorem 3.1 and Proposition 3.2
into several steps. In the following, we assume the following condition.

(#): Let (A,m, k) be a three-dimensional unmixed local ring of character-
istic p > 0, and e(A) = e, the multiplicity of A. Also, suppose that m
has a minimal reduction J.

Suppose that A is not regular under the assumption (#). Then e =
e(A) is an integer with e > 2. Thus the first assertion of Theorem 3.1
follows from the following lemma. Also, this implies that if epx(A) = %

then e(A) = 2 without extra assumptions.

https://doi.org/10.1017/50027763000009053 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000009053

HILBERT-KUNZ MULTIPLICITY OF THREE-DIMENSIONAL LOCAL RINGS 61

LEMMA 3.3. Under the assumption (#), we have

(1) Ife > 5, then eux(A) > 2.
(2) If e =4, then enx(A) > + %.
(3) If e =3, then enx(A) > 22 > 4
(4) If e =2, then ek (A) > %

Remark 5. The lower bounds of egk(A) in Lemma 3.3 are not best
possible.

Proof. We may assume that A is complete. By Lemma 2.5(1), we can
apply Theorem 2.2 with » = e — 1. Namely, if 1 < s < 2, then

83 s — 3
B1)  enx(A) > e(vs — (e — 1)vs_1) = e(? e+ 2)%).

Define the real-valued function f.(s) by the right-hand side of Eq. (3.1).
Then one can easily calculate maxj<s<a fe(s). In fact, if e > 2, then

f<e—|—2+\/e—|—2) e (€+2+\/€+2>2
=& )

1215?2 fE(s) - e+1 e+1

But, in order to prove the lemma, it is enough to use the following values

only:
3 7
S D) x 2
fe(S) e(Zi)ge) 6(28:?874276) e(6ge)

(1) We show that epk(A) > 2 if e > 5. If e > 13, then by Proposition 1.4,

1
€HK(A) > > ?3 > 2.

So we may assume that 5 < e < 12. Applying Eq. (3.1) for s = %, we get

e(25 —e) 5(25 —5) 25

A) > > =— >2.
en(d) 2 =g 2 g 2~
(2) Suppose that e = 4. Applying Eq. (3.1) for s = %, we get
e(25 —e) 7
A > ——MF = —,
enx(4) 2 =3 1
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(3) Suppose that e = 3. Applying Eq. (3.1) for s = %, we get

e(289 — 27¢) 13
A > — 7 =
en(4) = 384 8

(4) Suppose that e = 2. Applying Eq. (3.1) for s = 2,

e(6—e) 4
k4> — = —
€H () 6 37

as required. 0

Before proving the second assertion of Theorem 3.1, we prove Proposi-
tion 3.2. For that purpose, we now focus non-F-rational local rings.

Now suppose that A is not F-rational. If e = 2, then egx(A) = 2 by
Lemma 1.10. On the other hand, if e > 5, then epgk(A) > 2 by Lemma 3.3.
Thus in order to prove Proposition 3.2, it is enough to investigate the cases
of e = 3, 4. Namely, Proposition 3.2 follows from the following lemma.

LEMMA 3.4. Suppose that A is not F-rational under the assumption
(#). Then

(1) Ife =3, then enk(A) > 2.
(2) Ife=4, then enk(A) > 2.

Proof. By Lemma 2.5(2), we can apply Theorem 2.2 for r = e — 2.
Thus if 1 < s < 2, then

3 -1 3
(3.2) enk (A) > e<% — (e + 1)%)
(1) Suppose that e = 3. Applying Eq. (3.2) for s = 2, we get
enc (A) > 6(76%6) —9

(2) Suppose that e = 4. Applying Eq. (3.2) for s = %, we get

e(316 — 27e) 13
enk(4) 2 384 6 -3

as required. 0
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EXAMPLE 3.5. Let R = k[T, 2T, zyT,yT,x yT, o= 2yT, ... o~ "yT]
be a rational normal scroll and put m = (T, 2T, xyT,yT, YT, ...,z "yT).
Then A = Ry, is a three-dimensional Cohen-Macaulay F-rational local do-
main with e(A) =n + 2, and

e(4) e(4)

ea(A) = ==+ g1

Proof. Let P C R be a convex polytope with vertex set

I' ={(0,0),(1,0),(1,1),(0,1),(—1,1),...,(—n,1)},

and put P := {(0,1) € R*: a € P} and dP := {d- o : a € P} for every
integer d > 0. Also, if we define a cone C = C(ﬁ) ={rg:p ¢ P,O<re
Q} and regard R as a homogeneous k-algebra with degx = degy = 0 and
degT = 1, then the basis of R4 corresponds to the set {(a,d) € Z3 : a €
7Z°NdP} = {(a,d) € Z® : a € Z2} NC.

(0,0) (1,0)

If we put I'y = {(0,0),(¢,0),(¢:9),(0,9),(—=q,9),---,(—ng,q)}, then
mld = (299°T9 : (a,b) € Ty). Since [mld]; = Z(a,b)erq Ry_q x%y°TY, we

have
enk(A) = lim ing(A/mM)
g—oo
— lim i#{z% (C\ U (@b q)—i—C)}
g—00 q3 ) )
(a,b)eTy
that is,

enk(A) = lim ig [i #{Z2 N (dP\ U (a,b) + max{0,d — q}P)}
d=0

e (a,b)ET,
Also, if we define a real continuous function f : [0,00) — R by
in R?,

f(t) = the volume of |tP\ U (a,b) + max{0,t — 1} P

(a,b)el
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o0

then egk (A) = / f(t)dt. Let us denote the volume of M C R? by vol(M).

0
To calculate ek (A), we need to determine f(¢). Namely, we need to show
the following claim.

CLAIM.
vol(tP), 0<t<1;
sy < L TUP) — (o)l — P, 1<t < 2
t =
Wﬂnjtm@;f)g, L2 <t <2
0, t>2.

\

To prove the claim, we may assume that ¢ > 1. For simplicity, we put
M, = (a,b)+(t—1)P for every (a,b) € I'. First suppose that 1 <t < Z—ﬁ
Then since 1 —n(t —1) > ¢t — 1, Moo N M = . Similarly, one can easily
see that any two M,; do not intersect each other; see Figure 1. Thus
f(t) = vol(tP) — (n+4) vol((t — 1)P).

Next suppose that Z—ﬁ <t <2 Then PN{(z,y) e R?:0<y <
t—1} = MooUM,; oUTp, where Tj is a triangle with vertex (¢t —1,0), (1,0)
and (t -1, %) Similarly, there exist (n+ 1)-triangles T4, ..., T,+1 having
the same volumes as Ty such that

Pﬂ{(w,y) eR?: 1 <y< t} = M_mlU' . 'UM171UM071UM171UT1U~ -UTh41
and any two 7T;’s do not intersect each other; see Figure 2. Thus
f) =vol(PN{(z,y) €ER*:t -1 <y <1})+ (n+ 2)vol(Tp)
(n+2)t(2 —t) (2 —1t)?
= 2)——.
2 LG e

Finally, suppose that ¢ > 2. Then since P is covered by M,;’s, we have
f(t) =0, as required.

Using the above claim, let us calculate egk(A). Note that vol(tP) =

(n+2)t?
—.
n+2 n+2
et 2)t? Al 2)(t —1)?
€HK(A)—/ i Mdt_(n_i_él)/ +t (n+ )( ) dt
0 2 1 2
2 2)t(2 —t 2 2-1)?
+/ (n+ 2K )dt—l—(n+2)/ L= 4
n+2 2 n+2 2n
n4+1 n+1
1 1
o 2 _ _—
(n+ )[2+6(n+1)}’
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(=nt,t) (t,t)

M_p1 1,1

(1—n(t—1),t—1) ?

\\4’970 MLO

0 t—-1 1t

(=n. 1) (t,t—1)

n+2

FIGURE 1. The case where 1 <t < P

(—nt, t) (t,t)

\z\fjm j+\= o)

n, 1)

t—l)tfl) (t,t—1)
\?70 MLO
To

0O t—-1 1 ¢

FIGURE 2. The case where "*2 <t<?2

as required. 0

DiscussION 3.6. Let A be a complete local ring which satisfies (#).
Also, suppose that e = 3. What is the smallest value of ek (A4) among such
rings?

The function f(s) = 3(% — (5_61)3 ), which appeared in Eq. (3.1),
takes the maximal value

5+v5\  154+5V5
f( 4 >_ 16

=1.636---

in s € [1,2]. Hence egg(A) > 1.636- - -. But we believe that this is not best
possible.

Suppose that epi(A) < 2. Then A is F-rational by Lemma 3.4. Thus
it is Cohen-Macaulay and 3+1 < v =emb(A4) < d+e—1=3+3-1=5. If
v # 5, then A is a hypersurface and epgg(A) > % -e = 2 by Fact 2.4. Hence
we may assume that v = 5, that is, A has maximal embedding dimension.
If we write as A = R/I, where R is a complete regular local ring with
dim R = 5, then height I = 2. By Hilbert-Burch’s theorem, there exists a
2 x 3-matrix M such that I = Io(M), the ideal generated by all 2-minors of
M. In particular, A can be written as A = B/aB, where B = k[X]/I2(X),
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X is a generic 2 x 3-matrix and a is a prime element of B. This implies
that

1 1 13
ek (A) = enx (B/aB) = en (B) = 3{5 + I} =5 = 1.625
see [5, Section 3.
For example, if A = k[[T,2T,zyt,yT,z~'yT]] is a rational normal
scroll, then epk(A) = © = 1.75 by Example 3.5. Is this the smallest
value?

DiscussioN 3.7. Let A be a complete local ring which satisfies (#).
Also, suppose that e = 4. What is the smallest value of egk (A) among such
rings?

As in Discussion 3.6, it suffices to consider F-rational local rings only.
For example, let A = k[[z,, 2]]®® be the Veronese subring. Then A is an
F-rational local domain with e(A) =4 and epk(A4) = 2. Also, let A be the
completion of the Rees algebra R(n) over an F-rational double point (R, n)
of dimension 2. Then A is an F-rational local domain with e(4) = 4 and
enk (A) > 2 (we believe that this inequality is strict).

On the other hand, the function f.(s) which appeared in Eq. (3.1),
takes the maximal value

f(6+\/6_3> _ 28+8V6

—1.903---
3 5% 903

in s € [1,2]. Hence the fact that we can prove now is “egx(A) > 1.903---”
only.

Based on Corollary 2.6 and Discussion 3.7, we pose the following con-
jecture.

CONJECTURE 3.8. Let A be a complete local ring which satisfies (#),
and let r > 2 be an integer. If e(A) = r?, then

> LD

Also, the equality holds if and only if A is isomorphic to k[[z,y, 2]]").

In the rest of this section, we prove the second statement of Theo-
rem 3.1. Let (A,m,k) be a complete local ring which satisfies (#). If
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enk(A) = %, then A is an F-rational hypersurface with e(A) = 2 by the
above observation. Furthermore, suppose that k = k and char k # 2. Then
we may assume that A can be written as the form k[[X,Y,Z, W]]/(X? —
oY, Z,W)). To study Hilbert-Kunz multiplicities for these rings, we prove
the improved version of Theorem 2.2.

PROPOSITION 3.9. Let k be an algebraically closed field of char k # 2,
and let A = k[[X,Y, Z, W] /(X% —p(Y, Z,W)) be an F-rational hypersurface
local ring. Let a, b, ¢ be integers with 2 < a < b < c.

Suppose that there exists a function ord : A — QU {co} which satisfies
the following conditions:

(1) ord(e) > 0; and ord(ar) = 00 <= a =0.

(2) ord(z) =1/2, ordy = 1/a, ordz = 1/b, and ordw = 1/c.
(3) ord(g) > 1.

(4) ord(a + ) > min{ord(a),ord(3)}.

(5) ord(af) > ord(«) + ord ().

Then we have

CHK(A) = 2 — T(Ng — n3),
where ) ) ) ) 0
N=—+—4———, n—max{O,N——}.
a b c 2 c

In particular, if (a,b,c) # (2,2,2), then egx(4) > %.

Remark 6. The third condition ord(y) > 1 is important. For example,
if ¢ = y? mod (z,w)3, then one can take (a,b,c) = (2,3,3), but (a,b,c) =
(2,3,4).

Proof. First, we define a filtration {F},}ncq as follows:
F,:={a € A:ord(a) > n}.

Then every F,, is an ideal and F), F},, C F};,+, holds for all m, n € Q. Using
F,, instead of m”, we shall estimate 4 (ml4 /.719)).
Set J = (y,z,w)A and fix a sufficiently large power ¢ = p°. Put

1 1 1 1 1 1 1
N .
b c’ a b c 2

§=—+—+ — —+—+—— =
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Since J is a minimal reduction of m and zy?~'29~ w91 generates the socle

of A/J[Q], we have that Fy, C Jld. Also, since B = A/J[Q] is an Artinian
Gorenstein local ring, we get

F(N+1)quO:B FMBgKB/FNqBa
2 2 -

where K¢ denotes a canonical module of a local ring C'. Hence, by the
Matlis duality theorem, we get

F i1y + JU
la

#) = ZB(FM) < lB(KB/F%iB) = lB(B/F%B).

On the other hand, since z7 € F i by the assumption, we have
2F ng C F (ny1)q -
2 2
Therefore by a similar argument as in the proof of Theorem 2.2, we get

Ax? + Jldl + F (n41)q F(vivg + Jld
3 +iy 3
F (v, + Jld
2

lql / 7ld
ZA(mq/Jq)SlA< 5t
<la (A/(JM + Fovng) : :):q> . (B/F% B)
< 2-ZA<A/J[Q] +F%q>.

In fact, since

1
m [q]
qh_r)n e lA(A/J —I—Fz\gq)

. 1 3. Y z w Ngq
=2-vol{ (x 2)6[01]3'£+£+£<£
B Y T a b c = 2
abc
_ N3_ 3
24 ( n )7
we get
e (A)>2—2-a—bc(]\73—n3)* —a—bC(N?’—n?’)
HEAA) = 24 - 12 ’
as required. 0
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EXAMPLE 3.10. Let k£ be an algebraically closed field of chark # 2,
and let (A, m, k) be a hypersurface. Put gr(A) = k[X,Y, Z, W]/(9(X,Y,

Z,W)).
2 3 3 3 95
9(X, Y, Z,W) = X2+ Y7+ 224+ WP = enx(4) = <55
2 2 3 3 14
9(X, Y, Z,W) = X2+ Y2+ 224+ WP = enx(4) = -
2 2 2 c 3 2
9XY,Z,W) = X2+ Y2 + 22+ W — enx(4) > 5 — o7
C

Proof of Theorem 3.1(2). Put G = gr,(A) and M = gr,,(A)+. The im-
plication (a) = (b) follows from Proposition 3.9. (b) = (c) is clear. Suppose
(c). Then enx(Gon) = 5. Also, by Proposition 1.3 and Theorem 3.1(1), we
have that % <epk(A) < epx(Gop) = %. Thus epk(4) = %, as required.

O

Also, the following corollary follows from the proof of Proposition 3.9
and Example 3.10.

COROLLARY 3.11. Let A be a local ring which satisfies (#). Also,
assume that k = k and p # 2. Then the following conditions are equivalent:
(1) % < €HK(A) < %
(2) gr,(A) 2 k[X,Y,Z]/(X? +Y?2+ Z?).
(3) A is isomorphic to a hypersurface k[[X,Y, Z, W] /(X2 +Y2+2Z2+W°)

for some integer ¢ > 3.

When this is the case, ek (A) > 3 — %

84. A generalization of the main result to higher dimensional case

In this section, we want to generalize Theorem 3.1 to the case of
dimA > 4. Let d > 1 be an integer and p > 2 a prime number. If we
put

Apa = F_p[[X()’le e 7Xd]]/(Xg +ot Xc2l)v

then we can guess that enk (A4, q) = sux(p, d) holds according to the obser-
vations until the previous section. In the following, let us formulate this as
a conjecture and prove that it is also true in case of dim A = 4.
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In [10], Han and Monsky gave an algorism to calculate exk (A, q), but
it is not so easy to represent ek (Ap ) as a quotient of two polynomials of
p for any fixed d > 1.

d 213 4
3 | 4 | 2992415
eHK(Ap,d) 2 2 | 3 | 24p2+12

On the other hand, surprisingly, Monsky proved the following theorem:

THEOREM 4.1. (Monsky [19]) Under the above notation, we have

- LG
(4.1) plig)lo enk (Apa) =1+ a
where
> ¢ ™
(4.2) secx +tanz = 4 gl (|x| < —)
= d! 2

Remark 7. It is known that the Taylor expansion of sec x (resp. tanx)
at origin can be written as follows:

(e 9]

Ey
secr = Z (2;;! z%

1=0

o .

1 2222 — 1)By; 4

tanz = E (-1t o O
1=1

where Ey; (resp. By;) is said to be Euler number (resp. Bernoulli number).
Also, ¢4 appeared in Eq. (4.1) is a positive integer since cost is an unit
element in a ring H = {} 12, an% tap € Z for all n > 0}.

Based on the above observation, we pose the following conjecture.

CONJECTURE 4.2. Let d > 1 be an integer and p > 2 a prime number.

Put
Ap,d = F_p[[X()’Xl’ R 7Xd]]/(Xg +oet Xg)

Let (A, m, k) be a d-dimensional unmized local ring with k = F,. Then the
following statements hold.
(1) If A is not regular, then enk(A) > enk(Ap,q) > 1+ 5+ In particular,
suk (p, d) = enx (Apa)-
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(2) If enk(A) = enx(Ap.q), then A A, 4 as local rings.
In the following, we prove that this is true in case of dim A = 4. Note

that

) 29p% 4+ 15 29 4
1 A = 1 —_— ¥ m = — = ]_ —_—
i eni(Apa) = Iim e = o =1

THEOREM 4.3. Let (A, m, k) be an unmized local ring of characteristic
p >0 with dim A = 4. If e(A) > 3, then epk(4) > 2 = 39
Suppose that k = k and char k # 2. Put

Ap74 = Fp[[X(]ley cee ’X4H/(X§ +oet Xﬁ%)
Then the following statement holds.

(1) If A is not regular, then

29p% + 15

enk(A) > epx(4p4) = m

(2) The following conditions are equivalent:
(a) Equality holds in (1).
(b) eHK(A) < %
(c) The completion of A is isomorphic to Ay 4.
Proof. Put e = e(A), the multiplicity of A. We may assume that A is
complete with e > 2 and k is infinite. In particular, A is a homomorphic

image of a Cohen-Macaulay local ring, and there exists a minimal reduction

J of m. Then pa(m/J*) < e —1 by Lemma 2.5. We first show that
enk(A) > 2 if e > 3.

CramM 1. If 3 <e <10, then enx(4) > 2.

Putting r = e — 1 and s = 2 in Theorem 2.2, since vy = %, we have

enk (A) Ze{vz— (e - )1 } _ (13- _ (13-3)3 _ 30

A1 o4 = 24 Y

as required.

CrLam 2. If 11 < e < 29, then enx(A4) > 222 (>

o

).
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By Fact 2.4, we have vz, = l_ﬁ% = %. Putting »r = e — 1 and

s = % in Theorem 2.2, we have

2

384 - 384 384"

enk (4) = 6{“3/2 e ( L )4} _ (18—c)e  1(T8_11) 737

24 -
as required.
Cram 3. If e > 30, then egk(A) > %.

By Proposition 1.4, we have epk (4) > & > 35

In the following, we assume that k = k, chark # 2 and e > 2. To see
(1), (2), we may assume that e = 2 by the above argument. Then since
enk (A) = 2 if A is not F-rational, we may also assume that A is F-rational

and thus is a hypersurface. Thus A can be written as the following form:

A= k[[Xo, X1, Xl /(X§ — (X1, Xo, X3, Xa))-
If A is isomorphic to A, 4, then by [10], it is known that ek (A4) = gigjﬁg )
Suppose that A is not isomorphic to A, 4. Then one can take a minimal
numbers of generators z, y, z, w, u of m and one can define a function

ord : A — QU {oo} such that

1 1
ord(z) = ord(y) = ord(z) = ord(z) = 5 ord(u) = 3
If we put J = (y,z,w,u)A and F,, = {a € A : ord(«) > n}, then by a
similar argument as in the proof of Proposition 3.9, we have

La(mll/J1) < 21, (A) T 4 Fyyps).
Divided the both-side by ¢? and taking a limit ¢ — oo, we get

e(A)—epk(A) < 2-@(A)-vol{(y,z,w,u) elo,1)*: LA

+w+u<2
2 2 3~ 3

(RN

To calculate the volume in the right-hand side, we put

W)’ =3 (5 - Fu)” (

u)’ (3 <us

o

<u<

)
)

N

1
6

F =
“ 1
6
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Then one can easily calculate

1

237
the above volume = / F,du= CITR

0
It follows that

237 411 5

A)> 24X — = — > —.

emc(A) 2 2 =4 X 5 = 51 7 1

The following conjecture also holds if dim A < 4.

CONJECTURE 4.4. Under the same notation as in Conjecture 4.2, if
e(A) > 3, then
cqg+1

enk(A) > 1+ ¥

DiscussioN 4.5. Let d > 2 be an integer and fix a prime number
p > d. Assume that Conjectures 4.2 and 4.4 are true. Also, assume that
suk(p,d) < suk(p,d — 1) for all d > 3. Let A = k[Xo,...,X,]/I be a
d-dimensional homogeneous unmixed k-algebra with deg X; = 1, and let
m be the unique homogeneous maximal ideal of A. Suppose that k is an
algebraically closed field of characteristic p > 0. Then ek (A) = suk(p, d)
implies that ;l:l =Apq.

In fact, if egx(A) = suk(p,d), then we may assume that epgg(A) <
1+ CddTI . Thus e(An) = 2 if Conjecture 4.4 is true. For any prime ideal
PA,, of Ay, such that P # m, we have eHK(AP) < eHK(Am) = SHK(p, d) <
sk (p,n), where n = dim Ap < d. Since Ap is also unmixed, it is regular.
Thus Ay, has an isolated singularity. Hence A is a non-degenerate quadric
hypersurface In other words, f/l; is isomorphic to A, 4.
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