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Abstract

We study approximations for the Lévy area of Brownian motion which are based on the Fourier series
expansion and a polynomial expansion of the associated Brownian bridge. Comparing the asymp-
totic convergence rates of the Lévy area approximations, we see that the approximation resulting from
the polynomial expansion of the Brownian bridge is more accurate than the Kloeden-Platen-Wright
approximation, whilst still only using independent normal random vectors. We then link the asymptotic
convergence rates of these approximations to the limiting fluctuations for the corresponding series expan-
sions of the Brownian bridge. Moreover, and of interest in its own right, the analysis we use to identify
the fluctuation processes for the Karhunen-Loéve and Fourier series expansions of the Brownian bridge
is extended to give a stand-alone derivation of the values of the Riemann zeta function at even positive
integers.

Keywords: Brownian motion; Karhunen-Loéve expansion; polynomial approximation; Lévy area; fluctuations; Riemann
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1. Introduction

One of the well-known applications for expansions of the Brownian bridge is the strong or L*(P)
approximation of stochastic integrals. Most notably, the second iterated integrals of Brownian
motion are required by high order strong numerical methods for general stochastic differential
equations (SDEs), as discussed in [4, 22, 33]. Due to integration by parts, such integrals can be
expressed in terms of the increment and Lévy area of Brownian motion. The approximation of
multidimensional Lévy area is well studied, see [5, 8, 11, 13, 14, 23, 25, 32, 35], with the majority
of the algorithms proposed being based on a Fourier series expansion or the standard piecewise
linear approximation of Brownian motion. Some alternatives include [5, 11, 25] which consider
methods associated with a polynomial expansion of the Brownian bridge.

Since the advent of Multilevel Monte Carlo (MLMC), introduced by Giles in [16] and subse-
quently developed in [2, 6, 7, 15, 17], Lévy area approximation has become less prominent in the
literature. In particular, the antithetic MLMC method introduced by Giles and Szpruch in [17]
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achieves the optimal complexity for the weak approximation of multidimensional SDEs with-
out the need to generate Brownian Lévy area. That said, there are concrete applications where
the simulation of Lévy area is beneficial, such as for sampling from non-log-concave distributions
using Ité diffusions. For these sampling problems, high order strong convergence properties of the
SDE solver lead to faster mixing properties of the resulting Markov chain Monte Carlo (MCMC)
algorithm, see [26].

In this paper, we compare the approximations of Lévy area based on the Fourier series expan-
sion and on a polynomial expansion of the Brownian bridge. We particularly observe their
convergence rates and link those to the fluctuation processes associated with the different expan-
sions of the Brownian bridge. The fluctuation process for the polynomial expansion is studied
in [19], and our study of the fluctuation process for the Fourier series expansion allows us, at
the same time, to determine the fluctuation process for the Karhunen-Loéve expansion of the
Brownian bridge. As an attractive side result, we extend the required analysis to obtain a stand-
alone derivation of the values of the Riemann zeta function at even positive integers. Throughout,
we denote the positive integers by N and the nonnegative integers by No.

Let us start by considering a Brownian bridge (Bt)ic[o,1] in R with By = B; = 0. This is the
unique continuous-time Gaussian process with mean zero and whose covariance function Kp is
given by, for s, t € [0, 1],

Kpg(s, t) = min(s, t) — st. (1.1)

We are concerned with the following three expansions of the Brownian bridge. The Karhunen-
Loeve expansion of the Brownian bridge, see Loéve [[27], p. 144], is of the form, for t € [0, 1],

>, 2sin(kt) [!
Bt:Z #/0 cos(kmrr)dB,. (1.2)
k=1

The Fourier series expansion of the Brownian bridge, see Kloeden-Platen [[22], p. 198] or
Kahane [[21], Sect. 16.3], yields, for t € [0, 1],

1 o0
B; = an + Z (ak cos(2kmt) + by sin(2km t)) , (1.3)
k=1
where, for k € Ny,
1 1
ap=2 / cos(2kmr)B,dr and by =2 / sin(2kmr)B,dr. (1.4)
0 0

A polynomial expansion of the Brownian bridge in terms of the shifted Legendre polynomials
Q. on the interval [0, 1] of degree k, see [12, 19], is given by, for ¢ € [0, 1],

o0 t
Be=Y (ke [ Qundr 15)
k=1 0
where, for ke N,
1
o= f Qu(r)dB,. (1.6)
0

These expansions are summarised in Table Al in Appendix A and they are discussed in more
detail in Section 2. For an implementation of the corresponding approximations for Brownian
motion as Chebfun examples into MATLAB, see Filip, Javeed and Trefethen [9] as well as
Trefethen [34].

We remark that the polynomial expansion (1.5) can be viewed as a Karhunen-Loéve expansion

of the Brownian bridge with respect to the weight function w on (0, 1) given by w(t) = ﬁ This
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approach is employed in [12] to derive the expansion along with the standard optimality prop-
erty of Karhunen-Lo¢ve expansions. In this setting, the polynomial approximation of (Bt)e(o,1)
is optimal among truncated series expansions in a weighted L?(P) sense corresponding to the
nonconstant weight function w. To avoid confusion, we still adopt the convention throughout
to reserve the term Karhunen-Loéve expansion for (1.2), whereas (1.5) will be referred to as the
polynomial expansion.

Before we investigate the approximations of Lévy area based on the different expansions of the
Brownian bridge, we first analyse the fluctuations associated with the expansions. The fluctua-
tion process for the polynomial expansion is studied and characterised in [19], and these results
are recalled in Section 2.3. The fluctuation processes (Ff\]’l)te[(),l] for the Karhunen-Loéve expan-

sion and the fluctuation processes (Ff] ’z)te[o,u for the Fourier series expansion are defined as,

for NeN,
2sin(kmt
FN' =N (Bt Z Sm( 0 / cos(kmr) dB) (1.7)
k=1
and
1 N
Fi\’l =+/2N (Bt — 5~ Z (ak cos(2kmt) + by sin(2km t))) . (1.8)
k=1

The scaling by /2N in the process (Ff]’z)te[o,l] is the natural scaling to use because increasing N
by one results in the subtraction of two additional Gaussian random variables. We use [E to denote
the expectation with respect to Wiener measure P.

Theorem 1.1. The fluctuation processes (Ff\l ’l)te[o,1] for the Karhunen-Loéve expansion converge
in finite dimensional distributions as N — 0o to the collection (Ftl)te[O,l] of independent Gaussian
random variables with mean zero and variance

1
— ifte(0,1)

0 ift=0ort=1

The fluctuation processes (Ff\]’z)te[o,l] for the Fourier expansion converge in finite dimensional

distributions as N — 00 to the collection (F )te[o,1] of zero-mean Gaussian random variables whose
covariance structure is given by, for s, t € [0, 1],

! if s=torste{0,1}
—_— If s=tors,te 5
2172 2
E[FF]={"

0 otherwise

The difference between the fluctuation result for the Karhunen-Loeve expansion and the fluc-
tuation result for the polynomial expansion, see [[19], Theorem 1.6] or Section 2.3, is that there
the variances of the independent Gaussian random variables follow the semicircle % t(1—1)
whereas here they are constant on (0, 1), see Figure 1. The limit fluctuations for the Fourier series
expansion further exhibit endpoints which are correlated.

As pointed out in [19], the reason for considering convergence in finite dimensional distri-
butions for the fluctuation processes is that the limit fluctuations neither have a realisation as
processes in C([0, 1], R), nor are they equivalent to measurable processes.

We prove Theorem 1.1 by studying the covariance functions of the Gaussian processes

(Ff\]’l)te[o,l] and (Ff\]’z)te[o,l] given in Lemma 2.2 and Lemma 2.3 in the limit N — oo. The key
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Figure 1. Table showing basis functions and fluctuations for the Brownian bridge expansions.

ingredient is the following limit theorem for sine functions, which we see concerns the pointwise
convergence for the covariance function of (Ff] ) te[0,1]-

Theorem 1.2. For all s, t € [0, 1], we have

N
lim N (| min(s, t) — st —
N—>oo ( ) kX—;

I
2 sin(krws) sin(kn t) ) ifs=tandte(0,1)
k2n? - :

0

otherwise

The above result serves as one of four base cases in the analysis performed in [18] of the
asymptotic error arising when approximating the Green’s function of a Sturm-Liouville prob-
lem through a truncation of its eigenfunction expansion. The work [18] offers a unifying view for
Theorem 1.2 and [[19], Theorem 1.5].

The proof of Theorem 1.2 is split into an on-diagonal and an off-diagonal argument. We
start by proving the convergence on the diagonal away from its endpoints by establishing locally
uniform convergence, which ensures continuity of the limit function, and by using a moment
argument to identify the limit. As a consequence of the on-diagonal convergence, we obtain the
next corollary which then implies the off-diagonal convergence in Theorem 1.2.

Corollary 1.3. Forallt € (0, 1), we have

lim N cos(2kmt)
im — =
N—oo Km?
k=N+1
Moreover, and of interest in its own right, the moment analysis we use to prove the on-diagonal
convergence in Theorem 1.2 leads to a stand-alone derivation of the result that the values of the
Riemann zeta function ¢ : C\ {1} — C at even positive integers can be expressed in terms of the
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Figure 2. Lévy area is the chordal area between independent Brownian motions.

Bernoulli numbers By, as, for n € N,
+1(2m)*" By,
2(2n)!

see Borevich and Shafarevich [3]. In particular, the identity

¢(@2n) = (~1)"

>

s 2

1 b/

—_=—, 1.9

2= (1.9)
k=1

that is, the resolution to the Basel problem posed by Mengoli [28] is a consequence of our analysis

and not a prerequisite for it.

We turn our attention to studying approximations of second iterated integrals of Brownian
motion. For d > 2, let (W;);c[0,1] denote a d-dimensional Brownian motion and let (B)sc[o,1]
given by By = W, — tW) be its associated Brownian bridge in R?. We denote the independent
components of (W;)e[0,1] by (Wt(l))te[o,l]’ forie{l,...,d}, and the components of (B;).c[0,1] by

(Bgl) )te[0,1]> which are also independent by construction. We now focus on approximations of Lévy
area.

Definition 1.4. The Lévy area of the d-dimensional Brownian motion W over the interval [s, t] is
the antisymmetric d x d matrix A,; with the following entries, for i,j € {1, ..., d},

y 1 t ) ) . t , . .
A= 2 (/ (W - wO) aw? —/ (w? - w?) dWﬁ”) .
N N

For an illustration of Lévy area for a two-dimensional Brownian motion, see Figure 2.

Remark 1.5. Given the increment W; — W; and the Lévy area A,;, we can recover the second
iterated integrals of Brownian motion using integration by parts as, for i, j € {1,...,d} with i #j,

t
. . y L/ ; () ) (i)
(0= ) = (- ) (002 ) .2
N

We consider the sequences {ay}ken,» {0x}ken and {cr}ken of Gaussian random vectors, where
the coordinate random variables ag), bl(;) and cg) are defined for i e {1, ..., d} by (1.4) and (1.6),

respectively, in terms of the Brownian bridge (Bgl))te[o,l]. Using the random coefficients arising
from the Fourier series expansion (1.3), we obtain the approximation of Brownian Lévy area
proposed by Kloeden and Platen [22] and Milstein [31]. Further approximating terms so that
only independent random coefficients are used yields the Kloeden-Platen-Wright approxima-
tion in [23, 30, 35]. Similarly, using the random coefficients from the polynomial expansion (1.5),
we obtain the Lévy area approximation first proposed by Kuznetsov in [24]. These Lévy area
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approximations are summarised in Table A2 in Appendix A and have the following asymptotic
convergence rates.

Theorem 1.6 (Asymptotic convergence rates of Lévy area approximations). For n € N, we set
N =2n and define approximations An, A, and A,, of the Lévy area Ay by, fori,je{l,...,d},

n—1
i) L i) o) O 0.0 ()0
A= S (W = W)+ Yk (a8 — ba)). (1.10)
k=1
(i) - M 10 0
~Gij) G (G j W )
k=1
Gj) 1 0 RN 0)
i) WG )y MO 0 G
Ay = 5 (Wll 51 _Cll Wy )"‘5 Z (Ckl L kl+1 k) (1.12)
k=1

Then Xn, A, and A,, are antisymmetric d x d matrices and, for i # j and as N — 0o, we have

G a1 (]
E| (457 - A, ) F(N ,

O NN
E (AO,1 (s ) ?(ﬁ ,

[ (460 _ 760\ L[ 1
E (A A ) ~ :
o1 Fan ] 8<N

The asymptotic convergence rates in Theorem 1.6 are phrased in terms of N since the number
of Gaussian random vectors required to define the above Lévy area approximations is N or N — 1,
respectively. Of course, it is straightforward to define the polynomial approximation A, for n € N,
see Theorem 5.4.

Intriguingly, the convergence rates for the approximations resulting from the Fourier series
and the polynomial expansion correspond exactly with the areas under the limit variance function
for each fluctuation process, which are

! 1 "1 —— 1
/(; thZP and ‘/0 ; t(l—t)dtz g
We provide heuristics demonstrating how this correspondence arises at the end of Section 5.

By adding an additional Gaussian random matrix that matches the covariance of the tail sum,
it is possible to derive high order Lévy area approximations with O(N -1 convergence in L*(P).
Wiktorsson [35] proposed this approach using the Kloeden-Platen-Wright approximation (1.11)
and this was recently improved by Mrongowius and Rof3ler in [32] who use the approximation
(1.10) obtained from the Fourier series expansion (1.3).

We expect that an O(N~!) polynomial-based approximation is possible using the same tech-
niques. While this approximation should be slightly less accurate than the Fourier approach, we
expect it to be easier to implement due to both the independence of the coefficients {c}xcn and the
covariance of the tail sum having a closed-form expression, see Theorem 5.4. Moreover, this type
of method has already been studied in [5, 10, 11] with Brownian Lévy area being approximated by

N @ 0 _ D)y (i)
Agy = 5 (Wll o o Wy )"‘)‘0,1’ (1.13)
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where the antisymmetric d x d matrix Ao,; is normally distributed and designed so that Ao has
the same covariance structure as the Brownian Lévy area Ag ;. Davie [5] as well as Flint and Lyons

[10] generate each (i, j)-entry of X¢; independently as Aé’,’{) ~ N(O, ﬁ) fori <j.In[11],itis shown
that the covariance structure of Ag; can be explicitly computed conditional on both W; and ¢;. By
matching the conditional covariance structure of Ay ;, the work [11] obtains the approximation

1

(i,1) 0l
=N (0,55 + 55 (07 + @),

where the entries {)\(()l;’{)}ig are still generated independently, but only after ¢; has been generated.

By rescaling (1.13) to approximate Lévy area on [%,k—;\'}l] and summing over
ke{0,...,N—1}, we obtain a fine discretisation of Ag; involving 2N Gaussian random

vectors and N random matrices. In [5, 10, 11], the Lévy area of Brownian motion and this approx-
imation are probabilistically coupled in such a way that L2(P) convergence rates of O(N~!) can
be established. Furthermore, the efficient Lévy area approximation (1.13) can be used directly
in numerical methods for SDEs, which then achieve L*(P) convergence of O(N ~1y under certain
conditions on the SDE vector fields, see [5, 10]. We leave such high order polynomial-based
approximations of Lévy area as a topic for future work.

The paper is organised as follows.

In Section 2, we provide an overview of the three expansions we consider for the Brownian bridge,
and we characterise the associated fluctuation processes (Ff] ’l)te[o,u and (Ff] 2 )telo,1]- Before dis-
cussing their behaviour in the limit N — oo, we initiate the moment analysis used to prove
the on-diagonal part of Theorem 1.2 and we extend the analysis to determine the values of the
Riemann zeta function at even positive integers in Section 3. The proof of Theorem 1.2 follows in
Section 4, where we complete the moment analysis and establish a locally uniform convergence to
identify the limit on the diagonal, before we deduce Corollary 1.3, which then allows us to obtain
the off-diagonal convergence in Theorem 1.2. We close Section 4 by proving Theorem 1.1. In
Section 5, we compare the asymptotic convergence rates of the different approximations of Lévy
area, which results in a proof of Theorem 1.6.

2. Series expansions for the Brownian bridge

We discuss the Karhunen-Loeve expansion as well as the Fourier expansion of the Brownian
bridge more closely, and we derive expressions for the covariance functions of their Gaussian
fluctuation processes.

In our analysis, we frequently use a type of Itd isometry for Itd integrals with respect to a
Brownian bridge, and we include its statement and proof for completeness.
Lemma 2.1. Let (By)se[0,1] be a Brownian bridge in R with By = B1 =0, and let f,g: [0, 1] — R be
integrable functions. Setting F(1) = [} f(t)dt and G(1) = fol g(t)dt, we have

[(/ J0 dB)(/ &) dB)] /f(t)g(t)dt—F(l)Ga)

Proof. For a standard one-dimensional Brownian motion (Wy)co,1], the process (W;—
tW1)te[o,1] has the same law as the Brownian bridge (B;)e[o,1]- In particular, the random variable

fol f(t)dB; is equal in law to the random variable

1 1 1
/ FOAW, — W, / f(t)dt = / (AW, — Wi F(1).
0 0 0
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Using a similar expression for fol g(t)dB; and applying the usual It6 isometry, we deduce that

([ o) (] )

1 1 1
= / F(Dg(td — F(1) / g(Hdt — G(1) / F(Bdt+ F(1)G()
0 0 0

1
=/0 f(Hgt)dt — F(1)G(1),

as claimed. g

2.1 The Karhunen-Loéve expansion

Mercer’s theorem, see [29], states that for a continuous symmetric nonnegative definite kernel
K:[0,1] x [0,1] = R there exists an orthonormal basis {e;}rer of L?([0,1]) which consists of
eigenfunctions of the Hilbert-Schmidt integral operator associated with K and whose eigenvalues
{Ak}ken are nonnegative and such that, for s, t € [0, 1], we have the representation

K(s, 1) =) hrex(s)ex(d),
k=1

which converges absolutely and uniformly on [0, 1] x [0, 1]. For the covariance function Kp
defined by (1.1) of the Brownian bridge (B;)c[0,1], We obtain, for k e Nand t € [0, 1],

1
K22
The Karhunen-Loeéve expansion of the Brownian bridge is then given by

er(t) = \/Esin(krrt) and A=

o0 1
B = Z V2 sin(kmt)Z, where Z;= / V2 sin(kmr r)B,dr,
k=1 0
which after integration by parts yields the expression (1.2). Applying Lemma 2.1, we can compute
the covariance functions of the associated fluctuation processes (Ff\”l)te[o,l].

Lemma 2.2. The fluctuation process (Ff\[’l)te[o,l] for N € N is a zero-mean Gaussian process with
covariance function NC{‘I where Cf’: [0,1] x [0, 1] — R is given by

N
CII\](S, t) = min(s, t) — st — Z
k=1

2 sin(kms) sin(kmt)
k2m2

Proof. From the definition (1.7), we see that (Ff\]’1 )te[o,1] is @ zero-mean Gaussian process. Hence,
it suffices to determine its covariance function. By Lemma 2.1, we have, for k, [ € N,

1 1 1
E |:(/ cos(km’)dBr) (/ cos(lnr)dBr)} :/ cos(krrr) cos(lmr)dr =
0 0 0

and, for t € [0, 1],

itk=1

S NI

otherwise

1 t in(kr
E [Btf cos(knr)dBr] =/ cos(kmrr)dr = sin(kz )'
0 0 kr
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Therefore, from (1.1) and (1.7), we obtain that, for all s, t € [0, 1],
N

2 sin(kms) sin(km t)
3 )

k2rm2

E [Fﬁ\]’lFfv’l] =N (min(sy t) — st —

as claimed. O

Consequently, Theorem 1.2 is a statement about the pointwise convergence of the function
NCY in the limit N — oc.

For our stand-alone derivation of the values of the Riemann zeta function at even positive
integers in Section 3, it is further important to note that since, by Mercer’s theorem, the
representation

oo
Kg(s, t) = min(s, t) — st = Z

k=1

2 sin(kms) sin(km t)

oo (2.1)

converges uniformly for s, t € [0, 1], the sequence {Cll\] }Nen converges uniformly on [0, 1] x [0, 1]
to the zero function. It follows that, for all n € Ny,

1
lim CN(t, Ht"dt = 0. (2.2)

N—oo Jg

2.2 The Fourier expansion
Whereas for the Karhunen-Loéve expansion the sequence

1
{ / cos(krmrr)dB, }
0 keN

of random coefficients is formed by independent Gaussian random variables, it is crucial to
observe that the random coefficients appearing in the Fourier expansion are not independent.
Integrating by parts, we can rewrite the coefficients defined in (1.4) as

1 1
a0=2/ Brdr=—2/ rdB, and by=0 (2.3)
0 0
as well as, for k e N,
1 sin(2k ! 2k
= — / Sm(k—m)dB, and by = / cos(2krr) 4 | (2.4)
0 4 0 km

Applying Lemma 2.1, we see that

2 ) 1 1
I[*Fl[ao]=4(/0 rdr—;}):; (2.5)

and, for k, [ e N,
—— ifk=1
E [aga] = E [byb)] = { 2k*7° . (2.6)
0 otherwise

Since the random coefficients are Gaussian random variables with mean zero, by (2.3) and (2.4),
this implies that, for k € N,

1 1
ap "’N (O, 5) and ag, bk ’\’N <O, W) .
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For the remaining covariances of these random coefficients, we obtain that, for k,/ € N,

U sin(2knr7)

1
E [akbl] =0, Elapar]= 2/0 Trdr i and E [aobk] =0. (2.7)

Using the covariance structure of the random coefficients, we determine the covariance

functions of the fluctuation processes (Ff\] ’2) tefo,1] defined in (1.8) for the Fourier series expansion.

Lemma 2.3. The fluctuation process (Ff] ’2),6[0,1] for N € N is a Gaussian process with mean zero
and whose covariance function is 2NC§] where Cé\] : [0, 1] x [0, 1] is given by

$2—s 12—t 1 N cos(2km (t —s))
: YT

Cy (s, £) = min(s, ) — st + 2k

Proof. Repeatedly applying Lemma 2.1, we compute that, for t € [0, 1],

t t
E [Biag] = —2/ rdr +/ dr=1t— ¢ (2.8)
0 0
as well as, for k e N,
! sin(2kmwr) cos(Rkmt) — 1 sin(2kmt)
E [Btak] = — / ot dr= 2k27'[2 and E [Btbk] = W (29)
From (2.5) and (2.8), it follows that, for s, t € [0, 1],
B[ (B~ tao) (8- Lao) ] =mins ) st S5 £
S > ap t 26!0 = mints, N > ) 12
whereas (2.7) and (2.9) imply that
N N N
1 cos(2kms) cos(2kmt)
E |:an Z ay cos(2kmt) — B Z ag cos(ant):| =— Z K22
k=1 k=1 k=1
as well as
N N
) sin(2krw s) sin(2kmt)
E |:BS > b sin(2kr t):| =) Y :
k=1 k=1
It remains to observe that, by (2.6) and (2.7),
N N
E |:(Z (ay cos(2kms) + by sin(2krs)) ) (Z ay cos(2kmt) + by sm(2knt))):|
k=1 k=1
_ i cos(2kms) cos(2kmt) + sin(2kms) sin(2km t)
N 2k2m?
Using the identity
cos(2km (t — s)) = cos(2kms) cos(2kmt) + sin(2k7s) sin(2km t) (2.10)

and recalling the definition (1.8) of the fluctuation process (Fi\] ’z)te[o,l] for the Fourier expansion,
we obtain the desired result. U

By combining Corollary 1.3, the resolution (1.9) to the Basel problem and the representation
(2.1), we can determine the pointwise limit of 2NC§] as N — o0o. We leave further considerations
until Section 4.2 to demonstrate that the identity (1.9) is really a consequence of our analysis.
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2.3 The polynomial expansion
As pointed out in the introduction and as discussed in detail in [12], the polynomial expansion
of the Brownian bridge is a type of Karhunen-Loéve expansion in the weighted L?(P) space with
weight function w on (0, 1) defined by w(t) = ﬁ

An alternative derivation of the polynomial expansion is given in [19] by considering iterated
Kolmogorov diffusions. The iterated Kolmogorov diffusion of step N € N pairs a one-dimensional
Brownian motion (W;)se[o,1] with its first N — 1 iterated time integrals, that is, it is the stochastic
process in RN of the form

t t SN—1 S
(Wt,/ W51d51>~~-’f / / Wsldsl ...dSN_l) .
0 0 JO 0 te[0,1]

The shifted Legendre polynomial Qj of degree k € N on the interval [0, 1] is defined in terms
of the standard Legendre polynomial Py of degree k on [ — 1, 1] by, for t € [0, 1],

Qk(t) = Pr(2t = 1).

It is then shown that the first component of an iterated Kolmogorov diffusion of step N e N
conditioned to return to 0 € RY in time 1 has the same law as the stochastic process

N-1 t 1
(Bt—Z(zkH) /0 Qu(r)dr /0 Qk(r)dBr)
k=1

te[0,1]

The polynomial expansion (1.5) is an immediate consequence of the result [[19], Theorem 1.4]
which states that these first components of the conditioned iterated Kolmogorov diffusions
converge weakly as N — oo to the zero process.

As for the Karhunen-Loéve expansion discussed above, the sequence {ci}xc of random coeffi-
cients defined by (1.6) is again formed by independent Gaussian random variables. To see this, we
first recall the following identities for Legendre polynomials [[1], (12.23), (12.31), (12.32)] which
in terms of the shifted Legendre polynomials read as, for k € N,

1 / /
%=y (@~ AUar) QO =D Q=1 (2.11)

In particular, it follows that, for all k e N,

1
/ Qur)dr =0,
0

which, by Lemma 2.1, implies that, for k, [ e N,

1 1 1 —1 ifk=1
E[ckcﬂ:E[(/o Qk(r)dBr> (/0 Qz(r)d3r>]= /0 QNQ(dr={ 2k 1 1
0

otherwise

Since the random coefficients are Gaussian with mean zero, this establishes their independence.
The fluctuation processes (Ff] ’3)t€[0,1] for the polynomial expansion defined by

https://doi.org/10.1017/5S096354832200030X Published online by Cambridge University Press


https://doi.org/10.1017/S096354832200030X

Combinatorics, Probability and Computing 381

N-1 t 1
BN = N (Bt ~ 3 @k /0 Qu(dr /O Qk<r>d3r> (2.12)
k=1

are studied in [19]. According to [[19], Theorem 1.6], they converge in finite dimensional distri-
butions as N — o0 to the collection (Ff )telo,1] of independent Gaussian random variables with
mean zero and variance

e[(#)]=_ Va0,

that is, the variance function of the limit fluctuations is given by a scaled semicircle.

3. Particular values of the Riemann zeta function

We demonstrate how to use the Karhunen-Loéve expansion of the Brownian bridge or, more pre-
cisely, the series representation arising from Mercer’s theorem for the covariance function of the
Brownian bridge to determine the values of the Riemann zeta function at even positive integers.
The analysis further feeds directly into Section 4.1 where we characterise the limit fluctuations for
the Karhunen-Loéve expansion.

The crucial ingredient is the observation (2.2) from Section 2, which implies that, for all
ne No,

12 sm(knt) r 1 " 1
Z/ dt:/0 (t—1)t dt:m. (3.1)

For completeness, we recall that the Riemann zeta function ¢: C\ {1} - C analytically
continues the sum of the Dirichlet series

o0

1

kS
k=1

g(s) =

When discussing its values at even positive integers, we encounter the Bernoulli numbers.
The Bernoulli numbers By, for n € N, are signed rational numbers defined by an exponential
generating function via, for t € (-2, 27),

Byt"
_1_1+Z ,

see Borevich and Shafarevich [[3], Chapter 5.8]. These numbers play an important role in number
theory and analysis. For instance, they feature in the series expansion of the (hyperbolic) tangent
and the (hyperbolic) cotangent, and they appear in formulae by Bernoulli and by Faulhaber for the
sum of positive integer powers of the first k positive integers. The characterisation of the Bernoulli
numbers which is essential to our analysis is that, according to [[3], Theorem 5.8.1], they satisfy
and are uniquely given by the recurrence relations

2 (m+1
1+Z< X )ano for m € N. (32)
n=1
In particular, choosing m = 1 yields 1 + 2B; = 0, which shows that
B — 1
=3
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Moreover, since the function defined by, for t € (—2x, 27),
o0
t t B,t"
+o=1+
ef—1 2 nX_; n!

is an even function, we obtain B,,4; = 0 for all #n € N, see [[3], Theorem 5.8.2]. It follows from
(3.2) that the Bernoulli numbers B;, indexed by even positive integers are uniquely characterised
by the recurrence relations

m
2 1 2m—1
Z ( m+ )an = formeN. (3.3)
2n 2

These recurrence relations are our tool for identifying the Bernoulli numbers when determining
the values of the Riemann zeta function at even positive integers.

The starting point for our analysis is (3.1), and we first illustrate how it allows us to compute
¢(2). Taking n = 0 in (3.1), multiplying through by 72, and using that fol (sin(km t))2 dt= % for
k € N, we deduce that

12 (sin(km t)) 72

5(2)=Zki2 Z/ —dtz?
k=1 k=1

We observe that this is exactly the identity obtained by applying the general result

1 o0
/ K(t,t)dt =Y
0 k=1

for a representation arising from Mercer’s theorem to the representation for the covariance
function Kp of the Brownian bridge.

For working out the values for the remaining even positive integers, we iterate over the degree
of the moment in (3.1). While for the remainder of this section it suffices to only consider the
even moments, we derive the following recurrence relation and the explicit expression both for
the even and for the odd moments as these are needed in Section 4.1. For k€ N and n € Ny,
we set

1
emzfzﬁmwmfwa
0
Lemma 3.1. Forallk € N and all n € N with n > 2, we have

1 n(n—1)

- €k,n—2

n+1 4k 2

€kn =

subject to the initial conditions

1
exo=1 and e = 7

Proof. For k € N, the values for exo and e;; can be verified directly. For n € N with n > 2, we
integrate by parts twice to obtain
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! 2
ek,n=/ 2(sin(k7'rt)) tdt
0
1 .
2kmt
1 / p SINCRTDN gy
2km
-1 sm kmt
=1—— n(n )/ ( _ {ein€ )))t’”dt
k2m?
2—n nn-—1) 1 1
= - Ckn—
2 2 \n+1 222 2
1 nn—1)
= — —¢ 5
n+1 k2 2 kﬂ 2
as claimed. O

Iteratively applying the recurrence relation, we find the following explicit expression, which
despite its involvedness is exactly what we need.

Lemma 3.2. Forallk € N and m € Ny, we have

m
(—=1)"(2m)! 1
__ d
Cam =5 1 T ; Q(m—n) + 1122 jengen "
(= D)"2m+1)! 1
€kom+1 =

2m+2

m — n) + 2)122n 2ng2n’

+;@(

Proof. We proceed by induction over m. Since e g =1 and e; 1 = % for all k € N, the expressions
are true for m = 0 with the sums being understood as empty sums in this case. Assuming that the
result is true for some fixed m € Ny, we use Lemma 3.1 to deduce that

1 2m+2)2m+1)

R 2m +2 2’”: (—1)"(2m +2)! 1

T 2m+3 4kem? — 2(m — n) + 1)122n12 f2nt272nt2

1 +'”Z+:1 (—D)"Cm+2)! 1

T 2m+3 = (2(m — n) + 3)122" k22

as well as
1 2m+3)2m+2)
ek,2m+3 = 2m + 4 - 4k27'[2 ek,2m+1

1 2m+3 i (=1)"(2m + 3)! 1

T om +4 4)2 72 — Q(m—n) + 2)!22n+2 J2n+22n+2
1 ’“Z*:l —1)"2m+3) 1

T o2m+4 (2(m — n) + 4)122n j2ng2n’

which settles the induction step.
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Focusing on the even moments for the remainder of this section, we see that by (3.1), for all
me No,

€k,2m _ 1
pa Br?  Cm4+2)2m4+3)

From Lemma 3.2, it follows that

=1 e (=1)"(2m)! 1 B 1
kX:; k272 (; (2(m — n) + 1)122n k2”7r2”>  2m+2)(@2m+3)

Since Y 2, k~2" converges for all n € N, we can rearrange sums to obtain

Z n(2m)! Z 1 B 1
(2(m —n) 4 1)122n k2nt2g2n+2 | 0m 4 2)(2m + 3)°

which in terms of the Riemann zeta function and after reindexing the sum rewrites as

’”f (D" em)  ¢@n) 1
= (2(m—n)+ 3)122n=2 720 T Om+2)2m+3)’

Multiplying through by (2m + 1)(2m + 2)(2m + 3) shows that, for all m € Ny,

m+1 _ 1)+l
Z (Zm + 3) (( 1) iiZn)!§(2H)> _ 2m + 1‘
= 2n 2m) 2

Comparing the last expression with the characterisation (3.3) of the Bernoulli numbers B,
indexed by even positive integers implies that

_(=1)"2(2n)!
2n — (27‘[)2n

that is, we have established that, forall n € N,

)n+1 (277) Ban

¢(2n) = (- o

4. Fluctuations for the trigonometric expansions of the Brownian bridge
We first prove Theorem 1.2 and Corollary 1.3 which we use to determine the pointwise limits for

the covariance functions of the fluctuation processes for the Karhunen-Loéve expansion and of
the fluctuation processes for the Fourier series expansion, and then we deduce Theorem 1.1.

4.1 Fluctuations for the Karhunen-Loéve expansion
For the moment analysis initiated in the previous section to allow us to identify the limit of
NC{\’ as N — 0o on the diagonal away from its endpoints, we apply the Arzela-Ascoli theo-
rem to guarantee continuity of the limit away from the endpoints. To this end, we first need
to establish the uniform boundedness of two families of functions. Recall that the functions
C{V: [0,1] x [0, 1] — R are defined in Lemma 2.2.

Lemma 4.1. The family {NCY(t,t): N € Nand t € [0, 1]} is uniformly bounded.
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U

0.5

Figure 3. Profiles of t — NC’l"(t, t) plotted for N € {5, 25, 100} along with t — %

Proof. Combining the expression for CN (¢, t) from Lemma 2.2 and the representation (2.1) for

Kp arising from Mercer’s theorem, we see that

N 2 (sin(km t))
NCN(t,t)=N Z ——
k=N+1
In particular, for all N € N and all ¢ € [0, 1], we have
2
N
NGV D[ <N 35 1
k=N+1
We further observe that
_ Moy M 11 . N
lim N — < lim N —— == )=1lm (1—-—)=1.
M—00 K~ M>oo k—1 k M—o0 M
k=N+1 k=N+1

It follows that, for all N e Nand all ¢ € [0, 1],

INCY ()| < =

which is illustrated in Figure 3 and which establishes the claimed uniform boundedness.

Lemma 4.2. Fix ¢ > 0. The family

d
{Ngd\’(t,t): NeNandte [8,1—8]}

is uniformly bounded.

Proof. According to Lemma 2.2, we have, for all t € [0, 1],

N . 2
2 (sin(kmt)
Gin=i-e -y WL

k=1

which implies that

N ..
d N 2 sin(2krm t)
—CVtn=N(1-20- —=—).
thcl (t, 1) N( t = )

k=1
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sinfkt)) plotted for N € {5, 25, 100, 1000} on [¢, 2 — ] with £ =0.1.

M=

Figure 4. Profiles of t— N(”T*f _

k=1

The desired result then follows by showing that, for ¢ > 0 fixed, the family

T—t sin(kt)
{N( 5 —Z p ):NeNandte[e,Zn—a]

k=1
is uniformly bounded, as illustrated in Figure 4. Employing a usual approach, we use the Dirichlet

kernel, for N € N,

N ; N . N 1
Z ekt —1 4 Z 2 cos(kt) = —Sm((. —t 2) t)
k=—N k=1 Sln(i)

to write, for t € (0, 27),

N . N . 1
T —t sin(kt) 1 " R sin((N + 5) s)
5 - ; K = —E \/ﬂ (1 + kE=1 2 COS(kS)) ds= —5 /7; st

Integration by parts yields

et P (LAs LI /ﬂfcos«w%)s)%(Sm(%))d&

2 sin(3) T @N+Dsin(l) 2N+1
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By the first mean value theorem for definite integrals, it follows that for t € (0, ] fixed, there
exists & € [t, ], whereas for t € [, 27) fixed, there exists & € [, t], such that

1 /t sin((N+1)5s) q cos((N+1)t)  cos((N+3)¢) 1 )
—= s= - —1).
2z sin(3) (2N + 1) sin(5) 2N +1 sin($)
Since |cos((N + 1) )| is bounded above by one independently of & and as % € (0,7) for t €
(0, 2mr) implies that 0 < sm( ) < 1, we conclude that, for all N € N and for all ¢ € (0, 27),

Z Sln

which, for t € [¢, 2w — ¢], is uniformly bounded by 1/ sin(%) . (]

2N
(2N +1) sm(%)’

Remark 4.3. In the proof of the previous lemma, we have essentially controlled the error in the
Fourier series expansion for the fractional part of t which is given by

1 isin@knt)
2 & km

see [[20], Exercise on p. 4].

We can now prove the convergence in Theorem 1.2 on the diagonal away from the endpoints,
which consists of a moment analysis to identify the moments of the limit function as well as an
application of the Arzela-Ascoli theorem to show that the limit function is continuous away from
the endpoints. Alternatively, one could prove Corollary 1.3 directly with a similar approach as
in the proof of Lemma 4.2, but integrating the Dirichlet kernel twice, and then deduce Theorem
1.2. However, as the moment analysis was already set up in Section 3 to determine the values of
the Riemann zeta function at even positive integers, we demonstrate how to proceed with this
approach.

Proposition 4.4. For all t € (0, 1), we have

N . 2
2 (sin(kmt 1
N—oo 1 k2m? w2
Proof. Recall that, due Lemma 2.2 and the representation (2.1), we have, for t € [0, 1],

N 2 (si k ¢ 2 o0 2 (si k £ 2
C{"(t,t):t—tz—zwz Z % (4.2)

k=1 k=N+1

By Lemmas 4.1 and 4.2, the Arzela-Ascoli theorem can be applied locally to any subsequence
of {NCI}yen. Repeatedly using the Arzela-Ascoli theorem and a diagonal argument, we deduce
that there exists a subsequence of {NC{V }Nen which converges pointwise to a continuous limit
function on the interval (0, 1). To prove that the full sequence converges pointwise and to iden-
tify the limit function, we proceed with the moment analysis initiated in Section 3. Applying
Lemma 3.2, we see that, for m € Ny,

m

o0
ek2m ) (2m)! 1
= 4,
N Z k2m2 Z k27r2 (2m+1 Z 2(m —n) 4 1)122n f2ng2n (43)

k=N+1 k=N

N i Ckomrl Z Z "em+1)! 1 "
KRr2 kznz 2m+2 (2(m —n) 4 2)122n f2ng2n | '

k=N-+1 k=N
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The bound (4.1) together with

M M
1 1 1 N N N
lim N —ZlimNZ -—— )= lim - =
M—00 L k2 ~ M—>oo e k k+1 M—-oco \N+1 M+1 N+1

=N+1 =N+1
implies that
— 1
lim N — =1 4.5
N—oo k2 (4:5)
k=N+1
For n € N, we further have
oo [o.¢] oo
1 N 1 1 1
0N D) s s N+ 1) Y mEiy o
k=N+1 k=N+1 k=1
and since Y po; k=" converges, this yields
— 1
Nh_)mOo N iz = 0 forneN.
k=N+1

From (4.2) as well as (4.3) and (4.4), it follows that, for all n € N,

1 0
. . Cin 1
1 NCN(t, )t"dt = lim N L .
A, J, NG Ord=Jim N D s = Gy e

This shows that, for all n € Ny,
1 1 1
lim NCN(t, p)t"dt = / —t"dt.
N—oo 0 0 T
If the sequence {NC{V Inen failed to converge pointwise, we could use the Arzela—Ascoli theorem

and a diagonal argument to construct a second subsequence of {NCN}yen converging pointwise
but to a different continuous limit function on (0, 1) compared to the first subsequence. Since this
contradicts the convergence of moments, the claimed result follows. g

We included the on-diagonal convergence in Theorem 1.2 as a separate statement to demon-
strate that Corollary 1.3 is a consequence of Proposition 4.4, which is then used to prove the
off-diagonal convergence in Theorem 1.2.

Proof of Corollary 1.3. Using the identity that, for k e N,

cos(2krrt) =1 — 2 (sin(krr 1))’ (4.6)
we obtain
. cos(2krt) > 1 > 2 (sin(lc7rt))2
Z Rr2 Z Rr? Z T kp2
k=N+1 k=N-+1 k=N-+1

From (4.5) and Proposition 4.4, it follows that, for all t € (0, 1),

lim N > cos(2kmt) 1 1 0
im ———=— - —=0,
N—oo k?m? n?  m?

k=N+1
as claimed. U
Proof of Theorem 1.2. If s € {0, 1} or t € {0, 1}, the result follows immediately from sin(kw) =0
for all ke Ny, and if s=t¢ for t € (0, 1), the claimed convergence is given by Proposition 4.4.
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Therefore, it remains to consider the off-diagonal case, and we may assume that s, t € (0, 1) are
such that s < t. Due to the representation (2.1) and the identity

2 sin(krs) sin(kmt) = cos(km (t — s)) — cos(km (t + s)),

we have
N 00
) 2 sin(krs) sin(kmt) 2 sin(kms) sin(kmt)
min(s, t) — st — E 22 = E 27
k=1 k=N+1

B i cos(km (t —s)) — cos(kn(t + s))

2T
k=N+1

Since 0 <t —s<t+s<2fors,t€(0,1)with s < ¢, the convergence away from the diagonal is a
consequence of Corollary 1.3. 0

Note that Theorem 1.2 states, for s, t € [0, 1],
1
=) ifs=tandt€(0,1)
lim NCN(s,t)=17 , (4.7)
N—oo
0  otherwise
which is the key ingredient for obtaining the characterisation of the limit fluctuations for the

Karhunen-Loéve expansion given in Theorem 1.1. We provide the full proof of Theorem 1.1
below after having determined the limit of 2NC) as N — oo.

4.2 Fluctuations for the Fourier series expansion
Instead of setting up another moment analysis to study the pointwise limit of 2NCY as N — oo,
we simplify the expression for C)Y from Lemma 2.3 and deduce the desired pointwise limit from
Corollary 1.3.

Using the standard Fourier basis for L?([0, 1]), the polarised Parseval identity and the trigono-
metric identity (2.10), we can write, for s, t € [0, 1],

1
min(s, t) = / L0, (") 10,5 (r)dr
0

x s t o0 s t
=st+ Z 2 cos(2kmrr)dr | cos(kmr)dr + Z 2 sin(2kwrr)dr | sin(Rkmr)dr
— YO0 0 o Y0 0

o0 o0 o0 o0
cos(2kms) cos(2kmt) cos(km (t — s)) 1
=st— Y —o Y Y S
) 2 2k?m2 ; 2k%m2 + 2 2k2m? + ; 2k?m2

Applying the identity (4.6) as well as the representation (2.1) and using the value for ¢ (2) derived
in Section 3, we have

cos(2kmt) >, (sin(kr1))? 1 Pt
; 2k?m? Z 2k27'[2 ; ez 12 2

Once again exploiting the value for ;‘(2), we obtain

s$—s 12—t 1 . cos(2kn (t —s))
; Sty

min(s, t) — st +
(s 1) 2 12 2k2m2
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Using the expression for sz\l from Lemma 2.3, it follows that, for s, t € [0, 1],

Cé\l(s, )= i M_

2k2m2
k=N+1
This implies that if t — s is an integer then, as a result of the limit (4.5),

lim 2NCN(s, t) = —,
Nl—I>noo 2(5 ) 2

whereas if t — s is not an integer then, by Corollary 1.3,
lim 2NCY(s,t) =0.
N—oo
This can be summarised as, for s, t € [0, 1],

1
= ifs=tors,te{0,1}
lim 2NCY(s,t) =17 ) (4.8)
N—o0

0  otherwise
We finally prove Theorem 1.1 by considering characteristic functions.

Proof of Theorem 1.1. According to Lemma 2.2 as well as Lemma 2.3, the fluctuation processes
(Ff\]’l)te[o,l] and (Ff”z)te[o,l] are zero-mean Gaussian processes with covariance functions NCIIV
and 2NCY, respectively.

By the pointwise convergences (4.7) and (4.8) of the covariance functions in the limit N — oo,
for any ne N and any ty,...,t, € [0, 1], the characteristic functions of the Gaussian random

vectors (Ff\ll’i, R Fa]’i), for i € {1, 2}, converge pointwise as N — 0o to the characteristic func-

tion of the Gaussian random vector (Fil, el Ff"). Therefore, the claimed convergences in finite
dimensional distributions are consequences of Lévy’s continuity theorem. U

5. Approximations of Brownian Lévy area

In this section, we consider approximations of second iterated integrals of Brownian motion,
which is a classical problem in the numerical analysis of stochastic differential equations (SDEs),
see [22]. Due to their presence within stochastic Taylor expansions, increments and second iter-
ated integrals of multidimensional Brownian motion are required by high order strong methods
for general SDEs, such as stochastic Taylor [22] and Runge-Kutta [33] methods. Currently, the
only methodology for exactly generating the increment and second iterated integral, or equiva-
lently the Lévy area, given by Definition 1.4, of a d-dimensional Brownian motion is limited to
the case when d = 2. This algorithm for the exact generation of Brownian increments and Lévy

>«

area is detailed in [13]. The approach adapts Marsaglia’s “rectangle-wedge-tail” algorithm to the
joint density function of (Wil), WP,A&Z)), which is expressible as an integral, but can only be
evaluated numerically. Due to the subtle relationships between different entries in Ag 1, it has not
been extended to d > 2.

Obtaining good approximations of Brownian Lévy area in an L?(P) sense is known to be
difficult. For example, it was shown in [8] that any approximation of Lévy area which is

measurable with respect to N Gaussian random variables, obtained from linear functionals of

the Brownian path, cannot achieve strong convergence faster than O(N _%). In particular, this

result extends the classical theorem of Clark and Cameron [4] which establishes a best conver-
1

gence rate of O(N™2) for approximations of Lévy area based on only the Brownian increments

{Wst1)h — Wanto<n<n—1. Therefore, approximations have been developed which fall outside of

this paradigm, see [5, 11, 32, 35]. In the analysis of these methodologies, the Lévy area of Brownian
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motion and its approximation are probabilistically coupled in such a way that L?(IP) convergence
rates of O(N™!) can be established.

We are interested in the approximations of Brownian Lévy area that can be obtained directly
from the Fourier series expansion (1.3) and the polynomial expansion (1.5) of the Brownian
bridge. For the remainder of the section, the Brownian motion (Wy)c[o,1] is assumed to be
d-dimensional and (By)se[o,1] is its associated Brownian bridge.

We first recall the standard Fourier approach to the strong approximation of Brownian Lévy
area.

Theorem 5.1 (Approximation of Brownian Lévy area via Fourier coefficients, see [[22], p. 205]
and [[31], p. 99]). For n €N, we define a random antisymmetric d x d matrix A, by, for i,je
{1,...,d},

n—1
i) LGy 0) @) () (1) 1.() M ()
AT = 3 (aol WY —w"a ) +7 ;k<ak’ b —ba) )

where the normal random vectors {ay}ren, and {bi}ren are the coefficients from the Brownian
bridge expansion (1.3), that is, the coordinates of each random vector are independent and defined
according to (1.4). Then, fori,je{1,...,d} withi#j, we have

&) ()
(- 3) -

Remark 5.2. Using the covariance structure given by (2.5), (2.6), (2.7) and the independence of
the components of a Brownian bridge, it immediately follows that the coefficients {ay}en, and

{bi}ken are jointly normal with ag ~N(0, 1), ax. by ~ N(0, e so—314), cov (ag, a) = —#Id
and cov (a;, by) =0 for k e Nand I € Nj.

In practice, the above approximation may involve generating the N independent random vec-
tors {ax}1 <k<n followed by the coefficient ag, which will not be independent, but can be expressed
as a linear combination of {a}; <x<y along with an additional independent normal random vec-
tor. Without this additional normal random vector, we obtain the following discretisation of Lévy
area.

Theorem 5.3 (Kloeden-Platen-Wright approximation of Brownian Lévy area, see [23, 30, 35]).
For n € N, we define a random antisymmetric d x d matrix A, by, fori,je {1,...,d)},

n—1
T 3 O (0 1 0 WL om) 0
A =TT k(l(bk—EWI>—(bk’—EW{)ak>,
k=1

where the sequences {ag}ren and {bilren of independent normal random vectors are the same as
before. Then, fori,je{1,...,d} with i #j, we have

[ -3) - L

Proof. As for Theorem 5.1, the result follows by direct calculation. The constant is larger because,
forie{l,...,d}andkeN,

| (6 - )| = 5o =3[ 00))

which yields the required result. U
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Finally, we give the approximation of Lévy area corresponding to the polynomial expansion
(L.5). Although this series expansion of Brownian Lévy area was first proposed in [24], a straight-
forward derivation based on the polynomial expansion (1.5) was only established much later in
[25]. However in [24, 25], the optimal bound for the mean squared error of the approximation is
not identified. We will present a similar derivation to [25], but with a simple formula for the mean
squared error.

Theorem 5.4 (Polynomial approximation of Brownian Lévy area, see [[24], p. 47] and [25]). For
n € No, we define a random antisymmetric d x d matrix A, by, forneNandi,je{l,...,d},
G _ 1 0 0, LN (0.0 0)
T _ @ G (ORVA( () @ U
A, '_E<W1 6 —q W1>+§ (ckck+1—ck+1ck)
k=1

B

where the normal random vectors {c}ren are the coefficients from the polynomial expansion (1.5),
that is, the coordinates are independent and defined according to (1.6), and we set

Zg’j) = 0.

Then, for n € Ny and fori,je{1,...,d} withi# j, we have

E[<A(<)u> A(u)) } 1
1 Sn+4

Remark 5.5. By applying Lemma 2.1, the orthogonality of shifted Legendre polynomials and the
independence of the components of a Brownian bridge, we see that the coefficients {cx}ien are

independent and distributed as ¢, ~ N (O, ﬁld) for ke N.

Proof. It follows from the polynomial expansion (1.5) that, fori,j € {1,. .., d} with i #j,

1 . 1
/ BYdBY = / ( > @k+1)c) / Qi r)dr) ( 2l+l)c / Ql(r)dr) (5.1)
0 0

where the series converge in L*(P). To simplify (5.1), we use the identities in (2.11) for shifted
Legendre polynomials as well as the orthogonality of shifted Legendre polynomials to obtain that,
fork,leN,

/01 (/(;tQk(T’)dT‘) d (/Ot Qz(r)dr> :/01 Qi) /Ot Qu(r)drdt

1 1
T 20k+1) fo Q1) (Qer1(6) = Qun (1) dt

1 1
M/O (Qk+1(l‘))2dt ifl=k+1

1 1 |
_mfo (Qua (1)’ dt ifl=k—1

0 otherwise

k=1
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Evaluating the above integrals gives, for k, [ € N,

1
22k + 1)(2k + 3)

1 t t
Q(r)dr)d( / Q(r)dr): _ 1 1. (5.2)
/0</0 ‘ 0 kT D@k— H=k-l

0 otherwise

ifl=k+1

In particular, for k, I € N, this implies that

1

Ecg)cgll ifl=k+1
/0 <2k+1)c<’> / Qk(r)dr) ((21+1 / Q r)dr) _%Cgcg)l fle k1

0 otherwise

Therefore, by the bounded convergence theorem in L*(P), we can simplify the expansion
(5.1) to

1 o
) ani) 1 ) )
/ B dp = 5 § : ( kl)cl(c]+1 - Ck+1 ;E’) (5.3)

0 k=1

where, just as before, the series converges in L2(P). Since W; = tW; + B; for t € [0, 1], we have,
fori,je{l,...,d}withi#j,

1 . ) 1 ) 0 L ) 1 . ) . )
/ wPaw? = f (twa(tw?) + f BYd(ew?) + / (tw)dBY + f BdBY
0 0 0 0 0
Loy ) [ 0w [ qp0 o [ g gp0)
=5w§’>w1 —wY / tdB + w' / tdB + / BYdBY,
0 0 0
where the second line follows by integration by parts. As
1
[ ot =Lt a
and Q (t) = 2t — 1, the above and (5.3) imply that, for i,j € {1,...,d},

o0
Gy _ Lo @), 1 OIK0)
Ay _E(Wl’cl — ' W; )"'EZ( ck+1—ckl+1ck)
k=1

By the independence of the normal random vectors in the sequence {ci}ken, it is straightfor-

ward to compute the mean squared error in approximating Ay ; and we obtain, for n € N and for
ijef{l,...,d} withi#j,
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Bl (46 _ 76 2 _F 1 o @ ) @ 0 ’
(0,1_ n ) = £Z<Ckck+1_ck+1k)

s 2
2 Z 2k + 1)(2k + 3)

_1i 1 1
! 2k+1 2k+3

T 8n+4’

by Remark 5.5. Similarly, as the normal random vector W and the ones in the sequence {ci}ken
are independent, we have

s y . . 2 o0 2
el -0 |~ (3 (v - o)) [ | (33 (@0 -
k=1

as claimed. O

Given that we have now considered three different strong approximations of Brownian Lévy
area, it is reasonable to compare their respective rates of convergence. Combining the above
theorems, we obtain the following result.

Corollary 5.6 (Asymptotic convergence rates of Lévy area approximations). For n € N, we set N =
2n so that the number of Gaussian random vectors required to deﬁne the Lévy area approximations
An, Ay and Ayy is N or N — 1, respectively. Then, fori,j€(1,...,d} with i #j and as N — oo, we

have
[ (G 2\ 1/
I[*‘:_(AO)1 — Ay ) | ~—2<N >

[ (G 52| 3 (1
E| (457 - &3 ) F(N ,

[ (460 _ 5@\ ] L[ 1
Bl (a7 -A5)) [~ ()

L 0,1 2n | 8 N

In particular, the polynomial approximation of Brownian Lévy area is more accurate than the
Kloeden-Platen-Wright approximation, both of which use only independent Gaussian vectors.

Remark 5.7. It was shown in [8] that # (I\i]) is the optimal asymptotic rate of mean squared con-
vergence for Lévy area approximations that are measurable with respect to N Gaussian random
variables, obtained from linear functionals of the Brownian path.

As one would expect, all the Lévy area approximations converge in L?(P) with a rate of O(N *%)
and thus the main difference between their respective accuracies is in the leading error constant.
More concretely, for sufficiently large N, the approximation based on the Fourier expansion of
the Brownian bridge is roughly 11% more accurate in L?(P) than that of the polynomial approx-
imation. On the other hand, the polynomial approximation is easier to implement in practice as
all of the required coefficients are independent. Since it has the largest asymptotic error constant,
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the Kloeden-Platen-Wright approach gives the least accurate approximation for Brownian Lévy
area.

We observe that the leading error constants for the Lévy area approximations resulting from
the Fourier series and the polynomial expansion coincide with the average L?(PP) error of their
respective fluctuation processes, that is, applying Fubini’s theorem followed by the limit theorems

for the fluctuation processes (Ffv ’z)te[o,l] and (Ffv ’3)16[0,1] defined by (1.8) and (2.12), respectively,

gives
lim E L2 ' 1 Lar=t
NS [/0 (Ft ) t]Z/O 4=
lim ]EU (F{“) dt]:/ V1= pdt = -
N— oo 0 0o 8

To demonstrate how this correspondence arises, we close with some heuristics. For N € N, we con-
sider an approximation of the Brownian bridge which uses N random vectors, and we denote the
corresponding approximation of Brownian motion (W;)sc[o,1] by (Sg\] )telo,1]» Where the difference
between Brownian motion and its associated Brownian bridge is the first term in the approxima-
tion. In the Fourier and polynomial approaches, the error in approximating Brownian Lévy area
is then essentially given by

1 . 0) 1 D 1 NG) 1 . . 0) 1 . ) N.G)
/ wdw, —/ SN as =/ (Wt“)—slf’(’)) dw, +/ sMd (W}’ —st’f).
0 0 0 0
If one can argue that

Lo 4 _ 1
o
0
which, for instance, for the polynomial approximation follows directly from (5.2) and Remark 5.5,
then in terms of the fluctuation processes (FY)c[o,1] defined by

FY = VR (Wi - 5.

the error of the Lévy area approximation can be expressed as

1 L NG 3 () 1
— FVdw, ol—).
/_N/()‘ t t + N

Thus, by Itd’s isometry and Fubini’s theorem, the leading error constant in the mean squared

error is indeed given by
1 N\ 2
/ lim E [(Ff”’)) ]dt.
0 N—oo

This connection could be interpreted as an asymptotic It6 isometry for Lévy area approximations.
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Table Al. Table summarising the Brownian bridge expansions considered in this paper

Type of expansion

Expansion of the Brownian bridge (Bt)te[o,1]

Karhunen-Loéve (Loéve [27])

Fourier series (Kahane [21] or
Kloeden-Platen [22])

Polynomial (Foster, Lyons, Oberhauser [12]
and Habermann [19])

Br=Y"2, Zs%ﬁf’”) fol cos(kmr)dB;,

Br=2ag + 332, (ak cos(2krt) + by sin(2krt)) with, for k € No,
ax=2 fol cos(2kmr)B,dr, by=2 fol sin(2kmr)B,dr

=32, 2k + 1)ck fot Q(r)dr with, fork e N, ¢, = fol Qx(r)dB; and Qy
denoting the shifted Legendre polynomial of degree k

Table A2. Table summarising the Lévy area expansions considered in this paper

Type of expansion

Expansion of the Brownian Lévy area Ag;

Fourier series (Kloeden-Platen [22] and
Milstein [31])

Fourier series (Kloeden-Platen-Wright [23]
and Mllsteln [30])

Polynomlal (Kuznetsov [24])

g'f) =1 ( (i)W(i) — W(') ) + Y gk (ak b(’ b()ag ) with, for
ke No,ak :2[0 cos( 2k7rr) ')dr b(') —Zfo sin( 2k7rr)B(')dr

e . 0
Aor,fl Y k( o (b(n W ) (bm _ %) (k/)>
A= (10 ) - 5, (4t~ )

keN, cg) = fol Qi(r dBr and Qy denoting the shifted Legendre
polynomial of degree k

Cite this article: Foster ] and Habermann K (2023). Brownian bridge expansions for Lévy area approxima-
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