
Canad. Math. Bull. Vol. 55 (3), 2012 pp. 579–585
http://dx.doi.org/10.4153/CMB-2011-102-2
c©Canadian Mathematical Society 2011

Casimir Operators and Nilpotent Radicals

J. C. Ndogmo

Abstract. It is shown that a Lie algebra having a nilpotent radical has a fundamental set of invariants

consisting of Casimir operators. A different proof is given in the well known special case of an abelian

radical. A result relating the number of invariants to the dimension of the Cartan subalgebra is also

established.

1 Introduction

An important problem arising in the representation theory of Lie groups is the de-

termination of invariants of a given representation. If ρ is a representation of the Lie

group G in a finite-dimensional vector space V , the invariants of ρ are elements v of

V for which the equality ρ(g)v = v holds for all g ∈ G. A map ρ is a representation

of a connected Lie group G in the finite-dimensional vector space V if and only if its

differential dρ is a representation of the Lie algebra L of G in V . Moreover, for any

v ∈ V we have ρ(G)v = v if and only if dρ(L)v = 0, and the latter condition defines

v as an invariant of dρ. Invariants of G and L are therefore the same, and in general

they are more easily analyzed on Lie algebras.

When ρ is the adjoint representation, Ad, of G in its Lie algebra L, the invari-

ants of the corresponding representation of G in the symmetric algebra S(L) are

called the polynomial invariants of L. Note that S(L) is itself isomorphic to the ring

K[X1, . . . ,Xn] of polynomials in n indeterminates over the base field K of L, where

n = dim L. On the other hand the algebra SI generated in S(L) by invariant polyno-

mial functions is algebraically isomorphic to the algebra of Casimir operators ([7]),

which is the center Z(L) of the universal enveloping algebra A(L) of L. The transcen-

dence degree of SI over K, which is the cardinality r of a maximal set of algebraically

independent elements of SI , is therefore the same as for Z(L).

More generally, if we denote by B = {v1, . . . , vn} a basis of L and by ψ(vi) the

associated infinitesimal generators (see [15, p. 52]) of the adjoint action of G on L,

then the solutions F of the systems of linear first order partial differential equations

(1.1) ψ(vi) · F = 0, for i = 1, . . . , n,

defined by the vector fields ψ(vi) are termed (formal) invariants of L. A maximal set

of functionally independent solutions to (1.1) is referred to as a fundamental set of

invariants of L, and its elements are called fundamental invariants. By the number of

invariants of L we shall mean the number of fundamental invariants. It is clear that
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polynomial invariants of L also satisfy (1.1), so that r ≤ N, where N is the number

of fundamental invariants and equals the index of L ([9, p. 64]). However, for a

general Lie algebra, and especially for solvable ones, the equality r = N does not

hold ([1, 14]). Over the last decade, the study of invariant functions of Lie algebras

has been the subject of intensive research undertaken by various researchers, and

the problem of existence of polynomial invariants has always been inherent in these

studies (see [3–5, 14, 16, 17, 20, 21] and the references therein).

In this paper we show that a Lie algebra having a nilpotent radical must have a

fundamental set of invariants consisting of Casimir operators, and we give a different

proof of this fact in the well-known case of an abelian radical ([17]). We also derive a

result relating the number of invariants to the dimension of the Cartan subalgebra of

L. We shall assume that the base field of all Lie algebras is of characteristic zero, and

all Lie algebras considered are assumed to be finite-dimensional.

2 Characterization of Invariants

We write the Levi decomposition of any given finite-dimensional Lie algebra L in the

form L = S ∔ R, where S is the Levi factor and the ideal R is the radical of L. This

decomposition is said to be nontrivial if [S,R] 6= 0, and in such case L is neither

semisimple nor nilpotent.

Lemma 2.1 A Lie algebra L having a nilpotent radical is isomorphic to an algebraic

Lie algebra.

Proof By Ado’s theorem, L has a faithful representation φ in a finite-dimensional

vector space V in which elements in the nilradical of L are represented by nilpotent

endomorphisms ([11, p. 203]). Since the radical R of L is nilpotent, it is equal to its

nilradical. The Lie algebra φ(R) therefore consists of nilpotent endomorphisms and

is consequently algebraic ([6, p. 123, Proposition 14]). Moreover, φ(R) is the radical

of φ(L), and a subalgebra of the Lie algebra gl(V ) is algebraic if and only if its radical

is algebraic ([6, p. 129]). Consequently, φ(L) is algebraic.

All semisimple and nilpotent Lie algebras naturally belong to the class of Lie alge-

bras having a nilpotent radical. This is also the case for all perfect Lie algebras, and

more generally for Lie algebras which are derived subalgebras of finite-dimensional

Lie algebras, because they all possess a nilpotent radical [11, p. 91, Corollary 2].

By a result of [1], every perfect Lie algebra, i.e., a Lie algebras L for which [L, L] =

L, has a fundamental set consisting of polynomial invariants. However, we notice

that this property also holds for Lie algebras with an abelian radical. Indeed, write

the Levi decomposition of L in the form

(2.1) L = S⊕π R,

where π is the restriction to the semisimple Lie algebra S of the adjoint representation

of L in the radical R. If RS
= {v ∈ R : π(S)v = 0} is the set of invariants of this

representation, then, because π is semisimple, we have the direct sum of vector spaces

R = RS ∔ [S,R]. More precisely, we have the following result proved in [13].
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Lemma 2.2 Let L = S⊕π R be a nontrivial Levi decomposition of L with Levi factor

S, and suppose that the representation π defines the [S,R]-type commutation relations.

(i) If π does not possess a copy of the trivial representation, then L is perfect, and it has

therefore a fundamental set of invariants consisting of polynomials.

(ii) The representation π does not possess a copy of the trivial representation if and

only if π(S)R = R.

Using this lemma, we can readily prove the following result.

Theorem 2.3 Let L = S⊕π R be a Levi decomposition of L.

(i) The Lie algebra L is perfect if and only if RS ⊆ [R,R].

(ii) If the radicalR of L is abelian, then L has a fundamental set of invariants consisting

of polynomial functions.

Proof It is clear from the definitions that L is perfect if and only if

R = [S,R] + [R,R].

Rewriting the right-hand side of this last equality as a direct sum [S,R]∔W ∩ [R,R]

of vector subspaces, where W is a complement subspace of [S,R] in R, we see that

L is perfect if and only if RS ⊆ [R,R], which proves part (i). For part (ii), we first

note that by Lemma 2.2(i), if the representation π does not possess a copy of the

trivial representation, then L is perfect, and the result follows. If π does have a copy

of the trivial representation, then RS 6= 0, and by part (i) above, L is not perfect.

However, L is in this case a direct sum of the perfect ideal S∔ [S,R] and the abelian

ideal RS. It then follows again that L has a fundamental set of invariants consisting

of polynomials.

Lemma 2.4 A Lie algebra with a nilpotent radical has a fundamental set of invariants

consisting of rational functions.

Proof Indeed, by Lemma 2.1 any such Lie algebra is isomorphic to an algebraic

Lie algebra, and the lemma follows from a result of J. Dixmier [8], asserting that

any algebraic Lie algebra has a fundamental set of invariants consisting of rational

functions.

In the sequel we shall denote by Fract(A) the field of fractions of a Noetherian and

integral ring A. Set K(L) = Fract(A(L)), and K (L) = Fract(S(L)), and for each

x ∈ L, denote by adK (L) x the derivation of K (L) that extends adL x and thus defines

a representation of L in K (L). The invariants of this representation are called the

rational invariants of L. Similarly, for each x ∈ L, denote by adK(L) x the derivation

of K(L) that extends adL x. Finally, denote by C(L) and C (L) the center of K(L) and

K (L) respectively, when they are endowed with the adjoint representation. By a

result of [19], C(L) and C (L) are isomorphic fields. Moreover, we have the following

result ([9]), in which L∗ denotes the dual vector space of L.

Lemma 2.5 We have f ∈ C (L) if and only if there exists some weight λ ∈ L∗ of

the adjoint representation of L in S(L) such that f = p1/p2, where p1, p2 ∈ S(L)λ =

{p ∈ S(L) : adS(L) x (p) = λ(x)p, for all x ∈ L}.
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If λ is in L∗, an element of S(L)λ is called a λ-semi-invariant of L in S(L). It is

clear that if the weight space of any such λ is not reduced to zero, then λ defines a

one-dimensional representation of L in K, which vanishes on any perfect subalgebra

of L.

Theorem 2.6 A Lie algebra L with a nilpotent radical has a fundamental set of invari-

ants consisting of Casimir operators.

Proof By Lemma 2.1 L is isomorphic to an algebraic Lie algebra, since it has a nilpo-

tent radical. It has therefore a fundamental set of invariants that consists of rational

invariants, by Lemma 2.4. In this case, a sufficient condition for L to have only poly-

nomial invariants is for the equality C (L) = Fract(SI) to hold, by a result of [9], since

SI is the center of S(L). Because of Lemma 2.5, it suffices to verify that the only weight

of the adjoint representation of L in S(L) is zero. Consider the Levi decomposition

L = S ∔ R, and let λ be any weight of adS(L). If x ∈ S, then clearly λ(x) = 0. On

the other hand if x ∈ R, adL x is nilpotent and adS(L) x is locally nilpotent, and hence

λ(x) = 0. The rest of the theorem follows from the isomorphism between C (L) and

C(L).

Special cases of this result are known for L semisimple ([9, 18]), L nilpotent ([2]),

and L perfect ([1]). Theorem 2.6 therefore unifies and extends seemingly unrelated

results asserting that fundamental invariants of these special types of Lie algebras can

all be chosen as Casimir operators, and shows that the only Lie algebras that may

not have a fundamental set of invariants consisting of Casimir operators are to be

found only among Lie algebras with a non nilpotent radical, and in particular among

solvable non nilpotent Lie algebras.

3 The Number of Invariants

We shall now derive some results concerning the number of invariants of the Lie

algebra L = S∔ R when the radical R is nilpotent. We assume for this purpose that

L has a nontrivial Levi decomposition.

Recall that for a given Lie algebra L, the rank of L is the minimum multiplicity

of the eigenvalue λ = 0 over the set of all linear operators adL x, as x runs through

the entire Lie algebra L. On the other hand, a Cartan subalgebra of L is a nilpotent

subalgebra that is self-normalizing, and the rank of L equals the dimension of any

of its Cartan subalgebras. In case L is semisimple, the cardinality of a fundamental

set of invariants equals the rank of the Lie algebra ([18]). However, for nilpotent Lie

algebras, it is clear that the equality between number of invariants and rank of the

algebra does not hold. We investigate this equality in the case of a nontrivial Levi

decomposition and a nilpotent radical.

Let {x, y, h} be the standard basis of sl(2,K), so that h generates the maximal toral

subalgebra.

Theorem 3.1 Suppose that L = S ⊕π R, as in (2.1), where π is the representation

of S in R defining the [S,R]-type commutation relations. If S = sl(2,K) and R0 is

the weight space of R relative to h corresponding to the zero weight, then L has rank

dimR0 + 1.
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Proof Let Rµ denote the weight space of R corresponding to the weight µ relative to

h, so that R = R0 + R∗ where R∗ =

∑
µ 6=0 Rµ. Let A = H0 ∔ R, where H0 is the

Cartan subalgebra of S generated by h. Then H = H0 ∔ R0 is a Cartan subalgebra

of A. Indeed, if v ∈ R∗, then [h, v] = µv, with µ 6= 0. Hence H is self-normalizing

in A. Clearly, R0 is a nilpotent subalgebra of R and we easily see that H(n)
= R

(n)
0

for all n, where L(n) denotes the (n + 1)-th term of the descending central series of

a given Lie algebra L. Therefore, H is nilpotent, and hence it is a Cartan subalgebra

of A. But since A is itself the inverse image of the Cartan subalgebra of S under the

canonical surjection L → L/R, with L/R ≃ S, it follows from [10, Lemma 15.3 B]

that any Cartan subalgebra of A is also a Cartan subalgebra of L. Hence H is also a

Cartan subalgebra of L, and the result follows from the equality dimH0 = 1.

For our first example concerning the connection between the number of invari-

ants and the rank of the algebra in the case of a nilpotent radical, we shall also need

the following result, proved in [13], with S = sl(2,K) and π irreducible.

Theorem 3.2 Suppose that the radical R has dimension d. Then the number σ of

invariants of L = S⊕πR is given by

(i) σ = 2, for d = 1,

(ii) σ = 1, 2, for d = 2, 3, respectively,

(iii) σ = d − 3, for d ≥ 4.

Example 1 Suppose that in Theorem 3.1 the representation π defining the

[S,R]-types commutation relations of L is irreducible. In this case the rank of L

is clearly 1 + (dimR (mod 2)), and in particular this rank can only be either 1 or 2.

It readily follows from Theorem 3.2 that the number of invariants coincides with the

rank of L when dimR < 6, but this is no longer true when d ≥ 6, as the number of

invariants is d−3 for d ≥ 4. Of course, when π is irreducible, the radical R is abelian,

and hence nilpotent. We then conclude that contrary to the case of semisimple Lie

algebras, the number of invariants of Lie algebras with a nilpotent radical is not equal

to the rank of the Lie algebra.

More precisely, the following general result follows from Theorem 3.1 and Theo-

rem 3.2.

Corollary 3.3 Suppose that the Lie algebra L has a Levi decomposition of the form

L = S ⊕π R as in (2.1), with S = sl(2,K) and π irreducible. Then the number of

fundamental invariants of L is equal to the dimension of its Cartan subalgebra if and

only if dimR < 6.

Despite the fact that, contrary to the semisimple case, the maximal number of

functionally independent invariants is not equal to the rank of the Lie algebra for

Lie algebras with a nilpotent radical, these Lie algebras have however one similarity

with semisimple Lie algebras regarding the number of invariants. Indeed, both types

of Lie algebras have each at least one nontrivial Casimir operator ([9, p. 163]). Of

course this property does not hold for solvable Lie algebras and the simplest example

is given by the two-dimensional Lie algebra with commutation relations [X,Y ] = Y .
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4 Concluding Remarks

Due to the important role played by Casimir operators in representation theory and

other branches of mathematics, and in physics, the problem of determination of Lie

algebras having a fundamental set of invariants consisting of polynomials has al-

ways been inherent in the study of invariants of Lie algebras, from the early years

of investigation of these invariant functions [2, 18], and up to the most recent years

[4, 5, 14, 16, 17, 20]. We have therefore proved the general and unifying result that Lie

algebras with a nilpotent radical admit a fundamental set of invariants consisting of

Casimir operators (Theorem 2.6), and although this result is not true for Lie algebras

with a non nilpotent radical, it might still be possible, however, to extend the result

of Theorem 2.6 to a class to Lie algebras of the latter type. Indeed, there are known

solvable non nilpotent Lie algebras having a fundamental set of invariants consist-

ing of Casimir operators. This is, for example, the case for the four-dimensional

Lie algebra L with commutation relations [N2,N3] = N1, [N2,X1] = N2, and

[N3,X1] = −N3, where the nilradical is generated by N1,N2,N3. This Lie algebra

has indeed a fundamental set of invariants consisting of the polynomials F1 = n1,

and F2 = n2n3 − n1x1, where {n1, n2, n3, x1} is a coordinate system associated with

the basis {N1,N2,N3,X1} of L. A determination of all solvable non nilpotent Lie

algebras satisfying this property is still however to be found.
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