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Schwartz Functions on Real Algebraic
Varieties

Boaz Elazar and Ary Shaviv

Abstract. We define Schwartz functions, tempered functions, and tempered distributions on (pos-
sibly singular) real algebraic varieties. We prove that all classical properties of these spaces, defined
previously on affine spaces and on Nash manifolds, also hold in the case of affine real algebraic
varieties, and give partial results for the non-affine case.

1 Introduction

Schwartz functions are classically defined as smooth functions such that they, and
all their (partial) derivatives, decay at infinity faster than the inverse of any polyno-
mial. On R, for instance, a smooth function f is called Schwartz if for any n, k
Nu {0}, x" f¥) is bounded (where f(¥) is the k-th derivative of f). This was formu-
lated on R" by Laurent Schwartz, and later on Nash manifolds (smooth semi-algebraic
varieties); see [dC}/AG]. As Schwartz functions are defined using algebraic notions, it
is natural to define Schwartz spaces of real algebraic varieties; this is the main goal of
this paper.

The basic idea is to define the set of Schwartz functions on a real algebraic set in R”
as the quotient of the space of Schwartz functions on R” by the ideal of Schwartz func-
tions that vanish identically on the set. We define tempered functions similarly. Start-
ing with these definitions we develop a theory of Schwartz spaces for arbitrary real
algebraic varieties, and in particular prove that many properties of Schwartz spaces
shown in [dC,/AG] also hold in the (singular) algebraic case.

The main results for affine varieties appearing in this paper are as follows:

(1) Let X c R” be an algebraic set; then 8(X) is a Fréchet space (Lemma.

(2) Let ¢:X; — X, be a biregular isomorphism between two algebraic sets X; c
R™, X, ¢ R™. Then ¢*[g(x,):8(X2) — 8(X1) is an isomorphism of Fréchet
spaces. This implies that the definition of Schwartz functions on an affine alge-
braic variety does not depend on the embedding (Lemma3.6{(i).

For (3)-(6) below, let X be some affine algebraic variety, and let Z c X be a Zariski
closed subset.

(3) (Tempered partition of unity) Let { V; } 1, be a Zariski open cover of X. Then there
exist tempered functions {f3;}, on X, such that supp(B;) c V; and .72, B; = L.
Furthermore, for any m-tuple (S, . .., S ) of tempered functions on X satisfying
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these conditions, and for any ¢ € 8(X), we have (8; - ¢)|v, € S(V;) (Proposition

and Corollary [3.26).

(4) The restriction ¢ — ¢|; maps $(X) onto 8(Z) (Theorem[3.9).

(5) Define U := X \ Z and Wy := {¢ € 8(X)|¢ isflaton Z}. Then W is a closed
subspace of §(X) (and so is a Fréchet space), and extension by zero S(U) - Wy
is an isomorphism of Fréchet spaces whose inverse is the restriction of functions
(Theorem[3.23). As a consequence, the restriction morphism of tempered distri-
butions $* (X) - 8*(U) is onto (Theorem 3.29).

(6) The assignment of the space of Schwartz functions (resp. tempered functions,
tempered distributions) to any open U c X, together with the extension by zero,

Ext;, from U to any other open V > U (restriction of functions, restrictions of
functionals from 8* (V') to 8*(U)), form a flabby cosheaf (sheaf, flabby sheaf) on

X (Propositions and[4.4).

The most difficult result above is (5). A smooth function defined on a smooth al-
gebraic set that vanishes identically with all its derivatives at some point is called flat
at this point. In order to define Wy, we have to make sense of the notion “flat” at a
singular point. We do this by the following (a-priori naive) definition: a function f
on an algebraic set X ¢ R” is flat at y € X if it is the restriction of some C*(R")
function that is flat at y. Then the proof of (5) is quite quickly reduced to a Whitney
type extension problem. This point of view suggests the characterization of Schwartz
functions by local means only: the global conditions of “rapid decaying at infinity” are
translated to local conditions of flatness at “all points added in infinity” in some com-
pactification process. We make this claim precise in Theorem 3.23]and Remark 3.27}

For general (not necessarily affine) varieties, we define Schwartz functions as sums
of extensions by zero of Schwartz functions on affine open subvarieties and prove
some generalizations of (1)-(6) above. The main obstacle for generalizing the rest is
the absence of non-affine partition of unity, i.e., our inability to generalize (3) to the
non-affine case.

Structure of the paper In Section[2] we present the preliminary definitions and re-
sults used in this paper, mainly from real algebraic geometry and Schwartz spaces on
affine algebraic manifolds.

In Section 3| we define the space of Schwartz functions on an affine algebraic vari-
ety and study its properties. We start by showing that it is a Fréchet space and proving
that a useful partition of unity exists. Afterwards we define the notion of flat functions
at a point on an affine algebraic variety and characterize the spaces of Schwartz func-
tions on Zariski open subsets of an affine algebraic variety. We also define tempered
distributions and prove that the restriction morphism from the space of tempered
distributions on an affine algebraic variety to the space of tempered distributions on
an open subset of it is onto. The proofs of two key lemmas in Section 3| require some
tools from subanalytic geometry; Appendix [A]is dedicated to presenting these tools
and completing the two proofs. Mainly, a Whitney type extension theorem is proved
(Lemma [3.16): that a function on a compact algebraic set that can be extended to a
flat function “pointwise” in some algebraic subset, can be “uniformly” extended to a
single function that is flat everywhere in the same subset.
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As proving that tempered functions and tempered distributions form sheaves and
that Schwartz functions form a cosheaf are quite technical, Section [4]is dedicated to
these proofs.

In Section[5|we define the spaces of Scwhartz functions and of tempered functions
on an arbitrary (not necessarily affine) real algebraic variety, and repeat some of the
results we proved in the affine case. We also briefly discuss the difficulty of general-
izing the rest of these results to the non-affine case and suggest an idea that might
enable overcoming this difficulty.

Conventions Throughout this paper the base field is always R. We always consider
the Zariski topology, unless otherwise stated. If X is a set, Y c X is some subset and

f is a real valued function on Y, we denote by Ext} ( f) the real valued function on X
defined by

f(x) ifxey,

Ext} () (x) = {0 oy,

i.e., Ext} is the “extension by zero” operator. If g is a real valued function on X we
denote its restriction to Y by Resy(g).

2 Preliminaries

In this section we present the basic definitions and results used in this paper from real
algebraic geometry (2.1), Schwartz functions on affine algebraic manifolds (2.2), and

Fréchet spaces (2.3).
2.1 Real Algebraic Geometry

We start by recalling the basic definitions:

Definition 2.1 (following [BCR]) Let X c R"” be an algebraic set (i.e., the zero locus
of a family of polynomials in R[x, ..., x,]). Let

Ing(X) :={peR[x1,...,x,] : plx =0}.

Define the coordinate ring of X by R[X] := R[x1,...,%,]/Ia1g(X). Let V be an open
subset of X. A function f:V — R is called a regular function if f = £, where g, h €
R[X]and h~}(0)nV = @. Note that the space of regular functions on V forms a ring.
Moreover, the assignment of such a ring to any open subset of X defines a sheaf on
X. We call this sheaf the sheaf of regular functions on X and denote it by Rx. A map
F:V - R"™ (F(x) = (Fi(x),...,Fu(x))) is called a regular map if for any 1 < i < m:
F; is aregular function. Let Y ¢ R™ be an algebraic set, and let U be an open subset of
Y. A map from V to U is called a biregular isomorphism if it is a bijective regular map
whose inverse map is also regular. In that case we say that V is biregular isomorphic
to U. An affine algebraic variety is a topological space X’ equipped with a sheaf of real
valued functions Rx- and isomorphic (as a ringed space) to an algebraic set X c R"
with its Zariski topology equipped with its sheaf of regular functions Rx. The sheaf
Ry is called the sheaf of regular functions on X', and the topology of X’ is called the
Zariski topology. An algebraic variety is a topological space X', equipped with a sheaf
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of real valued functions Ry such that there exists a finite open cover {U;}}_; of X',
with each U; equipped with the sheaf Ry/|y, being an affine algebraic variety. The
sheaf Ry is called the sheaf of regular functions on X', and the topology of X is called
the Zariski topology. Note that unlike in the complex case, the ring of regular functions
onR" isnot R[x,...,x,]; e.g, =7 onR.

The following two propositions discuss the nature of algebraic sets and of their
open subsets.

Proposition 2.2 ([BCR, Proposition 2.1.3]) Let X c R" be an algebraic set. There ex-
ists f € R[x1, X2, . .., Xy, | such that X is the zero locus of f, i.e., X = {x ¢ R"|f(x) = 0}.

Proposition 2.3 ([BCR| Proposition 3.2.10]) Let X c R" be an algebraic set, and U
an open subset of X. Then (U, Rx|y) is an affine algebraic variety (when we define for
any open U’ c U c X: Rx|y(U’) := Rx(U")).

Propositionis implicitly used in [BCR] (see for instance [BCR| Corollary 3.2.4]).
For the reader’s convenience we give its detailed proof in Appendix B}

Proposition 2.4 (the Zariski topology is Noetherian) Let X be a real algebraic vari-
ety, U c X an open subset, and let {U, } 41 be an open cover of U. Then there exists a
finite subcover {Ug, }*_ .

Definition 2.5 An affine algebraic variety is complete if any regular function on it
is bounded.

Remark 2.6 Deﬁnitionis a special case of [BCR| Definition 3.4.10]. Note that
if X is a complete affine algebraic variety, then for any closed embedding i: X — R”",
i(X) is compact in the Euclidean topology on R".

Proposition 2.7 (Algebraic Alexandrov compactification [BCR, Proposition 3.5.3])
Let X be an affine algebraic variety that is not complete; then there exists a pair (X, i)
such that

() X is a complete affine algebraic variety;

(i) i:X — X is a biregular isomorphism from X onto i(X);

(iii) X \ i(X) consists of a single point.

2.2 Schwartz Functions and Tempered Functions on Affine Algebraic Manifolds

An affine algebraic variety that has a structure of a smooth differential manifold when
being closely embedded in R” is called an affine algebraic manifold (this property is
independent of the embedding). We now present the basic theory of Schwartz func-
tions and tempered functions on affine algebraic manifolds, as developed in [AG]. In
[AG] the theory was developed for a much richer category, that is the category of Nash
manifolds, and all the results we present here are special cases. In particular our very
basic definitions of Schwartz and tempered functions are not the original definitions
used in [AG]; however, they are equivalent.
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Definition 2.8 (cf. [AG| Definition 4.1.1, Theorem 4.6.1]) Let M c R" be an algebraic
subset that is also a smooth differential submanifold of R”. Let S(R") be the Fréchet
space of classical real valued Schwartz functions on R”, and let Is., (M) c S(R")
be the ideal of all Schwartz functions that vanish identically on M. Define the space
of Schwartz functions on M by 8(M) := S(R")/Isch (M) equipped with the quotient
topology (equivalently we can define S(M) by restrictions of functions from S(R"),
but then the definition of the topology is a bit more complicated). Let M be an affine
algebraic manifold, and let i: M — R" be a closed embedding. A function f: M - R
is called a Schwartz function on M if i, f := f o i”' € §(i(M)). Denote the space of
all Schwartz functions on M by 8(M), and define a topology on 8(M) by declaring
a subset U c 8(M) to be open if i,(U) c 8(i(M)) is an open subset. S(M) is a
well-defined Fréchet space (independent of the chosen embedding).

Definition 2.9 (cf. [AG, Definition 4.2.1, Theorem 4.6.2]) A function #:R" — R is
called tempered if it is a smooth function such that for any & € (NU{0})" there exists
a polynomial p, € R[xy, ..., x,] such that g‘:lxt (x)| < pa(x) forany x € R". Let M
be an affine algebraic manifold, and let i: M = R" be a closed embedding. A function
t: M — Ris called a tempered function on M if i, f := f o i~! is the restriction to i(M)
of a tempered function from R”. Denote the space of all tempered functions on M by
T(M). T(M) is a well defined space (independent of the chosen embedding).

The following results are of special importance for us.

Proposition 2.10 (cf. [AG, Proposition 4.2.1]) Let M be an affine algebraic manifold
and a a tempered function on M. Then aS(M) c 8(M).

Theorem 2.11 (Partition of unity ¢f. [AG, Theorem 4.4.1]) Let M be an affine alge-
braic manifold, and let {U; }"_, be a finite open cover of M by affine algebraic manifolds.

(i)  There exist tempered functions ay, &y, ..., &, on M such that supp(a;) c U; and
Z?:] o; = 1

(ii) Moreover, a; can be chosen in such a way that for any ¢ € S(M), (a; - ¢)|u, €
S$(U;y).

Proposition 2.12 (cf. [AG| Proposition 4.5.3] and Proposition2.4) ~ Let M be an affine
algebraic manifold. The assignment of the space of tempered functions on U, to any open
U c M, together with the usual restriction maps, define a sheaf of algebras on M.

Theorem 2.13 (cf. [AG, Theorem 4.6.1]) Let M be an affine algebraic manifold, and
Z < M be a closed algebraic submanifold. The restriction S(M) — 8(Z) is defined,
continuous, and onto. Moreover, it has a section s:8(Z) — 8(M) such that if ¢ € 8(Z)
is zero at some point p with all its derivatives, then s(¢) is also zero at p with all its
derivatives.

Theorem 2.14 (cf. [AG} Theorem 4.6.2]) Let M be an affine algebraic manifold, and

Z = M be a closed algebraic submanifold. The restriction T(M) — T(Z) is defined,
continuous and onto. Moreover, it has a section s:T(Z) — T(M) such that ifa € T(Z)
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is zero at some point p with all its derivatives, then s(a) is also zero at p with all its
derivatives.

Theorem 2.15 (Characterization of Schwartz functions on open subsets: ¢f. [AG, The-
orem 5.4.1]) Let M be an affine algebraic manifold, Z — M be a closed algebraic
submanifold, and U = M \ Z. Let Wy, be the closed subspace of S(M) defined by

Wy = {¢ € S(M) | ¢ vanishes with all its derivatives on Z}.

Then restriction and extension by zero give an isomorphism S(U) = Wy.
2.3 Fréchet Spaces

A Fréchet space is a metrizable, complete locally convex topological vector space. It
can be shown that the topology of a Fréchet space can always be defined by a countable
family of semi-norms. We use the following results.

Proposition 2.16 (cf. [T, Chapter10]) A closed subspace of a Fréchet space is a Fréchet
space (for the induced topology).

Proposition 2.17 (cf. [T} Proposition 7.9 and Chapter 10]) A quotient of a Fréchet
space by a closed subspace is a Fréchet space (for the quotient topology). Moreover, let
F be a Fréchet space whose topology is defined by a basis of continuous semi-norms P,
let K c F be a closed subspace, and let ¢: F — F/K be the canonical mapping of F
onto F/K. Then the topology on F[K is defined by the basis of continuous semi-norms

p(x) = infy(y-z p(x), where p € P.

Theorem 2.18 (Banach open mapping [T} Chapter 17, Corollary 1]) A bijective con-
tinuous linear map from a Fréchet space to another Fréchet space is an isomorphism.

Theorem 2.19 (Hahn-Banach cf. [T, Chapter 18]) Let F be a Fréchet space, and let
K c F be a closed subspace. By Proposition[2.16] K is a Fréchet space (with the induced
topology). Define F* (resp. K*) to be the space of continuous linear functionals on F
(on K). Then the restriction map F* — K* is onto.

3 The Affine Case

Definition 3.1 Let X c R" be an algebraic subset. Let S(R") be the space of classical
real valued Schwartz functions on R”, and let Isch (X) ¢ S(R") be the ideal of all
Schwartz functions that vanish identically on X. Define the space of Schwartz functions
on X by 8(X) := 8(R")/Iscn (X) equipped with the quotient topology.

Remark 3.2  An equivalent definition is

8(X) = {f: X > R:3f e S(R") such that f]x = f},

but then the definition of the topology is a bit more complicated. Recall that the topol-
ogy of S(IR") is given by a system of semi-norms |f|p := sup, . |[Df(x)|, where D
is an algebraic differential operator on R”. This enables us to introduce topology on
$(X) by the system of semi-norms | f|p := inf{|f|p : f € S(R"), flx = f}, where D
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is an algebraic differential operator on R”. By Proposition [2.17} the two definitions
coincide.

Lemma 3.3 8(X) is a Fréchet space.

Proof Wehavethat S(R") isa Fréchet space; Isch (X) = Nyex{f € S(R")|f(x) = 0}
is an intersection of closed subsets and so the quotient is a Fréchet space (see Propo-
sition[2.17)). [ |

Lemma 3.4 Let X c R" be an algebraic set, and U c R" be some open set containing
X. Consider $(R") and 8(U) as defined in Definition[2.8| (U is an open algebraic set,
hence it can be considered as an affine algebraic manifold). Let 1Y, (X) c 8(U) be
the ideal of all Schwartz functions on U that vanish identically on X. Then 8(X) =
8(U)/1Z,, (X) (isomorphism of Fréchet spaces).

Proof By the same reasoning as in Lemma 8(U)/I1Z, (X) is a Fréchet space. By
Theorem 8(U) is isomorphic to a closed subspace of S(R"), and so by Propo-
sition enough to check that §(X) := §(R")/Iscn(X) and 8(U)/IJ, (X) are
equal as sets, i.e., that a function on X is a restriction of a Schwartz function on R” if
and only if it is a restriction of a Schwartz function on U. Let f € S(U)|x. There exists
F € 8(U) such that F|x = f. By Theorem[2.15} extending F by zero to a function on
R” (denote it by F) is a function in S(R"). Then f = F|x and so f € S(R")|x. Let
f € 8(R")|x. There exists F € S(R") such that F|x = f. Denote U’ := R" \ X. Then
{U, U’} form an open cover of R” and so, by Theorem|2.11} there exist tempered func-
tions ay, a, such that supp(a;) c U, supp(a;) c U’, and a; + a, = 1 as a real valued
function on R”. Moreover, a; and «, can be chosen such that (a; - F)|y € S(U). As
oq|x =1, it follows that ((a; - F)|u)|x = (o1 - F)|x = F|x = f,andso f e S(U)|x. W

Lemma 3.5 Let X c R" be an algebraic set, and let U c R” be some open set con-
taining X. Consider T(R") and T(U) (the spaces of tempered functions on R" and on
U, respectively) as defined in Definition2.9|(U is an open algebraic set, hence it can be
considered as an affine algebraic manifold). Then a function f: X — R is a restriction
of a function F € T(R") if and only if it is a restriction of a function F € T(U).

Proof Let f:X — R be a restriction of some function F € TJ(R"). By Proposi-
tion[2.12} Fly € T(U), and clearly f = (F|y)|x; i.e., f is a restriction of a tempered
function on U. Let f:X — R be a restriction of some function F € T(U). Let
U’ := R"\ X. Then {U, U’} form an open cover of R", and so, by Theorem[2.11] there
exist tempered functions a;, ay € T(R") such that supp(«a;) c U, supp(a,) c U’, and
a1 + ay = las areal valued function on R”. As tempered functions on affine algebraic
manifolds form a sheaf (see Proposition[2.12), a1 |y € T(U) and as T(U) is an algebra,
a1|y - F € T(U). Moreover, defining F':R"” - R by F'|y := F and F'|gs\y := 0; then
as supp(a) c U, we get that a; - F' € T(R"). Since ay|x = 1, we have (a; - F')|x = f;
i.e., f is arestriction of a tempered function on R". ]
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Lemma 3.6 Let ¢: X; — X, be a biregular isomorphism between two algebraic sets
X; c R™ agnd X, c R™,

1) ¢*[s(x,):8(X2) = 8(X1) is an isomorphism of Fréchet spaces.
(i) If f: X — R is a restriction of a tempered function on R™ (see Definition 2.9),
then ¢* f := f o ¢ is a restriction of a tempered function on R™.

Proof By definition, for any x € X;, we have

o) (A Sl
a(x) g (x)
where fi,..., fny> §>-- > &n, € R[X1] and g;7'(0) N X; = @ foranyl < i < n,.
By abuse of notation we choose some representatives in R[x;, ..., x,, | and consider
Sir-e o> furr 815+ - > gn, as functions in R[xy, ..., xy, |. Define

U::{xeR”‘|jlj1gi(x)#0}.

Then U is open in R™ (also in the Euclidean topology), X; is a closed subset of U,
and ¢ can be naturally extended to a regular map ¢: U — R™ (by the same formula
as ¢). Note that U is an affine algebraic manifold.

Similarly to the construction of U and ¢ above, we can construct an open V c R"?
and a function ¢: V — R™ such that ¢|x, = ¢~'. Note that ¢ # ¢ ': in general ¢ is
not a bijection and U ¢ V. Consider the following diagram, where « is defined by
a(x,y) = (%9 + §(x)):

X]CH U U xR™,
v
Id xg
Clearly, U x {0} is an affine algebraic manifold isomorphic to U. Denote U :=
a(U x {0}); then « restricted to U x {0} is an isomorphism of the affine algebraic

manifolds U x {0} and U - the inverse map is given by a™'(x, y) = (x, y — ¢(x)).
Thus, we have

S(X1) 2 8(U) /18 (X1) 2 8(T) /154 (a(Xy x {0})) = 8(T) /154 ((1d x) (1)),

where the first equivalence is by Lemma 3.4} the second is due the fact that U = U x
{0} = Uand 8(U) = 8(U x {0}) = 8(U), and the third follows from the fact that
?lx, = ¢. Asalways, IJ, (X) is the ideal in 8(U) of Schwartz functions identically
vanishing on X. As U is closed in U x R" (as it is defined by polynomial equalities
on U x R"); then by Theorem [2.13|and Proposition 2.17} we get that

S(U)/Isen( (1dx)(X1)) = S(U x R™) /15" ((1d x9) (X))
Applying Lemma 3.4]again for the open subset U x V c U x R, we get that

S(U x R™) /TG (1dx)(X1)) = 8(U x V)/IggY ((1d x9)(X1)),

https://doi.org/10.4153/CJM-2017-042-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2017-042-6

1016 B. Elazar and A. Shaviv

and thus we obtain
8(X1) = 8(U x V)/Iga' ((Idxe)(X1)).
Repeating the above construction using the diagram

oxId

/m\
X,——=V R™* x V
S~ 7

¢xId

yields
8(X2) 28(U x V)/Igi," (97" x1d)(X2)).

Clearly (Idx¢)(X;) = (¢! x Id)(X;), and so 8(X;) = 8(X;). Note that the
isomorphism constructed is in fact the pull back by ¢ from §(X;) onto 8(X;). This
proves ().

The proof of (ii) is the same as the proof of (), where one should consider tempered
functions instead of Schwartz functions, and use Lemma[3.5/and Theorem[2.14]instead

of Lemma[3.4land Theorem []

Definition 3.7 Let X be a real affine algebraic variety, and let i: X — R" be a closed
embedding. A function f: X — R is called a Schwartz function on X if i, f := foi '€
8(i(X)). Denote the space of all Schwartz functions on X by §(X), and define a
topology on 8(X) by declaring a subset U c S(X) tobe openifi,(U) c 8(i(X))isan
open subset. By Lemma , 8(X) is well defined (independent of the embedding
chosen).

Remark 3.8 (i) If X @ R™, then Definition[3.7]coincides with the classical one.
(ii) If X is smooth, then Definition[3.7) coincides with Definition 2.8

Theorem 3.9 Let M be an affine algebraic variety, and let X ¢ M be a closed sub-
set. Then the restriction from M to X defines an isomorphism 8$(X) = §(M)/I3%, (X)
(with the quotient topology), where I3%, (X) is the ideal in 8(M) of functions identically
vanishing on X.

Proof Take some closed embedding M — R"; then X < M — R" are closed em-
beddings. Then

8(M)/Isen(X) = (S(R™)/Iseh (M) [Tsen(X) = 8(R")/Iscn (X) = $(X).  m

Remark 3.10 In particular, for any ¢ € S8(M), one has that ¢|x € S(X), and this
restriction map 8(M) — 8(X) is onto.

Definition 3.11 Let X be an affine algebraic variety. A function f: X — R is called
a tempered function on X, if there exists a closed embedding i: X — R” such that
i.f = foilisarestriction of a tempered function on R” to i(X). By Lemma
in that case, this property holds for any closed embedding. The set of all tempered
functions forms a unitary algebra, which we denote by T(X).
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Proposition 3.12  Let X be an affine algebraic variety, t € T(X) and s € $(X). Then
t-se8(X).

Proof Consider some closed embedding i: X — R” and identify i(X) with X (by
definitions of tempered and Schwartz functions the choice of the embedding does
not matter). There exist T € T(R") and S € S(R") such that ¢ = T|x and s = S|x. By
Proposition[2.10] T- S € S(R"),and so (T - §)|x = t-s € 8(X). [ |

Corollary 3.13 (Proposition[2.3) Let X be an affine algebraic variety, and U an open
subset of X. Then (U, Rx|v) is an affine algebraic variety, and we can define S(U).

There is a canonical way of defining a Euclidean topology on an algebraic variety;
see [BCR, Remark 3.2.15(a)]. In what follows, when using the notion support, we
always mean the support in this topology, rather than in Zariski topology.

Proposition 3.14 (tempered partition of unity) Let X be an affine algebraic variety,
and let { V; } be a finite open cover of X.

(i)  There exist tempered functions {; }, on X, such that

supp(Bi) c Vi and ) Bi=1
i=1
(i) We can choose {f;}", in such a way that for any ¢ € 8(X), (Bi9)|v, € 8(V;).

Proof Consider some closed embedding X — R”. Forany1< i < m,let U; c R" be
some open subset such that V; = X n U;. Define Uy, := R” \ X we get that {Ul-}l’.':lrl
is an open cover of R” (by affine algebraic submanifolds). By Theorem there
exist {a; }*1, tempered functions on R" such that supp(a;) c U;, X7+ a; = 1, and
{a;}7*! can be chosen in such a way that (a;y)|y, € 8(U;) for any y € §(R"). For
1< i< m+1define f; := a;|x. Clearly, for1 < i < m, supp(8;) ¢ V;. Since a41|x = 0,
Bm+lx = 0, and so Y12, B; = 1. By definition, {f;}?, are tempered functions on X.
This proves (i).

Now consider ¢ € 8(X). By definition, there exists ¢ € S(R") such that ¢ = @|x
and for1 < i <m, (a;9)|u, € S(U;). By Theorem[3.9} as V; is closed in U, we get that

((ai@)lu)lv, € S(Vi). But ((«i9)|u,)lv; = (Bi9)|v;> and so (ii) is proved. u

Definition 3.15 Let X c R” be an algebraic set and let y € X be some point. A
function f: X — R is flat at y if there exists F € C*°(R") with f = F|x, such that the
Taylor series of F at y is identically zero. If f is flat at y for any y € Z (where Z c X is
some subset), we say that f is flat at Z.

3.0.1 An Important Remark

As the Taylor series is only dependent on the Euclidean local behaviour of functions,
one can replace R” above by any Euclidean open subset of R"” containing X. This is
done in Section[A.2] and is used when it is more convenient.
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3.0.2 Warning

That f is flat at Z means that f is flat at y for any y € Z. It does not mean, a-priori,
that there exists F € C*°(R") with f = F|x, such that all the Taylor series of F, at any
point y € Z are identically zero. Lemma 3.16|addresses this matter.

The proofs of Lemmas[3.16/and3.17]are given in Appendix[A} as they require some
tools from subanalytic geometry.

Lemma 3.16 Let X be a compact (in the Euclidean topology) algebraic set in R", and
let Z c X be some (Zariski) closed subset. Define U := X \ Z and

Wy = {¢: X > R|3p € C*(R") such that §|x = ¢ and ¢ is flat at Z},
(WE)eomP .= (¢ e C=(R")|¢ is compactly supported and is flat at Z}.

Then for any f € Wy, there exists fe (WE"ycomp sych thatﬂx = f.

Lemma 3.17 Let ¢: X1 — X, be a biregular isomorphism between two algebraic sets

XicR™and X, c R™. If f: X, — Ris flat at some p € X,, then ¢ f = f o @ is flat at
-1

9~ (p)-

Definition 3.18 Let X be an affine algebraic variety, and let f: X — R be some
function. We say that f is flat at p € X if there exists a closed embedding i: X — R”
such that i, f := foii(X) - Ris flat at i(p). By Lemma in that case this
property holds for any closed embedding.

Proposition 3.19 (Extension by zero) Let X be an affine algebraic variety, and U an
open subset of X. By Corollary 8(U) is defined. Then the extension by zero to X of
a Schwartz function on U is a Schwartz function on X, which is flat at X \ U.

Proof Since X is affine, we can choose some closed embedding X < R”, and so
we can think of X as an algebraic set. According to Proposition [2.2] there exists F €
R[x1,...,x,] such that X is the zero locus of F (denote X = zeros(F)). U c X is
Zariskiopenin X, i.e., Z := X\ U is Zariski closed in X, thus Z is Zariski closed in R".
As before, there exists G € R[xy, ..., x, ] such that Z = zeros(G). Define V := R" \ Z.
Note that U = X \ Z is a closed subset of V,as X \ Z = X n V. As V is open in R",
by Proposition[2.3} V is an affine variety. Consider some closed embedding V — R™.
By Theorem(U) = 8(V)|u. Let h € 8(U); then there exists i € S(V) such that
h = h|y. As V is an open subset of the affine algebraic manifold R”, by Theorem 2.15|
the extension of h by zero to R” (denote it by E) is a Schwartz function on R” that is
flat on Z. Finally, defining T := hx, we get that 1 € $(X) (by Deﬁmtlon! ), hly =

(by definition), and his flat on X \ U (as T is an extension of h to R” that is ﬂat at
X\ D). |

Lemma 3.20  Let X be a compact (in the Euclidean topology) algebraic set in R”, then

8(X)={f:X->R: 3f € C*(R") such that flx = f}-
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Proof Theinclusion c is trivial, as S(R") c C*(R"). For the inclusion o, take some
ge{f:X > R:3f e C°(R") such that f|x = f}. Let g be some C*(R") function
satisfying g]x = g. Let p € C*(R") be a compactly supported (in the Euclidean
topology) function such that p|x = 1(itis standard to show such p exists by convolving
the characteristic function of some bounded open subset containing X with some
appropriate approximation of unity). Then p - g is a smooth compactly supported
function on R", hence p - g € §(R"). Moreover, (p-g)|x = glx = g andso g €
8$(X). [ |

Lemma 3.21 Let X be a compact (in the Euclidean topology) algebraic set in R", and
let Z c X be a Zariski closed subset. Define U := X\Z, Wz := {¢ € S(X)|¢ is flat on Z}
and W§" = {(p € 8(R™)|¢ is flat on Z}. Then for any f € Wy, there exists | € wg
such that flx =

Proof This is immediate from Lemmas[3.16land [3.20 ]

Proposition 3.22 Let X be an affine algebraic variety, and let Z c X be some closed
subset. Define U := X \ Z and Wy, := {¢ € 8(X)|¢ is flat on Z}. Then restriction from
X to U of a function in Wy, is a Schwartz function on U, i.e., Resy (Wz) c 8§(U).

Proof We first prove the case where X is complete, and then deduce the non-com-
plete case from the complete case.
Consider X as an algebraic subset in R”.

Case I: X is complete. By Remark- 2.6} X is compact in the Euclidean topology in R”".
Define UR" :=R" \ Zand W}~ := {¢ € S(R")|¢ is flat on Z}. Z is closed in R", and
so UR" is open inR" AsU = U]R N X, we get that U is closed in U®". We show that
indeed ResY (W) c 8(U) by showing the existence of the following 3 maps:

n
WR
ResW RCSRn
(1)

S(UR")
) (3)
Res}[(] - Q Rengn

S(U)

Clearly a restriction of a function in Wg{n to X liesin W, i.e., Res, is well defined.
By Lemma Res, is onto. Let g € WS Then, by Theorem[2.15] g|yz=r € S(UR"),
i.e., map (2) is well defined. Let h € S(UX"). Then, by Theorem[3.9} Ay € $(U), i.e.,
map (3) is well defined. Thus, Proposition [3.22]holds if X is complete.

Case 2: X is non-complete. Consider a one point compactification, i.e., a pair (X, i)
as in Proposition [2.7] and take some f € W, c §(X). As i:X — i(X) isa biregular
isomorphism, i, f := fo it € 8(i i(X)). As i(X) is open in X, by Proposmon
there exists f € $(X) such that i, f = f]; i(X) (f is the extension by zero to X of i, f).
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Let p:= X \ i(X) (by Proposition p is a single point, hence it is closed in X).
We claim that i(Z) u {p} is closed in X. Indeed, X \ (i(Z) u{p}) = i(X) N i(Z) is
open in i(X) (as Z is closed in X and i is a biregular isomorphism of X and i(X)),
and i(X) is open in X. Now define U’ := X \ (i(Z) u {p}), is open in X. By Case 1,
Resg (f) € $(U"). Observe that i~'|y- is a biregular isomorphism of U’ and U, and
50 (i!|ur)« Res§ (f) € S(U). But (i !|u)u Res{ () = (7w ) (i) = flos
thus f|y € S(U). [ |

Theorem 3.23  Let X be an affine algebraic variety, and let Z c X be some closed
subset. Define U := X \ Z and Wy := {¢ € 8(X)|¢ is flat on Z}. Then Wy is a closed
subspace of 8(X), and extension by zero S(U) — Wy (denote Exty:S(U) — Wy) is
an isomorphism of Fréchet spaces whose inverse is the restriction of functions (denoted
by ResY: W, — §(U)).

Proof As Wz = N,cz{¢ € 8(X)|¢ is flat on z} is an intersection of closed sets, it is
a closed subspace of $(X) and thus a Fréchet space (see Proposition[2.16).

By Proposition[3.19} the extension of a function in §(U) by zero to X is a function
in 8(X) that is flat at Z, i.e., Ext}y (8(U)) c Wy. Furthermore, we claim that Ext{" is
continuous.

Indeed, take some closed embedding X — R" and consider X as an algebraic
set. Define W = R"” \ Z. Then W is an affine algebraic manifold containing U
(which is an affine algebraic variety), and U = W n X, i.e., U is closed in W. Now
take some closed embedding W — RY; then by Theorem [3.9and Proposition
S(U) = 8(W)/I, (U). As W is open in R", by Theorem ‘ Ext?, is a closed em-
bedding (W) = 8(R") (and in particular it is a continuous map). Then we can
write I, (U) = 1%, (X) n 8(W). In particular, I, (U) is closed in $(R"). Finally,
as the embedding S(W) — S(IR") is continuous, the map

S(U) = 8(W)/(Isen(X) n8(W)) — S(R")/Ii(X) = 8(X)

is continuous as well, i.e., Ext{ is continuous.

By Proposition[3.22]the restriction of a function in Wy, to U is a Schwartz function
on U i.e., Res§ (W) c §(U).

By definition, Resy o Extiy:S(U) — 8(U) is the identity operator on §(U) and
Ext} oResy: W, — Wy is the identity operator on Wy. Thus, Ext}y is a continuous
(linear) bijection. Then, by Banach open mapping Theorem Ext} is an isomor-
phism of Fréchet spaces. u

Corollary 3.24  Let X be an affine algebraic variety. A Schwartz function f € 8§(X)
is flat at p € X if and only if f|x.(p1 € S(X N {p}).

Proof Apply Theorem[3.23|to Z = {p}. [ |

Remark 3.25 By the same argument for an arbitrary function f ¢ C*(X) (i.e.,
a function that is a restriction of a smooth function from an open neighborhood of
some closed embedding of X) and any p € X, the following conditions are equivalent:
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(i) fisflatatp.

(ii) There exists a smooth compactly supported function p on some affine space in
which X is closely embedded such that p is identically 1 on some open neigh-
borhood of p and

(f - P)lxgpy €S(X N {p}).

(iii) For any smooth compactly supported function p on any affine space in which X
is closely embedded such that p is identically 1 on some open neighborhood of
p, one has

(f-Plxipy € S(X N {p}).
Theorem [3.23|also implies that Proposition[3.14(ii) holds for any partition of unity:

Corollary 3.26  Let X be an affine algebraic variety, and let V. c X be some open
subset of X. Then for any 3 € T(X) such that supp(B) c V and for any ¢ € 8(X), one

has (B-¢)|v € S(V).

Proof By Proposition[3.12} 8- ¢ € $(X). Consider X as an algebraic subset of some
R". By definition, supp(f) is a closed subset of R” in the Euclidean topology. There
exists some Zariski open V ¢ R" such that V = V n X. As supp(B) c V, which is also
an open subset of R” in the Euclidean topology, the function - ¢ is flat on X \ V.

Thus, by Theorem[3.23} (8- ¢)|v € 8(V). ]

Remark 3.27  Theorem[3.23|suggests the following point of view on Schwartz func-
tions. Given an affine algebraic variety X, we take some affine compactification of it;
i.e., we consider X as an open subset of some complete affine variety Y (we used one
point compactification, but this is not necessary). Then a Schwartz function on X is
just a smooth function on Y (in the sense that it is the restriction to Y of a smooth
function on the ambient space of Y), that is flat on Y \ X. This point of view is con-
venient, as it involves only local properties; the condition of “rapidly decaying at in-
finity” is translated to the condition of flatness at “all points added in infinity” in the
compactification process. This is also true in the Nash category (by Theorem [2.15
and, more generally, [AG| Theorem 5.4.1]), and the easiest example is the case where
X =R, where one can identify R with the unit circle without a point.

Definition 3.28 Let X be an affine algebraic variety. Define the space of tempered
distributions on X as the space of continuous linear functionals on §(X). Denote this
space by 8*(X).

For instance, in the case X = R”, any tempered function ¢ € T(R") gives rise to
a tempered distribution &;, defined by &;(s) := [ s tdx for any s € S(R"). Not all
tempered distributions arise in such a manner, e.g,, Dirac’s Delta.

Theorem 3.29 Let X be an affine algebraic variety, and let U c X be some Zariski
open subset. Then Exty:8(U) < 8(X) is a closed embedding, and the restriction mor-
phism 8*(X) — 8*(U) is onto.
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Proof The first part of the theorem is just a restatement of Theorem (substitut-
ing Z = X \ U). The second part follows from the fact that S(X) is a Fréchet space
and from the Hahn-Banach Theorem (2.19). ]

4 Sheaf and Cosheaf Properties

This section is devoted to proving that tempered functions and tempered distributions
form sheaves (Propositions[4.3]and [4.4) and that Schwartz functions form a cosheaf
(Proposition[4.5)). The precise definition of a cosheaf is given right before Proposition

Lemma 4.1 (Restrictions of tempered functions to closed and to open subsets) Let
X be an affine algebraic variety, and let U c X be some open subset. Then

Resy U (T(X)) =T(X\U) and Res{(T(X))cT(U).

Proof Consider some closed embedding of X in some affine space; i.e., consider X
as an algebraic subset of R”. Then T(X) := Resa, (T(R")). In these settings X \ U is
also an algebraic subset of R", and so

T(X\U) := Respn V(T(R")) = Resi Y (Resi, (T(R™))) = Resy "V (T(X)).

This proves the first part of Lemmal4.1]

As U c X is open, there exists an open subset U ¢ R" such that U = U n X,
and U is closed in U. In particular U is an affine algebraic submanifold of R". Let
t € T(X). By definition there exists T € T(IR") such that T|x = t. By Proposition[2.12]
Tlg € T( U). By Proposition U is open affine, thus by the first part of the lemma,
tly = (Tlg)lv € T(V). m

Corollary 4.2 Let X be an affine algebraic variety, and let U,V c X be two open
subsets of X such that U c V. Then Res$(T(V)) c T(U).

Proof By Proposition[2.3} V is an affine algebraic variety, so we can apply Lemmaf4.]]
to the affine algebraic variety V and its open subset U. ]

Proposition 4.3  Let X be an affine algebraic variety. The assignment of the space of
tempered functions to any open U c X, together with the restriction of functions, form
a sheaf on X.

Proof By Corollary[4.2} the above is a pre-sheaf. Clearly, the axiom of uniqueness
holds.

Now let t; € T(U;) be such that for any i, j € I, t;|v,nu; = tj|u,nu;. Clearly, there
exists a unique function #: U — R such that for any i € I, #|y, = ¢;. In order to prove
that the existence axiom holds, it is thus left to show that t € T(U). As always, we can
consider X as an algebraic subset of R". By Proposition[2.4] we can assume |I| < oo by
choosing some subcover and showing |y, = t; only for indices i in this subcover (as
the functions we begin with agree on the intersections, this will automatically hold
for all the other indices we omitted). By standard induction on the number of indices
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(i.e., the number of sets in the chosen finite subcover), it is enough to show that the
following holds.
Let X c R" be an algebraic subset and let U}, U, c X be two open subsets.
Assume that for any i € {1,2} we are given t; € T(U;) such that #j|y,nu, =
t2|u,nu,- Then there exists a function ¢ € T(U uU,) such that t|y, = t, t|y, = ta.

Clearly, there exists a (unique) function t: U; U U, — R such that t|y, = t;. Itis
left to show that ¢ € T(U; U U,). Indeed, there exist open sets U; ¢ R” such that
U; = U; n X, and U; is closed in U;. Then, by Lemma | there exist T; € T(U;)
such that t; = Tj|y,. Define U = U; u U, and U = U, uU,. As U is an affine
algebraic manifold and {U,, U, } is an open cover of U, by Theorem 2.1 nthere exist
a1, &, € T(U) such that supp(a;) ¢ U; and & + &, = 1. Define T/(x) := Ext (T)
for i = 1,2. Define a new function on U by T:=o0;-T] + 0y Tj.

By Proposition in order to show that T e T(U), it is enough to show that
T|g, € T( U;) fori e {1,2}. Let us show this for i = 1 (symmetrical arguments work
fori = 2): Tlg = alg, - Tilg, + (@2 Ty)lg, = aulg, - Th + (a2 - Ty)|gs,- As the
space of tempered functions is an algebra, it is enough to show each of these three
functions belongs to T(U,). By Proposition alg, € T( Uy). By construction,
Ty € T(Uy). In order to show that («, - T} g, € T( U,) we use Propositionagain.
As {U;nU,, Uy ~ (supp(a,) N Uy)} is an open cover of U, it is enough to show that

( (0(2 . T2/)|61) |5mﬁz € T(ﬁl N ﬁz),
((062 : T,)|ﬁl) |fh\(supp((xz)nﬁl < T(Ul N (supp(az) n Ul))
The later is obvious as (2 T3)|5, )|, (supp( a)nD) = = 0, and the first also holds, since

both (x2|UnU € T(U;nU,) and T2|Un5 € T(Uyn U,), as U; n U, is open in both U

and in U, (and again by Proposmon. Finally,as T € T(U) and Uyu U, = U c U
is a closed subset, by Lemma[4.1] t = T|y,uu, € T(Uy U Uy). [ |

Proposition 4.4 Let X be an affine algebraic variety. The assignment of the space of
tempered distributions to any open U c X, together with restrictions of functionals from
8*(U) to 8* (V) for any other open V c U, form a flabby sheaf on X.

Proof Any open U c X is an affine algebraic variety (by Proposition 2.3), and any
open V c X contained in U is open in U. Thus, by Proposition [3.19} the above is a
pre-sheaf.

Let {U;} 1 be some open cover of U. By Proposition[2.4]there exists a finite open
cover {U;}¥_|. Note that U is an affine algebraic variety (by Proposition . Then,
by Proposition[3.14} for any 1 < i < k, there exists 3; € T(U) such that supp(B;) c U,
Yk Bi=1landforanyse8(U), (i -s)|u, € $(U;).

Now let &, { € 8*(U) be such that for any i € I, {|s(u,) = {|s(u,)- In particular,
as U isopenin U (and as {1,2,...,k} c I), forany 1 < i < k, &s(u,) = {|s(u,)- Let
s €8(U). Note that s = 5 (B; - 5), so we can calculate

k k k
E(s) - ¢(s) = & g/si's)) ~U((Bi+s)) = > (&8 -5) = C(Bi ) =

=1
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where the second equality follows from linearity of ¢ and {, and the third equality
follows from the facts that (B; - s)|u, € 8(U;) and &|g(u,) = {|s(u,)- Thus, we have
shown that the axiom of uniqueness holds.

Now let §; € 8*(U;) be such that for any i, j € I, &ils(u,nu;) = §jls(uinu;)- In
particular, as U; n U; is open in U (and as {1,2,...,k} c I), forany 1 < i < k,
§ils(uinuy) = &jls(uinu,)- We define a functional § € §*(U) by the following formula
forany s € $(U):

k k
SORKOACAD) EDWITAD]

We claim that for any a € I, one has ¢|s(y,) = & Indeed, {Us N Ui}i-‘=1 is an
open cover of the affine algebraic variety U,. Note that {B;|y, }%_, is “a partition of
unity” of U, as defined in Proposition ie, Bilu, € T(Uy) (this follows from
Proposition , Yk Bilu, = 1, supp(Bilu,) © Uy n U; and (by Corollary
for any s € 8(U,), one has (f;|u, - $)|v.qu;, € S(Uy N U;). Also note that for any
1< i<k, onehas &ls(u,nu;) = &ils(u.nu,)- Finally, we are ready to calculate (for any
s € 8(U,), where we also think of s as a function in 8(U), by the usual extension by

Zero):
k k k
£a() = Ea( RoBivs) = 2 EalBi-s) = R &i(Bi ) = E(s);
i.e., the axiom of existence holds. [ |

We recall the definition of a cosheaf on a topological space. For simplicity we as-
sume our cosheaves take values in the category of real vector spaces, but this can be
replaced by any other Abelian category with arbitrary coproducts.

A pre-cosheaf F on a topological space X is a covariant functor from Top(X) to
the category of real vector spaces, where Top(X) is the category whose objects are
the open sets of X, and whose morphisms are the inclusion maps. A cosheaf on a
topological space X is a pre-cosheaf such that for any open U c X and any open cover
{U;}ie1 of U, the following sequence is exact:

_@IF(Ui)

Ext; Ext,

® F(U;nU;)
(i.j)er
where the k-th coordinate of Ext;(®;, jyer &i,j) 18 Xier Eth:nU,.(fk,i - & k), and
Exty(®jer &) = Yier Exty (). When exactness is proved in Proposition all
calculations will be quickly reduced to finite subcovers. A cosheaf is flabby if for any
two open subsets U, V c X such that V c U, the morphism Ext}: F(V) — F(U) is
injective.

F(U) 0,

Proposition 4.5 Let X be an affine algebraic variety. The assignment of the space of
Schwartz functions to any open U c X, together with the extension by zero, Ext,, from
U to any other open V 2 U, form a flabby cosheaf on X.

Proof Anyopen V c X is an affine algebraic variety (by Proposition 2.3), and any

open U c X contained in V is open in V. Thus, by Theorem [3.29} the above is a
pre-cosheaf. It is left to show exactness.
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Let {U; }ic; be some open cover of U, and let s € S(U). By Proposition [2.4] there
exists a finite subcover {U; }¥ . By Propositionand Corollary we can apply
Proposition on U, and so there exist f,...x € T(U) such that Y5 g; = 1
and for any 1 < i < k, supp(f;) c U;, and (B; - s)|u, € 8(U;). Then we can write:
s=Yk Bi-s=3%k, Extg ((Bi - s)|u,)> and so Ext; is onto. It is left to show that
ker(Ext,) = Im(Ext,).

Assume we are given a finite subset J c I, and for any i € ], s; € S8(U;) such that
ey Extg (s;) = 0. Itis sufficient to prove that for any i > j € J (for some linear order
on J), there exists s; j € §(U; n U;) such that for any i € J,

U,' Ui
s; = Z EXtU;ﬁUj(Si)f) - Z EXtU;r‘nt(iji)'
i>jeJ i<jeJ
We prove this claim by induction on |J|. For |J| = 2 one has si|y,nu, = —=$2|lu,n0,>
so defining 5,1 = $2|u,nu,- the claim holds. The only non trivial fact to verify is that
s2luynu, € (U1 N Uz); indeed, by Proposition ‘ - ExtgiUU2 (s1) is a Schwartz func-
tion on U; U U, that is flat on U; U U, \ Uy, and Extg;UU2 (s2) is a Schwartz function
on U; U U, thatis flat on U; u U, \ U,. But as Extg;UUz (s2) = - Extg:UU2 (s1), we have
that Extg‘zuu2 (s2) is flat on (U; U Up) \ (Up n U,). Then by Theorem

52|U1F1U2 = (Eth;UUZ (52))|U10U2

is a Schwartz function on U; n U,.
Now assume the claim holds for any J of cardinality up to k, and let

J=4{1L2,....k k+1}.

Without loss of generality, we can assume U = U*! U;, and so forany 1 < i < k +1,
we have s; € 8(U;) such that 5] Extg (s;) = 0. Define U = U, U;. Note that
Sketlvy (UeanD) = 0- As{U; }k | is an open cover of the affine U, by Proposition
there exist {8;}*, c T(U) such that forany 1< i < k, supp(8;) c U; and ¥, B, = 1.

Let x € Ugsq N (Ugs N 0). By Proposition forany1<i<k, Extgi(si) is flat
at x. Then Ethm (sk1) = - 2K, Extg, (s;) is also flat at x. Applying Theorem
(note that U N (Ugsq N (U Ugsy)) = U), we get that (Extg, (sk1))lg € $(U). Now
by Corollary[3.26} we have

(Bilv, - Bxtginy,. (skalvinve,)) = Bilu, - (Bxtg,,, (ska))u, € S(U3).
Define forany 1< i < k,
Yi=si+ (ﬁi|U,» 'Eth:mUkH (Sk+1|UiﬂUk+l))'

Note that y; € $(U;) and that Y5 | Extgi (y:) = 0. Thus, by induction hypothesis, for
any 1< j < i <k, there exist s; ; € S(U; n U;) such that for any 1 <i <k,

U,' Ui
Yi= Z EXtU,-nU,-(Si,j)_ Z EXtUmUj(Sj,i)-

i>j>1 i<j<k
For any 1< i < k, define sg.1,; := filu,..nu; - Sk+1|ug,,nu;- Then

_ Ui
yi=si +Exty u (Skei)s
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where Uy, N U; is open in U;. As both y; and s; lie in 8(U;), so does
EthLHnui(skﬂ,i) =yi—Si.

We claim that sg,1,; € S(Ug41nU;). Denoting f := 3|y, 'ExtgﬁﬁUk l(sk+1|U,ﬂUk+l),
we saw above that f € 8(U;). Thus, as sk41,; = f|u,nu,,,» by Theorem we need to
show that f is flat at

U; \ (Uk+1 n U,‘) = (Uk+1 (@] U,') N Ugst.

Ukt

flat at (U; U Ugyy) N Ugyr. In particular, § := gly, is flat at (U; U Ugyq) \ Uy Let
X € (U; U Ugyq) N Ugyr, and let p € 8(U;) be “a bump function around x7, i.e., a
restriction to U; of a smooth compactly supported function on some affine space in
which U; is closely embedded such that p = 1 on some Euclidean open neighborhood
of x. Then, by Corollary @ (p - ®luingxy € 8(Ui ~ {x}). By Proposition [4.3|
Bilu,<gx) € T(Uin{x}). Thus, by Proposition (Bilu, P luinqxy € S(Uin{x}).
On the one hand, by Theorem 3.23}

Eth:\{x} ((ﬁi|U,- 'P'@|U,-\{x}) € 8(U;).

On the other hand, (Bi|u, - p - )|u, is a continuous function on U; that equals
Extg:\{x}((ﬂim - Dluiixy) on Ui N {x}. We deduce that

Exty! o ((Bilui P Dluiixy) = Bilu,-p- Dluis

and so (Bi|u, - p-&)|u, is flat at x. Finally, as flatness is a Euclidean local property, and
as p equals 1 on some Euclidean neighborhood of x;, it follows that 8;|y, - ¢ = f is flat

Define g == Exto**"“Y(s;,1). Then, by Theorem g € 8(U; U Ugyy), and g is

at x.
Then it is easily seen that for any 1 < i < k, we have
U,‘ Ui
S; = Z EXtU,ﬂUj(Si’j) - Z EXtU;ﬁUj(Sj’i)‘
i>je{1,2,...,k+1} i<je{1,2,...,k+1}

It is left to check that s;,; = Zle Ethl,::nU,- (Sk+1,i)- Indeed,

k k
U U

DBt n (skeni) = 2 Bxt L (Biluganus - Skaluganu;)

i-1 i=1

k
= Sk41” ZEth::ﬁUi(ﬁi|Uk+mUi) = Sk4l- n
i=1

5 The General Case

For any (not necessarily affine) algebraic variety X, denote the space of all real valued
functions on X by Func(X, R).

Lemma 5.1 Let X be an algebraic variety, and let X = U;‘:l X; = Uﬁ;kﬂ X; be two
open affine covers. There are natural maps ¢;: @F_ Func(X;, R) - Func(X,R) and
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¢2:®'_,,, Func(X;,R) - Func(X,R). Then

k k
¢1( ES(X,-)) = @ 8(X)/Ker(¢ilgr sx,))

has a natural structure of a Fréchet space, and there is an isomorphism of Fréchet spaces

$1(DE; 8(X1)) = ¢ (B_isy S(Xi)).

Proof It follows from Proposition that

b1 (X)) = (@S(X) [Ker(ilog, sx)

is indeed a Fréchet space. A direct sum of Fréchet spaces is clearly a Fréchet space,
and the kernel of ¢1|€BL| s(x;) s a closed subspace, as @k s; € Ker((/)d@i;:1 s(xp)) if
and only if for any x € X, ¥,.; si(x) = 0, where J, = {1 < i < k|x € X;}; i.e, the
kernel is given by infinitely many “closed conditions”.

Note that X = Ule Uj‘:k +1Xi N X is an open cover of X by affine algebraic vari-
eties. There is a natural map ¢s: @~ EB;-zk+1 Func(X; n X;,R) - Func(X,R). It is
therefore enough to prove that ¢, (®%, 8(X;)) = ¢s (B~ ®§'=k+1 8(XinXj)). Note
that {X; n X J'}j'=k 41 is an open cover of X;, and let ¢' denote the natural map

o
¢ ? Func(X; n X;,R) — Func(X;,R).
j=k+1

As ¢3 = ¢, 0o D, ¢/, it is enough to prove that

! 4
@ S(XiﬂXj)/Ker(W\@{
j=k+1 7
We have an equality of sets by Proposition [4.5/and its proof. By Theorem the
extension Extﬁ:ﬁmxj (8(XinX;)) c 8(X;)isaclosed embedding §(X; nX;) — 8(X;),
and in particular it is continuous. Thus we have, by Theorem [2.18} an isomorphism of
Fréchet spaces. ]

s(xinx;)) = 8(Xi).

=k+1

Definition 5.2 Let X be an algebraic variety, let X = ¥ | X; be some open affine
cover and consider the natural map ¢: @*_, Func(X;,R) - Func(X,R). Define the
space of Schwartz functions on X by §(X) = (®%, 8(X;))/ Ker(¢|ea’f_13(x,-))’ with
the natural quotient topology. By Lemma [5.1} this definition is inde};endent of the
cover chosen, and 8(X) is a Fréchet space.

Theorem 5.3 Let X be an algebraic variety, and let Z c X be some Zariski closed
subset. Then the restriction from X to Z defines an isomorphism 8(Z) = 8(X) /I3, (Z)
(with the quotient topology), where I3, (Z) is the ideal in $(X) of functions identically
vanishing on Z.

Proof This easily follows from the fact that if X = U}, X; is an affine open cover
then Z = U?, Z n X; is an affine open cover, and from Theorem |
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Lemma 5.4 Let X be an algebraic variety, and let t: X — R be some function. Then
the following conditions are equivalent:

(i)  There exists an open affine cover X = U, X; such that t|x, € T(X;) for any
1<i<k.
(ii) For any open affine cover X = UX_, X; and any1< i <k, t|x, € T(X;).

Proof Clearly, (ii) implies (i). For the other side, assume there exist two open affine
covers X = Uk, x; =U! X such that forany k +1< j <[, t|x; € T(X;). Fix some

j=k+1
1 < i < k. Note that {X; n Xj};szrl is an open cover of X;. By Proposition as
t|x, € T(X;) forany k+1< j < I, wehave t|x;nx, € T(X;n X;). Applying Proposition
[4.3|once again, we get that ¢, € T(X;). [ |

Definition 5.5 Let X be an algebraic variety. A real valued function £: X — R is
called a tempered function on X if it satisfies the equivalent conditions of Lemmal5.4}
Denote the space of all tempered functions on X by T(X).

Proposition 5.6  Let X be an algebraic variety, t € T(X) and s € $(X). Thent-s €
S$(X).

Proof Let X = U}, X; be some open affine cover such that s = 3"/ Ext (s;) for
some s; € S(X;). Then t|x, € T(X;), and by Proposition3.12]tx, - s; € 8(X;). Thus,
tos =i Exty, (si- t]x,) € $(X). |

Definition 5.7 Let X be an algebraic variety. A function f: X — R is called flat at
x € X if there exists an affine open neighborhood x € X; ¢ X such that f|y, is flat at
x. Itis called flat at Z c X if it is flat at every x € Z.

Remark 5.8 Equivalently, a function f: X — Ris called flat at x € X if for any affine
open neighborhood x € X; c X one has that f|x, is flat at x. This easily follows by
intersecting any two affine open neighborhoods.

Proposition 5.9 (Extension by zero for non affine varieties) Let X be an algebraic
variety, and let U be an open subset of X. Then the extension by zero to X of a Schwartz
function on U is a Schwartz function on X that is flat at X \ U.

Proof Consider some affine open cover X = ¥ | X;. Then U = UX_, (U n X;) is an
affine open cover of U. Take some s € $(U). By definition s = ¥*_ ExtY x, (si), for
somes; € S(Un X;). As U n X; is open in X;, by Proposition Extf,’hxi (si)isa
Schwartz function on X;, which is flat at X; \ (U n X;). Then

k k
Exty (s) = Bxty (Y Extloy, (1)) = 2 Bxtd (Extfoy, (s1))
i=1 i=1

k
= Z;Ext)}gi ( Eth'ﬁx,—(Si))
o

is by definition a Schwartz function on X, and clearly it is flat on X \ U. |
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Lemma 5.10 (Restrictions of tempered functions to closed and to open subsets for
non-affine varieties) Let X be an algebraic variety, and let U c X be some open subset.
Then Res% (T (X)) ¢ T(U) and Resx Y (T (X)) c T(X \ U).

Proof Consider some affine open cover X = Ui‘:l X;. Then U = U?:I(U N X;)isan
affine open cover of U. Let ¢ € T(X), then by definition forany 1 < i < k, t|x, € T(X;).
By Proposition [4.3} (#[x,)|unx, € T(U n X;). Clearly, (t|x,)|unx, = (t|lu)|unx,» thus
tly € T(U), i.e, Resy(T(X)) c T(U). Observe that X \ U = U, ((X \ U) n X;)
is an affine open cover of X \ U. By Lemma (tlx)(xavynx: € TU(XNU) N X;).
Clearly (¢[x,)(x<v)nx, = (tlxv)l(xv)nx,» and so Resy Y (T(X)) c T(X N U). m

Corollary 5.11 Let X be an algebraic variety, and let U, V c X be two open subsets
of X such that U c V. Then Res%(T(V)) c T(U).

Proof V isan algebraic variety, so we can apply Lemma to the algebraic variety
V and its open subset U. u

Proposition 5.12 Let X be an algebraic variety. The assignment of the space of tem-
pered functions to any open U c X together with the restriction of functions, form a
sheaf on X.

Proof By Corollary[5.11} the above is a pre-sheaf. Clearly, the axiom of uniqueness
holds.

Now let ¢; € T(U;) be such that for any i, j € I, t;|v,nu; = tjlu,nu;. Clearly there
exists a (unique) function ¢: U — R such that for any i € I, ¢|y, = ¢;. In order to prove
that the existence axiom holds, it is thus left to show that t € T(U). By Proposition
2.4 we can assume [I| < oo by choosing some subcover and showing t|y, = #; only for
indices i in this subcover (as the functions we begin with agree on the intersections,
this will automatically hold for all the other indices we omitted). By standard induc-
tion on the number of indices (i.e., the number of sets in the chosen finite subcover),
it is enough to show that the following holds:

Let X be an algebraic variety and let U;, U, c X be two open subsets. Assume that
for any i € {1,2} we are given t; € T(U;) such that tj|y,nu, = f2|u,nu,. Then there
exists a function ¢ € T(U; U U,) such that #|y, = t1, t{u, = ta.

Clearly, there exists a (unique) function t: U; U U, — R such that t|y, = ¢; for
1 < i < 2. Itis left to show that t € T(U; u U,). Consider some affine open cover
X = U;‘:I X;. Then U; = U?:I(Ui N X;) is an affine open cover of U;, and U u U, =
U;‘zl((Ul U Uz) n X;) is an affine open cover of U; U U,. As t; € T(Uj;), one has
tiluinx, € T(Ui 0 X;). As (Up U Up) n X; is affine, and U7, U; N X; is an affine
open cover of it, and as tj|y,nu, = t2|v;nu,; then, by Proposition tluouy)nx, €
T((Uu Uz) nXj), ie, t € T(Uyu Uy). [ |

Further work In order to prove that the rest of the properties that were proved in the
affine case also hold in the general case, the next natural step should be proving that
a tempered partition of unity also holds in the non-affine case (i.e., to prove a non-
affine version of Proposition[3.14). Moreover, it seems that such a proposition would
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pave the way to proving all other properties. Our attempts at proving this in the alge-
braic context were not fruitful; however, we suggest the following idea: as the theory
of Schwartz spaces etc. is now fully established for arbitrary Nash manifolds and for
affine real algebraic varieties (and partially established for non-affine real algebraic
varieties), one can try to construct this theory for some bigger category, such that the
Nash category and the algebraic category form subcategories of this category. The first
guess, of taking the semi-algebraic category to be the nominated one, will not work,
as this category is in a sense “too flexible”. As isomorphisms are not necessarily even
smooth, in this category smooth functions are not pulled back by isomorphisms to
smooth functions, and so there is no hope to define Schwartz spaces. We are currently
working on generalizing the above theory to a category whose affine (local) models are
closed semi-algebraic sets, but not all semi-algebraic morphisms are allowed. How-
ever, this category still generalizes both the Nash category and the algebraic category.
If indeed such a theory can be established for this category, our hope (and guess) is
that then proving partition of unity for non-affine varieties will be easier (as a con-
sequence of the presence of “more” morphisms and “more” open subsets). Then the
results for the non-affine algebraic case would just follow as a special case. A different
direction of research we are pursuing is constructing a theory of Schwartz functions
on arbitrary smooth manifolds, or more precisely defining the most general category
whose local models are open subsets of R"”, and on which Schwartz spaces can be
defined consistently.

A The Whitney Extension Problem (Proofs of Two Key Lemmas)

The goal of this appendix is to prove Lemmas and All necessary preliminary
results are also given. In this appendix we always consider the Euclidean topology on
R", unless otherwise stated.

A.1 Semi-analytic and Subanalytic Sets

One can define semi-analytic sets in R” by (locally) using analytic functions; namely,
A c R” is semi-analytic if and only if for every point p € A there exist an open neigh-
bourhood p € U c R" and finitely many analytic functions f; j, g;,x: U — R, such
that

AnU = O {xeR"V1<j<si,1<k<t;: fij(x)>0,gix(x) =0}.
i=1

The images of semi-analytic sets under analytic maps (which we did not define) and
even under standard projections, are not necessarily semi-analytic (see [L, Example at
the end of section III]). This motivates the following definition (following [BM1, Def-
inition 3.1]): A c R" is subanalytic if and only if for every point p € R” there exists
an open neighbourhood p € U c R" such that A n U is a projection of a relatively
compact (i.e., bounded) semi-analytic set (and see equivalent definitions in [S} pp. 40
and 95]). A map v: A - B (where A c R", B c R™ are subanalytic) is called subana-
Iytic if its graph is a subanalytic set in R"*™.

https://doi.org/10.4153/CJM-2017-042-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2017-042-6

Schwartz Functions on Real Algebraic Varieties 1031

Definition A.1 Let X c R" be a subanalytic set, let y € X be some point, and let
m € N. A function f: X — R is m-flat at y if there exists F € C"(R") with f = F|x,
such that the Taylor polynomial of order m of F at y is identically zero. If f is m-flat
at y for any m € N, we say that f is flat at y (e.g, a function f:R"” — R s flat at some
y € R" if the Taylor series of f at y is identically zero). If f is (m-)flat at y for any
y € Z (where Z c X is some subset), we say that f is (m-)flat at Z.

Defining m-flat functions (and all other notions of flatness) on (closed) subana-
lytic sets can be also done by 2 other approaches. The first is by defining the “Zariski
m-paratangent bundle” and m-flat functions as restrictions of C™ functions on the
ambient space that satisfy some natural condition expressed in terms of the Zariski
m-paratangent bundle. The second is an intrinsic approach, using Glaeser extensions
of real valued functions (see [BMP2,|F]). [BMP2, Theorems 1.7, 1.8, and 1.9] imply the
equivalence of all three approaches.

A.1.1 An Important Remark

As the Taylor polynomial is only dependent on the Euclidean local behaviour of func-
tions, one can substitute R” above by any Euclidean open subset of R” containing X.
This is done in[A.2]and is used when it is more convenient.

A.1.2 Equivalence of Definitions and

Any algebraic set is also subanalytic, and so it seems we have two different definitions
of flat functions at a point. Clearly if a function is flat at some point according to
Definition it is also flat according to Definition The other way is not trivial.
By Deﬁniti f is flat at y means that for any m € N there exists F” € C™"(R")
such that F"|x = f and the Taylor polynomial of order m of F™ at y is identically
zero. This does not mean, a-priori, that there exists F € C*(R") such that F|x = f
and the Taylor series of F at y is identically zero, i.e., that f is flat at y according
to Definition According to [M]], as X is algebraic it is formally semicoherent
relative to the singleton {y} (see [BM2, Definition 1.2] and discussion immediately
after), which is equivalent, according to [BM2} Theorem 1.13], to the fact that f does
extend to such an F. Later we will formulate it as C*°(X; {y}) = C()(X;{y}). Thus,
the two definitions of flat functions at a point in algebraic sets are equivalent.

A.2 Restrictions from Open Neighborhoods and Composite Functions

In this subsection we mainly follow the notation of [BMP1]. Let X c R" be some
subanalytic set, let Z c X be a closed subset (in the induced topology from R"), and
k € N. As said, flatness at a point is clearly a local property. Hence, it is natural to
present the following spaces of functions:

C*(X;Z) := {f: X - R | 3U c R" an open neighborhood of X and F € C*(U)
such that F|y = f and F is k-flat at Z}.

Similarly, for k = oo, we have

C*(X;Z) :={f:X > R | 3U c R" an open neighborhood of X and F € C*(U)
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such that F|x = f and F is flat at Z}.

Denote Moy CX(X; Z) by C(*°)(X; Z). Clearly, C*°(X; Z) ¢ C(*)(X; Z). In gen-
eral C*(X;Z) # C(*)(X; Z), remarkably, even when Z = & (see, [P, Example 2]).

For any k € Nu {0}, denote C¥(X) := C*(X;); this coincides with the usual
definition if X is smooth.

Let O be some open subset of R™. A continuous map ¢: ) — R” is called semi-
proper if for each compact subset K of R” there exists a compact subset L of Q such
that o(L) = Kn ¢(Q). Let ¢: Q — R" be a semi-proper real analytic map. In that
case, X := ¢(Q) is a closed subanalytic subset of R". For any k € N define

(97Ch(x))" =
{fe ck(Q) | VaeX,3ge CH(X), f-¢"(g) = f - go ¢is k-flat at 9 (a)},
and for k = oo define:
(p7C™(0))" =
{feCc®(Q)|VaeX,3ge C®(X),f-¢*(g):=f—gopisflatat ™" (a)}.
Finally, for any closed subanalytic subset Z c X and any k € Nu {oo}, define
(¢*C*(x:2))" = (97 C*(X)) " nC¥(Qs97(2)).
We use some properties of these spaces of functions, proved mainly in [BMP1]. Of

special importance is the following theorem.

Theorem A.2 (Uniformization theorem [BMI, Theorem 5.1]) Let M be a real ana-
Iytic manifold, and let X c M be a closed analytic subset. Then there is a real analytic
manifold N and a proper real analytic mapping : N — M such that p(N) = X.

The following Lemma is stated in [BMP1|. For the reader’s convenience we
give here a detailed proof. We thank Prof. Pierre D. Milman for providing guidelines
for this proof.

Lemma A.3 Nien(9*CH(X;2))" = (¢ C=(X;2))".
Proof The inclusion > is clear. For the inclusion c, notice that
0,C4(0597(2)) = C™(0i9™(2))

as Q) is open (and in particular smooth). Thus, it is left to show that

N (9™ CHX))" e (pC (X))

keN
Fix some f € Ngen(9*C*¥(X))", x € X, and w € ¢~!(x). Define the set of k-jets at x
whose pullbacks’ k-jets at w equal the k-jet of f, i.e.,

A* = {Jisa k-jetat x | ¢*’s k-jet at w equals the k-jet of f at w}.

By abuse of notation we considered jets as functions, i.e., we chose a representative.
This is independent of the choice made. Then the condition above can be reformulated
as @] — f is k-flat at w.
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Then A*¥ # @, by the definition of f (e.g., the k-jet of g corresponding to x in
the definition of (¢*C¥(X))" is contained in A¥). For any k > I € Nu {0} define
the projection of A* to A! by A% := pri(A¥) c A' (i, A% is the the set of all I-
jets that can be extended to k-jets in a way that is compatible with f). Also, define
Aj = Mkt A¥ c A! (ice,, Aj is the the set of all I-jets that can be extended to k-jets
in a way that is compatible with f for any k > I). Assume the following hold for any
leN:

(a) A #@.

(b) pri:A;; — Ajis onto, i.e., any I-jet in A; can be extended to an (I + 1)-jet in

A

In that case using the principle of dependent choices (see Section [A.2.1) there exists
a series of jets {J; }jen such that J; € Aj and for any I € N, pr;(J;41) = J;. This series
can be thought of as a formal power series on R” (which we denote by G), where J; is
the truncated power series up to order [. By Borel's Theroem (see Section[A.4) there
exists a function G € C*(R") such that T>°G = G, where T°G means the Taylor
series of G at x. By construction we observe that T°(¢*G) = T<° f, and so conclude
that f € (¢*C>(X))" (as G|x € C*=(X) satisfies the desired condition).

Thus, it is left to prove that the assumptions (a) and (b) hold.

In order to see that A; # @, observe that for any k > I, A% is a finite dimensional
affine space (it is finite dimensional as it lies in the finite dimensional space A'). More-
over, these affine spaces form a decreasing sequence A' = A} 5 AT 5 Al*2 5 ... As
A* # @ forany k > [, also A¥ # @. The dimensions of these affine spaces form a
decreasing sequence of non-negative integers, and so stabilizes. Thus, we conclude
that Nis; A’l‘(: Aj) = A];’ # @ for some k; € N, and so assumption (a) holds.

In order to see that pr;: A;.; — A;j is onto, we take some J € Aj, and define for any
k>1+1:Bf :={HeA" |pr,(H) =]} Bythe definition of A; there exists a k-jet
Ji € AF such that pr; (Jx) = J,and so pr,,, (Ji) € A¥, | satisfies pr,(pr;,,(Jx)) = J, and
soB¥ | #@. As B!} 5 BI*2 5 BI*3 5 ... isa decreasing sequence of finite dimensional
affine spaces it stabilizes, and so MNgs;41 B;‘H # @. Choose some J € Nis141 B;‘H. By
definition, J € A;,;, and by construction, pr;(d) = J. Thus, assumption (b) holds. H

A.2.1 The Principle of Dependent Choices (DC)

We assume a weak version of the axiom of choice, the principle of dependent choices:
if E is a binary relation on a nonempty set A and for any a € A there exists an element
b € Asuchthat bEa, then thereis asequence ag, a1, ..., an, ... in Asuchthata,.1Ea,
for any n € N. The interested reader is referred to [|J, p. 50].

Theorem A.4 (E.Borel [T, Theorem 38.1]) Let © be an arbitrary formal power series
in n indeterminates, with complex coefficients. Then there exists a function in C*°(R")
whose Taylor expansion at the origin is identical to .
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A.3 Proof of Lemmam

Recall we want to prove the following. Let X be a compact (in the Euclidean topology)
algebraic set in R”, and let Z c X be some (Zariski) closed subset. Define

Wy = {¢: X - R|3¢ € C*°(R") such that @|x = ¢ and ¢ is flat at Z},
(WS )omP .= (¢ € C=°(R")|¢ is compactly supported and is flat at Z},

and U := X \ Z. Then for any f € Wy, there exists f ¢ (WE")eomP such that flx = f.
We start the proof with a preliminary lemma.

Lemma A.5 'There exists a pair (Q, @) such that O c R™ is an open subset of R™
(in the Euclidean topology) and ¢: Q) — R" is a semiproper real analytic function such
that (Q) = X. Moreover, for any f € C*(X;@), ¢* f := fop € C*(Q).

Proof By Theorem[A.2} there is a real analytic manifold N and a proper real analytic
mapping @: N — R” such that g(N) = X. As N is a real analytic manifold, it has an
open cover {N;};cr such that for any i € I, N; is analytically diffeomorphic to an
open subset of R%; i.e., there exist analytical diffeomorphisms v;: N; - R% such that
v;(N;) is open in R%. As ¢is proper and X c R" is compact, N = @"1 (X) is compact,
and thus there exists a finite subcover {N;}k . Welet m := max*_{d;} + 1. For any
1<i<k,define Q; =v;(N;) x(i—4,i+ 4)’" 4 ¢ R™, and define y;: Q; - Q; by
vi(ni, a1, 0m_g,) = (n,-,z,...,z) where n; € v;(N;)and a; € (i—%,i+1). Note
that y; is semiproper real analytic. Define Q := U | Q;. As Qy, ..., Qy are disjoint
sets in R™, we can naturally define a semiproper function y: Q — Q by y|q, = ;.
Clearly, QO c R™ is open. Now define a function v": y(Q) - Nby v (n;,i,...,i) =
v;'(n;), where n; € v;(N;). Note that v is a proper map. Finally, defining ¢ :=
@ o v' oy, we get that ¢ is a semiproper real analytic function satisfying ¢(Q) = X.
The “Moreover” part of Lemmal[A.5]is obvious. [ |

Proof of Lemma[3.16] Fix f ¢ Wj. In particular, f ¢ C*(X;@). Then, by
Lemma ¢*f == fog e C°(Q). Denote f = ¢*f. By definition, f €
(9" (C= )"

We now prove that f ¢ C°°(Q ¢ 1(Z)) For any z € Z and any k € N, there exists
fk e CK(R™) such that f = f¥ |X and f¥ is k-flat at z. Note that for any z € Z and any
k € N, we have f(= f o ¢) = ¥ o ¢, and in particular for any z' € Zand any k' € N
we have fz, 0 ¢ = fk o ¢. First, we prove that for any k €N, fecko (p‘l(Z)) Fix
some z € Z and some Z € ¢~!(z). As we can write f fk o @, the fact that f is k-flat
at Z follows immediately from Lemma

We have thus shown that for any k € N, f € C*(Q;¢7'(Z)). As we also had [ ¢
(9" (CH(X)))", we get that f € (9" C*(X;2))" = (¢ (C*(X))) nCH(Qs 97 (2)).
As this holds for any k € N we get that f € Nien(9*CH(X;2))". By Lemma
Nkent(9*C¥(X;2))" = (¢9*C*=(X; Z))", and by [BMP1, Theorem 1.3],

(¢*C=(X;2))" = 9*C)(X;2),
so f e *C®)(X;Z).
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As f € ¢*C(™)(X; Z), there exists h € C(*)(X;Z) such that f = ¢*h = ho ¢.
Since f = fogand gisonto X, it follows that h = f, i.e., f € C(*)(X; Z). According to
[M], as X is algebraic, it is formally semicoherent rel. Z (see [BM2, Definition 1.2] and
discussion immediately after), which is equivalent, according to [BM2, Theorem 1.13],
to the fact that C*=°(X; Z) = C(*)(X; Z). We conclude that f € C*(X; Z).

Recall that we started with some f € Wy, we showed that f € C*(X;Z), and
our goal is to show that f is the restriction of some function in (W5 )™P. As f €
C*(X;Z) there exists an open V ¢ R” such that X c V, and F:V — R such that
FeC>(V),Fisflatat Z and F|x = f. Without loss of generality, as X is compact in
the Euclidean topology on R”, we can assume the set V is bounded in the Euclidean
norm on R”.

Take some open V' ¢ V containing X. Let p € C*°(R") be a function supported in
V' such that p|y» =1, where V" ¢ V' is some open subset containing X (it is standard
to show such p exists by convolving the characteristic function of some open subset
containing V" and strictly contained in V', with some appropriate approximation of
unity). Now define F: R"” - R by F|y := p - F and F|gs.y := 0. Clearly F|x = F|x = f,
F e C=(R"), Fis flat at Z (as F|y» = F|y~), and F is compactly supported (in the
Euclidean topology) in R"; i.e., F € (WL )<°™ and F|x = f. [ |

A.4 Multivariate Faa Di Bruno Formula

The famous chain rule for deriving real valued functions from the real line states that
(fog)(x) = f"(g(x))- g (x). This can be generalized to higher derivatives and
higher dimensions, i.e., partial derivatives of arbitrary order of composite multivariate
functions. We are interested only in the following result.

Lemma A.6 (cf. [CS, Theorem 2.1]) Letx, € R4, V c R? be some open neighborhood
of xo and gV — R™,g € C*(V,R™). Let U c R" be some open neighborhood of
g(x0) and f:U - R, f € C=(U). Assume f is flat at g(xo), i.e., its Taylor series at
g(xo) is identically zero. Then f o g:g"'(U) — R is flat at x,.

Proof of Lemma[3.17] By definition, for any x € X;, we have

(P(x):(fl(x) fﬂz(‘x))’

P

§i(x)"" gn (%)
where fi,..., fuy> §>-- > gn, € R[X1] and g;7'(0) N X; = @ foranyl < i < n,.
By abuse of notation we choose some representatives in R[x;, ..., x,, | and consider

Sis-o o5 fu> 15+ > &n, as functions in R[xy, ..., x,, |. Define
Ui={xeR"| [[lgi(x) #0}.

Then U is open in R™, Xj is a closed subset of U, and ¢ can be naturally extended to a
regular map ¢: U — R™ (by the same formula as ¢). Note that U is an affine algebraic
manifold.

Let f: X, — R be some function that is flat at some p € X,. In particular, f €
C*(X;{p}); i.e., there exist an open subset V > X, and a function F € C*° (V') such
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that F is flat at p and F|x, = f. As $: U — R™ is continuous, then U’ := ¢ (V) is
an open subset of U, and so an open subset of R™. Clearly U’ contains X;. Denote
by G the pullback of F to U’ via @; i.e., G: U’ — R is defined by G := F o (¢|y). By
LemmalA.6} as F is flat at p, G is flat at $~!(p), and in particular, f o ¢ = G|y, is flat
at ¢7(p), .

B Noetherianity of the Zariski Topology

First, as by definition any algebraic variety has a finite cover by affine varieties, it is
enough to prove Proposition [2.4] for affine varieties. Second, it is enough to prove
Proposition [2.4] for algebraic subsets of R”. Let X ¢ R” be an algebraic set, U c X a
Zariski open subset, and { Uq } «c1 an open cover of U. We prove Proposition [2.4]in 3
steps.

Proof

Step 1 Assume X = U = R”. By Proposition 2.2] for any a € I there exists f, €
R[x1,...,%,] such that U, = {x € R"[fy(x) # 0}. As R" \ Uye; Uy = @, the zero
locus of ( fu ) s (the set of all points x € R” satisfying f(x) = 0 for any f in the ideal
generated by all of the polynomials { fy }«er) is empty. By Hilbert’s Basis Theorem,
R[x1,...,%y] is Noetherian, and so there exist g1,..., gm € R[x1,...,x,] such that
(fadaer = (g1>- > gm)- As the zero locus of this ideal is empty, g := Y|, g7 satisfies
g71(0) = @. As g € (fy)aes there exist ay, ..., ar € R[xy,...,x,] and &y, ..., a5 € I
such that g = X% | a; - f,,,. This implies that f,,, ..., fa, have no common zeroes, and
soUk, U, =R".

Step 2 Assume X = U. There exist { V, } 4¢; open in R” such that U, = V, n X. Then
{Va}aer U (R™ \ X) is an open cover of R”. By Step (1) it has a finite subcover, and so
intersecting this subcover with X we get a finite subcover of U.

Step 3 The general case. By Proposition[2.3] U is itself an affine algebraic variety. More-
over, {Uy N U} gep is an open cover of U. By considering some closed embedding of
U in some R™, we are reduced to Step (2). |
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