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Abstract
We give an elementary approach utilizing only the divided difference formalism for obtaining expansions of Schubert
polynomials that are manifestly nonnegative, by studying solutions to the equation

∑
𝑌𝑖𝜕𝑖 = id on polynomials

with no constant term. This in particular recovers the pipe dream and slide polynomial expansions. We also show
that slide polynomials satisfy an analogue of the divided difference formalisms for Schubert polynomials and
forest polynomials, which gives a simple method for extracting the coefficients of slide polynomials in the slide
polynomial decomposition of an arbitrary polynomial.
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2 P. Nadeau, H. Spink and V. Tewari

1. Introduction

Let 𝑆∞ denote the set of permutations of {1, 2, . . .} with finite support, and let ℓ(𝑤) denote the length of
a permutation, the length of the smallest word in the simple transpositions 𝑠𝑖 = (𝑖, 𝑖 +1) which equals w.
The nil-Coxeter monoid is the right-cancellative partial monoid whose elements are permutations in
𝑆∞, equipped with the partial monoid structure

𝑢 ◦ 𝑣 =

{
𝑢𝑣 if ℓ(𝑢) + ℓ(𝑣) = ℓ(𝑢𝑣)
undefined otherwise.

(1.1)

There is a permutation 𝑤/𝑖 such that 𝑤 = (𝑤/𝑖) ◦ 𝑖 if and only if i is in the descent set Des(𝑤) =
{ 𝑗 | 𝑤( 𝑗) > 𝑤( 𝑗 + 1)}, in which case it is unique and given by the formula 𝑤/𝑖 = 𝑤𝑠𝑖 . An important
representation of the nil-Coxeter monoid is the divided difference representation on integral polynomials,
which sends 𝑠𝑖 to the i’th divided difference operator 𝜕𝑖 given by the formula

𝜕𝑖 ( 𝑓 ) =
𝑓 − 𝑓 (𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖+1, 𝑥𝑖 , . . .)

𝑥𝑖 − 𝑥𝑖+1
. (1.2)

The Schubert polynomials {𝔖𝑤 | 𝑤 ∈ 𝑆∞} of Lascoux–Schützenberger [16, 18] are a family of
polynomials indexed by permutations w in 𝑆∞, characterized by the normalization condition 𝔖id = 1,
and the relations

𝜕𝑖𝔖𝑤 =

{
𝔖𝑤/𝑖 if 𝑖 ∈ Des(𝑤)
0 otherwise.

Despite their relatively simple definition, Schubert polynomials are complicated combinatorial objects.
Many combinatorial formulas for Schubert polynomials exist, such as the algorithmic method of
Kohnert [2, 12], the pipe dreams of Bergeron–Billey [4] and Fomin–Kirillov [8], the slide expansions of
Billey–Jockusch–Stanley [6] and Assaf–Searles [3], the balanced tableaux of Fomin–Greene–Reiner–
Shimozono [7], the bumpless pipe dreams of Lam–Lee–Shimozono [15], and the prism tableau model
of Weigandt–Yong [27].

Expansions of Schubert polynomials have been almost exclusively studied from a ‘top-down’
perspective – for 𝑤0,𝑛 the longest permutation in 𝑆𝑛, one checks the conjectured formula agrees with the
Ansatz 𝔖𝑤0,𝑛 = 𝑥𝑛−1

1 𝑥𝑛−2
2 · · · 𝑥𝑛−1 and then verifies the conjectured formula transforms correctly under

applications of 𝜕𝑖 . It seems the approaches to studying Schubert formulae that are ‘bottom-up’ are rather
limited. They fall into a broad class of results revolving around Pieri rules [26] (containing Monk’s
rule [21] as a special case) expanding the product of 𝔖𝑤 with elementary and complete homogenous
symmetric polynomials via the k-Bruhat order [5] to establish relations between Schubert polynomials
related by nonadjacent transpositions [17, §3]. Another approach, relying on the geometry of Bott–
Samelson varieties, is due to Magyar [19], and it builds Schubert polynomials by interspersing isobaric
divided differences with multiplications by terms of the form 𝑥1 · · · 𝑥𝑖 (cf. [20] for a generalization to
Grothendieck polynomials using combinatorial tools).

In this paper, we develop a new general method for finding combinatorial expansions of Schubert
polynomials, which works from the bottom-up, by directly reconstructing a Schubert polynomial 𝔖𝑤

from the collection of Schubert polynomials 𝔖𝑤𝑠𝑖 for 𝑖 ∈ Des(𝑤).
We demonstrate here our technique on a simpler toy example, where we recover the family of

normalized monomials {𝑆𝑐 = x𝑐
𝑐! �

𝑥
𝑐1
1 · · ·𝑥

𝑐ℓ
ℓ

𝑐1!· · ·𝑐ℓ ! | 𝑐 = (𝑐1, . . . , 𝑐ℓ)} using only the indirect information
that they are homogeneous with 𝑆∅ = 1 and satisfy

𝑑

𝑑𝑥𝑖
𝑆𝑐 =

{
𝑆𝑐−𝑒𝑖 if 𝑐𝑖 ≥ 1
0 otherwise.

(1.3)
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where 𝑐−𝑒𝑖 = (𝑐1, . . . , 𝑐𝑖−1, 𝑐𝑖−1, 𝑐𝑖+1, . . . , 𝑐ℓ). Our technique is motivated by Euler’s famous theorem
∞∑
𝑖=1

𝑥𝑖
𝑑

𝑑𝑥𝑖
𝑓 = 𝑘 𝑓

for f a homogeneous polynomial of positive degree k. Iteratively applying this identity shows that∑
𝑖1 ,...,𝑖𝑘

𝑥𝑖1 · · · 𝑥𝑖𝑘
𝑑

𝑑𝑥𝑖1
· · ·

𝑑

𝑑𝑥𝑖𝑘
𝑓 = 𝑘! id

on homogeneous polynomials of degree k, and grouping together terms with the same derivatives applied
to f shows that ∑

(𝑐1 ,...,𝑐ℓ )

x𝑐

𝑐!

(
𝑑

𝑑𝑥1

)𝑐1

· · ·

(
𝑑

𝑑𝑥𝑘

)𝑐ℓ
= id.

Applying this identity to 𝑆𝑐 shows that 𝑆𝑐 = x𝑐
𝑐! , as desired. Notably, this calculation does not use the

Ansatz that the family of polynomials we are seeking are monomials.
Let Pol � Z[𝑥1, 𝑥2, . . . , ], and let Pol+ ⊂ Pol denote the ideal of polynomials with no constant term.

Our method relies on finding degree 1 ‘creation operators’ 𝑌1, 𝑌2, . . . that solve the equation
∞∑
𝑖=1

𝑌𝑖𝜕𝑖 = id

on Pol+. Applying this equation to a Schubert polynomial and recursing gives an expansion∑
(𝑖1 ,...,𝑖𝑘 ) ∈Red(𝑤)

𝑌𝑖𝑘 · · ·𝑌𝑖1 (1) = 𝔖𝑤 ,

where Red(𝑤) is the set of reduced words for w. In particular, if each 𝑌𝑖 is a monomial nonnegative
operator, then this produces a monomial nonnegative expansion of 𝔖𝑤 . Given the simplicity, we
now show that Schubert polynomials have a nonnegative monomial expansion using this technique by
producing one such family of creation operators (this later appears as §3.1; we will produce an additional
family in §5.3). Define the map

R𝑖 ( 𝑓 ) = 𝑓 (𝑥1, . . . , 𝑥𝑖−1, 0, 𝑥𝑖 , 𝑥𝑖+1, . . .).

Then

id = R1 + (R2 − R1) + (R3 − R2) + · · · = R1 +

∞∑
𝑖=1

𝑥𝑖R𝑖𝜕𝑖 .

Here, we use R𝑖+1 − R𝑖 = 𝑥𝑖R𝑖𝜕𝑖 , which can be seen to hold by noting that R𝑖+1 = R𝑖𝑠𝑖 , where 𝑠𝑖 is
the simple transposition swapping 𝑥𝑖 and 𝑥𝑖+1. Moving R1 to the other side and noting that id − R1 is
invertible on polynomials with no constant term with inverse Z = id+R1 + R2

1 + · · · , we conclude that∑
Z𝑥𝑖R𝑖𝜕𝑖 = id.

Applying this to 𝔖𝑤 immediately gives the following.
Theorem 1.1 (Corollary 3.2). We have the following monomial positive expansion:

𝔖𝑤 =
∑

(𝑖1 ,...,𝑖𝑘 ) ∈Red(𝑤)

Z𝑥𝑖𝑘 R𝑖𝑘 · · · Z𝑥𝑖1 R𝑖1 (1).

Example 3.3 demonstrates how this theorem build Schubert polynomials bottom-up.
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4 P. Nadeau, H. Spink and V. Tewari

We generalize these ideas to a more general situation (𝑋, 𝑀) we call a ‘divided difference pair’
(dd-pair henceforth), in which the compositions of degree −1 polynomial endomorphisms 𝑋1, 𝑋2, . . .,
given by ‘shifts’ of a fixed endomorphism X, form a representation of a right-cancellable partial graded
monoid M generated in degree 1. Writing Last(𝑤) for the analogue of the descent set of w, we will
say that a family of polynomials {𝑆𝑤 | 𝑤 ∈ 𝑀} is ‘dual’ to the dd-pair if it satisfies the normalization
condition 𝑆1 = 1 and

𝑋𝑖𝑆𝑤 =

{
𝑆𝑤/𝑖 if 𝑖 ∈ Last(𝑤)
0 otherwise.

It is then natural to ask the following.
1. Assuming there is such a family of polynomials {𝑆𝑤 | 𝑤 ∈ 𝑀}, can we write down a formula for 𝑆𝑤?
2. Does such a family of polynomials exist in the first place?
These questions came up naturally from our previous paper [22] for the operators

T𝑚𝑖 ( 𝑓 ) =
𝑓 (𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖 , 0𝑚, 𝑥𝑖+1, . . .) − 𝑓 (𝑥1, . . . , 𝑥𝑖−1, 0𝑚, 𝑥𝑖 , 𝑥𝑖+1, . . .)

𝑥𝑖

called ‘m-quasisymmetric divided difference operators’. There we had to essentially guess (via computer
assistance) a formula for the family of m-forest polynomials and then through a tedious and unenlight-
ening computation [22, Appendix] show that they interact in the expected way with the T𝑚𝑖 operators.

The analogue of creation operators𝑌𝑖 such that
∑
𝑌𝑖𝑋𝑖 = id on polynomials with no constant term can

be used to solve the first question analogously as for Schubert polynomials, and we find such operators
for m-forest polynomials without difficulty.

For the second question, we show that if a dd-pair has creation operators, then surprisingly, the only
additional thing that is needed to ensure that the dual family of polynomials exists is a ‘code map’
𝑐 : 𝑀 → Codes from the partial monoid to finitely supported sequences of nonnegative integers, so
that the highest index of a nonzero element of 𝑐(𝑚) is the maximal element of Last(𝑤). The Lehmer
code of permutations works for the 𝜕𝑖 formalism, while the m-Dyck path forest code [22, Definition 3.5]
works for the T𝑚𝑖 formalism: this shows directly that Schubert polynomials and m-forest polynomials
exist without any Ansatz or combinatorial model.

As a further application, we study the well-known family of polynomials called ‘slide polynomials’
investigated in detail by Assaf–Searles [3]; this family is also present in earlier works [6, 11] (see [10]
for more on the relation to Hivert’s foundational work). Forest polynomials and Schubert polynomials
decompose nonnegatively in terms of this family (see respectively [23] and [3, 6]). A slide polynomial
is determined by a sequence of positive integers (𝑎1, 𝑎2, . . . , 𝑎𝑘 ), and the distinct slide polynomials
𝔉𝑎1 ,...,𝑎𝑘 are indexed by weakly increasing sequences 1 ≤ 𝑎1 ≤ 𝑎2 ≤ · · · ≤ 𝑎𝑘 . We construct a dd-pair
for the operators

D𝑖 ( 𝑓 ) =
𝑓 (𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖 , 0, 0, . . .) − 𝑓 (𝑥1, . . . , 𝑥𝑖−1, 0, 𝑥𝑖 , 0, . . .)

𝑥𝑖

whose compositions are governed by the partial monoid whose only relations are that D𝑖D 𝑗 is undefined
for 𝑖 > 𝑗 , such that the slide polynomials form the dual family of polynomials. This gives a fast and
practical method for directly extracting coefficients of an arbitrary polynomial in the slide basis. Since
fundamental quasisymmetric polynomials are a subfamily within slide polynomials, this generalizes
[22, Corollary 8.6].
Theorem 1.2 (Corollary 5.8). The slide expansion of a degree k homogeneous polynomial 𝑓 ∈ Pol is
given by

𝑓 =
∑

1≤𝑖1≤···≤𝑖𝑘

(D𝑖1 · · ·D𝑖𝑘 𝑓 )𝔉𝑖1 ,...,𝑖𝑘 .
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Table 1. Divided difference formalisms..

§ Monoid Divided differences Dual polynomials Creation operators

3 Nil-Coxeter monoid 𝑆∞ 𝜕𝑖 Schubert polynomials 𝔖𝑤 Z𝑥𝑖R𝑖 and (§5) B𝑖

4 Thompson monoid ThMon T𝑖 = R𝑖𝜕𝑖 = R𝑖+1𝜕𝑖 Forest polynomials 𝔓𝐹 Z𝑥𝑖 and (§5) B𝑖

m-Thompson monoid ThMon𝑚 T𝑚
𝑖 = T𝑖R𝑚−1

𝑖+1 m-forest polynomials 𝔓𝑚
𝐹 Z𝑚𝑥𝑖 and (§5) B𝑚

𝑖

5 Weakly increasing monoid WInc D𝑖 = R∞
𝑖+1𝜕𝑖 = R∞

𝑖+1T𝑖 Slide polynomials 𝔉i B𝑖

D𝑚
𝑖 = R∞

𝑖+1T𝑚
𝑖 m-slide polynomials 𝔉𝑚

i B𝑚
𝑖

D∞

𝑖 = R∞
𝑖+1T∞

𝑖 = T∞

𝑖 Monomials 𝑥i B∞

𝑖

Associated to the D𝑖 are a new family of operators we call ‘slide creators’ B𝑖 that have the property
that for any sequence 𝑎1, . . . , 𝑎𝑘 (not necessarily weakly increasing), we have

𝔉𝑎1 ,...,𝑎𝑘 = B𝑎𝑘 · · ·B𝑎1 (1),

and ∑
B𝑖𝜕𝑖 =

∑
B𝑖T𝑖 =

∑
B𝑖D𝑖 = id

on Pol+, i.e., they function as creation operators for Schubert polynomials, forest polynomials, and
slide polynomials themselves simultaneously. Using these facts, we obtain the known slide polynomial
expansions of Schubert and forest polynomials.

1.1. Outline of the paper

See Table 1 for an overview of where we address each family of polynomials we consider in the paper.
In §2, we set up the notion of divided difference pairs and study creation operators and code maps. In §3,
we study Schubert polynomials. In §4, we study forest polynomials, including m-forest polynomials. In
§5, we study slide polynomials and m-slide polynomials, which include monomials as a limiting case.

2. Divided differences and creation operators

We describe a general framework which encodes the duality between 𝜕𝑖 and𝔖𝑤 . In our framework, the
pair (𝜕, 𝑆∞) will be called a divided difference pair (dd-pair for short), and {𝔖𝑤 | 𝑤 ∈ 𝑆∞} will be
called a ‘dual family of polynomials’ to this dd-pair. The two main mathematical insights are as follows.

1. The existence of certain ‘creation operators’ leads to explicit formulas for the dual polynomials,
assuming the dual family of polynomials exist.

2. Creation operators together with a ‘code map’ show that the dual polynomials exist, without needing
to verify any particular Ansatz or combinatorial model that interacts well with the operators.

These considerations are new and interesting even in the case of Schubert polynomials. For example,
because we have the Z𝑥R creation operators mentioned in the introduction, we will see in §3 that the
existence of the Lehmer code on permutations immediately implies that Schubert polynomials exist
without any Ansatz or direct verification that the Z𝑥R recursion interacts well with the 𝜕𝑖 operators. In
later sections, we will apply this formalism to other families of polynomials.

Remark 2.1. The operators and families of polynomials of interest to us in this paper have integer
coefficients, so we will set everything up over Z. This will exclude certain parts of the 𝑑

𝑑𝑥𝑖
example from

the introduction because of the denominators present in the normalized monomials 𝑆𝑐 = x𝑐
𝑐! . However,

all of the theorems we have work equally well over Q, and we will indicate through this section how
such modifications apply to this particular example.
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6 P. Nadeau, H. Spink and V. Tewari

2.1. Partial monoids and polynomial representations

We start by recalling some notions on partial monoids: these will encode the combinatorics of relations
between families of operators.

A partial monoid M is a set equipped with a partial product map 𝑀 × 𝑀 � 𝑀 denoted by
concatenation, together with a unit 1, such that 1𝑚 = 𝑚1 = 𝑚 for all𝑚 ∈ 𝑀 , and𝑚(𝑚′𝑚′′) = (𝑚𝑚′)𝑚′′

for any 𝑚, 𝑚′, 𝑚′′, in the sense that either both products are undefined, or both are defined and equal.
Remark 2.2. We have a monoid when the map is total – that is, when products are always defined. Given
a partial monoid M, one forms a monoid on the one-element extension 𝑀 � {0} by setting 𝑚𝑚′ = 0
when the product is undefined in M, and if m or 𝑚′ is 0. The notions of partial monoids and monoids
with zero are thus essentially equivalent.

A polynomial representation of M is a map Φ : 𝑀 → End(Pol) assigning an endomorphism of Pol
to each element of M such that Φ(1) = id and such that for 𝑢, 𝑣 ∈ 𝑀 , we have

Φ(𝑢)Φ(𝑣) =

{
Φ(𝑢𝑣) if 𝑢𝑣 is defined
0 otherwise.

A partial monoid M is graded if there is a length function ℓ : 𝑀 → {0, 1, 2, . . .} such that ℓ(𝑢𝑣) =
ℓ(𝑢) + ℓ(𝑣) whenever 𝑢𝑣 is defined. We write 𝑀𝑘 ⊂ 𝑀 for those elements of degree k. We always have
𝑀0 = {1}, and we write 𝑀1 = {𝑎𝑖}𝑖∈𝐼 for some indexing set I. If a graded partial monoid is generated
in degree 1, then the length ℓ(𝑤) for 𝑤 ∈ 𝑀 is the common length k of all expressions 𝑚 = 𝑎𝑖1 · · · 𝑎𝑖𝑘 .
For such a partial monoid, we write Fac(𝑤) for the set of (𝑖1, . . . , 𝑖𝑘 ) such that 𝑤 = 𝑎𝑖1 · · · 𝑎𝑖𝑘 , and for
𝑤 ∈ 𝑀𝑘 , we write Last(𝑤) for the set of i such that 𝑤 = 𝑤′𝑎𝑖 for some 𝑤′ ∈ 𝑀𝑘−1. If such a 𝑤′ is
always unique, then we say furthermore that M is right-cancellative, and we denote this element by 𝑤/𝑖.
Finally, we say that such an M has finite factorizations if we always have | Fac(𝑤) | < ∞ (or equivalently
if we always have | Last(𝑤) | < ∞).

2.2. Divided difference pairs

We now formalize the relationship between the divided difference operators 𝜕𝑖 and the partial monoid
𝑆∞ in what we call a ‘divided difference pair’ (dd-pair). It is not our goal to give the most general results
possible but to have a formalism that encompasses all examples we want to treat while being possibly
useful in other situations.

We fix a polynomial endomorphism 𝑋 ∈ End(Pol) that is of degree −1 (i.e., X takes degree d
homogeneous polynomials to degree 𝑑 − 1 homogeneous polynomials for all d).

For any 𝑖 ≥ 1, we define the shifted operator 𝑋𝑖 ∈ End(Pol) by the composition

𝑋𝑖 : Pol � Pol𝑖−1 ⊗ Pol → Pol𝑖−1 ⊗ Pol � Pol,

where the first and last isomorphisms are given by the isomorphism

Pol𝑖−1 ⊗ Pol = Z[𝑥1, . . . , 𝑥𝑖−1] ⊗ Z[𝑥𝑖 , 𝑥𝑖+1, . . .] � Pol,

and the middle map is given by id ⊗𝑋 . In particular, 𝑋 = 𝑋1 and we always have

𝑓 ∈ Pol𝑛 =⇒ 𝑋𝑛+1 𝑓 = 𝑋𝑛+2 𝑓 = · · · = 0, (2.1)

since in this case, X acts on constants and thus vanishes as it has degree −1.
Example 2.3. If we set 𝜕 ∈ End(Pol) to be the first divided difference

𝜕 ( 𝑓 ) =
𝑓 (𝑥1, 𝑥2, 𝑥3, . . .) − 𝑓 (𝑥2, 𝑥1, 𝑥3, . . .)

𝑥1 − 𝑥2
, (2.2)

then 𝜕𝑖 agrees with (1.2).
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Note that 𝜕 is called the divided difference operator because the formula involves dividing a difference
by a linear form. The way in which the various X we consider in later sections arise will also be from
taking two degree 0 operators 𝐴, 𝐵 ∈ End(Pol) such that (𝐴 − 𝐵) 𝑓 is always divisible by a linear form
L, and then setting 𝑋 = 𝐴−𝐵

𝐿 .
Writing dd for divided difference, we call X and the 𝑋𝑖 dd-operators even if they do not necessarily

arise in this way in general.
Definition 2.4. We define a divided difference pair (or a dd-pair) to be the data of (𝑋, 𝑀), where M is a
graded right-cancellative partial monoid, generated in degree 1 by {𝑎𝑖}𝑖≥1, such that the map 𝑎𝑖 ↦→ 𝑋𝑖
is a representation of M. For 𝑤 ∈ 𝑀 , we write 𝑋𝑤 for the associated endomorphism of Pol, and in
particular, we have 𝑋𝑖 = 𝑋𝑎𝑖 .
Example 2.5. If we set 𝑀 = 𝑆∞ with its partial monoid structure given by (1.1), 𝜕 as in (2.2), then the
divided difference representation 𝑠𝑖 ↦→ 𝜕𝑖 makes (𝜕, 𝑆∞) into a dd-pair.
Example 2.6. For any degree −1 polynomial endomorphism X, we have (𝑋, 𝑀) is a dd-pair for M the
free monoid on {1, 2, . . .}.
Example 2.7. Codes is a monoid via componentwise addition, and we have a representation given by
𝑖 ↦→ 𝑑

𝑑𝑥𝑖
because 𝑑

𝑑𝑥𝑖
𝑑
𝑑𝑥 𝑗

= 𝑑
𝑑𝑥 𝑗

𝑑
𝑑𝑥𝑖

. Therefore, ( 𝑑𝑑𝑥 ,Codes) is a dd-pair, and for 𝑐 = (𝑐1, . . . , 𝑐𝑘 , 0, . . .),

we have
(
𝑑
𝑑𝑥

)
𝑐
=
(
𝑑
𝑑𝑥1

)𝑐1
· · ·

(
𝑑
𝑑𝑥𝑘

)𝑐𝑘
.

We are especially interested in the case where M encodes all additive relations between compositions
of the operators 𝑋𝑖 . However, this is a hard thing to show in general, so we do not want to assume it
from the beginning. It will actually follow from the formalism we now introduce (see Theorem 2.20).

2.3. Dual families of polynomials to a dd-pair

We now generalize the relation between 𝔖𝑤 and the 𝜕𝑖 to an arbitrary dd-pair (𝑋, 𝑀).
Definition 2.8. A family (𝑆𝑤 )𝑤 ∈𝑀 of homogeneous polynomials in Pol is dual to a dd-pair (𝑋, 𝑀) if
𝑆1 = 1, and for each 𝑤 ∈ 𝑀 and 𝑖 ∈ {1, 2, . . .}, we have

𝑋𝑖𝑆𝑤 =

{
𝑆𝑤/𝑖 if 𝑖 ∈ Last(𝑤)
0 otherwise.

Example 2.9. The Schubert polynomials {𝔖𝑤 | 𝑤 ∈ 𝑆∞} are dual to the dd-pair (𝜕, 𝑆∞).
Example 2.10. If we had defined everything over Q instead of Z, then { x𝑐

𝑐! | 𝑐 ∈ Codes} would be dual
to to the dd-pair ( 𝑑𝑑𝑥 ,Codes).

The terminology is justified by item (4) of the following result.
Proposition 2.11. If a dd-pair (𝑋, 𝑀) has a dual family {𝑆𝑤 | 𝑤 ∈ 𝑀}, then
(1) M has finite factorizations.
(2) The polynomials 𝑆𝑤 are Z-linearly independent.
(3) The representation of Z[𝑀] is faithful:∑

𝑐𝑤𝑋𝑤 = 0 =⇒ 𝑐𝑤 = 0 for all 𝑤.

In particular, M is the partial monoid of compositions generated by the operators 𝑋𝑖 .
(4) Letting ev0 : Pol → Z be the map 𝑓 ↦→ 𝑓 (0, 0, . . . ), we have ev0 𝑋𝑣𝑆𝑤 = 𝛿𝑣,𝑤 . As a consequence,

for 𝑓 ∈ Z{𝑆𝑤 | 𝑤 ∈ 𝑀}, the Z-span of the 𝑆𝑤 , we have

𝑓 =
∑
𝑤 ∈𝑀

(ev0 𝑋𝑤 𝑓 )𝑆𝑤 . (2.3)
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Proof. First, note that for (𝑖1, . . . , 𝑖𝑘 ) ∈ Fac(𝑤), we have 𝑋𝑖1 · · · 𝑋𝑖𝑘 𝑆𝑤 = 𝑆1 = 1. Now we know that
for any polynomial f, there are only finitely many 𝑋𝑖 such that 𝑋𝑖 𝑓 ≠ 0. Applying this repeatedly,
we see there are only finitely many sequences (𝑖1, . . . , 𝑖𝑘 ) such that 𝑋𝑖1 · · · 𝑋𝑖𝑘 𝑆𝑤 ≠ 0. Therefore,
| Fac(𝑤) | < ∞, and (1) is proved.

The defining relations for 𝑆𝑤 imply that 𝑋𝑣𝑆𝑤 = 𝑆𝑢 if there exists a 𝑢 ∈ 𝑀 (necessarily unique by
right-cancellability) such that 𝑤 = 𝑣𝑢, and 0 otherwise. Since 𝑆𝑢 is homogeneous of degree ℓ(𝑢), we
have ev0 𝑆𝑢 = 𝛿1,𝑢 , so ev0 𝑋𝑣𝑆𝑤 = 𝛿𝑣,𝑤 , establishing the first part of (4). This implies that the linear
functionals {ev0 𝑋𝑣 | 𝑣 ∈ 𝑀} are dual to the family of polynomials {𝑆𝑤 | 𝑤 ∈ 𝑀}, so the polynomials
{𝑆𝑤 | 𝑤 ∈ 𝑀} are linearly independent and the linear functionals {ev0 𝑋𝑤 | 𝑤 ∈ 𝑀} are linearly
independent, establishing (2) and (3). Finally, for f in the Z-span of the 𝑆𝑤 , if we write 𝑓 =

∑
𝑏𝑣𝑆𝑣 , then

applying ev0 𝑋𝑤 to both sides shows 𝑏𝑤 = ev0 𝑋𝑤 𝑓 which implies the reconstruction formula (2.3). �

Example 2.12. We give an example of a dd-pair whose dual family does not span Pol. Let 𝜕 ′ = 𝜕2.
For the dd-pair (𝜕 ′, 𝑆∞) where 𝑠𝑖 ↦→ (𝜕 ′)𝑖 = 𝜕𝑖+1, for each 𝜆 ∈ Z, we can construct a dual family of
polynomials 𝑆 (𝜆)𝑤 = 𝔖𝑤 (𝜆𝑥1 + 𝑥2, 𝜆𝑥1 + 𝑥3, . . .). For no 𝜆 does this family of polynomials span Pol since
𝑥1 is not in the span of the linear polynomials.
Example 2.13. The analogue of Proposition 2.11 still holds if we had used Q instead of Z in our setup.
In this case, the existence of the dual family of monomials x𝑐

𝑐! to the dd-pair ( 𝑑𝑑𝑥 ,Codes) shows that the
representation of Codes is faithful, and (2.3) recovers the Taylor expansion of any rational polynomial f :

𝑓 =
∑
𝑐

(
ev0

(
𝑑

𝑑𝑥

)
𝑐

𝑓

)
x𝑐

𝑐!
.

2.4. Creation operators and code maps

Given a dd-pair, an outstanding remaining question is whether they do admit a dual family of polynomials
𝑆𝑤 . We give an answer in several cases of interest, using the existence of certain ‘creation operators’.
Definition 2.14. We define creation operators for the operator X to be a collection of degree 1 polynomial
endomorphisms 𝑌𝑖 ∈ End(Pol) such that on the ideal Pol+ ⊂ Pol, we have the identity

∞∑
𝑖=1

𝑌𝑖𝑋𝑖 = id. (2.4)

We will further say that a dd-pair (𝑋, 𝑀) has creation operators when the operator X does.
Note that the left-hand side of (2.4) is well defined thanks to (2.1).

Remark 2.15. Note that the left-hand side of (2.4) vanishes on Z, so the identity extends uniquely to
Pol by subtracting ev0 from the right-hand side (i.e., it reads

∑∞
𝑖=1𝑌𝑖𝑋𝑖 = id− ev0).

Proposition 2.16. If a dd-pair (𝑋, 𝑀) has creation operators 𝑌𝑖 and a family of dual polynomials
{𝑆𝑤 | 𝑤 ∈ 𝑀}, then for 𝑤 ∈ 𝑀 , we have

𝑆𝑤 =
∑

(𝑖1 ,...,𝑖𝑘 ) ∈Fac(𝑤)

𝑌𝑖𝑘 · · ·𝑌𝑖1 (1). (2.5)

Proof. M has finite factorizations by Proposition 2.11, so the right-hand side in (2.5) is well defined. To
prove it, we induct on the length 𝑘 = ℓ(𝑤). For 𝑘 = 0, this is the identity 𝑆1 = 1, and for 𝑘 > 0, we have

𝑆𝑤 =
∞∑
𝑖=1

𝑌𝑖𝑋𝑖𝑆𝑤 =
∑

𝑖∈Last(𝑤)

𝑌𝑖𝑆𝑤/𝑖 =
∑

𝑖∈Last(𝑤)

∑
(𝑖1 ,...,𝑖𝑘−1) ∈Fac(𝑤/𝑖)

𝑌𝑖𝑌𝑖𝑘−1 · · ·𝑌𝑖1 (1)

=
∑

(𝑖1 ,...,𝑖𝑘 ) ∈Fac(𝑤)

𝑌𝑖𝑘 · · ·𝑌𝑖1 (1). �
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An immediate consequence is that if a dd-pair has creation operators, it has at most one dual family
of polynomials. The creation operators are not unique in general, and this leads to possibly distinct
expansions of 𝑆𝑤 as we will see in later sections.

Example 2.17. If we had used Q instead of Z in our setup, then for ( 𝑑𝑑𝑥 ,Codes), we can take 𝑌𝑖
to act on homogeneous polynomials of degree k by 𝑌𝑖 ( 𝑓 ) = 1

𝑘+1𝑥𝑖 𝑓 for all k. Then (2.4) holds as
it is Euler’s famous theorem

∑
𝑥𝑖

𝑑
𝑑𝑥𝑖

= 𝑘 id on homogeneous polynomials of positive degree k. For
𝑐 = (𝑐𝑖)𝑖≥1 ∈ Codes, we have Fac(𝑐) = {(𝑖1, . . . , 𝑖𝑘 ) | 𝑐𝑝 = #{1 ≤ 𝑗 ≤ 𝑘 | 𝑖 𝑗 = 𝑝}}, and (2.5) recovers
the formula 𝑆𝑐 = x𝑐

𝑐! for the unique candidate family of polynomials satisfying (1.3).

Let us give an example now to show that the existence of creation operators is not enough to ensure
the existence of a dual family of polynomials.

Example 2.18. Define X by linearly extending the assignments 𝑋 (𝑥𝑖) = 𝛿𝑖,1 for all 𝑖 ≥ 1, and some
degree −1 injection Φ on monomials of degree d to monomials of degree 𝑑 − 1 for each 𝑑 ≥ 2. We
can assume that 𝑥1 does not occur in the range of Φ, by applying the shift 𝑥𝑖 ↦→ 𝑥𝑖+1 if necessary. X
has the following creation operators 𝑌𝑖: on the constant polynomials, 𝑌𝑖 is multiplication by 𝑥𝑖 . On Pol+,
define 𝑌2 = 𝑌3 = · · · = 0 while 𝑌1 equals Φ−1 on monomials in the range of Φ, and 0 on the remaining
monomials.

If (𝑆𝑤 )𝑤 ∈𝑀 is dual to some dd-pair (𝑋, 𝑀), we have 𝑆𝑎1 = 𝑥1. Now 𝑎1 · 𝑎1 is defined in M since
𝑋2

1 = 𝑋2 is nonzero, and we have 𝑋1 (𝑆𝑎1 ·𝑎1) = 𝑥1. This is not possible by our assumption on Φ, and
thus, (𝑋, 𝑀) does not have a dual family.

We now give an easily checkable hypothesis on M that ensures that the dual polynomials do in fact
exist and, furthermore, form a basis of Pol.

Let Codes denote the set of finitely supported sequences of nonnegative integers 𝑐 = (𝑐1, 𝑐2, . . .).
For 𝑐 ∈ Codes, write supp 𝑐 for the set of i such that 𝑐𝑖 ≠ 0, and |𝑐 | for the sum of the nonzero entries.
Let M be a graded right cancellable monoid.

Definition 2.19. A code map for M is an injective map 𝑐 : 𝑀 → Codes such that ℓ(𝑤) = |𝑐(𝑤) | and
max supp 𝑐(𝑤) = max Last(𝑤) for all 𝑤 ∈ 𝑀 . (In particular, M has finite factorizations.)

We note that the existence of a code map is trivially seen to be equivalent to the condition that

#{𝑤 ∈ 𝑀 | ℓ(𝑤) = 𝑛 and max Last(𝑤) = 𝑘} ≤ #{𝑐 ∈ Codes | |𝑐(𝑤) | = 𝑛 and max supp 𝑐(𝑤) = 𝑘},

but in practice, verifying code maps exist seems to be more straightforward than checking this inequality
by other means.

Theorem 2.20. Suppose that a dd-pair (𝑋, 𝑀) has creation operators and a code map. Then

(1) The code map is bijective.
(2) There is a unique dual family (𝑆𝑤 )𝑤 ∈𝑀 defined by (2.5). It is a basis of Pol.
(3) The subfamily (𝑆𝑤 )𝑤 where max supp 𝑐(𝑤) ≤ 𝑑 is a basis of Pol𝑑 for any 𝑑 ≥ 0.

Proof. Define recursively 𝑆1 = 1 and

𝑆𝑤 =
∑

𝑖∈Last(𝑤)

𝑌𝑖𝑆𝑤/𝑖 .

By Proposition 2.16, the dual family of polynomials must be equal to {𝑆𝑤 | 𝑤 ∈ 𝑀} if it exists.
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We begin by addressing (1). Let

𝑀𝑘,𝑑 = {𝑤 ∈ 𝑀 | ℓ(𝑤) = 𝑘 and max supp 𝑐(𝑤) ≤ 𝑑}.

We claim that for 𝑓 ∈ Pol(𝑘)𝑑 , the homogeneous degree k polynomials in Pol𝑑 , we have

𝑓 =
∑

𝑤 ∈𝑀𝑘,𝑑

𝑋𝑤 ( 𝑓 )𝑆𝑤 . (2.6)

By induction on k, we can show (2.6) but with 𝑤 ∈ 𝑀𝑘,𝑑 replaced with the condition ℓ(𝑤) = 𝑘 since

𝑓 =
∞∑
𝑖=1

𝑌𝑖𝑋𝑖 𝑓 =
∞∑
𝑖=1

𝑌𝑖
∑

ℓ (𝑤′)=𝑘−1
(𝑋𝑤′𝑋𝑖 𝑓 )𝑆𝑤′ =

∑
ℓ (𝑤)=𝑘

∑
𝑖∈Last(𝑤)

𝑌𝑖 (𝑋𝑤 ( 𝑓 )𝑆𝑤/𝑖) =
∑

ℓ (𝑤)=𝑘

𝑋𝑤 ( 𝑓 )𝑆𝑤 .

To conclude, it suffices to show that if ℓ(𝑤) = 𝑘 and 𝑤 ∉ 𝑀𝑘,𝑑 , then 𝑋𝑤 𝑓 = 0; this is true because if
𝑖 = max supp 𝑐(𝑤) > 𝑑, then 𝑖 ∈ Last(𝑤) and so 𝑋𝑤 𝑓 = 𝑋𝑤/𝑖𝑋𝑖 𝑓 = 0.

Writing Codes𝑘,𝑑 = {𝑐 ∈ Codes | max supp 𝑐 ≤ 𝑑 and |𝑐(𝑤) | = 𝑘}, the code map induces an
injection 𝑀𝑘,𝑑 → Codes𝑘,𝑑 so |𝑀𝑘,𝑑 | ≤ |Codes𝑘,𝑑 |. However, (2.6) implies the inclusion

Pol(𝑘)𝑑 ⊂ Z{𝑆𝑤 | 𝑤 ∈ 𝑀𝑘,𝑑}, (2.7)

so |Codes𝑘,𝑑 | = rank Pol(𝑘)𝑑 ≤ |𝑀𝑘,𝑑 |. We conclude that |𝑀𝑘,𝑑 | = |Codes𝑘,𝑑 | = rank Pol(𝑘)𝑑 , implying
(1) and the fact the 𝑆𝑤 are Z-linearly independent.

Observe that (2.7) is a containment of equal rank free abelian groups. Furthermore, Pol(𝑘)𝑑 is saturated
(i.e., for any 𝜆 ∈ Z, we have 𝜆 𝑓 ∈ Pol(𝑘)𝑑 implies 𝑓 ∈ Pol(𝑘)𝑑 ), so the containment (2.7) is in fact an
equality, and we conclude that {𝑆𝑤 | 𝑤 ∈ 𝑀𝑘,𝑑} is a Z-basis of Pol(𝑘)𝑑 . Taking the union of these bases
for all k and fixed d shows that {𝑆𝑤 | max supp 𝑐(𝑤) ≤ 𝑑} is a basis for Pol𝑑 , which shows (3).

By considering these basis statements and the identity (2.6) for growing d, and using the fact that⋃
𝑀𝑘,𝑑 = 𝑀 , we deduce that {𝑆𝑤 | 𝑤 ∈ 𝑀} is a basis of Pol, proving the second half of (2). For

arbitrary 𝑓 ∈ Pol, we have the identity

𝑓 =
∑
𝑤 ∈𝑀

(ev0 𝑋𝑤 𝑓 )𝑆𝑤 .

We thus infer that

(a) If ev0 𝑋𝑤 𝑓 = 0 for all 𝑤 ∈ 𝑀 , then 𝑓 = 0, and
(b) 𝑆𝑤 is the unique polynomial such that ev0 𝑋𝑤′𝑆𝑤 = 𝛿𝑤′,𝑤 for all 𝑤′ ∈ 𝑀 .

We are now ready to show that 𝑋𝑖𝑆𝑤 = 𝛿𝑖∈Last(𝑤)𝑆𝑤/𝑖 for any i and w.1 If 𝑤′ ∈ 𝑀 , we have

ev0 𝑋𝑤′ (𝑋𝑖𝑆𝑤 ) = ev0 𝑋𝑤′ ·𝑖𝑆𝑤 = 𝛿𝑤,𝑤′ ·𝑖 .

Here, the last two terms are considered as zero if 𝑤′ · 𝑖 is not defined. If 𝑖 ∉ Last(𝑤), then 𝛿𝑤,𝑤′ ·𝑖 = 0
for all 𝑤′ ∈ 𝑀 , so we conclude by (a) that 𝑋𝑖𝑆𝑤 = 0. However, if 𝑖 ∈ Last(𝑤), then 𝛿𝑤,𝑤′ ·𝑖 = 𝛿𝑤/𝑖,𝑤′ ,
which by (b) implies 𝑋𝑖𝑆𝑤 = 𝑆𝑤/𝑖 , as desired. �

Example 2.21. For ( 𝑑𝑑𝑥 ,Codes), there is a code map on Codes given by the identity. Therefore, using
Q instead of Z in our setup, we can conclude that {𝑆𝑐 = x𝑐

𝑐! | 𝑐 ∈ Codes} found in Example 2.17 is the
dual family of polynomials to ( 𝑑𝑑𝑥 ,Codes) without directly verifying the recursion (1.3).

1Here, 𝛿𝑖∈Last(𝑤 ) is 1 if 𝑖 ∈ Last(𝑤) , and 0 otherwise.
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3. Schubert polynomials

The divided difference 𝜕𝑖 ∈ End(Pol) for 𝑖 = 1, 2, . . . is defined as follows:

𝜕𝑖 𝑓 (𝑥1, 𝑥2, . . .) =
𝑓 − 𝑓 (𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖+1, 𝑥𝑖 , . . .)

𝑥𝑖 − 𝑥𝑖+1
.

The partial monoid M is given by the nil-Coxeter monoid 𝑆∞ of permutations of {1, 2, . . .} fixing all but
finitely many elements with partial product 𝑢 ◦ 𝑣 = 𝑢𝑣 if ℓ(𝑢) + ℓ(𝑣) = ℓ(𝑢𝑣), undefined otherwise: here,
ℓ and 𝑢𝑣 are the lengths and product in the group 𝑆∞. Denoting the simple transposition 𝑠𝑖 = (𝑖, 𝑖 + 1),
the corresponding dd-pair (𝜕, 𝑆∞) comes from the representation 𝑠𝑖 ↦→ 𝜕𝑖 .

We have

Last(𝑤) = Des(𝑤) = {𝑖 | 𝑤(𝑖) > 𝑤(𝑖 + 1)},

and Fac(𝑤) = Red(𝑤), the set of reduced words for w (i.e., the set of sequences (𝑖1, . . . , 𝑖𝑘 ) with 𝑘 = ℓ(𝑤)
such that 𝑤 = 𝑠𝑖1 · · · 𝑠𝑖𝑘 ). The Lehmer code is the bijective map 𝑆∞ → Codes defined for 𝑤 ∈ 𝑆∞ by
lcode(𝑤) = (𝑐1, 𝑐2, . . .), where 𝑐𝑖 = #{ 𝑗 > 𝑖 | 𝑤(𝑖) > 𝑤( 𝑗)}. Because Des(𝑤) = {𝑖 | 𝑐𝑖 > 𝑐𝑖+1}, we
have max supp lcode(𝑤) = max Last(𝑤), so this is a code map as in Definition 2.19.

The Schubert polynomials are the unique family of homogeneous polynomials dual to the dd-pair
(𝜕, 𝑆∞): we have 𝔖id = 1 and

𝜕𝑖𝔖𝑤 =

{
𝔖𝑤/𝑖 if 𝑖 ∈ Des(𝑤)
0 otherwise.

Figure 1 shows the application of various divided difference operators starting from 𝔖1432.
The standard way the existence of Schubert polynomials is shown is through the Ansatz 𝔖𝑤0,𝑛 =

𝑥𝑛−1
1 𝑥𝑛−2

2 · · · 𝑥𝑛−1 for 𝑤0,𝑛 the longest permutation in 𝑆𝑛. Because every 𝑢 ∈ 𝑆∞ has 𝑢 ≤ 𝑤0,𝑛 for some n,
it turns out it suffices to check that 𝜕𝑤−1

0,𝑛−1𝑤0,𝑛
𝑥𝑛−1

1 𝑥𝑛−2
2 · · · 𝑥𝑛−1 = 𝑥𝑛−2

1 𝑥𝑛−3
2 · · · 𝑥𝑛−2, which is done with

direct calculation.
Using our setup, because there is a code map, we can simultaneously avoid the Ansatz and establish

an explicit combinatorial formula by exhibiting creation operators for the 𝜕𝑖 .

3.1. Creation operators for 𝜕𝑖
We now describe creation operators for 𝜕𝑖 , which will give formulas for the Schubert polynomials.
We define the Bergeron–Sottile map [5]

R𝑖 𝑓 (𝑥1, 𝑥2, . . .) = 𝑓 (𝑥1, . . . , 𝑥𝑖−1, 0, 𝑥𝑖 , . . .).

Figure 1. Sequences of 𝜕𝑖 applied to a 𝔖𝑤 .
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12 P. Nadeau, H. Spink and V. Tewari

Lemma 3.1. We have ∑
𝑖≥1

𝑥𝑖R𝑖𝜕𝑖 = id−R1.

Proof. We sum the relation 𝑥𝑖R𝑖𝜕𝑖 = R𝑖+1 − R𝑖 for all 𝑖 ≥ 1. �

We define

Z = id+R1 + R2
1 + · · · : Pol+ → Pol+ .

Corollary 3.2. We have that Z𝑥𝑖R𝑖 are creation operators for the dd-pair given by the usual divided
differences 𝜕𝑖 and the nil-Coxeter monoid. That is, the identity∑

𝑖≥1
Z𝑥𝑖R𝑖𝜕𝑖 = id

holds on Pol+. In particular, Schubert polynomials exist, and we have the following monomial positive
expansion:

𝔖𝑤 =
∑

(𝑖1 ,...,𝑖𝑘 ) ∈Red(𝑤)

Z𝑥𝑖𝑘 R𝑖𝑘 · · · Z𝑥𝑖1 R𝑖1 (1).

Proof. We compute Z
∑
𝑖≥1 𝑥𝑖R𝑖𝜕𝑖 = 𝑍 (id−R1) = (id−R1) + R1(id−R1) + · · · = id. �

Example 3.3. Take𝑤 = 14253 so that Red(𝑤) = {324, 342}. Adopting the shorthand ZxRi for composite
Z𝑥𝑖𝑘 R𝑖𝑘 · · · Z𝑥𝑖1 R𝑖1 where i = (𝑖1, . . . , 𝑖𝑘 ), one gets

ZxR(3,2,4) (1) = ZxR(2,4) (𝑥1 + 𝑥2 + 𝑥3) = ZxR(4) (𝑥1𝑥2 + 𝑥
2
1 + 𝑥

2
2) = 𝑥1𝑥2𝑥4 + 𝑥

2
1𝑥4 + 𝑥

2
1𝑥3 + 𝑥

2
2𝑥4

ZxR(3,4,2) (1) = ZxR(4,2) (𝑥1 + 𝑥2 + 𝑥3) = ZxR(2) (𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥1𝑥4 + 𝑥2𝑥3 + 𝑥2𝑥4 + 𝑥3𝑥4)

= 𝑥1𝑥
2
2 + 𝑥1𝑥2𝑥3 + 𝑥

2
2𝑥3 + 𝑥

2
1𝑥2.

On adding the two right-hand sides, one obtains the Schubert polynomial 𝔖14253.

Remark 3.4. The slide expansion of Schubert polynomials [3, 6], reproved in Proposition 5.7, expresses
𝔖𝑤 as a sum of slide polynomials over Red(𝑤). Corollary 3.2 also provides an expression where the
sum ranges over Red(𝑤), but these two decompositions are in fact distinct, as the preceding example
reveals as neither ZxR(3,2,4) (1) nor ZxR(3,4,2) (1) equals a slide polynomial.

3.2. Pipe dream interpretation

We now relate the preceding results to a simple bijection at the level of pipe dreams. Consider the
staircase Stair𝑛 � (𝑛, 𝑛 − 1, . . . , 1) whose columns are labeled 1 through n left to right. Given 𝑤 ∈ 𝑆𝑛,
a (reduced) pipe dream for w is a tiling of Stair𝑛 using ‘cross’ and ‘elbow’ tiles depicted in Figure 2 so
that the following conditions hold:

◦ The tilings form n pipes with the pipe entering in row i exiting via column 𝑤(𝑖) for all 1 ≤ 𝑖 ≤ 𝑛;
◦ No two pipes intersect more than once.

Denote the set of pipe dreams for w by PD(𝑤). Given 𝐷 ∈ PD(𝑤), attach the monomial

x𝐷 �
∏

crosses(𝑖, 𝑗) ∈𝐷
𝑥𝑖 .

A famous result of Billey–Jockusch–Stanley [6] (see also [4, 8, 9]) then states that
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Figure 2. Elbow and cross tiles (left) and a pipe dream for 𝑤 = 14253 (right).

Theorem 3.5. 𝔖𝑤 is the generating polynomial for pipe dreams for w:

𝔖𝑤 =
∑

𝐷∈PD(𝑤)

x𝐷 .

We will give a simple proof, using the recursion

𝔖𝑤 = R1𝔖𝑤 +
∑

𝑖∈Des(𝑤)

𝑥𝑖R𝑖𝔖𝑤𝑠𝑖 , (3.1)

which follows immediately from Lemma 3.1 and the definition of Schubert polynomials.

Proof of Theorem 3.5. We need to show∑
𝐷∈PD(𝑤)

x𝐷 = R1
∑

𝐷∈PD(𝑤)

x𝐷 +
∑

𝑖∈Des(𝑤)

𝑥𝑖R𝑖
∑

𝐷∈PD(𝑤𝑠𝑖)

x𝐷 .

Say that a pipe dream 𝐷 ∈ PD(𝑤) is uncritical if there are no crosses in column 1, and i-critical if the
last cross in column 1 is in row i. Denote PD(𝑤)0 ⊂ PD(𝑤) for the set of uncritical pipe dreams, and
PD(𝑤)𝑖 ⊂ PD(𝑤) for the set of i-critical pipe dreams.

Note that if 𝑖 ≥ 1 and PD(𝑤)𝑖 is nonempty, then 𝑖 ∈ Des(𝑤) since pipes i and 𝑖 + 1 cross at the
location of this last cross in column 1. Because PD(𝑤) =

⊔
PD(𝑤)𝑖 , it suffices to show that

(a)
∑
𝐷∈PD(𝑤)0 x𝐷 = R1

∑
𝐷∈PD(𝑤) x𝐷 and

(b) for 𝑖 ∈ Des(𝑤) we have
∑
𝐷∈PD(𝑤)𝑖 x𝐷 = 𝑥𝑖R𝑖

∑
𝐷∈PD(𝑤𝑠𝑖) x𝐷 .

To see (a), we note there is a weight-preserving bijection

Φ0 : PD(𝑤)0 → {𝐷 ∈ PD(𝑤) | 𝐷 has no crosses in row 1},

given by shifting all crosses one unit diagonally southwest. Since x𝐷 = R1𝑥
Φ0 (𝐷) , we have (a).

To see (b), we note there is a bijection

Φ𝑖 : PD(𝑤)𝑖 → {𝐷 ∈ PD(𝑤𝑠𝑖) | D has no crosses in row 𝑖}

obtained by turning the last cross in column 1 into an elbow and then shifting all crosses in rows
i and below one unit diagonally southwest. See Figure 3 for an illustration. As x𝐷 = 𝑥𝑖R𝑖xΦ𝑖 (𝐷) ,
we have (b). �

Remark 3.6. Since the image of 𝜕𝑖 comprises polynomials symmetric in {𝑥𝑖 , 𝑥𝑖+1}, we can replace the
R𝑖𝜕𝑖 in Lemma 3.1 by R𝑖+1𝜕𝑖 . The recursion in (3.1) is then equivalent to

𝔖𝑤 = R1𝔖𝑤 +
∑

𝑖∈Des(𝑤)

𝑥𝑖R𝑖+1𝔖𝑤𝑠𝑖 . (3.2)
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14 P. Nadeau, H. Spink and V. Tewari

Figure 3. A 3-critical pipe dream D for 𝑤 = 1375264 (left), and Φ3(𝐷) ∈ PD(𝑤𝑠3).

Dave Anderson has given a representation-theoretic proof [1] of the recursion in (3.2) using Kraśkiewicz–
Pragacz modules [13, 14].

4. Forest polynomials

The quasisymmetric divided difference [22] is defined as

T𝑖 = R𝑖𝜕𝑖 = R𝑖+1𝜕𝑖 =
R𝑖+1 − R𝑖

𝑥𝑖
.

The associated dd-pair (T, For) from [22] comes from the monoid structure on the set For of plane
indexed binary forests as we shall briefly recall.

A rooted plane binary tree T is a rooted tree with the property that every node has either no child, in
which case we call it a leaf, or two children, distinguished as the ‘left’ and ‘right’ child, in which case
we call it an internal node. We let IN(𝑇) denote the set of internal nodes and let |𝑇 | � | IN(𝑇) | be the
size of T. The unique tree of size 0, whose root node is also its leaf node, is denoted by ∗. We shall call
this the trivial tree.

An indexed forest F is a sequence (𝑇𝑖)𝑖≥1 of rooted plane binary trees where all but finitely many 𝑇𝑖
are trivial. If all𝑇𝑖 are trivial, then we call F the empty forest ∅. By identifying the leaves with Z≥1, going
through them from left to right, one can depict an indexed forest as shown in Figure 4. We denote the
set of indexed forests by For. Given 𝐹 ∈ For, we let IN(𝐹) � �𝑖 IN(𝑇𝑖) denote its set of internal nodes.

There is a natural monoid structure on For obtained by taking 𝐹 · 𝐺 to be the indexed forest where
the i’th leaf of F is identified with the i’th root of G for all i. This monoid is generated by the smallest
nontrivial forests 𝑖 of size 1 with internal node having left leaf at i, and there is an identification of For
with the (right-cancellable) Thompson monoid ThMon given by

For � ThMon = 〈1, 2, · · · | 𝑖 · 𝑗 = 𝑗 · (𝑖 + 1) for 𝑖 > 𝑗〉,

by identifying 𝑖 ↦→ 𝑖.
We may encode 𝐹 ∈ For as elements of Codes as follows. Define 𝜌𝐹 : IN(𝐹) → Z≥1 by setting 𝜌𝐹 (𝑣)

equal to the label of the leaf obtained by going down left edges from v. Then the map c : For → Codes
sending 𝐹 ↦→ c(𝐹) = (𝑐𝑖)𝑖≥1 where 𝑐𝑖 = {𝑣 | 𝜌𝐹 (𝑣) = 𝑖} is a bijection [22, Theorem 3.6]. The set
Last(𝑤) is identified with the left terminal set of F as

LTer (𝐹) = {𝑖 | 𝑐𝑖 ≠ 0 and 𝑐𝑖+1 = 0},

which in particular immediately implies that max supp 𝑐(𝐹) = max Last(𝐹), so c is a code map. We
explain the choice of name. We call 𝑣 ∈ IN(𝐹) terminal if both its children are leaves, necessarily i and
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Figure 4. An indexed forest F with c(𝐹) = (0, 2, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0, . . . ).

Figure 5. T𝑖 applied to various 𝔓𝐹 , with elements of LTer (𝐹) highlighted in red.

𝑖 + 1 where 𝑖 � 𝜌𝐹 (𝑣). We then have 𝑐𝑖 ≠ 0 and 𝑐𝑖+1 = 0 (i.e., 𝑖 ∈ LTer (𝐹)). Thus, we can record
terminal nodes by recording the label of their left leaf, which is what LTer (𝐹) does.

For 𝐹 ∈ For and 𝑖 ∈ LTer (𝐹), we call 𝐹/𝑖 ∈ For the trimmed forest (as in [22, §3.6]), which is
obtained by deleting the terminal node v satisfying 𝜌𝐹 (𝑣) = 𝑖. The set of factorizations Fac(𝐹) is then
identified with the set of trimming sequences [22, Definition 3.8]:

Trim(𝐹) = {(𝑖1, . . . , 𝑖𝑘 ) | (((𝐹/𝑖𝑘 )/𝑖𝑘−1)/· · · )/𝑖1 = ∅}.

Figure 5 (ignoring the polynomials in blue) shows repeated trimming operators applied to the indexed
forest F on the left. It follows that Trim(𝐹) = {(1, 1, 3), (1, 2, 1)}.

4.1. Creation operators for T𝑖

We now describe creation operators for T𝑖 .

Theorem 4.1. We have
∑
𝑖≥1 Z𝑥𝑖T𝑖 = id on Pol+, or in other words, Z𝑥𝑖 are creation operators for T𝑖 .

In particular, there is a family of ‘forest polynomials’ 𝔓𝐹 characterized by 𝔓∅ = 1 and

T𝑖𝔓𝐹 =

{
𝔓
𝐹/𝑖

𝑖 ∈ LTer (𝐹)
0 otherwise,

with the following monomial-positive expansion:

𝔓𝐹 =
∑

(𝑖1 ,...,𝑖𝑘 ) ∈Trim(𝐹 )

Z𝑥𝑖𝑘 · · · Z𝑥𝑖1 (1).

Proof. Corollary 3.2 already contains this identity in the form
∑
𝑖≥1 Z𝑥𝑖R𝑖𝜕𝑖 = id on Pol+. The rest

follows from Theorem 2.20. �
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Figure 6. The graphs corresponding to T𝑖 and R1 (left), and a forest diagram with the corresponding
labeled indexed forest (right).

Figure 5 shows the result of applying T1T1T3 and T1T2T1 to the forest polynomial 𝔓𝐹 = 𝑥2
1𝑥2 + 𝑥

2
1𝑥3.

As per Theorem 4.1, each application of a T trims the indexed forest at that stage.

Example 4.2. We shall consider the indexed forest F whose corresponding forest polynomial 𝔓𝐹 is
computed in [23, Example 3.9]. This happens to be equal to 𝔖14253 from Example 3.3, but as we shall
see, the decompositions are different. We have Trim(𝐹) = {(2, 2, 4), (2, 3, 2)}. Adopting the shorthand
Zxi for the composite Z𝑥𝑖𝑘 · · · Z𝑥𝑖1 where i = (𝑖1, . . . , 𝑖𝑘 ), one gets

Zx(2,2,4) (1) = Zx(2,4) (𝑥1 + 𝑥2) = Zx(4) (𝑥1𝑥2 + 𝑥
2
1 + 𝑥

2
2) = 𝑥1𝑥2𝑥4 + 𝑥

2
1𝑥4 + 𝑥

2
1𝑥3 + 𝑥

2
2𝑥4

Zx(2,3,2) (1) = Zx(3,2) (𝑥1 + 𝑥2) = Zx(2) (𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3) = 𝑥1𝑥
2
2 + 𝑥1𝑥2𝑥3 + 𝑥

2
2𝑥3 + 𝑥

2
1𝑥2.

Thus, we find that 𝔓𝐹 is the sum of the two right-hand sides. Observe that even though two final
expressions above align with those computed in Example 3.3, the expressions obtained at the intermediate
stages are not the same.

4.2. Diagrammatic Interpretation

We now give a diagrammatic perspective on forest polynomials that evokes the pipe dream perspective
on Schubert polynomials. By applying the relation R1 +

∑
𝑖≥1 𝑥𝑖T𝑖 = id from Corollary 3.2 to forest

polynomials, we obtain

R1𝔓𝐹 +
∑

𝑖∈LTer (𝐹 )
𝑥𝑖𝔓𝐹/𝑖

= 𝔓𝐹 . (4.1)

This identity was previously obtained in [23, Lemma 3.12]. Unwinding this recursion leads to the
following combinatorial model similar to the pipe dream expansion of Schubert polynomials, which can
be matched up without much difficulty to the combinatorial definitions of forest polynomials in [22, 23].

We will represent each of the operators R1 and T1, T2, . . . as a certain graph on a (Z≥1 × 2)-rectangle
as shown in Figure 6 on the left. Consider the grid Z≥1 × Z≥1 where we adopt matrix notation (i.e.
the elements in the grid are (𝑖, 𝑗) ∈ Z≥1 × Z≥1, where the first coordinate increases top to bottom and
the second coordinate increases left to right).

We define a forest diagram to be any graph on vertex set Z≥1 × Z≥1 such that the subgraph induced
on the vertex set {(𝑝, 𝑞) | 𝑝 ∈ Z≥1, 𝑞 ∈ {𝑘, 𝑘 + 1}} either represents T𝑖 for some positive integer i or
represents R1, and such that for p large enough, all such induced subgraphs represent R1. In particular,
we may without loss of information restrict our attention to the finite subgraph on the vertex set
{(𝑖, 𝑗) | 𝑖 + 𝑗 ≤ 𝑛 + 1} for some n. See on the right in Figure 6 for an example. Given any such diagram
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D, we let nodes(𝐷) denote the set of (𝑖, 𝑗), where we have (𝑖, 𝑗) directly connected to both (𝑖, 𝑗 − 1)
and (𝑖 + 1, 𝑗 − 1), and associate a monomial

x𝐷 �
∏

(𝑖, 𝑗) ∈nodes(𝐷)

𝑥𝑖 .

Note that any such graph is necessarily acyclic and naturally corresponds to an indexed forest, as
shown in Figure 6. For 𝐹 ∈ For, let Diag(𝐹) denote the set of diagrams whose underlying forest is F.

Theorem 4.3. For 𝐹 ∈ For, we have the forest diagram formula

𝔓𝐹 =
∑

𝐷∈Diag(𝐹 )
x𝐷 .

Proof. We give a brisk proof sketch that the claimed expansion satisfies (4.1) along the lines of the
proof of Theorem 3.5.

Call 𝐷 ∈ Diag(𝐹) 𝑖-critical if the subgraph induced on {( 𝑗 , 1), ( 𝑗 , 2) | 𝑗 ≥ 1} represents T𝑖 for
some positive integer i. Otherwise, we call D uncritical, in which case the aforementioned subgraph
necessarily represents R1. Note that if D is i-critical, then 𝑖 ∈ LTer (𝐹).

Denote by Diag(𝐹)0 the set of uncritical forest diagrams, and by Diag(𝐹)𝑖 the set of i-critical forest
diagrams. Consider the weight-preserving bijection

Φ0 : Diag(𝐹)0 → {𝐷 ∈ Diag(𝐹) | no element of nodes(D) is in row 1}

given by shifting all nodes one unit diagonally southwest. Clearly, x𝐷 = R1xΦ0 (𝐷) .
Consider next the bijection

Φ𝑖 : Diag(𝐹)𝑖 → {𝐷 ∈ Diag(𝐹/𝑖)}

given by taking the subgraph induced on vertices (𝑝, 𝑞) with 𝑝 ≥ 1, 𝑞 ≥ 2. That is, we ignore vertices
of the form (𝑝, 1) as well as all incident edges. It is easily seen that x𝐷 = 𝑥𝑖 xΦ𝑖 (𝐷) . �

4.3. m-forest polynomials

We now briefly touch upon the more general family of m-forest polynomials defined combinatorially in
[22], where the𝑚 = 1 case recovers the forest polynomials from earlier. By replacing binary forests with
(𝑚 + 1)-ary forests, there is an analogously defined set For𝑚 whose compositional monoid structure is
analogously identified with the m-Thompson monoid

For𝑚 � ThMon𝑚 � 〈T𝑚1 , T
𝑚

2 , . . . | T𝑚𝑖 T𝑚𝑗 = T𝑚𝑗 T𝑚𝑖+𝑚 for 𝑖 > 𝑚〉.

All of the combinatorics and constructions stated specifically for For carry over with minor modifications.
In the terminology of the present paper, the m-forest polynomials {𝔓

𝑚
𝐹 | 𝐹 ∈ For𝑚} are the unique

family of polynomials dual to the dd-pair (T𝑚, For𝑚) given by m-quasisymmetric divided differences

T𝑚𝑖 =
R𝑚𝑖+1 − R𝑚𝑖

𝑥𝑖
.

These polynomials were shown to exist in [22] by a laborious explicit computation.
Like before, [22, Definition 3.5] guarantees a code map for ThMon𝑚 in the sense of Definition 2.19.

Thus, to show that m-forest polynomials exist, it suffices to find creation operators. This is a straightfor-
ward adaptation of the proof for 𝑚 = 1. Let’s define Z𝑚 = 1 + R𝑚1 + R2𝑚

1 + · · · : Pol+ → Pol+.
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Theorem 4.4. We have
∑
𝑖≥1 Z𝑚𝑥𝑖T

𝑚
𝑖 = id on Pol+, or in other words, Z𝑚𝑥𝑖 are creation operators

for T𝑚𝑖 . In particular, there exists a family of ‘m-forest polynomials’ {𝔓𝐹 }𝐹 ∈For𝑚 dual to the dd-pair
(T𝑚, ThMon𝑚) with the following monomial-positive expansion:

𝔓𝐹 =
∑

(𝑖1 ,...,𝑖𝑘 ) ∈Trim(𝐹 )

Z𝑚𝑥𝑖𝑘 · · · Z
𝑚𝑥𝑖1 (1).

We will later see an expansion in terms of ‘m-slides’, a natural generalization of slide polynomials
introduced in [22, Section 8].

5. Slide polynomials and Slide expansions

In this section we will show that slide polynomials are dual to a simple dd-pair. We use this to recover
the slide polynomial expansions of Schubert polynomials [6, 3] and forest polynomials [23], and to
obtain a simple formula for the coefficients of the slide expansion of any 𝑓 ∈ Pol.

5.1. Slide polynomials

For a sequence 𝑎 = (𝑎1, . . . , 𝑎𝑘 ) with 𝑎𝑖 ≥ 1, we define the set of compatible sequences

C (𝑎) = {(𝑖1 ≤ · · · ≤ 𝑖𝑘 ) : 𝑖 𝑗 ≤ 𝑎 𝑗 , and if 𝑎 𝑗 < 𝑎 𝑗+1 then 𝑖 𝑗 < 𝑖 𝑗+1}. (5.1)

Note that this convention is the opposite of what the authors employed in [22]. As we shall soon see,
this convention arises naturally from the new dd-pair we will shortly create.

We define the slide polynomial to be

𝔉𝑎 =
∑

(𝑖1 ,...,𝑖𝑘 ) ∈C (𝑎)
𝑥𝑖1 · · · 𝑥𝑖𝑘 .

Example 5.1. For 𝔉(1,4,3) , we have C (𝑎) = {(1, 2, 2), (1, 2, 3), (1, 3, 3)}, so

𝔉(1,4,3) = 𝑥1𝑥
2
2 + 𝑥1𝑥2𝑥3 + 𝑥1𝑥

2
3 .

Let WInc = {(𝑎1 ≤ · · · ≤ 𝑎𝑘 ) | 𝑎𝑖 ≥ 1 for 1 ≤ 𝑖 ≤ 𝑘}. For a sequence a, we define 𝑎 ∈ WInc
as the (component-wise) maximal element of C (𝑎), and undefined if C (𝑎) is empty. Then it is easily
checked that 𝔉𝑎 = 𝔉𝑎 if 𝑎 is defined, and 𝔉𝑎 = 0 otherwise. For instance, note that for 𝑎 = (1, 4, 3) in
Example 5.1, we have 𝑎 = (1, 3, 3). The combinatorial construction of 𝑎 from a is already present in
[25, Lemma 8]; see also [24]. As shown by Assaf and Searles, the slides {𝔉𝑎 | 𝑎 ∈ WInc} form a basis
of Pol [3, Theorem 3.9]. Note that the slides ibid. are indexed by 𝑐 ∈ Codes, via the bijection with WInc
given by letting 𝑐 𝑗 be the number of indices i such that 𝑎𝑖 = 𝑗 .

5.2. Slide extractors and creators

We define a partial monoid structure on WInc by

(𝑎1, · · · 𝑎𝑘 ) · (𝑏1, . . . , 𝑏ℓ) =

{
(𝑎1, . . . , 𝑎𝑘 , 𝑏1, . . . , 𝑏ℓ) if 𝑎𝑘 ≤ 𝑏1

undefined otherwise.

This makes WInc into a graded right-cancellative monoid with Last((𝑏1, . . . , 𝑏𝑘 )) = {𝑏𝑘 } and
Fac((𝑏1, . . . , 𝑏𝑘 )) = {(𝑏1, . . . , 𝑏𝑘 )}.

Let R∞
𝑖 be the truncation operator defined by R∞

𝑖 ( 𝑓 ) = 𝑓 (𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖 , 0, 0, . . .). It is the limit of
R𝑚𝑖 ( 𝑓 ) when m tends to infinity, as these polynomials clearly become stable equal to R∞

𝑖 ( 𝑓 ).
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Definition 5.2 (Slide extractor). Define the slide extractor to be

D𝑖 = R∞
𝑖+1𝜕𝑖 ,

which for 𝑓 ∈ Pol is given concretely by

D𝑖 𝑓 =
𝑓 (𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖 , 0, 0, . . .) − 𝑓 (𝑥1, . . . , 𝑥𝑖−1, 0, 𝑥𝑖 , 0, . . .)

𝑥𝑖
.

We have D 𝑗 𝑓 ∈ Pol 𝑗 , thus 𝜕𝑖D 𝑗 = 0 if 𝑖 > 𝑗 , and so D𝑖D 𝑗 = 0. Thus, the operators D𝑖 give a
representation of WInc, and with D = D1, we have a dd-pair (D,WInc).

Theorem 5.3. Slide polynomials (𝔉𝑎)𝑎∈WInc form the unique dual family of polynomials to the dd-pair
(D,WInc). Thus, for (𝑏1 ≤ · · · ≤ 𝑏𝑘 ) ∈ WInc, we have

D𝑖𝔉𝑏1 ,...,𝑏𝑘 = 𝛿𝑖,𝑏𝑘𝔉𝑏1 ,...,𝑏𝑘−1 .

Note that the formula above can be checked directly by a simple computation, as we have an explicit
expansion for slide polynomials. We will instead use Theorem 2.20, and this will come as a consequence.

Definition 5.4. Define a linear map B𝑖 ∈ End(Pol) as

B𝑖 =
∑

1≤𝑘≤𝑖
𝑥𝑘R𝑖−𝑘𝑘 R∞

𝑖+1.

Explicitly, B𝑖 vanishes outside of Pol𝑖 and is defined on monomials of Pol𝑖 by

B𝑖 (𝑥
𝑝1
1 · · · 𝑥

𝑝 𝑗

𝑗 𝑥
𝑝
𝑖 ) = 𝑥

𝑝1
1 · · · 𝑥

𝑝 𝑗

𝑗 (
∑
𝑗<𝑘≤𝑖

𝑥𝑝+1
𝑘 ),

where 𝑝 𝑗 > 0 or 𝑗 = 0.

Proposition 5.5. The B𝑖 are creation operators for D𝑖: on Pol+, we have∑
𝑖≥1

B𝑖D𝑖 = id.

Proof. On the one hand, since R∞
1 = ev0 vanishes on Pol+, we obtain by telescoping∑

𝑟 ≥1
(R∞

𝑟+1 − R∞
𝑟 ) = id. (5.2)

Now, we compute that

(R∞
𝑟+1 − R∞

𝑟 ) 𝑓 = 𝑓 (𝑥1, . . . , 𝑥𝑟 , 0, . . .) − 𝑓 (𝑥1, . . . , 𝑥𝑟−1, 0, . . .)

=
∑
𝑗≥0

𝑓 (𝑥1, . . . , 𝑥𝑟−1, 0 𝑗 , 𝑥𝑟 , 0, . . .) − 𝑓 (𝑥1, . . . , 𝑥𝑟−1, 0 𝑗+1, 𝑥𝑟 , 0, . . .)

=
∑
𝑗≥0

R 𝑗
𝑟 R∞

𝑟+ 𝑗+1(𝑥𝑟+ 𝑗 − 𝑥𝑟+ 𝑗+1) 𝜕𝑟+ 𝑗 𝑓

=
∑
𝑗≥0

𝑥𝑟R 𝑗
𝑟 R∞

𝑟+ 𝑗+1𝜕𝑟+ 𝑗 𝑓

=
∑
𝑗≥0

(𝑥𝑟R 𝑗
𝑟 R∞

𝑟+ 𝑗+1) D𝑟+ 𝑗 𝑓 .

Summing this over all r, the coefficient of D𝑖 𝑓 is then
∑

1≤𝑘≤𝑖 𝑥𝑘R𝑖−𝑘𝑘 R∞
𝑖+1 = B𝑖 . �
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Our next result, Proposition 5.6, applied to increasing sequences 1 ≤ 𝑎1 ≤ · · · ≤ 𝑎𝑘 implies that
the slide polynomials are the dual family of polynomials to (D,WInc). We note that although we could
have taken an alternate choice of creation operators such as B̃𝑖 =

∑
1≤𝑘≤𝑖 𝑥𝑘R𝑖−𝑘𝑘 (because R∞

𝑖+1D𝑖 = D𝑖),
Proposition 5.6 shows surprisingly that composites of the B𝑖 operators construct slide polynomials even
for non-decreasing sequences – a property not formally guaranteed by the slide polynomials being the
dual family to (D,WInc). This additional property of B𝑖 will be needed later in Proposition 5.7 to recover
the slide expansions of Schubert and forest polynomials.

Proposition 5.6. For any sequence (𝑎1, . . . , 𝑎𝑘 ) with 𝑎𝑖 ≥ 1, we have

𝔉𝑎1 ,...,𝑎𝑘 = B𝑎𝑘 · · ·B𝑎1 (1).

Proof. By induction, it is enough to show that if 𝑎 = (𝑎1, . . . , 𝑎𝑘 ), then B𝑝𝔉𝑎 = 𝔉𝑎1 ,...,𝑎𝑘 , 𝑝 for any
𝑝 ≥ 1. In what follows, we write 𝜆ℓ for the length ℓ sequence 𝜆, . . . , 𝜆. For (𝑖1, . . . , 𝑖𝑘 ) ∈ C (𝑎), we
define a set

𝐴(𝑖1 ,...,𝑖𝑘 ) =

{
∅ if 𝑖𝑘 > 𝑝

{(𝑖1, . . . , 𝑖ℓ , 𝑖
𝑘−ℓ+1) | 𝑖ℓ < 𝑖 ≤ 𝑝} if (𝑖1, . . . , 𝑖𝑘 ) = (𝑖1, . . . , 𝑖ℓ , 𝑝

𝑘−ℓ) with 𝑖ℓ < 𝑝.

Then by definition of B𝑝 and the slide polynomials as generating functions, it suffices to show that⊔
(𝑖1 ,...,𝑖𝑘 ) ∈C (𝑎)

𝐴(𝑖1 ,...,𝑖𝑘 ) = C (𝑎1, . . . , 𝑎𝑘 , 𝑝).

First, the 𝐴(𝑖1 ,...,𝑖𝑘 ) are obviously disjoint sets, the elements being uniquely determined by the longest
initial subsequence of (𝑖1, . . . , 𝑖𝑘 ) strictly less than p, so the union is disjoint as claimed. Next, we show
𝐴(𝑖1 ,...,𝑖𝑘 ) ⊂ C (𝑎1, . . . , 𝑎𝑘 , 𝑝). Indeed, since (𝑖1, . . . , 𝑖ℓ , 𝑝

𝑘−ℓ) ∈ C (𝑎),

◦ if ℓ < 𝑘 , we must have 𝑎𝑘 ≥ 𝑝, and so (𝑖1, . . . , 𝑖ℓ , 𝑝
𝑘−ℓ+1) ∈ C (𝑎1, . . . , 𝑎𝑘 , 𝑝), and

◦ if ℓ = 𝑘 , then because 𝑝 > 𝑖ℓ , we also have (𝑖1, . . . , 𝑖ℓ , 𝑝
𝑘−ℓ+1) ∈ C (𝑎1, . . . , 𝑎𝑘 , 𝑝).

The other sequences (𝑖1, . . . , 𝑖ℓ , 𝑖
𝑘−ℓ+1) ∈ 𝐴(𝑖1 ,...,𝑖𝑘 ) must lie in C (𝑎1, . . . , 𝑎𝑘 , 𝑝) as well since it is a

smaller sequence with the same indices at which strict ascents occur.
Finally, every sequence in C (𝑎1, . . . , 𝑎𝑘 , 𝑝) can be written as (𝑖1, . . . , 𝑖ℓ , 𝑖

𝑘−ℓ+1) for some 0 ≤ ℓ ≤ 𝑘
and 𝑖ℓ < 𝑖 ≤ 𝑝, and we claim that (𝑖1, . . . , 𝑖ℓ , 𝑝

𝑘−ℓ) ∈ C (𝑎). Note that because the last 𝑘 − ℓ + 1
elements of (𝑖1, . . . , 𝑖ℓ , 𝑖

𝑘−ℓ+1) are equal, we have 𝑎𝑘−ℓ ≥ 𝑎𝑘−ℓ+1 ≥ · · · ≥ 𝑎𝑘 ≥ 𝑝. Therefore, as
(𝑖1, . . . , 𝑖ℓ , 𝑝

𝑘−ℓ+1) has the same indices of strict ascents as (𝑖1, . . . , 𝑖ℓ , 𝑖
𝑘−ℓ+1), we have the sequence

(𝑖1, . . . , 𝑖ℓ , 𝑝
𝑘−ℓ+1) ∈ C (𝑎1, . . . , 𝑎𝑘 , 𝑝), which in particular implies that (𝑖1, . . . , 𝑖ℓ , 𝑝𝑘−ℓ) ∈ C (𝑎). �

We can now prove Theorem 5.3.

Proof of Theorem 5.3. We have the code map 𝑐 : WInc → Codes given by 𝑐(𝑎1 ≤ · · · ≤ 𝑎𝑘 ) =
(𝑐1, 𝑐2, . . .), where 𝑐𝑖 = #{ 𝑗 | 𝑎 𝑗 = 𝑖}. It satisfies the conditions of Definition 2.19. The B𝑖 are shown
to be creation operators for D in Proposition 5.5. We can thus apply Theorem 2.20, which gives us that
the dual family to (D,WInc) is unique, forms a basis of Pol, and is given explicitly by B𝑎𝑘 · · ·B𝑎1 (1)
for (𝑎1, . . . , 𝑎𝑘 ) ∈ WInc. These are precisely the slide polynomials by Proposition 5.6, which concludes
the proof. �

5.3. Applications

We first show how to recover the slide expansions of Schubert polynomials and forest polynomials, the
first one being the celebrated BJS formula [6].
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Figure 7. Repeatedly applying Ds to extract slide coefficients for 𝑓 = 𝔖21534.

Proposition 5.7. We have the following expansions for any 𝑤 ∈ 𝑆∞ and any 𝐹 ∈ For:

𝔖𝑤 =
∑

(𝑖1 ,...,𝑖𝑘 ) ∈Red(𝑤)

𝔉𝑖1 ,...,𝑖𝑘

𝔓𝐹 =
∑

(𝑖1 ,...,𝑖𝑘 ) ∈Trim(𝐹 )

𝔉𝑖1 ,...,𝑖𝑘 .

Proof. Note that B𝑖D𝑖 = B𝑖R∞
𝑖+1𝜕𝑖 . Because T𝑖 = R𝑖𝜕𝑖 = R𝑖+1𝜕𝑖 , we can either absorb all or all but one

R𝑖+1 into B𝑖 to obtain

B𝑖D𝑖 = B𝑖T𝑖 = B𝑖𝜕𝑖 .

Then Proposition 5.5 shows that B𝑖 are creation operators for 𝜕𝑖 and for T𝑖 . We can then use Theorem 2.20
for the corresponding dd-pairs:

𝔖𝑤 =
∑

(𝑖1 ,...,𝑖𝑘 ) ∈Red(𝑤)

B𝑖𝑘 · · ·B𝑖1 (1) =
∑

(𝑖1 ,...,𝑖𝑘 ) ∈Red(𝑤)

𝔉𝑖1 ,...,𝑖𝑘

𝔓𝐹 =
∑

(𝑖1 ,...,𝑖𝑘 ) ∈Trim(𝐹 )

B𝑖𝑘 · · ·B𝑖1 (1) =
∑

(𝑖1 ,...,𝑖𝑘 ) ∈Trim(𝐹 )

𝔉𝑖1 ,...,𝑖𝑘 . �

Because slide polynomials are a basis of Pol, Proposition 2.11 implies the following.

Corollary 5.8. The slide expansion of a degree k homogeneous polynomial 𝑓 ∈ Pol is given by

𝑓 =
∑

(𝑖1≤···≤𝑖𝑘 ) ∈WInc

(D𝑖1 · · ·D𝑖𝑘 𝑓 )𝔉𝑖1 ,...,𝑖𝑘 .

Example 5.9. Consider 𝑓 = 𝔖21534 = 𝑥1𝑥
2
3+𝑥1𝑥2𝑥3+𝑥

2
1𝑥3+𝑥1𝑥

2
2+𝑥

2
1𝑥2+𝑥

3
1. Figure 7 shows applications

of slide extractors in weakly decreasing order of the indices. Corollary 5.8 says

𝔖21534 = 𝔉1,3,3 +𝔉1,1,3 +𝔉1,1,1.

As an application, let us reprove the positivity of slide multiplication established combinatorially
by Assaf–Searles [3, Theorem 5.1] using the ‘quasi-shuffle product’. In contrast, we use a Leibniz rule
for the D𝑖 that makes the positivity manifest. We shall not pursue unwinding our approach to make the
combinatorics explicit.

Lemma 5.10. R 𝑗𝔉𝑎 is a slide polynomial or 0.

Proof. Assume the result is true for all lower degree slide polynomials. By Theorem 5.3, it suffices to
show that D𝑖R 𝑗𝔉𝑎 = 0 for all i, except at most one for which D𝑖R 𝑗𝔉𝑎 = 𝔉𝑏 for some 𝑏 ∈ Winc.
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Let 𝑎 = (𝑎1, . . . , 𝑎𝑘 ) ∈ WInc, and let 𝑎′ = (𝑎1, . . . , 𝑎𝑘−1) ∈ WInc. The identity

D𝑖R 𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
D𝑖 if 𝑖 ≤ 𝑗 − 2
D𝑖 + R 𝑗−1D𝑖+1 if 𝑖 = 𝑗 − 1
R 𝑗D𝑖+1 if 𝑖 ≥ 𝑗 ,

together with Theorem 5.3 implies that

D𝑖R 𝑗𝔉𝑎 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝛿𝑖,𝑎𝑘𝔉𝑎′ if 𝑎𝑘 ≤ 𝑗 − 1
𝛿𝑖,𝑎𝑘−1R 𝑗−1𝔉𝑎′ if 𝑎𝑘 = 𝑗

𝛿𝑖,𝑎𝑘−1R 𝑗𝔉𝑎′ if 𝑎𝑘 ≥ 𝑗 + 1,

and we conclude by the inductive hypothesis. �

Corollary 5.11. The product of slide polynomials is slide-positive.

Proof. By Corollary 5.8, it suffices to show that D𝑖 ( 𝑓 𝑔) is slide positive if each of 𝑓 , 𝑔 are slide positive.
For 𝑓 , 𝑔 ∈ Pol we have a ‘Leibniz rule’ that says,

D𝑖 ( 𝑓 𝑔) = D𝑖 ( 𝑓 )R∞
𝑖+1R𝑖 (𝑔) + R∞

𝑖+1( 𝑓 )D𝑖 (𝑔). (5.3)

If 𝑓 , 𝑔 are slide polynomials, then by Theorem 5.3, we know that D𝑖 ( 𝑓 ),D𝑖 (𝑔) are either slide polyno-
mials or 0, so from Lemma 5.10, the slide positivity follows by induction. �

Our second application is to determine the inverse of the ‘Slide Kostka’ matrix (i.e., express mono-
mials in terms of slide polynomials). This was obtained by the first and third author via involved
combinatorial means in [24, Theorem 5.2].

To state the result, fix a sequence 𝑎 = (𝑎1, . . . , 𝑎𝑘 ) ∈ WInc. Group equal terms and write
𝑎 = (𝑀𝑚1

1 , 𝑀𝑚2
2 , . . . , 𝑀

𝑚𝑝
𝑝 ), with 𝑀1 < · · · < 𝑀𝑝 . Set 𝑀0 � 0. For a fixed 𝑖 ∈ {1, . . . , 𝑝}, define

𝐸𝑖 (𝑎) ⊂ WInc by

𝐸𝑖 (𝑎) = {(𝑏1, . . . , 𝑏𝑚𝑖 ) | 𝑏 𝑗+1 − 𝑏 𝑗 ∈ {0, 1} = 0 and 𝑏1 > 𝑀𝑖−1},

where 𝑏𝑚𝑖+1 � 𝑀𝑖 . Let 𝑛(𝑏) = 𝑀𝑖 − 𝑏1 for 𝑏 ∈ 𝐸𝑖 (𝑎), which counts the number of j such that
𝑏 𝑗+1 − 𝑏 𝑗 = 1 for 1 ≤ 𝑗 ≤ 𝑚𝑖 . Finally, let

𝐸 (𝑎) = {𝑏 ∈ WInc | 𝑏 = 𝑒1 · · · 𝑒𝑝 where each 𝑒𝑖 ∈ 𝐸𝑖 (𝑎)},

To 𝑏 = 𝑒1 · · · 𝑒𝑝 ∈ 𝐸 (𝑎), assign the sign 𝜖 (𝑏) = (−1)
∑

𝑖 𝑛(𝑒
𝑖) . For instance, if 𝑎 = (2, 4, 4), then 𝐸 (𝑎) =

{(2, 4, 4), (1, 4, 4), (2, 3, 4), (1, 3, 4), (2, 3, 3), (1, 3, 3)} with respective signs 1,−1,−1, 1,−1, 1.

Corollary 5.12 [24, Theorem 5.2]. The slide expansion of any monomial is signed multiplicity-free.
Explicitly, for any 𝑎 = (𝑎1, . . . , 𝑎𝑘 ) ∈ WInc, we have

𝑥𝑎1 · · · 𝑥𝑎𝑘 =
∑

𝑏=( 𝑗1 ,..., 𝑗𝑘 ) ∈𝐸 (𝑎)

𝜖 (𝑏)𝔉𝑏 . (5.4)

Sketch of the proof. By Corollary 5.8, the coefficient of 𝔉𝑗1 ,..., 𝑗𝑘 for ( 𝑗1, . . . , 𝑗𝑘 ) ∈ WInc in (5.4) is
given by D 𝑗1 . . .D 𝑗𝑘 (𝑥𝑎1 · · · 𝑥𝑎𝑘 ). By Definition 5.2, we can compute

D 𝑗𝑘 (𝑥𝑎1 · · · 𝑥𝑎𝑘 ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥𝑎1 · · · 𝑥𝑎𝑘−1 if 𝑎𝑘 = 𝑗𝑘

−𝑥𝑎1 . . . 𝑥𝑎𝑝𝑥
𝑘−𝑝−1
𝑗𝑘

if 𝑎𝑝 < 𝑗𝑘 , 𝑎𝑝+1 = · · · = 𝑎𝑘 = 𝑗𝑘 + 1 for some 𝑝 < 𝑘

0 otherwise.
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Thus, D 𝑗𝑘 (𝑥𝑎1 · · · 𝑥𝑎𝑘 ) is either 0 or another monomial up to sign, which shows that the expansion
is signed multiplicity-free. More precisely, let 𝐸 ′(𝑎) be the set of 𝑏 = ( 𝑗1, . . . , 𝑗𝑘 ) such that 𝔉𝑏 has
nonzero coefficient in (5.4). Then it follows that 𝑏 ∈ 𝐸 ′(𝑎) either if 𝑗𝑘 = 𝑎𝑘 and ( 𝑗1, . . . , 𝑗𝑘−1) ∈

𝐸 ′(𝑎1, . . . , 𝑎𝑘−1), or if 𝑗𝑘 + 1 = 𝑎𝑘 , there exists 𝑝 < 𝑘 such that 𝑎𝑝 < 𝑗𝑘 , 𝑎𝑝+1 = · · · = 𝑎𝑘 = 𝑗𝑘 + 1, and
( 𝑗1, . . . , 𝑗𝑘−1) ∈ 𝐸

′(𝑎1, . . . , 𝑎𝑝 , 𝑗
𝑘−𝑝−1
𝑘 ). We let the interested reader show that 𝐸 (𝑎) satisfies the same

recursion, so that 𝐸 (𝑎) = 𝐸 ′(𝑎) by induction. The sign is then readily checked.

5.4. m-slides interpolating between monomials and slides

To conclude this article, we briefly describe how the results generalize to monomials, m-slide polyno-
mials and m-forest polynomials. The proofs are nearly identical to the case 𝑚 = 1, so we omit them.

For a sequence 𝑎 = (𝑎1, . . . , 𝑎𝑘 ) with 𝑎𝑖 ≥ 1, we define the set of m-compatible sequences

C𝑚(𝑎) = {(𝑖1 ≤ . . . ≤ 𝑖𝑘 ) : 𝑖 𝑗 ≡ 𝑎 𝑗 mod 𝑚, 𝑖 𝑗 ≤ 𝑎 𝑗 , and if 𝑎 𝑗 < 𝑎 𝑗+1 then 𝑖 𝑗 < 𝑖 𝑗+1}. (5.5)

The m-slide polynomial [22, Section 8] is the generating function

𝔉
𝑚
𝑎 =

∑
(𝑖1 ,...,𝑖𝑘 ) ∈C𝑚 (𝑎)

𝑥𝑖1 · · · 𝑥𝑖𝑘 . (5.6)

For fixed 𝑎 = (𝑎1, . . . , 𝑎𝑘 ) and m sufficiently large, we have 𝔉
𝑚
𝑎 = 𝑥𝑎1 · · · 𝑥𝑎𝑘 if (𝑎1, . . . , 𝑎𝑘 ) ∈ WInc

and 0 otherwise. So we may consider monomials as ∞-slide polynomials, and the m-slide polynomials
as interpolating between slide polynomials and monomials.

Proposition 5.13. For 𝑖 ≥ 1, consider the m-slide extractors D𝑚𝑖 ∈ End(Pol) defined as D𝑚𝑖 � R∞
𝑖+1T𝑚𝑖 .

For (𝑏1 ≤ · · · ≤ 𝑏𝑘 ) ∈ WInc, we have

D𝑚𝑖 𝔉
𝑚

𝑏1 ,...,𝑏𝑘
= 𝛿𝑖,𝑏𝑘𝔉

𝑚

𝑏1 ,...,𝑏𝑘−1
.

Consequently, the m-slide expansion of a degree k homogeneous polynomial 𝑓 ∈ Pol is given by

𝑓 =
∑

(𝑖1≤···≤𝑖𝑘 ) ∈WInc

(D𝑚𝑖1 · · ·D
𝑚
𝑖𝑘
𝑓 )𝔉

𝑚
𝑖1 ,...,𝑖𝑘

.

Example 5.14. Taking 𝑓 = 𝔖21534 = 𝑥1𝑥
2
3 + 𝑥1𝑥2𝑥3 + 𝑥

2
1𝑥3 + 𝑥1𝑥

2
2 + 𝑥

2
1𝑥2 + 𝑥

3
1 as in Example 5.9, we see,

for instance, that

D∞

1 D∞

2 D∞

2 ( 𝑓 ) = D∞

1 D∞

2 (𝑥1𝑥2 + 𝑥
2
1) = D∞

1 (𝑥1) = 1,

which in turn means the coefficient of 𝑥1𝑥
2
2 in 𝔖21534 is 1.

Theorem 5.15. Consider m-slide creation operators B𝑚𝑎 ∈ End(Pol) that vanish outside of Pol𝑎, and
are defined on monomials of Pol𝑎 by

B𝑚𝑎 (𝑥
𝑝1
1 · · · 𝑥

𝑝 𝑗

𝑗 𝑥
𝑝
𝑎 ) = 𝑥

𝑝1
1 · · · 𝑥

𝑝 𝑗

𝑗 (
∑

𝑎−𝑟𝑚> 𝑗

𝑥𝑝+1
𝑎−𝑟𝑚),

where 𝑗 < 𝑎 and 𝑝 𝑗 > 0 (or 𝑗 = 0) and 𝑝 ≥ 0. The following hold.

(1) For 𝑎 = (𝑎1, . . . , 𝑎𝑘 ) any sequence with 𝑎𝑖 ≥ 1, we have B𝑚𝑝𝔉
𝑚
𝑎 = 𝔉

𝑚
𝑎1 ,...,𝑎𝑘 , 𝑝 . In particular, for any

sequence (𝑏1, . . . , 𝑏𝑘 ) with 𝑏𝑖 ≥ 1, we have

𝔉
𝑚

𝑏1 ,...,𝑏𝑘
= B𝑚𝑏𝑘 · · ·B

𝑚

𝑏1
(1).
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(2) We have
∑∞
𝑖=1 B𝑚𝑖 D𝑚𝑖 =

∑∞
𝑖=1 B𝑚𝑖 T𝑚𝑖 = id on Pol+ (i.e., B𝑚𝑖 are creation operators for both m-slides

and m-forest polynomials). In particular,

𝔓
𝑚
𝐹 =

∑
(𝑖1 ,...,𝑖𝑘 ) ∈Trim(𝐹 )

𝔉
𝑚
𝑖1 ,...,𝑖𝑘

.

Remark 5.16. For 𝑚 = ∞, we recover the rather straightforward dd-pair (D∞,WInc) for mono-
mials, where for 𝑎𝑘 > 1, we have D∞

𝑖 (𝑥
𝑎1
1 · · · 𝑥𝑎𝑘𝑘 ) = 𝛿𝑖,𝑘𝑥

𝑎1
1 · · · 𝑥𝑎𝑘−1

𝑘 , and the creation operators
B∞

𝑖 (𝑥
𝑎1
1 · · · 𝑥𝑎𝑘𝑘 ) = 𝛿𝑖≥𝑘𝑥𝑖 (𝑥

𝑎1
1 · · · 𝑥𝑎𝑘𝑘 ).
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