
Appendix E

Differential Forms on Infinite-Dimensional
Manifolds

E.1 Introduction

In this appendix we give a short introduction to differential forms on infinite-
dimensional manifolds. For more information on differential forms on infinite-
dimensional manifolds and their application, we refer the interested reader to
Beggs (1987), as well as Glöckner and Neeb (forthcoming). The main differ-
ence between the finite-dimensional (or Banach) and our setting is that it is,
in general, impossible to interpret differential forms as (smooth) sections into
certain bundles of linear forms. The reason for this is again that the topol-
ogy on spaces of linear forms breaks down beyond the Banach setting (see
Proposition A.19). Even worse, the many equivalent ways to define differen-
tial forms in finite dimensions become inequivalent in the infinite-dimensional
setting (see Kriegl and Michor, 1997, Section 33 for a thorough discussion of
this phenomenon). Most notably, there is no useful way to describe differential
forms as a sum of differential forms coming from a local coordinate system.

We begin with the definition of a differential form. This definition is geared
towards avoiding any reference to topologies on spaces of linear mappings.
This again is a continuity problem and in the inequivalent convenient setting
of global analysis, differential forms can be described as sections in suitable
bundles; see Kriegl and Michor (1997, 33.22 Remark). Furthermore, we need
to avoid arguments involving the existence of (smooth) bump functions (which
in general do not exist; see Appendix A.4).

E.1 Definition Let M be a manifold and E be a locally convex space and
p ∈ N0. An E-valued p-form ω on M is a function ω which associates to each
x ∈ M a p-linear alternating map ωx : (Tx M)p → E such that for each chart
(U, ϕ) of M , the map
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232 Differential Forms on Infinite-Dimensional Manifolds

ωϕ : Vϕ × Fp
ϕ → E, ωϕ (x,v1, . . . ,vp ) � ωϕ−1 (x) (Txϕ

−1(v1), . . . ,Txϕ
−1(vp ))

(E.1)

is smooth. We write Ωp (M,E) for the space of smooth E-valued p-forms on
M . Note that Ω0(M,E) = C∞(M,E).

E.2 Example For p = 0, we have already seen that smooth functions are
differential forms. If f ∈ C∞(M,E), then the derivative df : T M → E, v �→
pr2 ◦ T f (v) is a smooth E-valued 1-form.

Constructing the derivative of a smooth function can be generalised to a
differential on the space of p-forms, the so-called exterior differential

d: Ωp (M,E) → Ωp+1(M,E)

which we discuss now. On an infinite-dimensional manifold there is no gen-
eralisation of local coordinates in a vector basis. Hence the finite-dimensional
approach defining the exterior differential in a local coordinate frame is not
available. Recall some standard notation useful in the present context: In (D.1)
we defined a derivative X. f of a smooth function f in the direction of X . If
ω ∈ Ωp (M,E) and U ⊆◦ M , we define for vector fields X1, . . . Xp ∈ V (U) a
smooth map

ω(X1, . . . ,Xp ) : U → E, m �→ ωm (X1(m), . . . Xp (m)).

Finally, we write ω(X0, . . . , X̂i , . . . ,Xp ) to indicate that the ith component is
to be omitted from the formula.

E.3 Proposition For ω ∈ Ωp (M,E) there exists a smooth p + 1-form dω ∈
Ωp+1(M,E) which for any U ⊆◦ M and vector fields X1, . . . ,Xp ∈ V (U),
satisfies

dω(X0,X1, . . . ,Xp )(m) =
p∑

i=0

(−1)i (Xi .ω(X0, . . . , X̂i , . . . ,Xp ))(m)

+
∑

i< j

(−1)i+ jω([ Xi ,X j ],X0, . . . , X̂i , . . . X̂ j , . . . ,Xp )(m). (E.2)

Proof Consider m ∈ M and v1, . . . ,vp ∈ TmM . To define (dω)m (v1, . . . ,vp )
we pick an open neighbourhood U of m together with vector fields Xi ∈ V (U)
such that Xi (m) = vi , i = 0,1,2, . . . , p. Note that such vector fields always exist
as we can take the constant vector fields in a chart neighbourhood (in particular,
the definition does not require us to globalise these fields, which would require
bump functions which may not exist). Then

(dω)m (v0,v1, . . . ,vp ) � dω(X0,X1, . . . ,Xp )(m), (E.3)
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E.1 Introduction 233

where the right-hand side has been defined via (E.2) for our choice of vector
fields.

Step 1: (dω)m (v1, . . . ,vp ) does not depend on the choice of vector fields in
(E.3). We have to show that the expression (E.2) becomes 0 if Xk (m) = 0
for at least one k. Assuming that Xk vanishes in m, we may without loss of
generality assume that we are working in local coordinates. We will suppress
the chart identification in the formulae and also identify each vector field Xi

with its principal part on some U ⊆◦ F (where F is a locally convex space).
Exploit now that ω is alternating and linear to see that the contributions in
(E.2) which do not directly vanish are

p∑

i�k

(−1)i (Xi .ω(X0, . . . , X̂i , . . . ,Xp ))(m) (E.4)

+
∑

i<k

(−1)i+kω([ Xi ,Xk ],X0, . . . , X̂i , . . . , X̂k , . . . ,Xp )(m) (E.5)

+
∑

k<i

(−1)i+kω([ Xk ,Xi ],X0, . . . , X̂k , . . . , X̂i , . . . ,Xp )(m). (E.6)

Apply the definition of the differential form ω on the open subset of a locally
convex space (E.1). In this presentation ω is a function of p + 1-variables and
p-linear in the last p-variables. Hence we can compute the derivative for a
summand in (E.4) explicitly as

Xi .ω(X0, . . . , X̂i , . . . ,Xp )(m)

= d1ω(m,X1(m), . . . X̂i (m), . . . ,Xp (m); Xi (m))

+
∑

j<i

ωm (X0(m), . . . ,dX j (m; Xi (m)), . . . , X̂i (m), . . . ,Xp (m))

+
∑

i< j

ωm (X0(m), . . . , X̂i (m),dX j (m; Xi (m)), . . . ,Xp (m)).

As Xk vanishes, we see that for every i > k only

ωm (X0(m), . . . ,dXk (m; Xi (m)), . . . , X̂i (m), . . . ,Xp (m))

survives and as Xk (m) = 0, we have

dXk (m,Xi (m)) = dXk (m; Xi (m)) − dXi (m; Xk (m)) = [ Xi ,Xk ](m).

Using the fact that ω is alternating, we have

(−1)kω([ Xk ,Xi ],X0, . . . , X̂k , . . . , X̂i , . . . ,Xp )(m)

= −ωm (X0(m), . . . ,dXk (m; Xi (m)), . . . , X̂i (m), . . . ,Xp (m)),
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234 Differential Forms on Infinite-Dimensional Manifolds

hence the corresponding terms in (E.4) and (E.5) cancel. Similar arguments
show that this also happens for the parts in (E.4) and (E.6) if i < k. We
conclude that (E.2) vanishes at a point if one of the vector fields vanishes at
the point. This shows, in particular, that (E.3) is independent of the choices of
vector fields.

Step 2: dω is a smooth p + 1-form. For smoothness we work again locally in a
chart as in Step 1 and pick all vector fields Xi to be constant. As the Lie bracket
of constant vector fields vanishes, (E.3) reduces to

(dω)m (v0, . . . ,vp ) =
p∑

i=0

(−1)id1ω(m,v0, . . . , v̂i , . . . ,vp ; vi ). (E.7)

Now by definition ω induces a smooth function in all charts, whence we see
that dω is also smooth in (m,v0,v1, . . . ,vo ). To see that (dω)m is alternating,
observe that the summands in (E.7) are alternating. Assume now that vi = v j
for some i < j. It is easy to see that (E.7) vanishes (we leave this as Exercise
E.1.1). �

We thus obtain for every p ≥ 0 an exterior differential on the space of p-
forms. The usual proof (see Kriegl and Michor, 1997, Theorem 33.18, or Lang,
1999, V. Proposition 3.3) then shows that d2 = d◦d = 0 in every degree. Hence
as in the finite-dimensional (or the Banach) setting, the exterior differential
gives rise to a cochain complex of differential forms

C∞(M,E) = Ω0(M,E)
d−→ Ω1(M,E)

d−→ Ω3(M,E)
d−→ · · · .

Starting from this complex, one can define and study de Rham cohomology
on the (infinite-dimensional) manifold M . We will not pursue this route here
and refer instead to Beggs (1987) or Kriegl and Michor (1997, Chapter 34) for
more information.

Differential forms of higher order are typically constructed using the wedge
product. The definition is as in the finite-dimensional setting (note, however,
that there are several conventions as to the coefficients; we chose to follow
Lang, 1999).

E.4 Definition Let Ei , i = 1,2,3 be locally convex spaces and β : E1 ×
E2 → E3 be a continuous bilinear map. Fix p,q ∈ N0 and denote by Sp+q the
symmetric group of all permutations of {1,2, . . . p + q}. For ω ∈ Ωp (M,E1)
and η ∈ Ωq (M,E2), define the wedge product ω ∧ η ∈ Ωp+q (M,E3) via
(ω ∧ η)x � ωx ∧ ηx for x ∈ M , where
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E.1 Introduction 235

(ωx ∧ ηx )(v1, . . . ,vp+q )

�
1

p!q!

∑

σ∈Sp+q

sgn(σ) β(ωx (vσ (1) , . . . ,vσ (p) ), ηx (vσ (p+1) , . . . ,vσ (p+q) ).

Then

∧ : Ωp (M,E1) ×Ωq (M,E2) → Ωp+q (M,E3), (ω,η) �→ ω ∧ η

is a bilinear map.

E.5 Example If s : R×E → E is the scalar multiplication and f ∈ C∞(M,R),
then the wedge product of f and ω ∈ Ωp (M,E) is given by ( f ∧ ω)x =
f (x)ωx . This is usually abbreviated by fω � f ∧ ω and it is easy to see that
Ωp (M,E) becomes a C∞(M,R)-module.

E.6 Example Let (E, [ · , · ]) be a locally convex Lie algebra. Then [ · , · ] : E ×
E → E is bilinear and we can construct the wedge product ∧ with respect to
the Lie bracket. For this special situation we define for ω ∈ Ωp (M,E) and
η ∈ Ωq (M,E) the bracket

[ω,η ]∧ � ω ∧ η.

We will now define several standard operations on differential forms such as
the pullback of p-forms by smooth mappings.

E.7 Definition Let ϕ : M → N be a smooth map between manifolds. Then
we define for ω ∈ Ωp (N,E) a p-form ϕω ∈ Ωp (M,E), the pullback of ω by ϕ
via

(ϕ∗ω)x (v1, . . . vp ) � ωϕ (x) (Txϕ(v1), . . .Txϕ(vp )).

Due to the chain rule we immediately have the following rules for the compu-
tation of pullbacks.

E.8 The following rules hold for smooth maps and p-forms

id∗M ω = ω, ϕ∗1(ϕ∗2ω) = (ϕ2 ◦ ϕ1)ω∗, ϕ∗(ω ∧ η) = ϕ∗ω ∧ ϕ∗η.

If p = 0, that is, ω = f ∈ C∞(M,E), then ϕ∗ f = f ◦ ϕ and we recover the
pullback discussed in the context of manifolds of mappings.

Finally, we define the Lie derivative of a differential form by a vector field.
Before we begin, note that the definition of the Lie derivative has to diverge
from the usual definition on finite-dimensional or Banach manifolds. This is
due to the fact that the common description of the Lie derivative (see e.g. Lang,
1999, V. §2) uses the differential of a flow of a vector field. However, as flows
of vector fields are the solutions to certain ordinary differential equations, it
is unclear whether the flow of a vector field would exist on the more general
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236 Differential Forms on Infinite-Dimensional Manifolds

manifolds we consider (see Appendix A.6 for a discussion of this problem).
Nevertheless, Lang (1999, V.5 Proposition 5.1) shows that for Banach mani-
folds the following definition coincides with the classical one involving flows.

E.9 Definition Let M be a manifold and E a locally convex space. For
X ∈ V (M) and ω ∈ Ωp (M,E), p ∈ N0 we define the Lie derivative LYω ∈
Ωp (M,E) as follows:

(LYω)m (v1, . . . ,vp )

= Y.ω(X1, . . . ,Xp )(m) −
p∑

j=1

ω(X1, . . . , [Y,X j ], . . . Xp )(m)

= Y.ω(X1, . . . ,Xp )(m) +
p∑

j=1

(−1) jω([Y,X j ],X1, . . . , X̂ j , . . . Xp )(m),

where the Xi are smooth vector fields defined in a neighbourhood of m such
that Xi (m) = vi . That the Lie derivative is well defined will be checked in
Exercise E.1.4.

Note that for ω ∈ Ω0(M,E) = C∞(M,E) the formula of the Lie derivative
reduces to LYω = dω◦Y . This was precisely the formula for the Lie derivative
described in Definition D.10 for functions.

Exercises

E.1.1 Check that the exterior differential dω of a p-form is an alternating
p + 1-form.

E.1.2 Check the details in Definition E.4. Show that

(a) the wedge product of a p-form and a q-form is indeed a p + q-
form;

(b) the wedge product defines a bilinear map between spaces of dif-
ferential forms;

(c) Ωp (M,E) is a C∞(M,R)-module (see Example E.5);
(d) for p = q = 1 we have ωx ∧ ηx (v1,v2) = β(ωx (v1), ηx (v2)) −

β(ωx (v2), ηx (v2)).

E.1.3 Prove that for ω ∈ Ωp (M,E), η ∈ Ωq (M,F) and any wedge product,
the following formula holds:

d(ω ∧ η) = (dω) ∧ η + (−1)pω ∧ (dη).

Furthermore, show that for f : N → M smooth, we have

f ∗dω = d f ∗ω.
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E.2 The Maurer–Cartan Form on a Lie Group 237

Hint: The assertions are local, whence they can be solved using the
local formula for the exterior differential.

E.1.4 In this exercise we let X ∈ V (M) and ω ∈ Ωp (M,E), p ∈ N0 for M
a manifold and E a locally convex space. Show that the definition of
the Lie derivative LYω does not depend on the choice of vector fields
Xi in Definition E.9. Conclude that LYω is a smooth p-form.
Hint: It suffices to show that LYω vanishes if Xi (m) = 0, and this can
be checked locally.

E.2 The Maurer–Cartan Form on a Lie Group

For Lie groups there are two important differential forms induced by the Lie
group structure.

E.10 Example Let G be a Lie group with Lie algebra L(G). Then we define
the right Maurer–Cartan form κr ∈ Ω1(G,L(G)) via

(κr )g : TgG → L(G), v �→ Tg ρg−1 (v),

where ρg−1 (h) = hg−1.
Now if f ∈ C∞(M,G), we can define its right logarithmic derivative via

δr f : M → L(G), δr f � f ∗κr .

Similarly, one can define the left Maurer–Cartan form κ� ∈ Ω1(G,L(G)) and a
left logarithmic derivative by replacing right multiplication with left multipli-
cation in the definition of κr . This generalises the construction of the logarith-
mic derivatives for curves from 3.31. One can show (see Exercise E.2.1) that
the left logarithmic derivative of any function satisfies the right Maurer–Cartan
equation

dδ� f +
1
2

[δ� f , δ� f ]∧ = 0, (E.8)

where [δ� f , δ� f ]∧ = δ� f ∧ δ� f for the wedge product induced by the Lie
bracket.

E.11 Definition Let G be a Lie group with Lie algebra L(G) and ω ∈
Ω1(M,L(G)) for some smooth manifold M . Then ω is called

(a) integrable if there exists f ∈ C∞(M,G) with ω = δ� f ;
(b) locally integrable if for every m ∈ M there is m ∈ U ⊆◦ M such that ω |U

is integrable.
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238 Differential Forms on Infinite-Dimensional Manifolds

Equivalently we could have defined (local) integrability using the right loga-
rithmic derivative. With this definition it is possible to formulate the fundamen-
tal theorem for Lie group-valued functions with values in regular Lie groups;
see §3.3.

E.12 Proposition (Fundamental theorem for Lie group-valued functions) Let
G be a regular Lie group with Lie algebra L(G) and ω ∈ Ω1(M,L(G)). If ω
satisfies the right Maurer–Cartan equation (E.8), then ω is locally integrable.
If, in addition, M is simply connected, then ω is integrable.

The proof of Proposition E.12 needs concepts (e.g. connections on princi-
pal bundles) which we will not introduce here. Instead we refer the interested
reader either to the classical proofs for the finite-dimensional setting, for exam-
ple, Sharpe (1997, 3.§6–7), or to the infinite-dimensional sources Neeb (2006,
Theorem III.2.1) as well as Kriegl and Michor (1997, Theorem 40.2).

E.13 Lemma Let M be a connected manifold and ϕ,ψ ∈ C∞(M,G), where
G is a Lie group. Then δ�ϕ = δ�ψ is equivalent to the existence of g ∈ G with
ϕ = g · ψ.

Proof If there exists g ∈ G with ϕ = g · ψ, then a straightforward calculation
shows that δ�ϕ = δ�ψ holds. Assume conversely that δ�ϕ = δ�ψ. Then define
the map Ψ � ϕ ·ψ−1 (where the product and inverse are taken pointwise in G).
Exercise E.2.3 yields

δ(γ) = TeλψTe ρψ−1 (δ�ϕ − δ�ψ) = 0,

or in other words, the map γ is locally constant by Corollary 1.19. As M is
connected, we conclude that g � γ(m) ∈ G (for any m ∈ M) satisfies g ◦ ψ =
ϕ. �

E.14 Proposition (Lie II for regular Lie groups) Let G,H be Lie groups
with Lie algebras L(G) and L(H), respectively. Let f : L(G) → L(H) be a
morphism of locally convex Lie algebras. If H is a regular Lie group and G is
connected and simply connected, then there exists a unique morphism of Lie
groups ϕ : G → H with L(ϕ) = f .

Proof Since f is continuous we can consider the smooth 1-form α � f ◦κ� ∈
Ω1(G,L(H)), where κ� is the left Maurer–Cartan form on G. Moreover, since
the Maurer–Cartan form is left invariant, so is α. We consider the Maurer–
Cartan equation on H (to mark this we label the bracket operation [ · , · ]H∧ by
H). As the wedge is induced by the Lie bracket on L(H), we can exploit that
f is a Lie algebra morphism and compute with Exercise E.1.3 as follows:
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dα+
1
2

[α,α ]H∧ =d( f ◦ κ�) + 1
2

[ f ◦ κ� , f ◦ κ� ]H∧ = f ◦
(
dκ� +

1
2

[ κ� , κ� ]∧

)
= 0,

where the unlabelled bracket is the one induced by the Lie bracket of L(G) and
we exploited that the Maurer–Cartan form satisfies the Maurer–Cartan equa-
tion on G by Exercise E.2.1. Now the fundamental theorem, Proposition E.12,
implies that there is a mapping ϕ : G → H with δ�ϕ = α. Fixing ϕ(eG ) = eH ,
this mapping is unique by Lemma E.13. Consider now g ∈ G and ϕ◦ λg . Then
we pick v ∈ TkG and evaluate the differential form

δ� (ϕ ◦ λg )(v) = Tλϕ (gk )−1TgkϕTλg (v) = δ�ϕ(Tλg (v)) = λ∗gα = α.

Now applying Lemma E.13 again, the maps ϕ ◦ λg and ϕ differ only by left
translation with an element which we compute as ϕ ◦ λ(eG ) = ϕ(g). In other
words, ϕ(gk) = ϕ(g)ϕ(k) for all k ∈ G. Since g ∈ G was arbitrary, we see
that ϕ is indeed a morphism of Lie groups. �

Exercises

E.2.1 Let G be a Lie group with Lie algebra L(G) and left Maurer–Cartan
form κ� . Show that κ�:

(a) is an L(G)-valued differential form on G which is left invariant
in the sense that λ∗g κ

� = κ� for each g ∈ G (where λg (h) � gh;
(b) satisfies the right Maurer–Cartan equation

dκ� +
1
2

[ κ� , κ� ]∧ = 0.

Hint: Compute the exterior derivative locally using (E.3). It suf-
fices to prove the formula using left invariant vector fields
(why?).
Remark: The ‘right Maurer–Cartan equation’ is related to the
right principal action of G on itself by multiplication. There is
also a corresponding left Maurer–Cartan equation for the right
Maurer–Cartan form, where the bracket in the equation gets a
negative sign.

(c) Deduce that for a smooth function f , δ� f also satisfies the right
Maurer–Cartan equation.

E.2.2 Let ϕ : G → H be a morphism of Lie groups and κ� the (left) Maurer–
Cartan form on G. Show that:

(a) δ�ϕ = L(ϕ) ◦ κ�;
(b) if ψ : G → H is another Lie group morphism with δ�ϕ = δ�ψ,

then ϕ = ψ.
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240 Differential Forms on Infinite-Dimensional Manifolds

E.2.3 Let f ,g ∈ C∞(M,G) be smooth maps to a Lie group. Establish the
following quotient rule for the left logarithmic derivative:

δ� ( f · g−1)(m) = T1G λg(m)T1G ρg−1 (m) (δ� f (m) − δ�g(m))

= Adg(m) (δ� f (m) − δ�g(m)),

where 1G ∈ G is the identity element, products and inverses are taken
pointwise and λ (resp. ρ) denotes left (resp. right) multiplication in
the Lie group.
Hint: Apply Lemma 3.12.

E.3 Supplement: Volume Form and Classical Differential
Operators

In this short supplement we will record some well-known facts on differential
forms on finite-dimensional (compact) manifolds. Many of these notions are
needed in Chapter 7 and we recall them for the reader’s convenience. Thus
detailed proofs will, in general, be omitted in this section. However, all of
these results are readily available in the standard finite-dimensional literature
(which we will reference).

Conventions We fix (M,g) a compact (thus finite-dimensional) and con-
nected manifold with Riemannian metric g. Furthermore, we denote by d =
dim M the dimension of the model space of M .

Let us first recall that there is another canonical way to define differential
forms.

E.15 (Differential forms as sections; see Klingenberg, 1995, 1.4; Abraham
et al., 1988, Section 6) Starting with the tangent bundle T M we can con-
struct the bundle of alternating k-forms Ak (M) → M for k ≥ 0. The fibre
of Ak (M) over x ∈ M is given by the space of alternating k-linear mappings
(Tx M)k → R which we denote by Lk

a (Tx M,R) and topologise as a subspace
of the k-linear mappings (which carry the usual norm topology induced by the
operator norm for k-linear maps; see Lang, 1999, I. §2). Further, every chart
(U, ϕ) of M induces a vector bundle trivialisation of Ak (M) over U via

κϕ (x,ω) � (ϕ(x),ω ◦ (Txϕ
−1 × Txϕ

−1 × · · · × Txϕ
−1)).

Comparing the construction with (E.1), it becomes clear that for the finite-
dimensional manifold M (indeed for any Banach manifold) differential k-
forms are just smooth sections of Ak (M). In other words, we obtain
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Ωk (M) = Γ(Ak (M)), for all k ∈ N0.

Moreover, this allows us to topologise the space of differential k-forms as a
locally convex vector space via C.7. Namely if we pick a family of open sets
(Ui )i∈I which covers M such that on each Ui there is a bundle trivialisation
(κi )−1 : Ak (M) |Ui → Ui ×Rd , x �→ ((κ1

i )−1(x), (κ2
i )−1(x)), then the mapping

Ωk (M) →
∏

i∈I
C∞(Ui ,L

k
a (Rd ,R)), ω �→ ω ◦ (κ1

i , κ
2
i , . . . , κ

2
i )

is an embedding of Ωk (M) as a closed locally convex subspace of the product
on the right-hand side.

Recall that the dimension of the spaces Lk
a (Tx M,R) depends on the dimen-

sion d = dim Tx M . In particular, Ld
a (Tx M,R) is one-dimensional and a differ-

ential form μ ∈ Ωd (M) which vanishes nowhere is called a volume form. On
Riemannian manifolds there is a convenient way to construct a volume form
associated to the Riemannian metric. Recall that a manifold M is orientable, if
it admits an atlas (Ui , ϕi )i∈I such that the Jacobians of all change of charts are
positive. One can prove (Gallot et al., 2004, Theorem 1.127) that a Riemannian
manifold is orientable if and only if it admits a volume form μ (induced by the
Riemannian metric). Volume forms are the tool of choice to define integration
on manifolds; see Lang (1999, Part III) or Abraham et al. (1988, Section 7). In
particular, we can define the L2-metric on V (M) in the presence of a volume
form symbolically without defining the integral as follows:

gL2 (X,Y ) =
∫

M

g(X,Y )dμ, X,Y ∈ V (M). (E.9)

In Chapter 5 we often considered only integration on S1 since a global
parametrisation allowed us to hide the dependence on a volume form and (E.9)
reduces for M = S1 to (5.1).

Classical Differential Operators on a Riemannian Manifold

We will now assume that there is a volume form μ associated to the Rieman-
nian metric on M . Let us then recall the following classical differential opera-
tors on M .

E.16 Definition (Abraham et al., 1988, Sections 6.5 and 7.5) For a compact
Riemannian manifold (orientable in case we need a volume form μ), we will
consider the following differential operators.
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• For a vector field X , there is a unique smooth function div X : M → R, the
divergence of X such that

LX μ = (div X )μ.

• If f ∈ C∞(M,R) we exploit that the Riemannian metric induces an iso-
morphism T M � T∗M (see Proposition 4.5). Thus the following formula
uniquely determines the gradient of f with respect to g:

gm (grad f (m),vm ) = df (vm ) for all m ∈ M,vm ∈ TmM.

• The (Hodge)Laplacian Δ = dd∗ + d∗d is associated to the metric (see Lang,
1999, p. 423). Here d is the exterior differential from Proposition E.3 and d∗

is the codifferential defined via the Hodge star (this is a finite-dimensional
construction which depends on the Riemannian metric g; we refer to Lee,
2013, p. 464 for more information).

Having defined the necessary differential operators, we recall two decompo-
sitions which are, for example, relevant in geometric hydrodynamics.

E.17 Proposition (Helmholtz decomposition, see Modin (2019), Lemma 1.2)
Let (M,g) be a compact oriented Riemannian manifold with volume form μ

and X ∈ V (M). Then there exist V ∈ V (M) and f ∈ C∞(M,R) such that

X = V + grad f and div V = 0.

Moreover, V and grad f are orthogonal with respect to the L2-metric (E.9),
that is,

gL2 (V,grad f ) =
∫

M

g(V,grad f )dμ = 0.

Note that since the differential d and the codifferential d∗ make sense for
arbitrary k-forms, we can also extend the Hodge Laplacian to k-forms. This
induces the Hodge decomposition of k-forms; see, for example, Taylor (2011,
Proposition 8.2). We will not recall it here, but would like to mention that it
is an important ingredient to establish the Lie group structure of the groups
of volume-preserving diffeomorphisms and the symplectomorphism group;
Example 3.10. As we now have the necessary notation in place, let us very
briefly sketch the idea of the proof.

E.18 (Submanifold structure of volume-preserving diffeomorphisms (sketch))
Define the map Ψμ : Diff(M) → Ωd (M), φ �→ φ∗μ. Since M is compact,
we endow Ωd (M) via E.15 with a locally convex vector space structure. With
some work one can show that Ψμ is a smooth map with derivative TφΨμ (Vφ ) =
φ∗(LVφω) (this follows somewhat similarly to the proof that the pullback with
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smooth functions is smooth). Then one needs to prove that Ψμ is a submersion
onto the cohomology class [μ] = μ + dΩd−1(M) ⊆ Ωd (M) of μ. The proof
uses the Hodge decomposition of d-forms to construct a splitting of the kernel
ofΨμ . Further, one needs to work in a Sobolev completion of Diff(M), whence
this is beyond the techniques we are developing in this book. We refer the inter-
ested reader to Smolentsev (2007), along with Ebin and Marsden (1970). Then
the volume-preserving diffeomorphism group is simply the preimage Ψ−1

μ (μ)
of the singleton μ. In particular, Diffμ (M) is a submanifold and thus a Lie
subgroup of Diff(M).

Note that it is apparent from the derivative of Ψμ and Exercise 1.7.4 that
the Lie algebra of Diffμ (K ) is Vμ (M) = {X ∈ V (M) | div X = 0}, the Lie
algebra of divergence-free vector fields.

Exercises

E.3.1 Show that the structure described in E.15 yields a vector bundle
Ak (M) → M .

E.3.2 Prove that the characterisation of differential forms via the bundle in
E.15 coincides with the one from Definition E.1.

E.3.3 Consider Rd as a Riemannian manifold with the standard Euclidean
metric. Convince yourself that div, grad and Δ are ‘the usual’ differ-
ential operators from vector calculus in this case.

E.3.4 Work out the details for E.18 (note that this requires the Hodge de-
composition theorem, Abraham et al., 1988, Theorem 7.5.3). Show
that:

(a) Ψμ is smooth with surjective derivative;
(b) the kernel of TηΨμ is a split subspace of Tη Diff(M).

Remark: If Diff(M) were a Banach manifold the above would
imply thatΨμ is a submersion. This is one reason why manifolds
of finitely often differentiable mappings enter the picture here:
The same statements as in the C∞-case can be proven and these
manifolds turn out to be Banach manifolds.

E.3.5 Let (M,g) be a Riemannian manifold with metric derivative ∇. Show
that for vector fields X,Y, Z ∈ V (M), the following formula holds:

g(Z,grad g(X,Y )) = g(∇Z X,Y ) + g(X,∇ZY ).

Then deduce that this implies g(∇XY,Y ) = 1
2g(X,grad g(Y,Y )).
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