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Abstract

In this paper, we investigate the asymptotic behaviour of controlled branching processes
with random control functions. In a critical case, we establish sufficient conditions for
both their almost-sure extinction and for their nonextinction with a positive probability.
For some suitably chosen norming constants, we also determine different kinds of limiting
behaviour for this class of processes.
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1. Introduction

A controlled branching process with random control function is a discrete-time stochastic
model of the form

Z0 = N, Zn+1 =
φn(Zn)∑
j=1

Xnj , n = 0, 1, . . . , (1)

where an empty sum is taken to be 0, N is a positive integer, and {Xnj , n = 0, 1, . . . , j =
1, 2, . . .} and {φn(k), n, k = 0, 1, . . .} are independent sets of nonnegative integer-valued
random variables on the same probability space. The variables Xnj are independent and
identically distributed, their common probability law is called the offspring probability dis-
tribution, and, for n = 0, 1, . . . , the {φn(k)}k≥0 are independent stochastic processes such
that φn(k), n = 0, 1, . . . , are identically distributed. Intuitively, Zn represents the size of
the nth generation of a population under the influence of a random control mechanism. The
φn(k), n = 0, 1, . . . , k = 0, 1, . . . , will be referred to as control variables.

Several questions concerning this control model have been investigated in [1], [3], [15], and
[19]. Recently (see [4], [5], [6], and [7]), it has been studied in the framework of asymptotically
linear growth of the mathematical expectations of the control variables. In this paper, we
continue the research into this class of branching models and, in a critical case, we investigate
some pertinent questions that have not previously been considered in the literature. In Section 2,
some notation and working assumptions are given. Sufficient conditions for the almost-sure
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extinction or for the existence of a positive probability of nonextinction are provided in Section 3,
and Section 4 is devoted to investigating different kinds of limiting behaviour for {Zn}n≥0, when
suitably normed. In particular, gamma, normal, and degenerate laws are obtained as asymptotic
distributions. In order to allow for a more comprehensible reading, the proofs are relegated to
Section 5.

2. Notation and working assumptions

From (1), by considering the conditions established for the variables Xnj and φn(k), it is
easily verified that {Zn}n≥0 is a homogeneous Markov chain whose state space is included in the
nonnegative integers. For simplicity, we shall assume that the offspring probability distribution,
denoted by {pk}k≥0 with pk := P(X01 = k), and the control variables are such that the positive
integers form a class of communicating, aperiodic states. Moreover, from now on we will con-
sider controlled branching processes with random control functions such that P(φ0(0) = 0) = 1,
i.e. 0 is an absorbent state, and at least one of the following conditions holds:

(i) p0 > 0 or

(ii) P(φ0(k) = 0) > 0, k = 1, 2, . . . .

Under these assumptions, the classical extinction–explosion duality in branching process theory
holds [19], namely P(Zn → 0)+ P(Zn → ∞) = 1.

Let us writem := E[X01], σ 2 := var[X01], ε(k) := E[φ0(k)], andν2(k) := var[φ0(k)], k =
0, 1, . . . , and define τ(k) as E[Zn+1Z

−1
n | Zn = k], k = 1, 2, . . . , which is equivalent to

mk−1ε(k); this is intuitively interpreted as the expected growth rate per individual when, in a
certain generation, there are k individuals. In order to obtain conditions for the almost-sure
extinction, different possible behaviours for the sequence {τ(k)}k≥1, relative to 1, have been
considered in [4]. In particular, the cases lim supk→∞ τ(k) < 1 and lim infk→∞ τ(k) > 1,
respectively called subcritical and supercritical, have been investigated. Here, we shall be
concerned with the complementary situation, i.e. when

lim inf
k→∞ τ(k) ≤ 1 ≤ lim sup

k→∞
τ(k),

which is referred to as the critical case.
Note that {Zn}n≥0 almost surely satisfies the relation

Zn+1 = Zn + g(Zn)+ ξn+1, n = 0, 1, . . . , (2)

where

Z0 = N, g(k) := mε(k)− k, k = 0, 1, . . . , and ξn+1 := Zn+1 − E[Zn+1 | Zn].
It is clear that {ξn}n≥1 is a zero-mean, square-integrable martingale difference sequence. For
simplicity, let us write �δ(k) := E[|ξn+1|δ | Zn = k], k = 1, 2, . . . , δ > 0. The conditional
second moments depend only on the instantaneous state of the process. In fact, �2(k) =
ν2(k)m2 + ε(k)σ 2, k = 1, 2, . . . .

Expression (2) can be rewritten, at least in the event {g(Zn) �= 0}, in the alternative form

Zn+1 = Zn + g(Zn)(1 + ηn+1), n = 0, 1, . . . , (3)

where ηn+1 := ξn+1g(Zn)
−1. Obviously, {ηn}n≥1 is also a zero-mean, square-integrable

martingale difference sequence.
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Controlled branching processes 465

In order to investigate their asymptotic properties, taking into account (2) or (3), the class of
critical controlled branching processes with random control function can be treated using some
specific methodologies for stochastic difference equations.

3. Extinction probability

The process becomes extinct when, for some n, Zn = 0. Let us denote by

qN := P(Zn → 0 | Z0 = N)

the extinction probability in the case that the process starts with N individuals, N = 1, 2, . . . .
Focusing our attention on those cases in which the limit of {τ(k)}k≥1 exists and limk→∞ τ(k) =
1, we will mainly distinguish two situations. If the convergence of {τ(k)}k≥1 to 1 is very rapid
(with respect to the conditional variance), the whole process will behave as a true critical process,
i.e. almost-sure extinction will follow. On the other hand, if the convergence of {τ(k)}k≥1 is very
slow, the process will develop as a regular supercritical process, having a positive probability
of nonextinction.

We now provide sufficient conditions for almost-sure extinction (Theorem 1) and for the
existence of a positive probability of nonextinction (Theorem 2).

Theorem 1. Assume that

(i) τ(k) = 1 + o(1) with τ(k) ≥ 1,

(ii) �2+δ(k) = o(�2(k)k
δ) for some 0 < δ ≤ 1, and

(iii) lim supk→∞ 2kg(k)/�2(k) < 1.

Then qN = 1, N = 1, 2, . . . .

Theorem 2. Assume that

(i) τ(k) = 1 + o(1),

(ii) �2+δ(k) = o(g(k)k1+δ(log k)−s) for some 0 < δ ≤ 1 and s > 1, and

(iii) lim infk→∞ 2kg(k)/�2(k) > 1.

Then qN < 1, N = 1, 2, . . . .

Remark 1. Under assumption (iii) of Theorem 1, a sufficient condition for assumption (ii) to
be satisfied is that �2+δ(k) = o(g(k)k1+δ). In fact,

�2+δ(k)
�2(k)kδ

= �2+δ(k)
g(k)k1+δ

kg(k)

�2(k)
.

Hence, by assumption (iii) and the fact that �2+δ(k) = o(g(k)k1+δ), we deduce that �2+δ(k) =
o(�2(k)k

δ). Analogously, under assumption (iii) of Theorem 2, it can be seen that �2+δ(k) =
o(�2(k)k

δ(log k)−s) is a sufficient condition for assumption (ii) to hold. Finally, the third
assumption of each theorem can intuitively be interpreted as a speed condition due to the fact
that

kg(k)

�2(k)
= τ(k)− 1

�2(k)k−2 .
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The previous theorems provide the answer to the extinction problem for the most typical
cases in this class of controlled models. Unfortunately, certain situations are not covered
by them, for instance the case in which limk→∞ 2kg(k)(�2(k))

−1 = 1. In the following
theorem, we extend our research in that direction. Some results concerning the extinction time
T := inf{n > 0 : Zn = 0} are also established.

Theorem 3. Assume that φ0(k), k = 1, 2, . . . , have infinitely divisible probability distribu-
tions such that

(i) τ(k) = 1 + k−1c, c > 0, k = 1, 2, . . . ,

(ii) �2(k) = νk +O(1), ν > 0, and

(iii) supk≥1(g
1/k
k )′′′(1) < ∞ with gk(s) := E[sφ0(k)], 0 ≤ s ≤ 1.

(Here, a prime denotes differentiation.) Then

(a) if 2cν−1 ≤ 1, we have qN = 1, N = 1, 2, . . . , and

(b) if 2cν−1 < 1, we have

P(T > n− 1) ∼ k1n
2cν−1−1, n → ∞,

while if 2cν−1 = 1, we have

P(T > n− 1) ∼ k2(log n)−1, n → ∞,

for some positive constants ki, i = 1, 2.

Remark 2. According to Kolmogorov’s classical extinction time result for critical Bienaymé–
Galton–Watson processes {Yn}n≥0, we know that P(Yn > 0) ∼ 2(σ 2n)−1. We have proved,
for our controlled model {Zn}n≥0, that P(Zn > 0) decays to 0 more slowly. This is due to
the immigration component: note that, by assumption (i) of Theorem 3, there is expected
immigration of individuals in each generation. On the other hand, the results obtained are also
in parallel with those ones established by Yanev and Yanev for critical branching processes
with random migration stopped at 0. Under a dominating immigration, they proved a speed of
convergence analogous to that established in Theorem 3 and, assuming a dominating emigration,
obtained, as is logical, a faster decay rate (see [16] and [17] for details).

4. Limiting behaviour

In this section, we shall be concerned with the limiting behaviour of the process when
suitably normed, in both the nonextinction situation and the extinction case. First, we consider
processes that do not become extinct with a positive probability. We assume that τ(k) =
1 + ckα−1 + o(kα−1), where α < 1, c > 0, and τ(k) > 1. Consequently, we deduce that
g(k) = mε(k) − k = ckα + o(kα). For technical reasons, we shall extend g to a twice-
continuously differentiable function on R:

g(x) =
{
cxα + o(xα) if x ≥ 0,

0 otherwise.
(4)

We shall denote by {an}n≥0 the solution of the deterministic recursive equation

a0 = 1, an+1 = an + g(an), n = 0, 1, . . . .
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Theorem 4. Assume that

(i) τ(k) = 1 + ckα−1 + o(kα−1), α < 1, c > 0, with τ(k) > 1,

(ii) �2(k) = νkβ + o(kβ), β ≤ α + 1, ν > 0, and

(iii) �2+δ(k) = O((�2(k))
1+δ/2) for some δ > 0.

The following statements then hold.

(a) If β = α + 1 and 2cν−1 > 1 then, for all real numbers z,

lim
n→∞ P(n−1Z1−α

n ≤ z | Zr → ∞) = �a,b(z),

where �a,b denotes the gamma distribution function with parameters a = (ν−να)−1(2c−να)
and b = 2−1ν(1 − α)2.

(b) If 0 < α < 1 and β < α + 1 then, in the event {Zr → ∞},
1. for β < 3α − 1 we have

a−1
n Zn → 1 almost surely (a.s.), g(an)

−1(Zn − an) converges a.s.,

as n → ∞, and

2. for β ≥ 3α − 1 we have a−1
n Zn

p−→ 1 as n → ∞ and, for all real numbers z,

lim
n→∞ P

(



−1/2
n

Zn − an

g(an)
≤ z

∣∣∣∣ Zr → ∞
)

= φ∗(z),

where φ∗ is the standard normal distribution function and


n =
{
νc−3(1 − α)−1 log n if β = 3α − 1,

ν(β − 3α + 1)−1c(β−2)/(1−α)((1 − α)n)(β−3α+1)/(1−α) if β > 3α − 1.

Remark 3. Theorem 4 makes sense because, under its assumptions, Theorem 2 holds and,
therefore, {Zn}n≥0 does not die out with a positive probability. In fact, from assumption (i) it
is clear that τ(k) = 1 + o(1). Moreover, from (4) and assumption (ii), we can show that

lim
k→∞

2kg(k)

�2(k)
=

{
2cν−1 if β = α + 1,

∞ otherwise.

Finally, using assumptions (ii) and (iii), we have, for some positive constant M ,

�2+δ(k)
�2(k)kδ(log k)−s

≤ M
(�2(k))

δ/2

kδ
(log k)s

= M
νδ/2kβδ/2 + o(kβδ/2)

kδ
(log k)s

= Mνδ/2kδ(β−2)/2(1 + o(1))(log k)s → 0 as k → ∞,

and, consequently (see Remark 1), �2+δ(k) = o(g(k)k1+δ(log k)−s). Note that, for β > α+ 1
or forβ = α+1 and 2cν−1 < 1, the process becomes extinct with probability 1 (see Theorem 1).
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Figure 1.

Figure 1 shows, in a plot in the (α, β)-plane, a simplified scheme corresponding to the
different kinds of limiting behaviour obtained for {Zn}n≥0, when suitably normed.

Corollary 1. (a) Under the conditions established in Theorem 4(a), for all real numbers z,

1. limn→∞ P(n−1Z1−α
n ≤ z) = qN 1{z≥0} +(1 − qN)�a,b(z),

2. limn→∞ P(n−1Z1−α
n ≤ z | Zn > 0) = �a,b(z),

with a = (ν − να)−1(2c − να) and b = 2−1ν(1 − α)2.

(b) Under the conditions established in Theorem 4(b)2, for all real numbers z,

lim
n→∞ P

(



−1/2
n

Zn − an

g(an)
≤ z

∣∣∣∣ Zn > 0

)
= φ∗(z).

Remark 4. We can show that an ∼ (c(1 − α)n)(1−α)−1
as n → ∞. In fact, because α < 1

and c > 0, {an}n≥0 converges to infinity and we can therefore suppose that an �= 0 for every
n ≥ 0. Taking into account Lemma 1 (in Appendix A) and (4), we have

a1−α
n+1 = a1−α

n

(
1 + an+1 − an

an

)1−α

= a1−α
n + (1 − α)a−α

n g(an)+O

(
g(an)

2

a1+α
n

)
= a1−α

n + (1 − α)c + o(1).

Hence, we have a1−α
n = c(1 − α)n+ o(n), and the result follows.

Remark 5. From a practical point of view, it is interesting to look for easily checked sufficient
conditions which guarantee that the hypotheses about the (2+δ)th conditional absolute moment
of ξn+1 hold. In this sense, we can verify assumption (iii) of Theorem 4 by using both the fact
that |a+b|r ≤ Cr(|a|r +|b|r ), r > 0, for some positive constant Cr (called the Cr -inequality)
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and the Marcinkiewicz–Zygmund inequality (see Lemma 2 in Appendix A). Doing so, we find
that, as k → ∞,

�2+δ(k) ≤ C2+δ
(

E

[∣∣∣∣φn(k)∑
i=1

(Xni −m)

∣∣∣∣2+δ]
+m2+δ E[|φn(k)− ε(k)|2+δ]

)
and

E

[∣∣∣∣φn(k)∑
i=1

(Xni −m)

∣∣∣∣2+δ]
= O(E[(φn(k))1+δ/2]).

Hence, the conditions

E[(φ0(k))
1+δ/2] = O(kβ(1+δ/2)) and E[|φ0(k)− ε(k)|2+δ] = O(kβ(1+δ/2))

imply that
�2+δ(k) = O(kβ(1+δ/2))

and, as a consequence, that
�2+δ(k) = O((�2(k))

1+δ/2).

Under the conditions of Theorem 3, we know that the process becomes extinct with proba-
bility 1. In the following result, we investigate the limiting distribution of n−1Zn conditioned
on {Zn > 0}.
Theorem 5. Under the hypotheses of Theorem 3, if 2cν−1 ≤ 1 then

lim
n→∞ P(n−1Zn ≤ z | Zn > 0) = �a,b(z),

with a = 1 and b = 2−1ν.

Remark 6. Note that, in this situation, the parameter a does not depend on c or ν, unlike the
analogous result in the case in which extinction is not almost sure. This result is similar to
the result of Kolmogorov and Yaglom concerning the limiting exponential distribution for the
critical Bienaymé–Galton–Watson process. Both models have the same exponential limiting
distribution on their nonextinction paths, in spite of the fact that the decay rates of their non-
extinction probabilities are different. In particular, ifφ0(k) := k+Y, k = 1, 2, . . . ,whereY is a
nonnegative integer-valued random variable independent of {Xnj , n = 0, 1, . . . , j = 1, 2, . . .}
and such that E[Y ] < ∞, then {Zn}n≥0 is a Galton–Watson process with immigration. The
classical result about the limiting gamma distribution for this process in the critical case (see
[10]) is included in Theorem 4. Analogous results have been also obtained for critical branching
processes with random migration, both when immigration dominates emigration and vice versa
(see [16], [17], and [18]).

5. Proofs

In the proofs of Theorems 1 and 2 it will be necessary to consider the following result.

Proposition 1. Let {Xn}n≥0 be a sequence of nonnegative random variables and let {Fn}n≥0
be a nondecreasing sequence of σ -algebras such that Xn is Fn-measurable for each n. Let f
be a positive function on R

+.
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(a) If f is increasing and

E[f (Xn+1) | Fn] ≤ f (Xn) a.s. on {Xn > A}, n = 0, 1, . . . ,

for some positive constant A, then P(Xn → ∞) = 0.

(b) Suppose that, for any constantC∗, there exists ann = 1, 2, . . . such that P(Xn > C∗) > 0
and, moreover, that P(Xn → 0)+ P(Xn → ∞) = 1. If f is decreasing and

E[f (Xn+1) | Fn] ≤ f (Xn) a.s. on {Xn > A}, n = 0, 1, . . . ,

for some positive constant A, then P(Xn → ∞) > 0.

Proof. The proposition is proved using reasoning similar to that used by Kersting in [12].

(a) Taking into account the fact that {Xn → ∞} = ⋃∞
j=1{infn≥j Xn > A} ∩ {Xn → ∞}, it

will be sufficient to verify that, for every j ≥ 1,

P
({

inf
n≥j Xn > A

}
∩ {Xn → ∞}

)
= 0. (5)

For an arbitrary j ≥ 1, let us define

T (A) :=
{

inf{n ≥ j : Xn ≤ A} if infn≥j Xn ≤ A,

∞ otherwise.

We consider the sequence {Yn}n≥0, where Yn := XT (A)∧(j+n). After some calculations, we
find that

E[Yn+1 | Fj+n] ≤ Yn a.s., n = 0, 1, . . . .

Therefore, {Yn}n≥0 is a nonnegative supermartingale with respect to {Fj+n}n≥0 and, from the
martingale convergence theorem (see, e.g. [2, p. 246]), it follows that {Yn}n≥0 is almost surely
convergent to a random variable Y such that P(0 ≤ Y < ∞) = 1. It now follows that, almost
surely,

Y =
{
XT (A) if infn≥j Xn ≤ A,

limn→∞Xj+n otherwise,

and we obtain (5).

(b) Let Y ∗
n := f (Xn) ∧ f (A), n = 0, 1, . . . . It can be shown that

E[Y ∗
n+1 | Fn] ≤ E[f (Xn+1) | Fn] ∧ f (A) ≤ Y ∗

n a.s., n = 0, 1, . . . .

Hence, {Y ∗
n }n≥0 is a nonnegative supermartingale with respect to {Fn}n≥0 and, again using the

martingale convergence theorem, it is almost surely convergent to a finite, nonnegative random
variable Y ∗. Moreover, because {Y ∗

n }n≥0 is bounded, it follows that it is also convergent in L1.
Suppose that P(Xn → ∞) = 0; then P(Xn → 0) = 1 and it follows that E[Y ∗] = f (A). Since
{E[Y ∗

n ]}n≥0 is decreasing, E[Y ∗
n ] ≥ f (A), n = 0, 1, . . . . Now, Y ∗

n ≤ f (A), n = 0, 1, . . . ;
hence, it follows, for every n, that Y ∗

n = f (A) almost surely and, since f is decreasing, that
Xn ≤ A almost surely, n = 0, 1, . . . . This contradicts the first assumption in Proposition 1(b).
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5.1. Proof of Theorem 1

For x > −1 and 0 ≤ δ ≤ 1, the following inequality holds:

log(x + 1) ≤ x − 1
2x

2 + 1
2 |x|2+δ. (6)

From (2), we have

log(Zn+1 + 1) = log(Zn + 1)+ log

(
1 + g(Zn)

Zn + 1
+ ξn+1

Zn + 1

)
.

Hence, using (6) with x = (g(Zn) + ξn+1)/(Zn + 1), taking expectations, applying the
Cr -inequality, and using the fact that, by assumption (i) (of Theorem 1), g(k) = k(τ (k)−1) ≥ 0,
for a certain positive constant C2+δ we obtain

E[log(Zn+1 + 1) | Zn = k] ≤ log(k + 1)+ g(k)

k
− (g(k))2

2(k + 1)2
− �2(k)

2(k + 1)2

+ 1

2
C2+δ

(
(g(k))2+δ

k2+δ + �2+δ(k)
k2+δ

)
= log(k + 1)+ g(k)

k

1(k)− �2(k)

2k2 
2(k), k = 1, 2, . . . ,

where


1(k) = 1 − g(k)k

2(k + 1)2
+ 1

2
C2+δ

(g(k))1+δ

k1+δ

and


2(k) = k2

(k + 1)2
− 1

2
C2+δ

(�2+δ(k))1+δ

�2(k)kδ
.

From assumptions (i) and (ii), we deduce that limk→∞
1(k) = limk→∞
2(k) = 1, so, for k
sufficiently large and ε > 0 sufficiently small, we have

g(k)

k

1(k)− �2(k)

2k2 
2(k) ≤ g(k)

k
(1 + ε)− �2(k)

2k2 (1 − ε).

Now, from assumption (iii), if we choose an ε such that 0 < ε < (1 − b)(1 + b)−1 with
b := lim supk→∞ 2kg(k)/�2(k), then the right-hand side of the previous inequality is negative.
Therefore, it follows that if Zn ≥ A, for some sufficiently large constant A, then

E[log(Zn+1 + 1) | Fn] ≤ log(Zn + 1) a.s.,

where Fn denotes the σ -algebra generated by Z0, . . . , Zn. The result then follows by applying
Proposition 1(a).

5.2. Proof of Theorem 2

Let f (x) = (log x)−α, x > 0, α ≤ s − 1. It was shown in [12] that, for x + h ≥ 3, x ≥ 3,
and a sufficiently large constant C∗,

f (x + h) ≤ f (x)+ f ′(x)h+ 1

2
f ′′(x)h2 + C∗ |h|2+δ

(log x)1+αx2+δ + 1{h≤−x/2} .
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From (2), setting x = Zn+3 and h = g(Zn)+ξn+1, applying Chebychev’s conditional equality
and the Cr -inequality, and taking expectations, we find that

E[f (Zn+1 + 3) | Zn = k] ≤ f (k + 3)+ f ′(k + 3)g(k)+ 1
2f

′′(k + 3)(g(k)2 + �2(k))

+ C1

(
(g(k))2+δ

(log k)1+αk2+δ + �2+δ(k)
(log k)1+αk2+δ

)
+ C2

�2+δ(k)
k2+δ , k = 1, 2, . . . ,

for some positive constantsCi, i = 1, 2. By assumptions (i) and (ii) (of Theorem 2), and using
reasoning similar to that used in the proof of Theorem 1, we find that, for k sufficiently large
and ε > 0 sufficiently small,

E[f (Zn+1 + 3) | Zn = k] ≤ f (k + 3)− αg(k)

(log k)1+αk
(1 − ε)+ α�2(k)

2(log k)1+αk2 (1 + ε)

and, from assumption (iii), we deduce that if Zn is sufficiently large, then

E[f (Zn+1 + 3) | Fn] ≤ f (Zn + 3) a.s.,

where, as in Theorem 1, Fn is the σ -algebra generated by Z0, . . . , Zn. Application of Propo-
sition 1(b) completes the proof.

5.3. Proof of Theorem 3

We will need the following preliminary result.

Proposition 2. Under the hypotheses of Theorem 3, there exist continuous and nondecreasing
functions Ai, ai : [0, 1] → [0, 1], i = 1, 2, that have a continuous derivative on a small
left-neighbourhood of 1 and satisfy the following conditions.

(a) Ai(1) = ai(1) = 1, Ai(0) > 0, A′
i (1) = c > 0, and a′

i (1) = 1, for i = 1, 2.

(b) For i = 1, 2, ai(s) > s, 0 ≤ s < 1, and ai(s) has continuous second derivative on a
small left-neighbourhood of 1, with a′′

i (1) = ν > 0.

(c) There exist nonincreasing functions Ei and ei , i = 1, 2, on (0, 1), such that∣∣∣∣ai(s)− s

(1 − s)2
− ν

2

∣∣∣∣ ≤ ei(s),

∣∣∣∣1 − Ai(s)

1 − s
− c

∣∣∣∣ ≤ Ei(s), i = 1, 2,

and ∫ 1

ηi

Ei(s)

1 − s
ds < ∞,

∫ 1

ηi

ei(s)

1 − s
ds < ∞, for some ηi ∈ (0, 1), i = 1, 2.

(d) A1(s)(a1(s))
k ≤ hk(s) ≤ A2(s)(a2(s))

k , 0 ≤ s ≤ 1, k = 1, 2, . . . , where hk(s) :=
E[sZn+1 | Zn = k].

Proof. Since φ0(k) has infinitely divisible probability distribution, it follows that, for each
j ≥ 1, there exists a probability generating function fkj (with associated probability dis-
tribution belonging to the same family of probability distributions as that of φ0(k)), such that
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gk(s) = (fkj (s))
j , 0 ≤ s ≤ 1. Let us consider the sequence of probability generating functions

{lk}k≥0, where lk(s) := fkk(f (s)), 0 ≤ s ≤ 1, with f (s) := E[sX01 ]. It is easy to verify that
hk(s) = gk(f (s)) = (lk(s))

k . Let

mk := l′k(1) and πk := l′′k (1), k = 1, 2, . . . .

Taking into account the results of [8] and the existence of the functions Ai and ai , i = 1, 2,
parts (a)–(d) are guaranteed to hold if

(p1) mk = 1 + k−1δ, k = 1, 2, . . . , for some δ > 0,

(p2) |πk − µ| ≤ k−1M, k = 1, 2, . . . , for some M > 0 and µ > 0, and

(p3) supk≥1
∑∞
j=0 j

2+rπkj < ∞ for some r > 0, where {πkj }j≥0 denotes the probability
distribution associated with lk .

Now,
mk = k−1ε(k)m = 1 + k−1c, k = 1, 2, . . . ,

from which (p1) follows. Using assumptions (i) and (ii) (of Theorem 3), we have

πk = k−1�2(k)+ (τ (k))2 − τ(k) = ν + k−1(O(1)+ c(1 + k−1c)), k = 1, 2, . . . ,

and, consequently, (p2) follows withµ = ν. By using assumptions (i) and (ii) again, we deduce
that (ν(k))2 = O(k),

Finally, we have

l′′′k (1) = 3mf ′′(1)f ′′
kk(1)+m3f ′′′

kk(1)+ f ′′′(1)f ′
kk(1).

Now, by assumptions (i) and (ii), we obtain

f ′′′(1)f ′
kk(1) = f ′′′(1)k−1ε(k) = O(1)

and
f ′′
kk(1) = k−2(kg′′

k (1)− (k − 1)(g′
k(1))

2) = O(1).

On the other hand, by assumption (iii), we have f ′′′
kk(1) = (g

1/k
k )′′′(1) = O(1) and, therefore,

(p3) holds.

We are now ready to prove Theorem 3. Part (a) follows from Proposition 2 if we apply
Theorem 2.1(a) of [8]. To prove part (b), let Ai and ai, i = 1, 2, be the functions provided
in Proposition 2 and, for j = 0, 1, . . . , let us denote by a(j)i the j th functional iterate of ai ,
i.e. a(j)i (s) = ai(a

(j−1)
i (s)) with a(0)i (s) = s. Under the conditions satisfied by Ai and ai , by

Lemma 3.3 of [8] we have

n−1∏
j=0

Ai(a
(j)
i (0)) ∼ n−2cν−1

Mi, i = 1, 2,

where Mi, i = 1, 2, are positive constants. Therefore,

∞∑
n=0

n−1∏
j=0

Ai(a
(j)
i (0)) = ∞, i = 1, 2,

and application of Lemmas 2.1 and 2.2 of [9] completes the proof.
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5.4. Proof of Theorem 4

Let us introduce the function

G(x) :=
∫ x

1

1

g(z)
dz, x ≥ 1.

Using g(x) = cxα + o(xα), x > 0, we can argue that

g′(x) = cαxα−1 + o(xα−1) and G(x) ∼ (c(1 − α))−1x1−α, x → ∞. (7)

Proof of part (a). From (7), we have

lim
x→∞ g

′(x)G(x) = (1 − α)−1 − 1

and, by assumption (ii) (of Theorem 4) and (7), we obtain

lim
k→∞

�2(k)

(g(k))2G(k)
= c−1ν(1 − α) > 0.

For simplicity, let λ = (1 − α)−1 and γ = c−1ν(1 − α). Taking into account the fact that
2cν−1 > 1, we deduce that γ λ < 2. Therefore, the assumptions of Theorem 1 of [13] are
satisfied, and we find that, for all real numbers z,

lim
n→∞ P(n−1G(Zn) ≤ z | Zr → ∞) = �2/γ−λ+1,γ /2(z). (8)

Now, by (7), in the event {Zr → ∞} we have

c−1λZ1−α
n G(Zn)

−1 → 1 a.s., as n → ∞. (9)

Finally, from (8) and (9), Slutsky’s theorem, and some properties of the gamma distribution,
the result is obtained.

Proof of part (b). In view of relation (3), this part will be proved using Theorem 3 of [11].
Notice that, from assumption (iii),

E[|ηn+1|2+δ | Zn = k] = O((ϕ2(k))1+δ/2), (10)

where ϕ2(k) := E[η2
n+1 | Zn = k] = �2(k)(g(k))

−2.

Let us consider the function

ψ(x) :=
∫ x

1

ϕ2(z)

g(z)
dz, x ≥ 1.

By assumption (ii) and the fact that g(x) = cxα + o(xα), it follows that

ϕ2(x)

g(x)
∼ νc−3xβ−3α, x → ∞,

and, therefore, in the same limit, that

ψ(x) ∼
{
νc−3(β − 3α + 1)−1(xβ−3α+1 − 1) if β �= 3α − 1,

νc−3 log x if β = 3α − 1.
(11)
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SinceG(x) ∼ (c(1 − α))−1x1−α , we haveG−1(x) ∼ (c(1 − α)x)(1−α)−1
, whereG−1 denotes

the inverse function of G. Consequently, if ψ̂(x) := ψ(G−1(x)) then

ψ̂(x) ∼
{
νc−3(β − 3α + 1)−1((c(1 − α)x)(β−3α+1)/(1−α) − 1) if β �= 3α − 1,

νc−3(1 − α)−1 log x if β = 3α − 1.
(12)

The following statements now hold.

(A) The function g is positive, twice differentiable on R
+, and ultimately concave, and g′ is

ultimately convex.

(B) The function ϕ2 is positive and continuously differentiable. Furthermore,∫ x

1
z−2ϕ2(G−1(z)) dz ∼

∫ x

1
νc−2(c(1 − α))(β−2α)/(1−α)z(β−2α)/(1−α)−2 dz

and, since β < α + 1, the integral

νc−2(c(1 − α))(β−2α)/(1−α)
∫ ∞

1
z(β−2)/(1−α) dz

is finite. Moreover, ϕ2(G−1(x)) ∼ νc−2(c(1 − α)x)(β−2α)/(1−α), so it is ultimately concave
or convex.

(C) If β ≥ 3α − 1 then, from (11), we obtain ψ(∞) = ∞ and we also deduce that

|g′′(x)g(x)/ϕ2(x)| = O(x4α−β−2),

which is ultimately decreasing because 4α−β−2 < 0. On the other hand, if β < 3α−1 then,
again using (11), ψ(∞) < ∞ and |g′′(x)g(x)| = O(x2(α−1)), which is ultimately decreasing
since α − 1 < 0.

(D) For β ≥ 3α − 1, we have

g′(x)(ψ(x))1/2 =
{
O(x(β−(α+1))/2) if β > 3α − 1,

O((log x)1/2xα−1) if β = 3α − 1,

while, for β < 3α − 1, we have

g′(x)(ψ(x))1/2 ∼ α

(
ν(1 − xβ−3α+1)

c(3α − 1 − β)

)1/2

xα−1.

Hence, g′(x)(ψ(x))1/2 → 0 as x → ∞.

Considering (10), (12), and statements (A)–(D), the assumptions of Theorem 3 of [11] can
be verified. Using the second part of this theorem, we obtain the result of part (b)1 of our
Theorem 4 and, from its first part, we find that

a−1
n Zn

p−→ 1 in the event {Zr → ∞},
for β ≥ 3α − 1, and that

lim
n→∞ P

(
(ψ̂(n))−1/2Zn − an

g(an)
≤ z

∣∣∣∣ Zr → ∞
)

= φ∗(z),
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for all real numbers z. (Recall that φ∗ denotes the standard normal distribution function.)
Finally, using Slutsky’s theorem and taking into account the fact that

ψ̂(n) ∼

⎧⎪⎨⎪⎩
ν

c3(1 − α)
log n if β = 3α − 1,

ν

β − 3α + 1
c(β−2)/(1−α)((1 − α)n)(β−3α+1)/(1−α) if β > 3α − 1,

we deduce the result of part (b)2.

5.5. Proof of Corollary 1

(a) For simplicity, let us consider Yn = n−1Z1−α
n and take z > 0. Then

P(Yn ≤ z) = P(Yn ≤ z | Zr → 0)P(Zr → 0)

+ P(Yn ≤ z | Zr → ∞)P(Zr → ∞)

and, using the fact that limn→∞ P(Yn ≤ z | Zr → 0) = 1, the fact that Z0 = N , and
Theorem 4(a), we deduce that

lim
n→∞ P(Yn ≤ z) = qN + �a,b(z)(1 − qN).

Consequently, part (a)1 of Corollary 1 holds.
On the other hand, we have

P(Yn ≤ z, Zn > 0) = P(Yn ≤ z, Zn > 0, Zr → ∞)+ P(Yn ≤ z, Zn > 0, Zr → 0).

Now,

P(Yn ≤ z, Zn > 0, Zr → ∞) = P(Yn ≤ z, Zr → ∞),

P(Yn ≤ z, Zn > 0, Zr → 0) ≤ P(Zn > 0, Zr → 0),

and, since limn→∞ P(Zn > 0) = P(Zr → ∞) and limn→∞ P(Zn > 0, Zr → 0) = 0, by
Theorem 4(a), part (a)2 of Corollary 1 is deduced.

(b) The proof of part (b) is similar to that of part (a)2, taking Yn = 

−1/2
n (g(an))

−1(Zn − an)

and using Theorem 4(b).

5.6. Proof of Theorem 5

Theorem 5 is easily proved using Proposition 2 and applying Lemma 2.3 of [9].

Appendix A. Lemmas

Lemma 1. For any 0 ≤ k ≤ 2 and x ≥ −1, we have

(1 + x)k = 1 + kx +O(x2).

Lemma 2. (Marcinkiewicz–Zygmund inequality.) If {Xn}n≥1 is a sequence of independent
and identically distributed random variables with E[X1] = 0 and E[|X1|p] < ∞, p ≥ 2, then
E[| ∑n

j=1Xj |p] = O(np/2).

We refer the reader to the theorem of [14] for the proof of Lemma 1 and to [2, p. 387] for
the proof of Lemma 2.
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