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Schwartz Functions on Real Algebraic
Varieties

Boaz Elazar and Ary Shaviv

Abstract. We deûne Schwartz functions, tempered functions, and tempered distributions on (pos-
sibly singular) real algebraic varieties. We prove that all classical properties of these spaces, deûned
previously on aõne spaces and on Nash manifolds, also hold in the case of aõne real algebraic
varieties, and give partial results for the non-aõne case.

1 Introduction

Schwartz functions are classically deûned as smooth functions such that they, and
all their (partial) derivatives, decay at inûnity faster than the inverse of any polyno-
mial. On R, for instance, a smooth function f is called Schwartz if for any n, k ∈
N ∪ {0}, xn f (k) is bounded (where f (k) is the k-th derivative of f ). _is was formu-
lated onRn byLaurent Schwartz, and later onNashmanifolds (smooth semi-algebraic
varieties); see [dC,AG]. As Schwartz functions are deûned using algebraic notions, it
is natural to deûne Schwartz spaces of real algebraic varieties; this is themain goal of
this paper.

_e basic idea is to deûne the set of Schwartz functions on a real algebraic set inRn

as the quotient of the space of Schwartz functions onRn by the ideal of Schwartz func-
tions that vanish identically on the set. We deûne tempered functions similarly. Start-
ing with these deûnitions we develop a theory of Schwartz spaces for arbitrary real
algebraic varieties, and in particular prove that many properties of Schwartz spaces
shown in [dC,AG] also hold in the (singular) algebraic case.

_emain results for aõne varieties appearing in this paper are as follows:
(1) Let X ⊂ Rn be an algebraic set; then S(X) is a Fréchet space (Lemma 3.3).
(2) Let φ∶X1 → X2 be a biregular isomorphism between two algebraic sets X1 ⊂

Rn1 , X2 ⊂ Rn2 . _en φ∗∣S(X2)∶S(X2) → S(X1) is an isomorphism of Fréchet
spaces. _is implies that the deûnition of Schwartz functions on an aõne alge-
braic variety does not depend on the embedding (Lemma 3.6(i)).
For (3)–(6) below, let X be some aõne algebraic variety, and let Z ⊂ X be a Zariski

closed subset.
(3) (Tempered partition ofunity) Let {Vi}m

i=1 be aZariski open cover of X. _en there
exist tempered functions {β i}m

i=1 on X, such that supp(β i) ⊂ Vi and∑m
i=1 β i = 1.

Furthermore, for anym-tuple (β1 , . . . , βm) of tempered functions on X satisfying
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these conditions, and for any φ ∈ S(X), we have (β i ⋅ φ)∣Vi ∈ S(Vi) (Proposition
3.14 and Corollary 3.26).

(4) _e restriction ϕ ↦ ϕ∣Z maps S(X) onto S(Z) (_eorem 3.9).
(5) Deûne U ∶= X ∖ Z and WZ ∶= {ϕ ∈ S(X)∣ϕ is �at on Z}. _en WZ is a closed

subspace of S(X) (and so is a Fréchet space), and extension by zero S(U)→WZ
is an isomorphism of Fréchet spaces whose inverse is the restriction of functions
(_eorem 3.23). As a consequence, the restriction morphism of tempered distri-
butions S∗(X)→ S∗(U) is onto (_eorem 3.29).

(6) _e assignment of the space of Schwartz functions (resp. tempered functions,
tempered distributions) to any open U ⊂ X, together with the extension by zero,
ExtVU , from U to any other open V ⊃ U (restriction of functions, restrictions of
functionals from S∗(V) to S∗(U)), form a �abby cosheaf (sheaf, �abby sheaf) on
X (Propositions 4.5, 4.3, and 4.4).

_emost diõcult result above is (5). A smooth function deûned on a smooth al-
gebraic set that vanishes identically with all its derivatives at some point is called �at
at this point. In order to deûne WZ , we have to make sense of the notion “�at” at a
singular point. We do this by the following (a-priori naive) deûnition: a function f
on an algebraic set X ⊂ Rn is �at at y ∈ X if it is the restriction of some C∞(Rn)
function that is �at at y. _en the proof of (5) is quite quickly reduced to aWhitney
type extension problem. _is point of view suggests the characterization of Schwartz
functions by local means only: the global conditions of “rapid decaying at inûnity” are
translated to local conditions of �atness at “all points added in inûnity” in some com-
pactiûcation process. Wemake this claim precise in _eorem 3.23 and Remark 3.27.
For general (not necessarily aõne) varieties,we deûne Schwartz functions as sums

of extensions by zero of Schwartz functions on aõne open subvarieties and prove
some generalizations of (1)–(6) above. _e main obstacle for generalizing the rest is
the absence of non-aõne partition of unity, i.e., our inability to generalize (3) to the
non-aõne case.

Structure of the paper In Section 2 we present the preliminary deûnitions and re-
sults used in this paper,mainly from real algebraic geometry and Schwartz spaces on
aõne algebraicmanifolds.

In Section 3 we deûne the space of Schwartz functions on an aõne algebraic vari-
ety and study its properties. We start by showing that it is a Fréchet space and proving
that a useful partition of unity exists. A�erwardswe deûne the notion of �at functions
at a point on an aõne algebraic variety and characterize the spaces of Schwartz func-
tions on Zariski open subsets of an aõne algebraic variety. We also deûne tempered
distributions and prove that the restriction morphism from the space of tempered
distributions on an aõne algebraic variety to the space of tempered distributions on
an open subset of it is onto. _e proofs of two key lemmas in Section 3 require some
tools from subanalytic geometry; Appendix A is dedicated to presenting these tools
and completing the two proofs. Mainly, aWhitney type extension theorem is proved
(Lemma 3.16): that a function on a compact algebraic set that can be extended to a
�at function “pointwise” in some algebraic subset, can be “uniformly” extended to a
single function that is �at everywhere in the same subset.
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As proving that tempered functions and tempered distributions form sheaves and
that Schwartz functions form a cosheaf are quite technical, Section 4 is dedicated to
these proofs.

In Section 5we deûne the spaces of Scwhartz functions and of tempered functions
on an arbitrary (not necessarily aõne) real algebraic variety, and repeat some of the
results we proved in the aõne case. We also brie�y discuss the diõculty of general-
izing the rest of these results to the non-aõne case and suggest an idea that might
enable overcoming this diõculty.

Conventions _roughout this paper the base ûeld is always R. We always consider
the Zariski topology, unless otherwise stated. If X is a set, Y ⊂ X is some subset and
f is a real valued function on Y , we denote by ExtXY( f ) the real valued function on X
deûned by

ExtXY( f )(x) ∶=
⎧⎪⎪⎨⎪⎪⎩

f (x) if x ∈ Y ,
0 if x ∉ Y ;

i.e., ExtXY is the “extension by zero” operator. If g is a real valued function on X we
denote its restriction to Y by ResYX(g).

2 Preliminaries

In this sectionwe present the basic deûnitions and results used in this paper from real
algebraic geometry (2.1), Schwartz functions on aõne algebraicmanifolds (2.2), and
Fréchet spaces (2.3).

2.1 Real Algebraic Geometry

We start by recalling the basic deûnitions:

Deûnition 2.1 (following [BCR]) Let X ⊂ Rn be an algebraic set (i.e., the zero locus
of a family of polynomials in R[x1 , . . . , xn]). Let

IAlg(X) ∶= { p ∈ R[x1 , . . . , xn] ∶ p∣X = 0} .

Deûne the coordinate ring of X by R[X] ∶= R[x1 , . . . , xn]/IAlg(X). Let V be an open
subset of X. A function f ∶V → R is called a regular function if f = g

h , where g , h ∈
R[X] and h−1(0)∩V = ∅. Note that the space of regular functions onV forms a ring.
Moreover, the assignment of such a ring to any open subset of X deûnes a sheaf on
X. We call this sheaf the sheaf of regular functions on X and denote it by RX . A map
F∶V → Rm (F(x) = (F1(x), . . . , Fm(x))) is called a regular map if for any 1 ≤ i ≤ m:
Fi is a regular function. Let Y ⊂ Rm be an algebraic set, and letU be an open subset of
Y . Amap from V toU is called a biregular isomorphism if it is a bijective regular map
whose inversemap is also regular. In that case we say that V is biregular isomorphic
toU . An aõne algebraic variety is a topological space X′ equippedwith a sheaf of real
valued functions RX′ and isomorphic (as a ringed space) to an algebraic set X ⊂ Rn

with its Zariski topology equipped with its sheaf of regular functions RX . _e sheaf
RX′ is called the sheaf of regular functions on X′, and the topology of X′ is called the
Zariski topology. An algebraic variety is a topological space X′, equipped with a sheaf
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of real valued functions RX′ such that there exists a ûnite open cover {U i}n
i=1 of X′,

with each U i equipped with the sheaf RX′ ∣U i being an aõne algebraic variety. _e
sheafRX′ is called the sheaf of regular functions on X′, and the topology of X′ is called
theZariski topology. Note that unlike in the complex case, the ring of regular functions
on Rn is not R[x1 , . . . , xn]; e.g., 1

x2+1 on R.

_e following two propositions discuss the nature of algebraic sets and of their
open subsets.

Proposition 2.2 ([BCR, Proposition 2.1.3]) Let X ⊂ Rn be an algebraic set. _ere ex-
ists f ∈ R[x1 , x2 , . . . , xn] such that X is the zero locus of f , i.e., X = {x ∈ Rn ∣ f (x) = 0}.

Proposition 2.3 ([BCR, Proposition 3.2.10]) Let X ⊂ Rn be an algebraic set, and U
an open subset of X. _en (U ,RX ∣U) is an aõne algebraic variety (when we deûne for
any open U ′ ⊂ U ⊂ X: RX ∣U(U ′) ∶= RX(U ′)).

Proposition 2.4 is implicitlyused in [BCR] (see for instance [BCR, Corollary 3.2.4]).
For the reader’s convenience we give its detailed proof in Appendix B.

Proposition 2.4 (the Zariski topology is Noetherian) Let X be a real algebraic vari-
ety, U ⊂ X an open subset, and let {Uα}α∈I be an open cover of U . _en there exists a
ûnite subcover {Uα i}k

i=1.

Deûnition 2.5 An aõne algebraic variety is complete if any regular function on it
is bounded.

Remark 2.6 Deûnition 2.5 is a special case of [BCR, Deûnition 3.4.10]. Note that
if X is a complete aõne algebraic variety, then for any closed embedding i∶X ↪ Rn ,
i(X) is compact in the Euclidean topology on Rn .

Proposition 2.7 (Algebraic Alexandrov compactiûcation [BCR, Proposition 3.5.3])
Let X be an aõne algebraic variety that is not complete; then there exists a pair (Ẋ , i)
such that
(i) Ẋ is a complete aõne algebraic variety;
(ii) i∶X → Ẋ is a biregular isomorphism from X onto i(X);
(iii) Ẋ ∖ i(X) consists of a single point.

2.2 Schwartz Functions and Tempered Functions on Affine Algebraic Manifolds

An aõne algebraic variety that has a structure of a smooth diòerential manifoldwhen
being closely embedded in Rn is called an aõne algebraic manifold (this property is
independent of the embedding). We now present the basic theory of Schwartz func-
tions and tempered functions on aõne algebraicmanifolds, as developed in [AG]. In
[AG] the theorywas developed for amuch richer category, that is the category ofNash
manifolds, and all the results we present here are special cases. In particular our very
basic deûnitions of Schwartz and tempered functions are not the original deûnitions
used in [AG]; however, they are equivalent.
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Deûnition 2.8 (cf. [AG, Deûnition 4.1.1,_eorem4.6.1]) LetM ⊂ Rn be an algebraic
subset that is also a smooth diòerential submanifold of Rn . Let S(Rn) be the Fréchet
space of classical real valued Schwartz functions on Rn , and let ISch(M) ⊂ S(Rn)
be the ideal of all Schwartz functions that vanish identically on M. Deûne the space
of Schwartz functions on M by S(M) ∶= S(Rn)/ISch(M) equipped with the quotient
topology (equivalently we can deûne S(M) by restrictions of functions from S(Rn),
but then the deûnition of the topology is a bit more complicated). Let M be an aõne
algebraicmanifold, and let i∶M ↪ Rn be a closed embedding. A function f ∶M → R
is called a Schwartz function on M if i∗ f ∶= f ○ i−1 ∈ S(i(M)). Denote the space of
all Schwartz functions on M by S(M), and deûne a topology on S(M) by declaring
a subset U ⊂ S(M) to be open if i∗(U) ⊂ S(i(M)) is an open subset. S(M) is a
well-deûned Fréchet space (independent of the chosen embedding).

Deûnition 2.9 (cf. [AG, Deûnition 4.2.1,_eorem 4.6.2]) A function t∶Rn → R is
called tempered if it is a smooth function such that for any α ∈ (N∪{0})n there exists
a polynomial pα ∈ R[x1 , . . . , xn] such that ∣ ∂∣α∣ t

∂α x (x)∣ < pα(x) for any x ∈ Rn . Let M
be an aõne algebraicmanifold, and let i∶M ↪ Rn be a closed embedding. A function
t∶M → R is called a tempered function on M if i∗ f ∶= f ○ i−1 is the restriction to i(M)
of a tempered function fromRn . Denote the space of all tempered functions on M by
T(M). T(M) is a well deûned space (independent of the chosen embedding).

_e following results are of special importance for us.

Proposition 2.10 (cf. [AG, Proposition 4.2.1]) Let M be an aõne algebraicmanifold
and α a tempered function on M. _en αS(M) ⊂ S(M).

_eorem 2.11 (Partition of unity cf. [AG,_eorem 4.4.1]) Let M be an aõne alge-
braicmanifold, and let {U i}n

i=1 be a ûnite open cover ofM by aõne algebraicmanifolds.
(i) _ere exist tempered functions α1 , α2 , . . . , αn on M such that supp(α i) ⊂ U i and

∑n
i=1 α i = 1.

(ii) Moreover, α i can be chosen in such a way that for any ϕ ∈ S(M), (α i ⋅ ϕ)∣U i ∈
S(U i).

Proposition 2.12 (cf. [AG,Proposition 4.5.3] andProposition 2.4) LetM be an aõne
algebraicmanifold. _e assignment of the space of tempered functions onU , to any open
U ⊂ M, together with the usual restriction maps, deûne a sheaf of algebras on M.

_eorem 2.13 (cf. [AG,_eorem 4.6.1]) Let M be an aõne algebraicmanifold, and
Z ↪ M be a closed algebraic submanifold. _e restriction S(M) → S(Z) is deûned,
continuous, and onto. Moreover, it has a section s∶S(Z)→ S(M) such that if ϕ ∈ S(Z)
is zero at some point p with all its derivatives, then s(ϕ) is also zero at p with all its
derivatives.

_eorem 2.14 (cf. [AG,_eorem 4.6.2]) Let M be an aõne algebraicmanifold, and
Z ↪ M be a closed algebraic submanifold. _e restriction T(M) → T(Z) is deûned,
continuous and onto. Moreover, it has a section s∶T(Z)→ T(M) such that if α ∈ T(Z)
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is zero at some point p with all its derivatives, then s(α) is also zero at p with all its
derivatives.

_eorem 2.15 (Characterization of Schwartz functions on open subsets: cf. [AG,_e-
orem 5.4.1]) Let M be an aõne algebraic manifold, Z ↪ M be a closed algebraic
submanifold, and U = M ∖ Z. Let WZ be the closed subspace of S(M) deûned by

WZ ∶= {ϕ ∈ S(M) ∣ ϕ vanishes with all its derivatives on Z}.
_en restriction and extension by zero give an isomorphism S(U) ≅WZ .

2.3 Fréchet Spaces

A Fréchet space is a metrizable, complete locally convex topological vector space. It
can be shown that the topology of a Fréchet space can always be deûned by a countable
family of semi-norms. We use the following results.

Proposition 2.16 (cf. [T, Chapter 10]) A closed subspace of a Fréchet space is a Fréchet
space ( for the induced topology).

Proposition 2.17 (cf. [T, Proposition 7.9 and Chapter 10]) A quotient of a Fréchet
space by a closed subspace is a Fréchet space ( for the quotient topology). Moreover, let
F be a Fréchet space whose topology is deûned by a basis of continuous semi-norms P,
let K ⊂ F be a closed subspace, and let ϕ∶ F → F/K be the canonical mapping of F
onto F/K. _en the topology on F/K is deûned by the basis of continuous semi-norms
ṗ(ẋ) = infϕ(x)=ẋ p(x), where p ∈ P.

_eorem 2.18 (Banach open mapping [T, Chapter 17, Corollary 1]) A bijective con-
tinuous linear map from a Fréchet space to another Fréchet space is an isomorphism.

_eorem 2.19 (Hahn-Banach cf. [T, Chapter 18]) Let F be a Fréchet space, and let
K ⊂ F be a closed subspace. By Proposition 2.16, K is a Fréchet space (with the induced
topology). Deûne F∗ (resp. K∗) to be the space of continuous linear functionals on F
(on K). _en the restriction map F∗ → K∗ is onto.

3 The Affine Case

Deûnition 3.1 Let X ⊂ Rn be an algebraic subset. Let S(Rn) be the space of classical
real valued Schwartz functions on Rn , and let ISch(X) ⊂ S(Rn) be the ideal of all
Schwartz functions that vanish identically on X. Deûne the space of Schwartz functions
on X by S(X) ∶= S(Rn)/ISch(X) equipped with the quotient topology.

Remark 3.2 An equivalent deûnition is

S(X) ∶= { f ∶X → R ∶ ∃ f̃ ∈ S(Rn) such that f̃ ∣X = f },
but then the deûnition of the topology is a bitmore complicated. Recall that the topol-
ogy of S(Rn) is given by a system of semi-norms ∣ f ∣D ∶= supx∈Rn ∣D f (x)∣, where D
is an algebraic diòerential operator on Rn . _is enables us to introduce topology on
S(X) by the system of semi-norms ∣ f ∣D ∶= inf{∣ f̃ ∣D ∶ f̃ ∈ S(Rn), f̃ ∣X = f }, where D

https://doi.org/10.4153/CJM-2017-042-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-042-6


1014 B. Elazar and A. Shaviv

is an algebraic diòerential operator on Rn . By Proposition 2.17, the two deûnitions
coincide.

Lemma 3.3 S(X) is a Fréchet space.

Proof Wehave thatS(Rn) is a Fréchet space; ISch(X) = ⋂x∈X{ f ∈ S(Rn)∣ f (x) = 0}
is an intersection of closed subsets and so the quotient is a Fréchet space (see Propo-
sition 2.17).

Lemma 3.4 Let X ⊂ Rn be an algebraic set, andU ⊂ Rn be some open set containing
X. Consider S(Rn) and S(U) as deûned in Deûnition 2.8 (U is an open algebraic set,
hence it can be considered as an aõne algebraic manifold). Let IUSch(X) ⊂ S(U) be
the ideal of all Schwartz functions on U that vanish identically on X. _en S(X) ≅
S(U)/IUSch(X) (isomorphism of Fréchet spaces).

Proof By the same reasoning as in Lemma 3.3, S(U)/IUSch(X) is a Fréchet space. By
_eorem 2.15, S(U) is isomorphic to a closed subspace of S(Rn), and so by Propo-
sition 2.17 it is enough to check that S(X) ∶= S(Rn)/ISch(X) and S(U)/IUSch(X) are
equal as sets, i.e., that a function on X is a restriction of a Schwartz function on Rn if
and only if it is a restriction of a Schwartz function onU . Let f ∈ S(U)∣X . _ere exists
F ∈ S(U) such that F∣X = f . By _eorem 2.15, extending F by zero to a function on
Rn (denote it by F̃) is a function in S(Rn). _en f = F̃∣X and so f ∈ S(Rn)∣X . Let
f ∈ S(Rn)∣X . _ere exists F ∈ S(Rn) such that F∣X = f . Denote U ′ ∶= Rn ∖ X. _en
{U ,U ′} form an open cover ofRn and so, by_eorem 2.11, there exist tempered func-
tions α1 , α2 such that supp(α1) ⊂ U , supp(α2) ⊂ U ′, and α1 + α2 = 1 as a real valued
function on Rn . Moreover, α1 and α2 can be chosen such that (α1 ⋅ F)∣U ∈ S(U). As
α1∣X = 1, it follows that ((α1 ⋅ F)∣U)∣X = (α1 ⋅ F)∣X = F∣X = f , and so f ∈ S(U)∣X .

Lemma 3.5 Let X ⊂ Rn be an algebraic set, and let U ⊂ Rn be some open set con-
taining X. Consider T(Rn) and T(U) (the spaces of tempered functions on Rn and on
U , respectively) as deûned in Deûnition 2.9 (U is an open algebraic set, hence it can be
considered as an aõne algebraic manifold). _en a function f ∶X → R is a restriction
of a function F ∈ T(Rn) if and only if it is a restriction of a function F̃ ∈ T(U).

Proof Let f ∶X → R be a restriction of some function F ∈ T(Rn). By Proposi-
tion 2.12, F∣U ∈ T(U), and clearly f = (F∣U)∣X ; i.e., f is a restriction of a tempered
function on U . Let f ∶X → R be a restriction of some function F ∈ T(U). Let
U ′ ∶= Rn ∖X. _en {U ,U ′} form an open cover ofRn , and so, by_eorem 2.11, there
exist tempered functions α1 , α2 ∈ T(Rn) such that supp(α1) ⊂ U , supp(α2) ⊂ U ′, and
α1 +α2 = 1 as a real valued function onRn . As tempered functions on aõne algebraic
manifolds form a sheaf (see Proposition 2.12), α1∣U ∈ T(U) and as T(U) is an algebra,
α1∣U ⋅ F ∈ T(U). Moreover, deûning F′∶Rn → R by F′∣U ∶= F and F′∣Rn∖U ∶= 0; then
as supp(α1) ⊂ U , we get that α1 ⋅ F′ ∈ T(Rn). Since α1∣X = 1, we have (α1 ⋅ F′)∣X = f ;
i.e., f is a restriction of a tempered function on Rn .
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Lemma 3.6 Let φ∶X1 → X2 be a biregular isomorphism between two algebraic sets
X1 ⊂ Rn1 and X2 ⊂ Rn2 .
(i) φ∗∣S(X2)∶S(X2)→ S(X1) is an isomorphism of Fréchet spaces.
(ii) If f ∶X2 → R is a restriction of a tempered function on Rn2 (see Deûnition 2.9),

then φ∗ f ∶= f ○ φ is a restriction of a tempered function on Rn1 .

Proof By deûnition, for any x ∈ X1, we have

φ(x) = ( f1(x)
g1(x)

, . . . , fn2(x)
gn2(x)

) ,

where f1 , . . . , fn2 , g1 , . . . , gn2 ∈ R[X1] and g−1
i (0) ∩ X1 = ∅ for any 1 ≤ i ≤ n2.

By abuse of notation we choose some representatives in R[x1 , . . . , xn1] and consider
f1 , . . . , fn2 , g1 , . . . , gn2 as functions in R[x1 , . . . , xn1]. Deûne

U ∶= {x ∈ Rn1 ∣
n2

∏
i=1

g i(x) /= 0} .

_en U is open in Rn1 (also in the Euclidean topology), X1 is a closed subset of U ,
and φ can be naturally extended to a regular map φ̃∶U → Rn2 (by the same formula
as φ). Note that U is an aõne algebraicmanifold.

Similarly to the construction ofU and φ̃ above,we can construct an open V ⊂ Rn2

and a function ϕ∶V → Rn1 such that ϕ∣X2 = φ−1. Note that ϕ /= φ̃−1: in general φ̃ is
not a bijection and U /≅ V . Consider the following diagram, where α is deûned by
α(x , y) ∶= (x , y + φ̃(x)):

X1
� � // U

Id×0
))

Id×φ̃

66U ×Rn2 .

α

��

Clearly, U × {0} is an aõne algebraic manifold isomorphic to U . Denote Ũ ∶=
α(U × {0}); then α restricted to U × {0} is an isomorphism of the aõne algebraic
manifolds U × {0} and Ũ – the inverse map is given by α−1(x , y) ∶= (x , y − φ̃(x)).
_us, we have

S(X1) ≅ S(U)/IUSch(X1) ≅ S(Ũ)/IŨSch(α(X1 × {0})) = S(Ũ)/IŨSch((Id×φ)(X1)) ,

where the ûrst equivalence is by Lemma 3.4, the second is due the fact that U ≅ U ×
{0} ≅ Ũ and S(U) ≅ S(U × {0}) ≅ S(Ũ), and the third follows from the fact that
φ̃∣X1 = φ. As always, IUSch(X) is the ideal in S(U) of Schwartz functions identically
vanishing on X. As Ũ is closed in U × Rn2 (as it is deûned by polynomial equalities
on U ×Rn2 ); then by _eorem 2.13 and Proposition 2.17, we get that

S(Ũ)/IŨSch((Id×φ)(X1)) ≅ S(U ×Rn2)/IU×R
n2

Sch ((Id×φ)(X1)) .

Applying Lemma 3.4 again for the open subset U × V ⊂ U ×Rn2 , we get that

S(U ×Rn2)/IU×R
n2

Sch ((Id×φ)(X1)) ≅ S(U × V)/IU×VSch ((Id×φ)(X1)) ,
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and thus we obtain

S(X1) ≅ S(U × V)/IU×VSch ((Id×φ)(X1)) .

Repeating the above construction using the diagram

X2
� � // V

0×Id
))

ϕ×Id

66R
n2 × V

yields
S(X2) ≅ S(U × V)/IU×VSch ((φ−1 × Id)(X2)) .

Clearly (Id×φ)(X1) = (φ−1 × Id)(X2), and so S(X1) ≅ S(X2). Note that the
isomorphism constructed is in fact the pull back by φ from S(X2) onto S(X1). _is
proves (i).

_e proof of (ii) is the same as the proof of (i),where one should consider tempered
functions instead of Schwartz functions, and use Lemma 3.5 and_eorem 2.14 instead
of Lemma 3.4 and_eorem 2.13.

Deûnition 3.7 Let X be a real aõne algebraic variety, and let i∶X ↪ Rn be a closed
embedding. A function f ∶X → R is called a Schwartz function on X if i∗ f ∶= f ○ i−1 ∈
S(i(X)). Denote the space of all Schwartz functions on X by S(X), and deûne a
topology on S(X) by declaring a subsetU ⊂ S(X) to be open if i∗(U) ⊂ S(i(X)) is an
open subset. By Lemma 3.6(i), S(X) is well deûned (independent of the embedding
chosen).

Remark 3.8 (i) If X ≅ Rm , then Deûnition 3.7 coincides with the classical one.
(ii) If X is smooth, then Deûnition 3.7 coincides with Deûnition 2.8.

_eorem 3.9 Let M be an aõne algebraic variety, and let X ⊂ M be a closed sub-
set. _en the restriction from M to X deûnes an isomorphism S(X) ≅ S(M)/IMSch(X)
(with the quotient topology),where IMSch(X) is the ideal in S(M) of functions identically
vanishing on X.

Proof Take some closed embedding M ↪ Rn ; then X ↪ M ↪ Rn are closed em-
beddings. _en

S(M)/IMSch(X) = (S(Rn)/ISch(M))/IMSch(X) ≅ S(Rn)/ISch(X) = S(X).

Remark 3.10 In particular, for any ϕ ∈ S(M), one has that ϕ∣X ∈ S(X), and this
restriction map S(M)→ S(X) is onto.

Deûnition 3.11 Let X be an aõne algebraic variety. A function f ∶X → R is called
a tempered function on X, if there exists a closed embedding i∶X ↪ Rn such that
i∗ f ∶= f ○ i−1 is a restriction of a tempered function onRn to i(X). By Lemma 3.6(ii)
in that case, this property holds for any closed embedding. _e set of all tempered
functions forms a unitary algebra, which we denote by T(X).
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Proposition 3.12 Let X be an aõne algebraic variety, t ∈ T(X) and s ∈ S(X). _en
t ⋅ s ∈ S(X).

Proof Consider some closed embedding i∶X ↪ Rn and identify i(X) with X (by
deûnitions of tempered and Schwartz functions the choice of the embedding does
not matter). _ere exist T ∈ T(Rn) and S ∈ S(Rn) such that t = T ∣X and s = S∣X . By
Proposition 2.10, T ⋅ S ∈ S(Rn), and so (T ⋅ S)∣X = t ⋅ s ∈ S(X).

Corollary 3.13 (Proposition 2.3) Let X be an aõne algebraic variety, andU an open
subset of X. _en (U ,RX ∣U) is an aõne algebraic variety, and we can deûne S(U).

_ere is a canonical way of deûning a Euclidean topology on an algebraic variety;
see [BCR, Remark 3.2.15(a)]. In what follows, when using the notion support, we
always mean the support in this topology, rather than in Zariski topology.

Proposition 3.14 (tempered partition of unity) Let X be an aõne algebraic variety,
and let {Vi}m

i=1 be a ûnite open cover of X.
(i) _ere exist tempered functions {β i}m

i=1 on X, such that

supp(β i) ⊂ Vi and
m

∑
i=1
β i = 1.

(ii) We can choose {β i}m
i=1 in such a way that for any φ ∈ S(X), (β iφ)∣Vi ∈ S(Vi).

Proof Consider some closed embedding X ↪ Rn . For any 1 ≤ i ≤ m, let U i ⊂ Rn be
some open subset such that Vi = X ∩U i . DeûneUm+1 ∶= Rn ∖ X we get that {U i}m+1

i=1
is an open cover of Rn (by aõne algebraic submanifolds). By _eorem 2.11, there
exist {α i}m+1

i=1 , tempered functions on Rn such that supp(α i) ⊂ U i ,∑m+1
i=1 α i = 1, and

{α i}m+1
i=1 can be chosen in such a way that (α iψ)∣U i ∈ S(U i) for any ψ ∈ S(Rn). For

1 ≤ i ≤ m+1 deûne β i ∶= α i ∣X . Clearly, for 1 ≤ i ≤ m, supp(β i) ⊂ Vi . Since αm+1∣X = 0,
βm+1∣X = 0, and so ∑m

i=1 β i = 1. By deûnition, {β i}m
i=1 are tempered functions on X.

_is proves (i).
Now consider φ ∈ S(X). By deûnition, there exists φ̃ ∈ S(Rn) such that φ = φ̃∣X

and for 1 ≤ i ≤ m, (α i φ̃)∣U i ∈ S(U i). By_eorem 3.9, as Vi is closed inU i ,we get that
((α i φ̃)∣U i )∣Vi ∈ S(Vi). But ((α i φ̃)∣U i )∣Vi = (β iφ)∣Vi , and so (ii) is proved.

Deûnition 3.15 Let X ⊂ Rn be an algebraic set and let y ∈ X be some point. A
function f ∶X → R is �at at y if there exists F ∈ C∞(Rn) with f = F∣X , such that the
Taylor series of F at y is identically zero. If f is �at at y for any y ∈ Z (where Z ⊂ X is
some subset), we say that f is �at at Z.

3.0.1 An Important Remark

As the Taylor series is only dependent on the Euclidean local behaviour of functions,
one can replace Rn above by any Euclidean open subset of Rn containing X. _is is
done in Section A.2, and is used when it is more convenient.
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3.0.2 Warning

_at f is �at at Z means that f is �at at y for any y ∈ Z. It does not mean, a-priori,
that there exists F ∈ C∞(Rn) with f = F∣X , such that all the Taylor series of F, at any
point y ∈ Z are identically zero. Lemma 3.16 addresses this matter.

_e proofs of Lemmas 3.16 and 3.17 are given inAppendixA, as they require some
tools from subanalytic geometry.

Lemma 3.16 Let X be a compact (in the Euclidean topology) algebraic set inRn , and
let Z ⊂ X be some (Zariski) closed subset. Deûne U ∶= X ∖ Z and

WZ ∶= {ϕ∶X → R∣∃ϕ̃ ∈ C∞(Rn) such that ϕ̃∣X = ϕ and ϕ is �at at Z},
(WRn

Z )comp ∶= {ϕ ∈ C∞(Rn)∣ϕ is compactly supported and is �at at Z}.

_en for any f ∈WZ , there exists f̃ ∈ (WRn

Z )comp such that f̃ ∣X = f .

Lemma 3.17 Let φ∶X1 → X2 be a biregular isomorphism between two algebraic sets
X1 ⊂ Rn1 and X2 ⊂ Rn2 . If f ∶X2 → R is �at at some p ∈ X2, then φ∗ f ∶= f ○ φ is �at at
φ−1(p).

Deûnition 3.18 Let X be an aõne algebraic variety, and let f ∶X → R be some
function. We say that f is �at at p ∈ X if there exists a closed embedding i∶X ↪ Rn

such that i∗ f ∶= f ○ i−1∶ i(X) → R is �at at i(p). By Lemma 3.17, in that case this
property holds for any closed embedding.

Proposition 3.19 (Extension by zero) Let X be an aõne algebraic variety, and U an
open subset of X. By Corollary 3.13, S(U) is deûned. _en the extension by zero to X of
a Schwartz function on U is a Schwartz function on X, which is �at at X ∖U .

Proof Since X is aõne, we can choose some closed embedding X ↪ Rn , and so
we can think of X as an algebraic set. According to Proposition 2.2, there exists F ∈
R[x1 , . . . , xn] such that X is the zero locus of F (denote X = zeros(F)). U ⊂ X is
Zariski open in X, i.e., Z ∶= X∖U isZariski closed in X, thus Z isZariski closed inRn .
As before, there existsG ∈ R[x1 , . . . , xn] such that Z = zeros(G). DeûneV ∶= Rn ∖Z.
Note that U = X ∖ Z is a closed subset of V , as X ∖ Z = X ∩ V . As V is open in Rn ,
by Proposition 2.3, V is an aõne variety. Consider some closed embedding V ↪ Rm .
By _eorem 3.9, S(U) ≅ S(V)∣U . Let h ∈ S(U); then there exists h̄ ∈ S(V) such that
h = h̄∣U . As V is an open subset of the aõne algebraicmanifoldRn , by_eorem 2.15,
the extension of h̄ by zero to Rn (denote it by ĥ) is a Schwartz function on Rn that is
�at on Z. Finally, deûning h̃ ∶= ĥ∣X , we get that h̃ ∈ S(X) (by Deûnition 3.7), h̃∣U = h
(by deûnition), and h̃ is �at on X ∖ U (as ĥ is an extension of h̃ to Rn that is �at at
X ∖U).

Lemma 3.20 Let X be a compact (in the Euclidean topology) algebraic set inRn , then

S(X) = { f ∶X → R ∶ ∃ f̃ ∈ C∞(Rn) such that f̃ ∣X = f } .
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Proof _e inclusion ⊂ is trivial, as S(Rn) ⊂ C∞(Rn). For the inclusion ⊃, take some
g ∈ { f ∶X → R ∶ ∃ f̃ ∈ C∞(Rn) such that f̃ ∣X = f }. Let g̃ be some C∞(Rn) function
satisfying g̃∣X = g. Let ρ ∈ C∞(Rn) be a compactly supported (in the Euclidean
topology) function such that ρ∣X = 1 (it is standard to show such ρ exists by convolving
the characteristic function of some bounded open subset containing X with some
appropriate approximation of unity). _en ρ ⋅ g̃ is a smooth compactly supported
function on Rn , hence ρ ⋅ g̃ ∈ S(Rn). Moreover, (ρ ⋅ g̃)∣X = g̃∣X = g, and so g ∈
S(X).

Lemma 3.21 Let X be a compact (in the Euclidean topology) algebraic set inRn , and
let Z ⊂ X be aZariski closed subset. DeûneU ∶= X∖Z,WZ ∶= {ϕ ∈ S(X)∣ϕ is �at on Z}
andWRn

Z ∶= {ϕ ∈ S(Rn)∣ϕ is �at on Z}. _en for any f ∈ WZ , there exists f̃ ∈ WRn

Z
such that f̃ ∣X = f .

Proof _is is immediate from Lemmas 3.16 and 3.20.

Proposition 3.22 Let X be an aõne algebraic variety, and let Z ⊂ X be some closed
subset. Deûne U ∶= X ∖ Z andWZ ∶= {ϕ ∈ S(X)∣ϕ is �at on Z}. _en restriction from
X to U of a function in WZ is a Schwartz function on U , i.e., ResUX(WZ) ⊂ S(U).

Proof We ûrst prove the case where X is complete, and then deduce the non-com-
plete case from the complete case.
Consider X as an algebraic subset in Rn .

Case 1: X is complete. By Remark 2.6, X is compact in the Euclidean topology in Rn .
Deûne URn ∶= Rn ∖ Z andWRn

Z ∶= {ϕ ∈ S(Rn)∣ϕ is �at on Z}. Z is closed in Rn , and
so URn

is open in Rn . As U = URn ∩ X, we get that U is closed in URn
. We show that

indeed ResUX(WZ) ⊂ S(U) by showing the existence of the following 3 maps:

WRn

Z
ResU

Rn

Rn

(2) ##G
GG

GG
GG

GG

(1)

ResXRn

}}}}{{
{{
{{
{{
{

WZ

ResUX !!

S(URn)

ResU
URn

(3)

{{vv
vv
vv
vv
v

S(U)

Clearly a restriction of a function inWRn

Z to X lies inWZ , i.e.,ResXRn iswell deûned.
By Lemma 3.21, ResXRn is onto. Let g ∈WRn

Z . _en, by _eorem 2.15, g∣URn ∈ S(URn),
i.e.,map (2) is well deûned. Let h ∈ S(URn). _en, by _eorem 3.9, h∣U ∈ S(U), i.e.,
map (3) is well deûned. _us, Proposition 3.22 holds if X is complete.

Case 2: X is non-complete. Consider a one point compactiûcation, i.e., a pair (Ẋ , i)
as in Proposition 2.7, and take some f ∈ WZ ⊂ S(X). As i∶X → i(X) is a biregular
isomorphism, i∗ f ∶= f ○ i−1 ∈ S(i(X)). As i(X) is open in Ẋ, by Proposition 3.19
there exists ḟ ∈ S(Ẋ) such that i∗ f = ḟ ∣i(X) ( ḟ is the extension by zero to Ẋ of i∗ f ).

https://doi.org/10.4153/CJM-2017-042-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-042-6


1020 B. Elazar and A. Shaviv

Let p ∶= Ẋ ∖ i(X) (by Proposition 2.7, p is a single point, hence it is closed in Ẋ).
We claim that i(Z) ∪ {p} is closed in Ẋ. Indeed, Ẋ ∖ (i(Z) ∪ {p}) = i(X) ∖ i(Z) is
open in i(X) (as Z is closed in X and i is a biregular isomorphism of X and i(X)),
and i(X) is open in Ẋ. Now deûne U ′ ∶= Ẋ ∖ (i(Z) ∪ {p}), is open in Ẋ. By Case 1,
ResU

′

Ẋ ( ḟ ) ∈ S(U ′). Observe that i−1∣U ′ is a biregular isomorphism of U ′ and U , and
so (i−1∣U ′)∗ ResU

′

Ẋ ( ḟ ) ∈ S(U). But (i−1∣U ′)∗ ResU
′

Ẋ ( ḟ ) = (i−1∣U ′)∗((i∗ f )∣U ′) = f ∣U ,
thus f ∣U ∈ S(U).

_eorem 3.23 Let X be an aõne algebraic variety, and let Z ⊂ X be some closed
subset. Deûne U ∶= X ∖ Z andWZ ∶= {ϕ ∈ S(X)∣ϕ is �at on Z}. _en WZ is a closed
subspace of S(X), and extension by zero S(U) → WZ (denote ExtXU ∶S(U) → WZ) is
an isomorphism of Fréchet spaces whose inverse is the restriction of functions (denoted
by ResUX ∶WZ → S(U)).

Proof As WZ = ⋂z∈Z{ϕ ∈ S(X)∣ϕ is �at on z} is an intersection of closed sets, it is
a closed subspace of S(X) and thus a Fréchet space (see Proposition 2.16).
By Proposition 3.19, the extension of a function in S(U) by zero to X is a function

in S(X) that is �at at Z, i.e., ExtXU(S(U)) ⊂ WZ . Furthermore, we claim that ExtXU is
continuous.

Indeed, take some closed embedding X ↪ Rn and consider X as an algebraic
set. Deûne W = Rn ∖ Z. _en W is an aõne algebraic manifold containing U
(which is an aõne algebraic variety), and U = W ∩ X, i.e., U is closed in W . Now
take some closed embedding W ↪ RN ; then by _eorem 3.9 and Proposition 2.17,
S(U) ≅ S(W)/IWSch(U). As W is open in Rn , by _eorem 2.15, ExtR

n

W is a closed em-
bedding S(W) ↪ S(Rn) (and in particular it is a continuous map). _en we can
write IWSch(U) = IR

n

Sch(X) ∩ S(W). In particular, IWSch(U) is closed in S(Rn). Finally,
as the embedding S(W)↪ S(Rn) is continuous, themap

S(U) ≅ S(W)/( IR
n

Sch(X) ∩ S(W)) Ð→ S(Rn)/IR
n

Sch(X) = S(X)

is continuous as well, i.e., ExtXU is continuous.
By Proposition 3.22 the restriction of a function inWZ toU is a Schwartz function

on U ; i.e., ResUX(WZ) ⊂ S(U).
By deûnition, ResUX ○ExtXU ∶S(U) → S(U) is the identity operator on S(U) and

ExtXU ○ResUX ∶WZ → WZ is the identity operator on WZ . _us, ExtXU is a continuous
(linear) bijection. _en, by Banach open mapping _eorem 2.18, ExtXU is an isomor-
phism of Fréchet spaces.

Corollary 3.24 Let X be an aõne algebraic variety. A Schwartz function f ∈ S(X)
is �at at p ∈ X if and only if f ∣X∖{p} ∈ S(X ∖ {p}).

Proof Apply _eorem 3.23 to Z = {p}.

Remark 3.25 By the same argument for an arbitrary function f ∈ C∞(X) (i.e.,
a function that is a restriction of a smooth function from an open neighborhood of
some closed embedding of X) and any p ∈ X, the following conditions are equivalent:

https://doi.org/10.4153/CJM-2017-042-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-042-6


Schwartz Functions on Real Algebraic Varieties 1021

(i) f is �at at p.
(ii) _ere exists a smooth compactly supported function ρ on some aõne space in

which X is closely embedded such that ρ is identically 1 on some open neigh-
borhood of p and

( f ⋅ ρ)∣X∖{p} ∈ S(X ∖ {p}).

(iii) For any smooth compactly supported function ρ on any aõne space inwhich X
is closely embedded such that ρ is identically 1 on some open neighborhood of
p, one has

( f ⋅ ρ)∣X∖{p} ∈ S(X ∖ {p}).

_eorem 3.23 also implies that Proposition 3.14(ii) holds for any partition of unity:

Corollary 3.26 Let X be an aõne algebraic variety, and let V ⊂ X be some open
subset of X. _en for any β ∈ T(X) such that supp(β) ⊂ V and for any φ ∈ S(X), one
has (β ⋅ φ)∣V ∈ S(V).

Proof By Proposition 3.12, β ⋅ φ ∈ S(X). Consider X as an algebraic subset of some
Rn . By deûnition, supp(β) is a closed subset of Rn in the Euclidean topology. _ere
exists some Zariski open Ṽ ⊂ Rn such that V = Ṽ ∩X. As supp(β) ⊂ Ṽ ,which is also
an open subset of Rn in the Euclidean topology, the function β ⋅ φ is �at on X ∖ V .
_us, by _eorem 3.23, (β ⋅ φ)∣V ∈ S(V).

Remark 3.27 _eorem 3.23 suggests the following point of view on Schwartz func-
tions. Given an aõne algebraic variety X, we take some aõne compactiûcation of it;
i.e., we consider X as an open subset of some complete aõne variety Y (we used one
point compactiûcation, but this is not necessary). _en a Schwartz function on X is
just a smooth function on Y (in the sense that it is the restriction to Y of a smooth
function on the ambient space of Y), that is �at on Y ∖ X. _is point of view is con-
venient, as it involves only local properties; the condition of “rapidly decaying at in-
ûnity” is translated to the condition of �atness at “all points added in inûnity” in the
compactiûcation process. _is is also true in the Nash category (by _eorem 2.15
and,more generally, [AG,_eorem 5.4.1]), and the easiest example is the case where
X = R, where one can identify R with the unit circle without a point.

Deûnition 3.28 Let X be an aõne algebraic variety. Deûne the space of tempered
distributions on X as the space of continuous linear functionals on S(X). Denote this
space by S∗(X).
For instance, in the case X = Rn , any tempered function t ∈ T(Rn) gives rise to

a tempered distribution ξt , deûned by ξt(s) ∶= ∫ s ⋅ tdx for any s ∈ S(Rn). Not all
tempered distributions arise in such amanner, e.g., Dirac’s Delta.

_eorem 3.29 Let X be an aõne algebraic variety, and let U ⊂ X be some Zariski
open subset. _en ExtXU ∶S(U) ↪ S(X) is a closed embedding, and the restriction mor-
phism S∗(X)→ S∗(U) is onto.
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Proof _e ûrst part of the theorem is just a restatement of_eorem 3.23 (substitut-
ing Z = X ∖ U). _e second part follows from the fact that S(X) is a Fréchet space
(3.3) and from theHahn–Banach _eorem (2.19).

4 Sheaf and Cosheaf Properties

_is section isdevoted to proving that tempered functions and tempered distributions
form sheaves (Propositions 4.3 and 4.4) and that Schwartz functions form a cosheaf
(Proposition 4.5). _e precise deûnition of a cosheaf is given right before Proposition
4.5.

Lemma 4.1 (Restrictions of tempered functions to closed and to open subsets) Let
X be an aõne algebraic variety, and let U ⊂ X be some open subset. _en

ResX∖U
X (T(X)) = T(X ∖U) and ResUX(T(X)) ⊂ T(U).

Proof Consider some closed embedding of X in some aõne space; i.e., consider X
as an algebraic subset ofRn . _en T(X) ∶= ResXRn(T(Rn)). In these settings X ∖U is
also an algebraic subset of Rn , and so

T(X ∖U) ∶= ResX∖U
Rn (T(Rn)) = ResX∖U

X (ResXRn(T(Rn))) = ResX∖U
X (T(X)).

_is proves the ûrst part of Lemma 4.1.
As U ⊂ X is open, there exists an open subset Ũ ⊂ Rn such that U = Ũ ∩ X,

and U is closed in Ũ . In particular Ũ is an aõne algebraic submanifold of Rn . Let
t ∈ T(X). By deûnition there exists T ∈ T(Rn) such that T ∣X = t. By Proposition 2.12
T ∣Ũ ∈ T(Ũ). By Proposition 2.3 Ũ is open aõne, thus by the ûrst part of the lemma,
t∣U = (T ∣Ũ)∣U ∈ T(U).

Corollary 4.2 Let X be an aõne algebraic variety, and let U ,V ⊂ X be two open
subsets of X such that U ⊂ V . _en ResUV(T(V)) ⊂ T(U).

Proof By Proposition 2.3,V is an aõne algebraic variety, sowe can apply Lemma 4.1
to the aõne algebraic variety V and its open subset U .

Proposition 4.3 Let X be an aõne algebraic variety. _e assignment of the space of
tempered functions to any open U ⊂ X, together with the restriction of functions, form
a sheaf on X.

Proof By Corollary 4.2, the above is a pre-sheaf. Clearly, the axiom of uniqueness
holds.

Now let t i ∈ T(U i) be such that for any i , j ∈ I, t i ∣U i∩U j = t j ∣U i∩U j . Clearly, there
exists a unique function t∶U → R such that for any i ∈ I, t∣U i = t i . In order to prove
that the existence axiom holds, it is thus le� to show that t ∈ T(U). As always, we can
consider X as an algebraic subset ofRn . By Proposition 2.4,we can assume ∣I∣ <∞ by
choosing some subcover and showing t∣U i = t i only for indices i in this subcover (as
the functions we begin with agree on the intersections, this will automatically hold
for all the other indiceswe omitted). By standard induction on the number of indices
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(i.e., the number of sets in the chosen ûnite subcover), it is enough to show that the
following holds.

Let X ⊂ Rn be an algebraic subset and let U1 ,U2 ⊂ X be two open subsets.
Assume that for any i ∈ {1, 2} we are given t i ∈ T(U i) such that t1∣U1∩U2 =
t2∣U1∩U2 . _en there exists a function t ∈ T(U1∪U2) such that t∣U1 = t1 , t∣U2 = t2.

Clearly, there exists a (unique) function t∶U1 ∪ U2 → R such that t∣U i = t i . It is
le� to show that t ∈ T(U1 ∪ U2). Indeed, there exist open sets Ũ i ⊂ Rn such that
U i = Ũ i ∩ X, and U i is closed in Ũ i . _en, by Lemma 3.5, there exist Ti ∈ T(Ũ i)
such that t i = Ti ∣U i . Deûne U = U1 ∪ U2 and Ũ = Ũ1 ∪ Ũ2. As Ũ is an aõne
algebraic manifold and {Ũ1 , Ũ2} is an open cover of Ũ , by _eorem 2.11 there exist
α1 , α2 ∈ T(Ũ) such that supp(α i) ⊂ Ũ i and α1 + α2 = 1. Deûne T ′

i (x) ∶= ExtŨŨ i
(Ti)

for i = 1, 2. Deûne a new function on Ũ by T ∶= α1 ⋅ T ′
1 + α2 ⋅ T ′

2.
By Proposition 2.12, in order to show that T ∈ T(Ũ), it is enough to show that

T ∣Ũ i
∈ T(Ũ i) for i ∈ {1, 2}. Let us show this for i = 1 (symmetrical arguments work

for i = 2): T ∣Ũ1
= α1∣Ũ1

⋅ T ′
1 ∣Ũ1

+ (α2 ⋅ T ′
2)∣Ũ1

= α1∣Ũ1
⋅ T1 + (α2 ⋅ T ′

2)∣Ũ1
. As the

space of tempered functions is an algebra, it is enough to show each of these three
functions belongs to T(Ũ1). By Proposition 2.12, α1∣Ũ1

∈ T(Ũ1). By construction,
T1 ∈ T(Ũ1). In order to show that (α2 ⋅ T ′

2)∣Ũ1
∈ T(Ũ1) we use Proposition 2.12 again.

As {Ũ1 ∩ Ũ2 , Ũ1 ∖ (supp(α2)∩ Ũ1)} is an open cover of Ũ1, it is enough to show that

((α2 ⋅ T ′
2)∣Ũ1

) ∣Ũ1∩Ũ2
∈ T(Ũ1 ∩ Ũ2),

((α2 ⋅ T ′
2)∣Ũ1

) ∣Ũ1∖(supp(α2)∩Ũ1) ∈ T(Ũ1 ∖ (supp(α2) ∩ Ũ1)).
_e later is obvious as ((α2 ⋅T ′

2)∣Ũ1
)∣Ũ1∖(supp(α2)∩Ũ1) = 0, and the ûrst also holds, since

both α2∣Ũ1∩Ũ2
∈ T(Ũ1 ∩ Ũ2) and T2∣Ũ1∩Ũ2

∈ T(Ũ1 ∩ Ũ2), as Ũ1 ∩ Ũ2 is open in both Ũ
and in Ũ2 (and again by Proposition 2.12). Finally, as T ∈ T(Ũ) andU1 ∪U2 = U ⊂ Ũ
is a closed subset, by Lemma 4.1, t = T ∣U1∪U2 ∈ T(U1 ∪U2).

Proposition 4.4 Let X be an aõne algebraic variety. _e assignment of the space of
tempered distributions to any openU ⊂ X, togetherwith restrictions of functionals from
S∗(U) to S∗(V) for any other open V ⊂ U , form a �abby sheaf on X.

Proof Any open U ⊂ X is an aõne algebraic variety (by Proposition 2.3), and any
open V ⊂ X contained in U is open in U . _us, by Proposition 3.19, the above is a
pre-sheaf.

Let {U i}i∈I be some open cover of U . By Proposition 2.4 there exists a ûnite open
cover {U i}k

i=1. Note that U is an aõne algebraic variety (by Proposition 2.3). _en,
by Proposition 3.14, for any 1 ≤ i ≤ k, there exists β i ∈ T(U) such that supp(β i) ⊂ U i ,
∑k

i=1 β i = 1 and for any s ∈ S(U), (β i ⋅ s)∣U i ∈ S(U i).
Now let ξ, ζ ∈ S∗(U) be such that for any i ∈ I, ξ∣S(U i) = ζ ∣S(U i). In particular,

as U i is open in U (and as {1, 2, . . . , k} ⊂ I), for any 1 ≤ i ≤ k, ξ∣S(U i) = ζ ∣S(U i). Let
s ∈ S(U). Note that s = ∑k

i=1(β i ⋅ s), so we can calculate

ξ(s) − ζ(s) = ξ(
k

∑
i=1

(β i ⋅ s)) − ζ(
k

∑
i=1

(β i ⋅ s)) =
k

∑
i=1

( ξ(β i ⋅ s) − ζ(β i ⋅ s)) = 0,
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where the second equality follows from linearity of ξ and ζ , and the third equality
follows from the facts that (β i ⋅ s)∣U i ∈ S(U i) and ξ∣S(U i) = ζ ∣S(U i). _us, we have
shown that the axiom of uniqueness holds.

Now let ξ i ∈ S∗(U i) be such that for any i , j ∈ I, ξ i ∣S(U i∩U j) = ξ j ∣S(U i∩U j). In
particular, as U i ∩ U j is open in U (and as {1, 2, . . . , k} ⊂ I), for any 1 ≤ i ≤ k,
ξ i ∣S(U i∩U j) = ξ j ∣S(U i∩U j). We deûne a functional ξ ∈ S∗(U) by the following formula
for any s ∈ S(U):

ξ(s) = ξ(
k

∑
i=1

(β i ⋅ s)) ∶=
k

∑
i=1

ξ i(β i ⋅ s).

We claim that for any α ∈ I, one has ξ∣S(Uα) = ξα . Indeed, {Uα ∩ U i}k
i=1 is an

open cover of the aõne algebraic variety Uα . Note that {β i ∣Uα}k
i=1 is “a partition of

unity” of Uα as deûned in Proposition 3.14, i.e., β i ∣Uα ∈ T(Uα) (this follows from
Proposition 4.3), ∑k

i=1 β i ∣Uα = 1, supp(β i ∣Uα) ⊂ Uα ∩ U i and (by Corollary 3.26)
for any s ∈ S(Uα), one has (β i ∣Uα ⋅ s)∣Uα∩U i ∈ S(Uα ∩ U i). Also note that for any
1 ≤ i ≤ k, one has ξα ∣S(Uα∩U i) = ξ i ∣S(Uα∩U i). Finally, we are ready to calculate (for any
s ∈ S(Uα), where we also think of s as a function in S(U), by the usual extension by
zero):

ξα(s) = ξα(
k

∑
i=1
β i ⋅ s) =

k

∑
i=1

ξα(β i ⋅ s) =
k

∑
i=1

ξ i(β i ⋅ s) = ξ(s);

i.e., the axiom of existence holds.

We recall the deûnition of a cosheaf on a topological space. For simplicity we as-
sume our cosheaves take values in the category of real vector spaces, but this can be
replaced by any other Abelian category with arbitrary coproducts.
A pre-cosheaf F on a topological space X is a covariant functor from Top(X) to

the category of real vector spaces, where Top(X) is the category whose objects are
the open sets of X, and whose morphisms are the inclusion maps. A cosheaf on a
topological space X is a pre-cosheaf such that for any openU ⊂ X and any open cover
{U i}i∈I of U , the following sequence is exact:

⊕
(i , j)∈I2

F(U i ∩U j)
Ext1ÐÐÐÐÐ→⊕

i∈I
F(U i)

Ext2ÐÐÐÐÐ→ F(U)ÐÐÐ→ 0,

where the k-th coordinate of Ext1(⊕(i , j)∈I2 ξ i , j) is ∑i∈I Ext
Uk
Uk∩U i

(ξk , i − ξ i ,k), and
Ext2(⊕i∈I ξ i) ∶= ∑i∈I ExtUU i

(ξ i). When exactness is proved in Proposition 4.5, all
calculations will be quickly reduced to ûnite subcovers. A cosheaf is �abby if for any
two open subsets U ,V ⊂ X such that V ⊂ U , the morphism ExtUV ∶ F(V) → F(U) is
injective.

Proposition 4.5 Let X be an aõne algebraic variety. _e assignment of the space of
Schwartz functions to any open U ⊂ X, together with the extension by zero, ExtVU , from
U to any other open V ⊃ U , form a �abby cosheaf on X.

Proof Any open V ⊂ X is an aõne algebraic variety (by Proposition 2.3), and any
open U ⊂ X contained in V is open in V . _us, by _eorem 3.29, the above is a
pre-cosheaf. It is le� to show exactness.
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Let {U i}i∈I be some open cover of U , and let s ∈ S(U). By Proposition 2.4, there
exists a ûnite subcover {U i}k

i=1. By Proposition 2.3 and Corollary 3.13, we can apply
Proposition 3.14 on U , and so there exist β1 , . . . βk ∈ T(U) such that ∑k

i=1 β i = 1
and for any 1 ≤ i ≤ k, supp(β i) ⊂ U i , and (β i ⋅ s)∣U i ∈ S(U i). _en we can write:
s = ∑k

i=1 β i ⋅ s = ∑k
i=1 ExtUU i

((β i ⋅ s)∣U i ), and so Ext2 is onto. It is le� to show that
ker(Ext2) = Im(Ext1).
Assume we are given a ûnite subset J ⊂ I, and for any i ∈ J, s i ∈ S(U i) such that

∑i∈J ExtUU i
(s i) = 0. It is suõcient to prove that for any i > j ∈ J (for some linear order

on J), there exists s i , j ∈ S(U i ∩U j) such that for any i ∈ J,

s i = ∑
i> j∈J

ExtU i
U i∩U j

(s i , j) − ∑
i< j∈J

ExtU i
U i∩U j

(s j, i).

We prove this claim by induction on ∣J∣. For ∣J∣ = 2 one has s1∣U1∩U2 = −s2∣U1∩U2 ,
so deûning s2,1 = s2∣U1∩U2 , the claim holds. _e only non trivial fact to verify is that
s2∣U1∩U2 ∈ S(U1∩U2); indeed, by Proposition 3.19, −ExtU1∪U2

U1
(s1) is a Schwartz func-

tion on U1 ∪U2 that is �at on U1 ∪U2 ∖U1, and ExtU1∪U2
U2

(s2) is a Schwartz function
on U1 ∪U2 that is �at on U1 ∪U2 ∖U2. But as ExtU1∪U2

U2
(s2) = −ExtU1∪U2

U1
(s1), we have

that ExtU1∪U2
U2

(s2) is �at on (U1 ∪U2) ∖ (U1 ∩U2). _en by _eorem 3.23,

s2∣U1∩U2 = (ExtU1∪U2
U2

(s2))∣U1∩U2

is a Schwartz function on U1 ∩U2.
Now assume the claim holds for any J of cardinality up to k, and let

J = {1, 2, . . . , k, k + 1}.
Without loss of generality, we can assume U = ⋃k+1

i=1 U i , and so for any 1 ≤ i ≤ k + 1,
we have s i ∈ S(U i) such that ∑k+1

i=1 ExtUU i
(s i) = 0. Deûne Ũ ∶= ⋃k

i=1 U i . Note that
sk+1∣Uk+1∖(Uk+1∩Ũ) = 0. As {U i}k

i=1 is an open cover of the aõne Ũ , byProposition 3.14,
there exist {β i}k

i=1 ⊂ T(Ũ) such that for any 1 ≤ i ≤ k, supp(β i) ⊂ U i and∑k
i=1 β i = 1.

Let x ∈ Uk+1 ∖ (Uk+1 ∩ Ũ). By Proposition 3.19, for any 1 ≤ i ≤ k, ExtUU i
(s i) is �at

at x. _en ExtUUk+1
(sk+1) = −∑k

i=1 ExtUU i
(s i) is also �at at x. Applying _eorem 3.23

(note that U ∖ (Uk+1 ∖ (Ũ ∩Uk+1)) = Ũ), we get that (ExtUUk+1
(sk+1))∣Ũ ∈ S(Ũ). Now

by Corollary 3.26, we have

(β i ∣U i ⋅ ExtU i
U i∩Uk+1

(sk+1∣U i∩Uk+1)) = β i ∣U i ⋅ (ExtŨUk+1
(sk+1))∣U i ∈ S(U i).

Deûne for any 1 ≤ i ≤ k,

γ i ∶= s i + (β i ∣U i ⋅ ExtU i
U i∩Uk+1

(sk+1∣U i∩Uk+1)) .

Note that γ i ∈ S(U i) and that∑k
i=1 ExtŨU i

(γ i) = 0. _us, by induction hypothesis, for
any 1 ≤ j < i ≤ k, there exist s i , j ∈ S(U i ∩U j) such that for any 1 ≤ i ≤ k,

γ i = ∑
i> j≥1

ExtU i
U i∩U j

(s i , j) − ∑
i< j≤k

ExtU i
U i∩U j

(s j, i).

For any 1 ≤ i ≤ k, deûne sk+1, i ∶= β i ∣Uk+1∩U i ⋅ sk+1∣Uk+1∩U i . _en

γ i = s i + ExtU i
Uk+1∩U i

(sk+1, i),
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where Uk+1 ∩U i is open in U i . As both γ i and s i lie in S(U i), so does

ExtU i
Uk+1∩U i

(sk+1, i) = γ i − s i .

We claim that sk+1, i ∈ S(Uk+1∩U i). Denoting f ∶= β i ∣U i ⋅ExtU i
U i∩Uk+1

(sk+1∣U i∩Uk+1),
we saw above that f ∈ S(U i). _us, as sk+1, i = f ∣U i∩Uk+1 , by _eorem 3.23 we need to
show that f is �at at

U i ∖ (Uk+1 ∩U i) = (Uk+1 ∪U i) ∖Uk+1 .

Deûne g ∶= ExtUk+1∪U i
Uk+1

(sk+1). _en, by _eorem 3.23, g ∈ S(U i ∪ Uk+1), and g is
�at at (U i ∪ Uk+1) ∖ Uk+1. In particular, g̃ ∶= g∣U i is �at at (U i ∪ Uk+1) ∖ Uk+1. Let
x ∈ (U i ∪ Uk+1) ∖ Uk+1, and let ρ ∈ S(U i) be “a bump function around x”, i.e., a
restriction to U i of a smooth compactly supported function on some aõne space in
which U i is closely embedded such that ρ = 1 on some Euclidean open neighborhood
of x. _en, by Corollary 3.24, (ρ ⋅ g̃)∣U i∖{x} ∈ S(U i ∖ {x}). By Proposition 4.3,
β i ∣U i∖{x} ∈ T(U i∖{x}). _us, by Proposition 3.12, (β i ∣U i ⋅ρ ⋅ g̃)∣U i∖{x} ∈ S(U i∖{x}).
On the one hand, by _eorem 3.23,

ExtU i
U i∖{x} ((β i ∣U i ⋅ ρ ⋅ g̃)∣U i∖{x}) ∈ S(U i).

On the other hand, (β i ∣U i ⋅ ρ ⋅ g̃)∣U i is a continuous function on U i that equals
ExtU i

U i∖{x}((β i ∣U i ⋅ ρ ⋅ g̃)∣U i∖{x}) on U i ∖ {x}. We deduce that

ExtU i
U i∖{x} ((β i ∣U i ⋅ ρ ⋅ g̃)∣U i∖{x}) = (β i ∣U i ⋅ ρ ⋅ g̃)∣U i ,

and so (β i ∣U i ⋅ ρ ⋅ g̃)∣U i is �at at x. Finally, as �atness is a Euclidean local property, and
as ρ equals 1 on some Euclidean neighborhood of x, it follows that β i ∣U i ⋅ g̃ = f is �at
at x.

_en it is easily seen that for any 1 ≤ i ≤ k, we have

s i = ∑
i> j∈{1,2, . . . ,k+1}

ExtU i
U i∩U j

(s i , j) − ∑
i< j∈{1,2, . . . ,k+1}

ExtU i
U i∩U j

(s j, i).

It is le� to check that sk+1 = ∑k
i=1 Ext

Uk+1
Uk+1∩U i

(sk+1, i). Indeed,

k

∑
i=1
ExtUk+1

Uk+1∩U i
(sk+1, i) =

k

∑
i=1
ExtUk+1

Uk+1∩U i
(β i ∣Uk+1∩U i ⋅ sk+1∣Uk+1∩U i )

= sk+1 ⋅
k

∑
i=1
ExtUk+1

Uk+1∩U i
(β i ∣Uk+1∩U i ) = sk+1 .

5 The General Case

For any (not necessarily aõne) algebraic variety X, denote the space of all real valued
functions on X by Func(X ,R).

Lemma 5.1 Let X be an algebraic variety, and let X = ⋃k
i=1 X i = ⋃l

i=k+1 X i be two
open aõne covers. _ere are natural maps ϕ1∶⊕k

i=1 Func(X i ,R) → Func(X ,R) and
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ϕ2∶⊕l
i=k+1 Func(X i ,R)→ Func(X ,R). _en

ϕ1(
k
⊕
i=1

S(X i)) ≅
k
⊕
i=1

S(X i)/Ker(ϕ1∣⊕k
i=1 S(X i))

has a natural structure of a Fréchet space, and there is an isomorphism of Fréchet spaces
ϕ1(⊕k

i=1 S(X i)) ≅ ϕ2(⊕l
i=k+1 S(X i)).

Proof It follows from Proposition 2.17 that

ϕ1(
k
⊕
i=1

S(X i)) ≅ (
k
⊕
i=1

S(X i))/Ker(ϕ1∣⊕k
i=1 S(X i))

is indeed a Fréchet space. A direct sum of Fréchet spaces is clearly a Fréchet space,
and the kernel of ϕ1∣⊕k

i=1 S(X i) is a closed subspace, as ⊕k
i=1 s i ∈ Ker(ϕ1∣⊕k

i=1 S(X i)) if
and only if for any x ∈ X, ∑i∈Jx s i(x) = 0, where Jx ∶= {1 ≤ i ≤ k∣x ∈ X i}; i.e., the
kernel is given by inûnitely many “closed conditions”.

Note that X = ⋃k
i=1⋃l

j=k+1 X i ∩ X j is an open cover of X by aõne algebraic vari-
eties. _ere is a natural map ϕ3∶⊕k

i=1⊕l
j=k+1 Func(X i ∩ X j ,R) → Func(X ,R). It is

therefore enough to prove that ϕ1(⊕k
i=1 S(X i)) ≅ ϕ3(⊕k

i=1⊕l
j=k+1 S(X i ∩ X j)). Note

that {X i ∩ X j}l
j=k+1 is an open cover of X i , and let ϕ i denote the natural map

ϕ i ∶
l
⊕

j=k+1
Func(X i ∩ X j ,R)Ð→ Func(X i ,R).

As ϕ3 = ϕ1 ○⊕k
i=1 ϕ

i , it is enough to prove that
l
⊕

j=k+1
S(X i ∩ X j)/Ker(ϕ i ∣⊕l

j=k+1 S(X i∩X j)) ≅ S(X i).

We have an equality of sets by Proposition 4.5 and its proof. By _eorem 3.23, the
extension ExtX i

X i∩X j
(S(X i ∩X j)) ⊂ S(X i) is a closed embedding S(X i ∩X j)↪ S(X i),

and in particular it is continuous. _uswe have, by_eorem 2.18, an isomorphism of
Fréchet spaces.

Deûnition 5.2 Let X be an algebraic variety, let X = ⋃k
i=1 X i be some open aõne

cover and consider the natural map ϕ∶⊕k
i=1 Func(X i ,R) → Func(X ,R). Deûne the

space of Schwartz functions on X by S(X) ∶= (⊕k
i=1 S(X i))/Ker(ϕ∣⊕k

i=1 S(X i)), with
the natural quotient topology. By Lemma 5.1, this deûnition is independent of the
cover chosen, and S(X) is a Fréchet space.

_eorem 5.3 Let X be an algebraic variety, and let Z ⊂ X be some Zariski closed
subset. _en the restriction from X to Z deûnes an isomorphism S(Z) ≅ S(X)/IXSch(Z)
(with the quotient topology), where IXSch(Z) is the ideal in S(X) of functions identically
vanishing on Z.

Proof _is easily follows from the fact that if X = ⋃n
i=1 X i is an aõne open cover

then Z = ⋃n
i=1 Z ∩ X i is an aõne open cover, and from _eorem 3.9.

https://doi.org/10.4153/CJM-2017-042-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-042-6


1028 B. Elazar and A. Shaviv

Lemma 5.4 Let X be an algebraic variety, and let t∶X → R be some function. _en
the following conditions are equivalent:

(i) _ere exists an open aõne cover X = ⋃k
i=1 X i such that t∣X i ∈ T(X i) for any

1 ≤ i ≤ k.
(ii) For any open aõne cover X = ⋃k

i=1 X i and any 1 ≤ i ≤ k, t∣X i ∈ T(X i).

Proof Clearly, (ii) implies (i). For the other side, assume there exist two open aõne
covers X = ⋃k

i=1 X i = ⋃l
j=k+1 X j such that for any k + 1 ≤ j ≤ l , t∣X j ∈ T(X j). Fix some

1 ≤ i ≤ k. Note that {X i ∩ X j}l
j=k+1 is an open cover of X i . By Proposition 4.3, as

t∣X j ∈ T(X j) for any k+ 1 ≤ j ≤ l ,we have t∣X j∩X i ∈ T(X j ∩X i). Applying Proposition
4.3 once again, we get that t∣X i ∈ T(X i).

Deûnition 5.5 Let X be an algebraic variety. A real valued function t∶X → R is
called a tempered function on X if it satisûes the equivalent conditions of Lemma 5.4.
Denote the space of all tempered functions on X by T(X).

Proposition 5.6 Let X be an algebraic variety, t ∈ T(X) and s ∈ S(X). _en t ⋅ s ∈
S(X).

Proof Let X = ⋃n
i=1 X i be some open aõne cover such that s = ∑n

i=1 ExtXX i
(s i) for

some s i ∈ S(X i). _en t∣X i ∈ T(X i), and by Proposition 3.12 t∣X i ⋅ s i ∈ S(X i). _us,
t ⋅ s = ∑n

i=1 ExtXX i
(s i ⋅ t∣X i ) ∈ S(X).

Deûnition 5.7 Let X be an algebraic variety. A function f ∶X → R is called �at at
x ∈ X if there exists an aõne open neighborhood x ∈ X i ⊂ X such that f ∣X i is �at at
x. It is called �at at Z ⊂ X if it is �at at every x ∈ Z.

Remark 5.8 Equivalently, a function f ∶X → R is called �at at x ∈ X if for any aõne
open neighborhood x ∈ X i ⊂ X one has that f ∣X i is �at at x. _is easily follows by
intersecting any two aõne open neighborhoods.

Proposition 5.9 (Extension by zero for non aõne varieties) Let X be an algebraic
variety, and let U be an open subset of X. _en the extension by zero to X of a Schwartz
function on U is a Schwartz function on X that is �at at X ∖U .

Proof Consider some aõne open cover X = ⋃k
i=1 X i . _en U = ⋃k

i=1(U ∩ X i) is an
aõne open cover of U . Take some s ∈ S(U). By deûnition s = ∑k

i=1 ExtUU∩X i
(s i), for

some s i ∈ S(U ∩ X i). As U ∩ X i is open in X i , by Proposition 3.19, ExtX i
U∩X i

(s i) is a
Schwartz function on X i , which is �at at X i ∖ (U ∩ X i). _en

ExtXU(s) = ExtXU (
k

∑
i=1
ExtUU∩X i

(s i)) =
k

∑
i=1
ExtXU ( ExtUU∩X i

(s i))

=
k

∑
i=1
ExtXX i

( ExtX i
U∩X i

(s i))

is by deûnition a Schwartz function on X, and clearly it is �at on X ∖U .
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Lemma 5.10 (Restrictions of tempered functions to closed and to open subsets for
non-aõne varieties) Let X be an algebraic variety, and let U ⊂ X be some open subset.
_en ResUX(T(X)) ⊂ T(U) and ResX∖U

X (T(X)) ⊂ T(X ∖U).

Proof Consider some aõne open cover X = ⋃k
i=1 X i . _en U = ⋃k

i=1(U ∩ X i) is an
aõne open cover ofU . Let t ∈ T(X), then by deûnition for any 1 ≤ i ≤ k, t∣X i ∈ T(X i).
By Proposition 4.3, (t∣X i )∣U∩X i ∈ T(U ∩ X i). Clearly, (t∣X i )∣U∩X i = (t∣U)∣U∩X i , thus
t∣U ∈ T(U), i.e., ResUX(T(X)) ⊂ T(U). Observe that X ∖ U = ⋃k

i=1((X ∖ U) ∩ X i)
is an aõne open cover of X ∖U . By Lemma 4.1, (t∣X i )∣(X∖U)∩X i ∈ T((X ∖U) ∩ X i).
Clearly (t∣X i )∣(X∖U)∩X i = (t∣X∖U)∣(X∖U)∩X i , and so ResX∖U

X (T(X)) ⊂ T(X ∖U).

Corollary 5.11 Let X be an algebraic variety, and let U ,V ⊂ X be two open subsets
of X such that U ⊂ V . _en ResUV(T(V)) ⊂ T(U).

Proof V is an algebraic variety, so we can apply Lemma 5.10 to the algebraic variety
V and its open subset U .

Proposition 5.12 Let X be an algebraic variety. _e assignment of the space of tem-
pered functions to any open U ⊂ X together with the restriction of functions, form a
sheaf on X.

Proof By Corollary 5.11, the above is a pre-sheaf. Clearly, the axiom of uniqueness
holds.

Now let t i ∈ T(U i) be such that for any i , j ∈ I, t i ∣U i∩U j = t j ∣U i∩U j . Clearly there
exists a (unique) function t∶U → R such that for any i ∈ I, t∣U i = t i . In order to prove
that the existence axiom holds, it is thus le� to show that t ∈ T(U). By Proposition
2.4 we can assume ∣I∣ <∞ by choosing some subcover and showing t∣U i = t i only for
indices i in this subcover (as the functions we begin with agree on the intersections,
this will automatically hold for all the other indices we omitted). By standard induc-
tion on the number of indices (i.e., the number of sets in the chosen ûnite subcover),
it is enough to show that the following holds:

Let X be an algebraic variety and let U1 ,U2 ⊂ X be two open subsets. Assume that
for any i ∈ {1, 2} we are given t i ∈ T(U i) such that t1∣U1∩U2 = t2∣U1∩U2 . _en there
exists a function t ∈ T(U1 ∪U2) such that t∣U1 = t1 , t∣U2 = t2.
Clearly, there exists a (unique) function t∶U1 ∪ U2 → R such that t∣U i = t i for

1 ≤ i ≤ 2. It is le� to show that t ∈ T(U1 ∪ U2). Consider some aõne open cover
X = ⋃k

j=1 X j . _en U i = ⋃k
j=1(U i ∩ X j) is an aõne open cover of U i , and U1 ∪ U2 =

⋃k
j=1((U1 ∪ U2) ∩ X j) is an aõne open cover of U1 ∪ U2. As t i ∈ T(U i), one has

t i ∣U i∩X j ∈ T(U i ∩ X j). As (U1 ∪ U2) ∩ X j is aõne, and ⋃2
i=1 U i ∩ X j is an aõne

open cover of it, and as t1∣U1∩U2 = t2∣U1∩U2 ; then, by Proposition 4.3, t∣(U1∪U2)∩X j ∈
T((U1 ∪U2) ∩ X j), i.e., t ∈ T(U1 ∪U2).

Further work In order to prove that the rest of the properties thatwere proved in the
aõne case also hold in the general case, the next natural step should be proving that
a tempered partition of unity also holds in the non-aõne case (i.e., to prove a non-
aõne version of Proposition 3.14). Moreover, it seems that such a proposition would
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pave the way to proving all other properties. Our attempts at proving this in the alge-
braic context were not fruitful; however, we suggest the following idea: as the theory
of Schwartz spaces etc. is now fully established for arbitrary Nash manifolds and for
aõne real algebraic varieties (and partially established for non-aõne real algebraic
varieties), one can try to construct this theory for some bigger category, such that the
Nash category and the algebraic category form subcategories of this category. _e ûrst
guess, of taking the semi-algebraic category to be the nominated one, will not work,
as this category is in a sense “too �exible”. As isomorphisms are not necessarily even
smooth, in this category smooth functions are not pulled back by isomorphisms to
smooth functions, and so there is no hope to deûne Schwartz spaces. We are currently
working on generalizing the above theory to a categorywhose aõne (local)models are
closed semi-algebraic sets, but not all semi-algebraic morphisms are allowed. How-
ever, this category still generalizes both theNash category and the algebraic category.
If indeed such a theory can be established for this category, our hope (and guess) is
that then proving partition of unity for non-aõne varieties will be easier (as a con-
sequence of the presence of “more” morphisms and “more” open subsets). _en the
results for the non-aõne algebraic casewould just follow as a special case. A diòerent
direction of research we are pursuing is constructing a theory of Schwartz functions
on arbitrary smooth manifolds, or more precisely deûning themost general category
whose local models are open subsets of Rn , and on which Schwartz spaces can be
deûned consistently.

A The Whitney Extension Problem (Proofs of Two Key Lemmas)

_e goal of this appendix is to prove Lemmas 3.16 and 3.17. All necessary preliminary
results are also given. In this appendix we always consider the Euclidean topology on
Rn , unless otherwise stated.

A.1 Semi-analytic and Subanalytic Sets

One can deûne semi-analytic sets inRn by (locally) using analytic functions; namely,
A ⊂ Rn is semi-analytic if and only if for every point p ∈ A there exist an open neigh-
bourhood p ∈ U ⊂ Rn and ûnitely many analytic functions f i , j , g i ,k ∶U → R, such
that

A∩U =
r
⋃
i=1

{x ∈ Rn ∣∀1 ≤ j ≤ s i , 1 ≤ k ≤ t i ∶ f i , j(x) > 0, g i ,k(x) = 0} .

_e images of semi-analytic sets under analyticmaps (which we did not deûne) and
even under standard projections, are not necessarily semi-analytic (see [L, Example at
the end of section III]). _is motivates the following deûnition (following [BM1, Def-
inition 3.1]): A ⊂ Rn is subanalytic if and only if for every point p ∈ Rn there exists
an open neighbourhood p ∈ U ⊂ Rn such that A ∩ U is a projection of a relatively
compact (i.e., bounded) semi-analytic set (and see equivalent deûnitions in [S, pp. 40
and 95]). Amap ν∶A → B (where A ⊂ Rn , B ⊂ Rm are subanalytic) is called subana-
lytic if its graph is a subanalytic set in Rn+m .

https://doi.org/10.4153/CJM-2017-042-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-042-6


Schwartz Functions on Real Algebraic Varieties 1031

Deûnition A.1 Let X ⊂ Rn be a subanalytic set, let y ∈ X be some point, and let
m ∈ N. A function f ∶X → R is m-�at at y if there exists F ∈ Cm(Rn) with f = F∣X ,
such that the Taylor polynomial of order m of F at y is identically zero. If f is m-�at
at y for any m ∈ N, we say that f is �at at y (e.g., a function f ∶Rn → R is �at at some
y ∈ Rn if the Taylor series of f at y is identically zero). If f is (m-)�at at y for any
y ∈ Z (where Z ⊂ X is some subset), we say that f is (m-)�at at Z.
Deûning m-�at functions (and all other notions of �atness) on (closed) subana-

lytic sets can be also done by 2 other approaches. _e ûrst is by deûning the “Zariski
m-paratangent bundle” and m-�at functions as restrictions of Cm functions on the
ambient space that satisfy some natural condition expressed in terms of the Zariski
m-paratangent bundle. _e second is an intrinsic approach, using Glaeser extensions
of real valued functions (see [BMP2,F]). [BMP2,_eorems 1.7, 1.8, and 1.9] imply the
equivalence of all three approaches.

A.1.1 An Important Remark

As theTaylor polynomial is only dependent on the Euclidean local behaviour of func-
tions, one can substituteRn above by any Euclidean open subset ofRn containing X.
_is is done in A.2 and is used when it is more convenient.

A.1.2 Equivalence of Definitions 3.15 and A.1

Any algebraic set is also subanalytic, and so it seemswe have two diòerent deûnitions
of �at functions at a point. Clearly if a function is �at at some point according to
Deûnition 3.15 it is also �at according to Deûnition A.1. _e other way is not trivial.
By Deûnition A.1, f is �at at y means that for any m ∈ N there exists Fm ∈ Cm(Rn)
such that Fm ∣X = f and the Taylor polynomial of order m of Fm at y is identically
zero. _is does not mean, a-priori, that there exists F ∈ C∞(Rn) such that F∣X = f
and the Taylor series of F at y is identically zero, i.e., that f is �at at y according
to Deûnition 3.15. According to [M], as X is algebraic it is formally semicoherent
relative to the singleton {y} (see [BM2, Deûnition 1.2] and discussion immediately
a�er), which is equivalent, according to [BM2,_eorem 1.13], to the fact that f does
extend to such an F. Laterwewill formulate it as C∞(X;{y}) = C(∞)(X;{y}). _us,
the two deûnitions of �at functions at a point in algebraic sets are equivalent.

A.2 Restrictions from Open Neighborhoods and Composite Functions

In this subsection we mainly follow the notation of [BMP1]. Let X ⊂ Rn be some
subanalytic set, let Z ⊂ X be a closed subset (in the induced topology from Rn), and
k ∈ N. As said, �atness at a point is clearly a local property. Hence, it is natural to
present the following spaces of functions:

Ck(X; Z) ∶= { f ∶X → R ∣ ∃U ⊂ Rn an open neighborhood of X and F ∈ Ck(U)

such that F∣X = f and F is k-�at at Z}.
Similarly, for k =∞, we have

C∞(X; Z) ∶= { f ∶X → R ∣ ∃U ⊂ Rn an open neighborhood of X and F ∈ C∞(U)
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such that F∣X = f and F is �at at Z}.
Denote⋂k∈N Ck(X; Z) byC(∞)(X; Z). Clearly, C∞(X; Z) ⊂ C(∞)(X; Z). In gen-

eral C∞(X; Z) /= C(∞)(X; Z), remarkably, even when Z = ∅ (see, [P, Example 2]).
For any k ∈ N ∪ {∞}, denote Ck(X) ∶= Ck(X;∅); this coincides with the usual

deûnition if X is smooth.
Let Ω be some open subset of Rm . A continuous map φ∶Ω → Rn is called semi-

proper if for each compact subset K of Rn there exists a compact subset L of Ω such
that φ(L) = K ∩ φ(Ω). Let φ∶Ω → Rn be a semi-proper real analytic map. In that
case, X ∶= φ(Ω) is a closed subanalytic subset of Rn . For any k ∈ N deûne

(φ∗Ck(X))∧ ∶=
{ f ∈ Ck(Ω) ∣ ∀a ∈ X , ∃g ∈ Ck(X), f − φ∗(g) ∶= f − g ○ φ is k-�at at φ−1(a)} ,

and for k =∞ deûne:

(φ∗C∞(X))∧ ∶=
{ f ∈ C∞(Ω) ∣ ∀a ∈ X , ∃g ∈ C∞(X), f − φ∗(g) ∶= f − g ○ φ is �at at φ−1(a)} .

Finally, for any closed subanalytic subset Z ⊂ X and any k ∈ N ∪ {∞}, deûne
(φ∗Ck(X; Z))∧ ∶= (φ∗Ck(X))∧ ∩ Ck(Ω;φ−1(Z)) .

We use some properties of these spaces of functions, provedmainly in [BMP1]. Of
special importance is the following theorem.

_eorem A.2 (Uniformization theorem [BM1,_eorem 5.1]) Let M be a real ana-
lytic manifold, and let X ⊂ M be a closed analytic subset. _en there is a real analytic
manifold N and a proper real analyticmapping φ̃∶N → M such that φ̃(N) = X.

_e following Lemma A.3 is stated in [BMP1]. For the reader’s convenience we
give here a detailed proof. We thank Prof. Pierre D. Milman for providing guidelines
for this proof.

Lemma A.3 ⋂k∈N(φ∗Ck(X; Z))∧ = (φ∗C∞(X; Z))∧.

Proof _e inclusion ⊃ is clear. For the inclusion ⊂, notice that

⋂
k∈N
Ck(Ω;φ−1(Z)) = C∞(Ω;φ−1(Z)),

as Ω is open (and in particular smooth). _us, it is le� to show that

⋂
k∈N

(φ∗Ck(X))∧ ⊂ (φ∗C∞(X))∧ .

Fix some f ∈ ⋂k∈N(φ∗Ck(X))∧, x ∈ X, and ω ∈ φ−1(x). Deûne the set of k-jets at x
whose pullbacks’ k-jets at ω equal the k-jet of f , i.e.,

Ak ∶= {J is a k-jet at x ∣ φ∗ J’s k-jet at ω equals the k-jet of f at ω}.
By abuse of notationwe considered jets as functions, i.e.,we chose a representative.

_is is independent of the choicemade. _en the condition above can be reformulated
as φ∗ J − f is k-�at at ω.
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_en Ak /= ∅, by the deûnition of f (e.g., the k-jet of g corresponding to x in
the deûnition of (φ∗Ck(X))∧ is contained in Ak). For any k ≥ l ∈ N ∪ {0} deûne
the projection of Ak to Al by Ak

l ∶= pr l(Ak) ⊂ Al (i.e., Ak
l is the the set of all l-

jets that can be extended to k-jets in a way that is compatible with f ). Also, deûne
A l ∶= ⋂k≥l Ak

l ⊂ Al (i.e., A l is the the set of all l-jets that can be extended to k-jets
in a way that is compatible with f for any k ≥ l). Assume the following hold for any
l ∈ N:
(a) A l /= ∅.
(b) pr l ∶A l+1 → A l is onto, i.e., any l-jet in A l can be extended to an (l + 1)-jet in

A l+1.
In that case using the principle of dependent choices (see Section A.2.1) there exists
a series of jets {J l}l∈N such that J l ∈ A l and for any l ∈ N, pr l(J l+1) = J l . _is series
can be thought of as a formal power series onRn (whichwe denote by G), where J l is
the truncated power series up to order l . By Borel’s _eroem (see Section A.4) there
exists a function G̃ ∈ C∞(Rn) such that T∞

x G̃ = G, where T∞
x G̃ means the Taylor

series of G̃ at x. By construction we observe that T∞
ω (φ∗G̃) = T∞

ω f , and so conclude
that f ∈ (φ∗C∞(X))∧ (as G̃∣X ∈ C∞(X) satisûes the desired condition).

_us, it is le� to prove that the assumptions (a) and (b) hold.
In order to see that A l /= ∅, observe that for any k ≥ l , Ak

l is a ûnite dimensional
aõne space (it is ûnite dimensional as it lies in the ûnite dimensional spaceAl ). More-
over, these aõne spaces form a decreasing sequence Al = Al

l ⊃ Al+1
l ⊃ Al+2

l ⊃ ⋅ ⋅ ⋅. As
Ak /= ∅ for any k ≥ l , also Ak

l /= ∅. _e dimensions of these aõne spaces form a
decreasing sequence of non-negative integers, and so stabilizes. _us, we conclude
that ⋂k≥l Ak

l (= A l) = Ak l
l /= ∅ for some k l ∈ N, and so assumption (a) holds.

In order to see that prl ∶A l+1 → A l is onto, we take some J ∈ A l , and deûne for any
k ≥ l + 1: Bk

l+1 ∶= {H ∈ Ak
l+1 ∣ prl(H) = J}. By the deûnition of A l there exists a k-jet

Jk ∈ Ak such that prl(Jk) = J, and so prl+1(Jk) ∈ Ak
l+1 satisûes prl(prl+1(Jk)) = J, and

so Bk
l+1 /= ∅. As B l+1

l+1 ⊃ B l+2
l+1 ⊃ B l+3

l+1 ⊃ ⋅ ⋅ ⋅ is a decreasing sequence of ûnite dimensional
aõne spaces it stabilizes, and so ⋂k≥l+1 Bk

l+1 /= ∅. Choose some J ∈ ⋂k≥l+1 Bk
l+1. By

deûnition, J ∈ A l+1, and by construction, pr l(J) = J. _us, assumption (b) holds.

A.2.1 The Principle of Dependent Choices (DC)

We assume aweak version of the axiom of choice, the principle of dependent choices:
if E is a binary relation on a nonempty set A and for any a ∈ A there exists an element
b ∈ A such that bEa, then there is a sequence a0 , a1 , . . . , an , . . . inA such that an+1Ean
for any n ∈ N. _e interested reader is referred to [J, p. 50].

_eorem A.4 (E. Borel [T,_eorem 38.1]) Let Φ be an arbitrary formal power series
in n indeterminates, with complex coeõcients. _en there exists a function in C∞(Rn)
whose Taylor expansion at the origin is identical to Φ.
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A.3 Proof of Lemma 3.16

Recallwewant to prove the following. Let X be a compact (in the Euclidean topology)
algebraic set in Rn , and let Z ⊂ X be some (Zariski) closed subset. Deûne

WZ ∶= {ϕ∶X → R∣∃ϕ̃ ∈ C∞(Rn) such that ϕ̃∣X = ϕ and ϕ is �at at Z},
(WRn

Z )comp ∶= {ϕ ∈ C∞(Rn)∣ϕ is compactly supported and is �at at Z},

and U ∶= X ∖ Z. _en for any f ∈WZ , there exists f̃ ∈ (WRn

Z )comp such that f̃ ∣X = f .
We start the proof with a preliminary lemma.

Lemma A.5 _ere exists a pair (Ω, φ) such that Ω ⊂ Rm is an open subset of Rm

(in the Euclidean topology) and φ∶Ω → Rn is a semiproper real analytic function such
that φ(Ω) = X. Moreover, for any f ∈ C∞(X;∅), φ∗ f ∶= f ○ φ ∈ C∞(Ω).

Proof By_eoremA.2, there is a real analyticmanifold N and a proper real analytic
mapping φ̃∶N → Rn such that φ̃(N) = X. As N is a real analytic manifold, it has an
open cover {N i}i∈I such that for any i ∈ I, N i is analytically diòeomorphic to an
open subset ofRd i ; i.e., there exist analytical diòeomorphisms ν i ∶N i → Rd i such that
ν i(N i) is open inRd i . As φ̃ is proper and X ⊂ Rn is compact, N = φ̃−1(X) is compact,
and thus there exists a ûnite subcover {N i}k

i=1. We let m ∶= maxk
i=1{d i} + 1. For any

1 ≤ i ≤ k, deûne Ω i = ν i(N i) × (i − 1
4 , i +

1
4 )

m−d i ⊂ Rm , and deûne ψ i ∶Ω i → Ω i by
ψ i(n i , α1 , . . . , αm−d i ) ∶= (n i , i , . . . , i),where n i ∈ ν i(N i) and α j ∈ (i− 1

4 , i+
1
4 ). Note

that ψ i is semiproper real analytic. Deûne Ω ∶= ⋃k
i=1 Ω i . As Ω1 , . . . ,Ωk are disjoint

sets in Rm , we can naturally deûne a semiproper function ψ∶Ω → Ω by ψ∣Ω i ∶= ψ i .
Clearly, Ω ⊂ Rm is open. Now deûne a function ν−1∶ψ(Ω)→ N by ν−1(n i , i , . . . , i) =
ν−1
i (n i), where n i ∈ ν i(N i). Note that ν−1 is a proper map. Finally, deûning φ ∶=

φ̃ ○ ν−1 ○ ψ, we get that φ is a semiproper real analytic function satisfying φ(Ω) = X.
_e “Moreover” part of Lemma A.5 is obvious.

Proof of Lemma 3.16 Fix f ∈ WZ . In particular, f ∈ C∞(X;∅). _en, by
Lemma A.5, φ∗ f ∶= f ○ φ ∈ C∞(Ω). Denote f̃ ∶= φ∗ f . By deûnition, f̃ ∈
(φ∗(C∞(X)))∧.

We now prove that f̃ ∈ C∞(Ω;φ−1(Z)). For any z ∈ Z and any k ∈ N, there exists
f̄ kz ∈ Ck(Rn) such that f = f̄ kz ∣X and f̄ kz is k-�at at z. Note that for any z ∈ Z and any
k ∈ N, we have f̃ (= f ○ φ) = f̄ kz ○ φ, and in particular for any z′ ∈ Z and any k′ ∈ N
we have f̄ k

′

z′ ○ φ = f̄ kz ○ φ. First, we prove that for any k ∈ N, f̃ ∈ Ck(Ω;φ−1(Z)). Fix
some z ∈ Z and some z̃ ∈ φ−1(z). As we can write f̃ = f̄ kz ○ φ, the fact that f̃ is k-�at
at z̃ follows immediately from Lemma A.6.

We have thus shown that for any k ∈ N, f̃ ∈ Ck(Ω;φ−1(Z)). As we also had f̃ ∈
(φ∗(Ck(X)))∧,we get that f̃ ∈ (φ∗Ck(X; Z))∧ ∶= (φ∗(Ck(X)))∧∩Ck(Ω;φ−1(Z)).
As this holds for any k ∈ N we get that f̃ ∈ ⋂k∈N(φ∗Ck(X; Z))∧. By Lemma A.3,
⋂k∈N(φ∗Ck(X; Z))∧ = (φ∗C∞(X; Z))∧, and by [BMP1,_eorem 1.3],

(φ∗C∞(X; Z))∧ = φ∗C(∞)(X; Z),

so f̃ ∈ φ∗C(∞)(X; Z).
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As f̃ ∈ φ∗C(∞)(X; Z), there exists h ∈ C(∞)(X; Z) such that f̃ = φ∗h = h ○ φ.
Since f̃ = f ○φ and φ is onto X, it follows that h = f , i.e., f ∈ C(∞)(X; Z). According to
[M], as X is algebraic, it is formally semicoherent rel. Z (see [BM2, Deûnition 1.2] and
discussion immediately a�er),which is equivalent, according to [BM2,_eorem 1.13],
to the fact that C∞(X; Z) = C(∞)(X; Z). We conclude that f ∈ C∞(X; Z).

Recall that we started with some f ∈ WZ , we showed that f ∈ C∞(X; Z), and
our goal is to show that f is the restriction of some function in (WRn

Z )comp. As f ∈
C∞(X; Z) there exists an open V ⊂ Rn such that X ⊂ V , and F∶V → R such that
F ∈ C∞(V), F is �at at Z and F∣X = f . Without loss of generality, as X is compact in
the Euclidean topology on Rn , we can assume the set V is bounded in the Euclidean
norm on Rn .

Take some openV ′ ⊊ V containing X. Let ρ ∈ C∞(Rn) be a function supported in
V ′ such that ρ∣V ′′ = 1,whereV ′′ ⊊ V ′ is some open subset containing X (it is standard
to show such ρ exists by convolving the characteristic function of some open subset
containing V ′′ and strictly contained in V ′, with some appropriate approximation of
unity). Now deûne F̃∶Rn → R by F̃∣V ∶= ρ ⋅ F and F̃∣Rn∖V ∶= 0. Clearly F̃∣X = F∣X = f ,
F̃ ∈ C∞(Rn), F̃ is �at at Z (as F̃∣V ′′ = F∣V ′′), and F̃ is compactly supported (in the
Euclidean topology) in Rn ; i.e., F̃ ∈ (WRn

Z )comp and F̃∣X = f .

A.4 Multivariate Faá Di Bruno Formula

_e famous chain rule for deriving real valued functions from the real line states that
( f ○ g)′(x) = f ′(g(x)) ⋅ g′(x). _is can be generalized to higher derivatives and
higherdimensions, i.e., partialderivatives of arbitrary order of compositemultivariate
functions. We are interested only in the following result.

Lemma A.6 (cf. [CS,_eorem 2.1]) Let x0 ∈ Rd ,V ⊂ Rd be some open neighborhood
of x0 and g∶V → Rm , g ∈ C∞(V ,Rm). Let U ⊂ Rn be some open neighborhood of
g(x0) and f ∶U → R, f ∈ C∞(U). Assume f is �at at g(x0), i.e., its Taylor series at
g(x0) is identically zero. _en f ○ g∶ g−1(U)→ R is �at at x0.

Proof of Lemma 3.17 By deûnition, for any x ∈ X1, we have

φ(x) = ( f1(x)
g1(x)

, . . . , fn2(x)
gn2(x)

) ,

where f1 , . . . , fn2 , g1 , . . . , gn2 ∈ R[X1] and g−1
i (0) ∩ X1 = ∅ for any 1 ≤ i ≤ n2.

By abuse of notation we choose some representatives in R[x1 , . . . , xn1] and consider
f1 , . . . , fn2 , g1 , . . . , gn2 as functions in R[x1 , . . . , xn1]. Deûne

U ∶= {x ∈ Rn1 ∣
n2

∏
i=1

g i(x) /= 0} .

_enU is open inRn1 , X1 is a closed subset ofU , and φ can be naturally extended to a
regularmap φ̃∶U → Rn2 (by the same formula as φ). Note thatU is an aõne algebraic
manifold.

Let f ∶X2 → R be some function that is �at at some p ∈ X2. In particular, f ∈
C∞(X2;{p}); i.e., there exist an open subset V ⊃ X2 and a function F ∈ C∞(V) such
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that F is �at at p and F∣X2 = f . As φ̃∶U → Rn2 is continuous, then U ′ ∶= φ̃−1(V) is
an open subset of U , and so an open subset of Rn1 . Clearly U ′ contains X1. Denote
by G the pullback of F to U ′ via φ̃; i.e., G∶U ′ → R is deûned by G ∶= F ○ (φ̃∣U ′). By
Lemma A.6, as F is �at at p, G is �at at φ̃−1(p), and in particular, f ○ φ = G∣X1 is �at
at φ−1(p).

B Noetherianity of the Zariski Topology

First, as by deûnition any algebraic variety has a ûnite cover by aõne varieties, it is
enough to prove Proposition 2.4 for aõne varieties. Second, it is enough to prove
Proposition 2.4 for algebraic subsets of Rn . Let X ⊂ Rn be an algebraic set, U ⊂ X a
Zariski open subset, and {Uα}α∈I an open cover of U . We prove Proposition 2.4 in 3
steps.

Proof

Step 1 Assume X = U = Rn . By Proposition 2.2 for any α ∈ I there exists fα ∈
R[x1 , . . . , xn] such that Uα = {x ∈ Rn ∣ fα(x) /= 0}. As Rn ∖ ⋃α∈I Uα = ∅, the zero
locus of ⟨ fα⟩α∈I (the set of all points x ∈ Rn satisfying f (x) = 0 for any f in the ideal
generated by all of the polynomials { fα}α∈I) is empty. By Hilbert’s Basis _eorem,
R[x1 , . . . , xn] is Noetherian, and so there exist g1 , . . . , gm ∈ R[x1 , . . . , xn] such that
⟨ fα⟩α∈I = ⟨g1 , . . . , gm⟩. As the zero locus of this ideal is empty, g ∶= ∑m

l=1 g
2
l satisûes

g−1(0) = ∅. As g ∈ ⟨ fα⟩α∈I there exist a1 , . . . , ak ∈ R[x1 , . . . , xn] and α1 , . . . , αk ∈ I
such that g = ∑k

i=1 a i ⋅ fα i . _is implies that fα1 , . . . , fαk have no common zeroes, and
so ⋃k

i=1 Uα i = Rn .

Step 2 Assume X = U . _ere exist {Vα}α∈I open in Rn such that Uα = Vα ∩ X. _en
{Vα}α∈I ∪ (Rn ∖X) is an open cover ofRn . By Step (1) it has a ûnite subcover, and so
intersecting this subcover with X we get a ûnite subcover of U .

Step 3_e general case. ByProposition 2.3,U is itself an aõne algebraic variety. More-
over, {Uα ∩U}α∈I is an open cover of U . By considering some closed embedding of
U in some Rm , we are reduced to Step (2).
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