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ABSTRACT DANIELL-LOOMIS SPACES

M. DIAZ CARRILLO AND H. GUNZLER

In [3] for general integral metric q an integral extension of Lebesgue power was
discussed. In this paper we introduce the abstract Daniell-Loomis spaces Rp, p
real, 0 < p < oo, of g-measurable functions with finite "p-norm", and study their
basic properties.

1. INTRODUCTION

Recently in [3] an integral extension proceduce was given which works for general
integral metric q. The basic ideas can be traced back to Loomis [9] and Schafke [10].
One defines the extended functions of class Bq of real-valued functions on a set X
with respect to a Bq type seminorm. Using an appropriate local mean convergence
we proved convergence theorems; and we introduced g-measurability, which is defined
by the property that truncation by integrable functions leads to integrable functions.
It allowed us to treat abstract Riemann, that is finitely additive, integration theory,
as a fundamental example and applied simultaneously to Loomis's abstract Riemann
integration, as well as to the Daniell and Bourbaki integration theories.

In this paper, using the method announced in [3] we shall give a presentation of
the abstract Daniell-Loomis spaces Rp, p real, 0 < p < oo.

For nonnegative extended real-valued functions / on X, if p ^ 1, qP(f) =
[q{fp)]1^p satisfies the requirement of an integral metric, and essentially all the results
discussed in [3] are true.

The relevant convergence properties with respect to q or qv are developed. With
weak continuity assumptions on the integral metric q, we prove as a fundamental result
that the concepts of q- and gp-measurability are equivalent (Theorem 1).

This leads us to define the abstract Danniell-Loomis spaces Rp as the class of q-
measurable functions with finite gp(|.|)- The simple functions B play the usual role in
Rp. Rp = Bqp vector lattice (Theorem 2).

Finally, examples are presented which show that these results make it possible to
study ilp-spaces for abstract Riemann or finitely additive, integration theory.
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136 M. Diaz Carrillo and H. Giinzler [2]

1. NOTATION AND ASSUMPTIONS.

In what follows we adhere to the notation and results of [3], and will be explained
whenever necessary in order to make the paper self contained.

We extended the usual + to R x R by r + s :— 0 if r = -a 6 {oo, -oo},
r - a :=r + (-s). R+ := [0, oo], R :~ {-oo} U R U {oo}.

We denote a V 6 := max (a, b), a A 6 := min(a, 6) and ofl( := (a A f) V (— t) if
a, b G R, t GR+.

For an arbitrary nonempty set X let R consists of all functions / : X —> R. All
operations and relations between functions are defined pointwise, with inf 4> := oo.

A functional g: R+ —» R+ is called an integral metric on X if g(0) = 0 and
y

g(f) < i{g) + g(*0 a f ^g + k, / , j , t e R + .
y y

If B C R , a function / 6 R is said to be q-integrable if it belongs to the closure
Y

of B in R with respect to g, that is there exists (hn) C B with q(\f — hn\) —> 0 as
n-too.

Bq denotes the set of all the g-integrable functions.
If additionally an / : B —* R is given which is uniformly continuous on B with,

respect to q, the unique g-continuous extension of I to Bq will be denoted /*.
In all of the following, B will be a function vector lattice in R x , that is a real

linear space of functions under pointwise =, +, a., such that h G B implies \h\ G B;
then fc A h, k V h G B for k, h G B. I: B -» R will be assumed linear with I(h) ^ 0
if 0 ^ h G B. Then, g-continuity of / in 0 implies uniform g-continuity of / on B.

We collect these assumption in

(1) / , B as above, g is an integral metric on X and / is g-continuous in 0.

With (1), Bq is closed with respect to +, a., V, A, |. | and Iq: Bq -» R is mono-
tone, linear and g-continuous, (Theorem 1, [3]).

A function / G R is said to be q-measurable if / C\h G Bq for all 0 ^ h G B.
Mn(q, B) denotes the set of all the g-measurable functions.
For convergence theorems we need a suitable local convergence in the mean of [3,

p.414].

(2) For / , /„ G R , n G N, /„ -» f(q, B) means that for each e > 0 and
0 ^ h e B there exists n0 = n(e, h) G N such that q(\f - fn\ A h) < e if
n ^ no, (q-local convergence).

(3) Lebesgue's convergence theorem, (see Corollary VII, [3]):

If (1) holds, / „ , g G Bq, f G R* is such that /„ -• f(q, B) and
\fn - / K g, n G N, then / G B" and g(|/n - / |) ^ 0.

(4) For any integral metric q and M C R the corresponding local integral
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metric of Schafke [10] (see also [3, p.416]) is defined by

qt(f) •- sup{g(/ Ah); 0 ̂  h £ M} for all / G R+.

With (1), qi is again an integral metric such that qi $J q and ?/(/) = <?(/) if
0 ^ / < g for some g £ Bq. One has B C Bq C Bqi and /« = /«< on Bq.

For further properties of Bq and Bqt see [3].

2. .Rp-SPACES

For 9 : R+ -» 1+, p real, 0 < p < oo, with f(t) := {f{t))p, 0p := 0, co* := co,

we define for all / € K+

(5) m . ffoW' XP*1'
\q(fp) i f o < P < i .

Note that the case p = 1 was studied in [3], and the natural question to consider
is to what extent those results can be extended to values of p other than 1.

LEMMA 1. (See Lemma 12, [3].) If q := R+ -> E.+ is an integral metric with
q(2f) = 2q(f), 0 < p < oo, then qp is also an integral metric on X, positive-
homogeneous if p ^ 1.

PROOF: Observe that 2q(f) ^ g(2/) implies q(tf) - tq(f), 0 < t < oo; also
\f + g \ p ^ P + g p H0<p^l.

If p > 1, qp satisfies Minkowski's inequality for finitely-valued / , g, by Bourbaki
[2, p.12].

Now, we denote fe(x) := /(*) if f(x) 6 R, fe(x) := 0 else, fu(x) := /(as) - /«(*),
/ » : = / « V 0 .

If / , ff e K+ with qp(f), qp(g) < oo, we have [<?„(/ + </)]" < «[2?(/* + <?*)] < <x>,
and agp(/oo) = gp(a/oo) ^ gp(/) < oo, so that 9P(/oo) = 0.

Therefore qp(f + g) < [9p(/ + «,)? + 0 + O]1^ < 9 p ( / e + ge) ^ qp{fc) + qp(ge) ^

For positive-homogeneous integral metric g, Holder's inequality holds:

(6) Let l < r , s < oo be a pair of conjugate exponents, for functions / , g £

l j then q(fg)^qr{f)q.{g).
(See for example [8, p.64-65], (6) follows with the aid of the expression uv —

inf{(l/p)t'V + (l/s)*-'uJ; t > 0} for real u, v ^ 0.)
For positive-homogeneous integral metrics q, Sections 1, 2 of [3] hold for Bq* and

B^qp'i, and using the g-local convergence of (2) one gets convergence theorems in a
form analoguous to the classical ones.
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In order to obtain the full results one has to impose certain conditions upon B and

9-
p

(7) Let g be a positive-homogeneous integral metric on K+ , and 0 < p < oo.
We assume

\B\P = \B\ with \B\ :={h; 0 ̂  h € B}.

C0(q, B): q(h A t) -» 0 if 0 < t -> 0, 0 ̂  h E B, (g continuous at 0).

Coo(q, B): q(h — h At) —> 0 if i —» oo, 0 ̂  h £ B, (q continuous at oo).

The above basic assumptions (1) and (7) will be retained in all that follows.

Observe tha t , with \B\P - \B\, C0{q, B) implied C0(qP, B).

LEMMA 2 . Let q be a positive-homogeneous integral metric, then Coo(qp, B)

holds, that is, qp(h - /i A t) -> 0 ift->0, 0 ^h£ B.

PROOF: Case 1 ^ p < oo: Observe that ap + V ^ (a + b)p if a, b g 1 + .
Thus, (t-tAs)p ^ V As" , t, s 6 K+. Therefore [qp(h-hAt)]p : - q(h-hAt)p

^ q(hp - h? A sp) -* 0 if s -> oo.

Case 0 < p < 1: We have ( f c - / iA i ) p = ( ( f c - / iA t)le)pep ^ ep((/i - fe A t)/e) if
/i ^ t + e and < e A f t i f / i < * + e. So that (h - h A t)p ^ e ^ ^ f t - /iA/) + £A/i.

Now, if £ -» 0, 77 > 0, by C0{q, B), q(hAe) < T//2, and if t -> 00, to 7/ > 0,
by ^00(9, B), ePg(/i - h A t) < T//2 . Hence, one has 9p(/i -hAt) = q[(h - h A t)p] ^
qle9'1^ - h A t)] + q{h A e) < r)/2 + 77/2, and the proof is complete. D

The equivalence between g-convergence and gp-convergence is made explicit in the
following lemmas.

LEMMA 3 . Let f, fn e RX, then fn -^ f(q, B) implies fn -» f(qp, B).

PROOF: One can assume / = 0 and fn ^ 0. So, by (2) it suffices to show that
given any 0 < h g B if q(fn A h) -* 0 then qp(fn A h) -> 0.

Case 1 ̂  p < 00: Choose 0 ̂  h £ B, Zn := /„ A h; by assumption g(/n A /i) —> 0.

Now, if 0 < t G K, [gp(/n)]p == [(9(^))1/P]P = ?(«) = «(/£ A W) ^ , [ /{A
(W A <»•)] + ,[(/» A W) - i* A (W A fP)] < g[/P A (W A t')] + q(hp - h? A <") < g (/»A
(WA<")) + e,if t > t . , k , b y ^ ( g , J?).

One has, /? A V = (ln A t)p = t*((ln A t)/t)p < tp{(ln A t)/t), since p ^ 1, 0 <

Thus, if < = t.,h, [qP{ln)]
p ^ q(lp

nAt") + e ^ q{f({ln At)/t)) + e = e

t"(l/t)q(ln At) = £ + t'-iqiln) = e + <p?(/n A h) ^ 2e, if n > ne.

Hence, qp(fn A h) —> 0 as n —» 00, for each 0 ̂  A G 5 , that is /„ -+ 0(gp, B).
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Case 0 < p < 1: We choose 0 ^ h € B, te<h > 0 as above, and one has

qp(fn A h) := q[(fn A h)p] = q(fp A hp) ^ q(fp A hp A t)

+ q{hp - A p A f ) < q{fp A h? A t) + e/2,

if t > t . , k , b y CnfaB).

Hence, 9 p ( / n A ft) < $,[(/„ A a) A h A a] + e/2, if s = f1^ ^ <e,h.

One can assume / „ ^ s, /i $J s, s fixed, s = teth •

If An,s := {x G X; fn{x) > 6}, one gets qp(fn A fe) = g ( / J A fe") < q[(s"XAntS) A

Since 0 ^ h? £ 5 , C0(g, 5) gives g(ip A h?) < e/2 if 5P ^ i], 0 < T; < 1; hence,

9P(/n A h) < s'q(xAntS A ( 1 W ) + e/2.

Furthermore, ^(xAn,f A (l/«")w) = «(«Xxn,4 A (*/^)ft") ^ g[«XAn|< A (ft/S)p],

with 6 fixed, 0 < 6 < min (l, tf1/*).

Since 0 < {h/af = (l/s)php G B, there exists n0 - no(e, fe, p, s, £) with g[/n A

{h/s)p} <6e/2s-p if n ^ n 0 .

Hence, qp(fn A h) ^ e /2+e /2 = e, hence / „ —> 0(gp, B ) . The proof is complete. D

We recall that in Lemma 3, if 1 ^ p < oo only Coo(q, \B\P) is needed. Also
j^

q(kf) = ksq(f) with 0 < 6 < oo, 6 fixed, independent of / G K+ , instead of q
positive-homogeneous, is sufficient.

LEMMA 4 . Let f, / „ G I X , tAen / „ -> f(qp, B) implies fn -> f(q, B).

PROOF: Case 1 ̂  p < oo: Use Lemma3for 1/p ^ 1, since (qP)1/p{f) = [qif)]1^,

then qp is again positive-homogeneous and the assumptions for 1/p are fulfilled.

Case 0 < p < 1: qp is not positive-homogeneous, one has only qP{sf) = spqp(f),

and the proof of the first part of Lemma 3 works also (with 1/p instead of p), only

in the last line one has, with q — qp instead q, t = tc<h fixed, qi/p(ln) = qp\Jn ) =

q(ln) ^ e + 9(<1/p(/n A <)/<) = ( t 1 / ' - 1 ) ' ^ / - A t) + e ^ e + t 1 " 1 / ' ^ / , ) ^ 2e, if n > «., , ,

or qp(ln
P) = q{ln) ^ 2e, and thus the assertion holds. u

Observe that \B\P — \B\ implies {B]1^ = \B\, so, this condition is also true in
Lemma 2 for 1/p.

The above results together with the Lebesgue convergence Theorem (3), is the key
to proving that the concepts of q- and gp-measurability are equivalent.

THEOREM 1 .

Mn(q, B) = Mn(qP, B)
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PROOF: If / G Mn(q, B), by definition, for 0 ^ h G B, f D h G Bq, so there
are hn G B with hn -> / f~l h(g, 5 ) ; then also An n h -> / fl fc(g, B). By Lemma 3,
hnC\h —> /Dfo(<7j>, -B). Since |/i D h — hn l~l /i| ^ 2h, the Lebesgue convergence theorem
for B*P (3), gives / d h E Bq* , for all A G -B, so that / G Mn(gp, B).

On the other hand, if / G Mn(qp, B), for all 0 ^ h G B then f n h E Bqr, there
are hn E B with An —• fr\h(qp, B). As above hnC\h —> f!~\h(q, B), and the Lebesgue
convergence theorem for 5* yields f C\h £ Bq, so f E Mn(q, B). D

The class Rp(B, I), or simply i2p, is defined as

Rp(B, I) := {/ G K*; / is ^measurable and qp(\f\) < oo}.

Our immediate goal is to show that, with additional weak assumptions on q, Rp
is a vector lattice aspace, and the "simple functions" f £ B are dense in the metric

For this we need Definition 7 of [3] and the following result concerning the
integrability of g-measurable functions / with <fr(|/|) < oo.

An integral metric q is called B-semiadditive if one has

( n \

^2 hi I; n G N j < oo => q{hn) -» 0 as n —> oo,
i /t=i

and q is called B-additive if 0 < h, k E B imply q(h + k) — q(h) + q(k).

Obviously, q P-additive implies q 5-semiadditive.

(8) If q is .B-semiadditive and / is g-measurable such that g/(|/|) < oo, then
/ G Bqt [3, Theorem 5].

We recall that by Lemma 1, qp is an integral metric and (qp)t ^ qp on K+ .

THEOREM 2 . Let q be B-semiadditive and 1 ^ p < oo or q B-additive and

0 < p < oo. Tien R,, := {/ G Mn(q, B); qP{\f\) < oo} = Bq».

PROOF: By Theorem 1, / G Mn(q, B) implies / G Mn(qP, B), and if qp(\f\) <

oo, gpi?-semiadditive, by (8), / G Bq* .

Hence, it is enough to show that qp is 5-semiadditive.

( n \ / n \ P

y]h^ J ^ gj yj/ii I =
l / V i /

Qplj^hA < feP for all n. Hence, q(h'n) = {qp(hn)}r -» 0, so that, qp(hn) -» 0, as
n —> oo.
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Case 0 < p < 1: q is B-additive by assumption. Suppose that qp is not B-
/ m \

semiadditive, there' exist hn with qp(hn) ^ £o and qp I /J/in I ^ k, for all m 6
\ l /

N. By Holder's inequality, with r - 1/p > 1, 1/r + 1/s = 1, me0 <

a contradiction.
Finally, observe that if \B\P = \B\, f e B9p implies gp(!/|) < oo. One has the

above equality if q{h) < oo for each 0 $J h g B, and the proof is completed. U

Note that g-semiadditive is not needed in Theorem 1.
Let Np = NP{B, I) := {/ 6 R*'; qp{\f\) = 0} (g-nulfunctions).
One has B U Np C i2P, JVP is closed with respect to +, —, a., |. |.
For all / , g e RX , f = g(qp) means that f - g £ Np, (see [3, p.412-413]).
Since qp(\f — g\) — 0 implies / = g(qp), strictly speaking, the elements of Rp are

equivalence class of functions defined on X .

With Theorem 2 the theory of integration presented in [3] is available.

3. APPLICATIONS AND EXAMPLES (See Section 3 of [3].)

1. With q(f) = / " ( / ) := inf{I(</); / ^ g € B} for all / € K+ , one has B* =
Rpiop{B, I) (proper Riemann-/-integrable functions or the "two-sided completion" of
Loomis [9, p.170]).

If qi(f) = / - ( / ) (of Definition (4)), one gets R^B, I) := 5« = closure of B in K*
with respect to the distance <£(/, g) := {l^{\f — g\) (abstract Riemann-/-integrable
functions of [4]), containing the "one-sided completion" of Loomis [9, p. 178]).

y

I~ and I~[ are positive-homogeneous integral metrics on R + , also they are B-

additive. Here, RP(B, I) = B^D".

We recall that IJ is the "essential upper functional" associated with I~ in the
sense of Agner and Portenier [l], so that, R\(B, I) is the set of all the essentially
integrable functions (with respect to I~). Also, in Gould [6], Stone's axiom B A 1 C B

is assumed, so by [7] his results are already subsumed by the Ri-space.
2. We consider now B, I arising from finitely-additive set functions /J., with arbi-

trary set X.

O is a semiring of sets from X, \i: D —» R+ is finitely additive on H, B = BQ =
real-valued step functions on fi, and I — 1^ = J .d^ on BQ .

With q — I~ , qt = (l^)t one has B^ = Rprop(fj., fl) (abstract proper Riemann-
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/x-integrable functions) and BQ = Ri(fi, f2) (Riemann-/x-integrable functions of [7]),

which contains L(X, (7, //, K) of Dunford-Schwartz [5].

In this situation, I~ is Bn-additive and a positive-homogeneous integral metric

on X. Also, BQ is Stonian, 0^(1', Bn) and Co( /~, Bn) of (7) hold.

With (1), if / satisfies Daniell's condition (or I is (7-continuous), that is, I(hn) —» 0

whenever 0 < hn 6 B, hn ^ /in+i —» 0 pointwise on JT, one has that q = / " ( / ) :=

inf { £ ); hn£ B, f ^ X) fen| for all / £ Rf, is the induced 5-additive integral
n=l J

norm with Daniell's i 1 = 5 9 .

Finally, if $7 is a o--ring and fj. is c-additive, then Rq((J; fJ) = Ll{n, Cl) modulo
nulfunctions by [7, p.265].
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