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ABSTRACT DANIELL-LOOMIS SPACES

M. Diaz CARRILLO AND H. GUNZLER

In (3] for general integral metric ¢ an integral extension of Lebesgue power was
discussed. In this paper we introduce the abstract Daniell-Loomis spaces Ry, p
real, 0 < p < 0o, of g-measurable functions with finite “p-norm”, and study their
basic properties.

1. INTRODUCTION

Recently in [3] an integral extension proceduce was given which works for general
integral metric ¢g. The basic ideas can be traced back to Loomis [9] and Schéfke [10].
One defines the extended functions of class B? of real-valued functions on a set X
with respect to a B? type seminorm. Using an appropriate local mean convergence
we proved convergence theorems; and we introduced g-measurability, which is defined
by the property that truncation by integrable functions leads to integrable functions.
It allowed us to treat abstract Riemann, that is finitely additive, integration theory,
as a fundamental example and applied simultaneously to Loomis’s abstract Riemann
integration, as well as to the Daniell and Bourbaki integration theories.

In this paper, using the method announced in {3} we shall give a presentation of
the abstract Daniell-Loomis spaces R,, p real, 0 < p < o0.

For nonnegative extended real-valued functions f on X, if p > 1, ¢(f) =
[g(f?)]}/? satisfies the requirement of an integral metric, and essentially all the results
discussed in [3] are true.

The relevant convergence properties with respect to ¢ or g, are developed. With
weak continuity assumptions on the integral metric ¢, we prove as a fundamental result
that the concepts of g- and gp-measurability are equivalent (Theorem 1).

This leads us to define the abstract Danniell-Loomis spaces R, as the class of ¢-
measurable functions with finite g,(|.|). The simple functions B play the usual role in
R,: R, = B% vector lattice (Theorem 2).

Finally, examples are presented which show that these results make it possible to
study Rp-spaces for abstract Riemann or finitely additive, integration theory.
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1. NOTATION AND ASSUMPTIONS.

In what follows we adhere to the notation and results of 3], and will be explained
whenever necessary in order to make the paper self contained.

We extended the usual + to Rx R by r 4+ s :=0if r = —s € {00, ~00},
r—s:=r+(-8). Ry :=[0, ], R:={-c0}URU {c0}.

We denote a V b := max(a, b), aAb:= min(a, ) and aNt = (aAt)V(-t)if
a,beR, tecRy.

For an arbitrary nonempty set X let R consists of all functions f: X — R. All

operations and relations between functions are defined pointwise, with inf ¢ := o0o.

A functional g¢: ﬁf — Ry is called an integral metric on X if ¢(0) = 0 and
a(f) < alg) +a(k) if f<g+k, f, 9, ke RS,

I BC R , a function f € R” is said to be g-integrable if it belongs to the closure
of B in R* with respect to g, that is there exists (hn) C B with ¢(|f — hn]) — 0 as
n — 0o.

B1 denotes the set of all the g-integrable functions.

If additionally an I: B — R is given which is uniformly continuous on B with,
respect to ¢, the unique g-continuous extension of I to B? will be denoted I9.

In all of the following, B will be a function vector lattice in R*, that is a real
linear space of functions under pointwise =, +, a., such that h € B implies |h| € B;
then kAh, kVh € B for k,he B. I: B— R will be assumed linear with I{(k) > 0
if 0 €< h € B. Then, g-continuity of I in 0 implies uniform g-continuity of I on B.

We collect these assumption in

(1) I, B as above, g is an integral metric on X and I is g-continuousin 0.

With (1), B is closed with respect to +, a., V, A, |.| and I?: B¢ - R is mono-
tone, linear and g-continuous, (Theorem 1, [3]).

A function f € R” is said to be g-measurable if fNh € B? forall 0< h € B.

M,(q, B) denotes the set of all the g-measurable functions.

For convergence theorems we need a suitable local convergence in the mean of [3,
p.414].

(2) For f, fan € ﬁx, n € N, f, — f(q, B) means that for each ¢ > 0 and
0 < h € B there exists ng = n(e, h) € N such that ¢(|f — fa| AR) < € if
n 2= ny, (g-local convergence).

(3) Lebesgue’s convergence theorem, (see Corollary VII, [3]):
If (1) holds, f», g € B?, f € R is such that fo — f(g, B) and
|fa — fl <g,n €N, then f € B? and q(|fn — f|) — 0.

(4) For any integral metric ¢ and M C R” the corresponding local integral
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metric of Schafke [10] (see also [3, p.416]) is defined by
at(f) :=sup{q(fAh); 0K he M} forall fe ﬁf

With (1), ¢; is again an integral metric such that ¢, < g and gq,(f) = ¢(f) if
0< f < g for some g€ B?. One has BC B?C B% and I9 = J% on B1.
For further properties of BY and B9 see [3].

2. H,-SPACES

For g¢: l}_kf — Ry, p real, 0 < p < oo, with fP(t) := (f(t))?, 0P := 0, ooP := o0,
we define for all f € Rf

(5) [a(fP NP ifp>1,

q(f?) fo<p<l.

ap(f) == {

Note that the case p = 1 was studied in [3], and the natural question to consider
is to what extent those results can be extended to values of p other than 1.

LEMMA 1. (See Lemma 12, [3).) If ¢ := ﬁf — Ry is an integral metric with
q(2f) = 29(f), 0 < p < oo, then g, is also an integral metric on X, positive-
homogeneousif p > 1.

PROOF: Observe that 2¢(f) < ¢(2f) implies g(tf) = tg(f), 0 < t < oo; also
f+alP < fP+gPrif 0<p<1.

If p> 1, gp satisfies Minkowski’s inequality for finitely-valued f, g, by Bourbaki

2, p.12).
Now, we denote f.(z) := f(z) if f(z) € R, fe(z) :=0 else, fu(z) := f(z) — fe(z),
foo := fu VO.

If f,9 € R} with g(f), 95(9) < 0, we have [g5(f +)}? < a[2°(f7 + )] < o0,
and agp(fe) = gp(@fe) < gp(f) < 00, 50 that g5(fa) = 0.

Therefore g,(f +9) < [gp(f + 9)7 + 0+ 0'/7 < gp(fe +9¢) < gp(fe) + ap(ge) <
a(f) + ap(9). 0

For positive-homogeneous integral metric g, Holder's inequality holds:

(6) Let 1 <r, s < oo be a pair of conjugate exponents, for functions f, g €

R} then a(f9) < a-(au(9).

(See for example [8, p.64-65], (6) follows with the aid of the expression uwv =
inf{(1/p)t"u" + (1/5)t~%v*; t > 0} for real u,v > 0.)

For positive-homogeneous integral metrics ¢, Sections 1, 2 of [3] hold for B% and
B(q”)l , and using the g¢-local convergence of (2) one gets convergence theorems in a
form analoguous to the classical ones.
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In order to obtain the full results one has to impose certain conditions upon B and

.- . . —R
(7) Let g be a positive-homogeneous integral metric on R, , and 0 < p < 0.

We assume

|B|” = |B| with |B|:={h; 0< h € B}.
Co(g, B): ¢(hAt) - 0if0<t—0, 0K he€ B, (g continuous at 0).
Coo(g, B): gq(h—hAt) 5 0if t - 00, 0 < h € B, (q continuous at o).

The above basic assumptions (1) and (7) will be retained in all that follows.
Observe that, with [B|? = B[, Co(g, B) implied Cy(gp, B).

LEMMA 2. Let q be a positive-homogeneous integral metric, then Co(gp, B)
holds, that is, go(h—hAt) > 0ift -0,0<he€B.

PROOF: Case 1 < p < co: Observe that a? + b < (a+b)? if a,b € Ry.
Thus, (t—tAs)’ < tPAsP, t,s € Ry. Therefore [gp(h — B AL)P := g(h — hA L)
< g(h?P —hPAsP) > 0if 8 — o0,

Case 0 <p<1: We have (h—hAt)’ = ((h—hAt)/e)’e? < eP((h—hAt)/e) if
h>t+eand <eAhif h<t+e. Sothat (h—hAt)P <eP Y (h—hAt)+eAh.

Now, if ¢ » 0, 7 > 0, by Co(g, B), gq(hAe) <n/2,and if t — o0, to 5 > 0,
by Coo(g, B), ePg(h — h At) < n/2. Hence, one has g;(h — hAt) = g[(h - hAL)P]
gle? " (h — h At)] + gq(h A €) < n/2+n/2, and the proof is complete.

The equivalence between g-convergence and g¢p-convergence is made explicit in the

following lemmas.
LEMMA 3. Let f, fn € ﬁx, then fn — f(q, B) implies fn, — f(gp, B).

PROOF: One can assume f = 0 and f, > 0. So, by (2) it suffices to show that
given any 0 < h € B if g(fan Ah) — 0 then gp(fa Ah) — 0.

Case 1 < p < co: Choose 0 < h € B, I, := fo Ah; by assumption g(fn A h) — 0.

Now, if 0 < t € R, [gp(la)I? := [(q(2))'/7]F = q(I2) = q(fEARP) < glfE A
(h? AtP)] + q[(fE ABP) = FE A (RP AEP)] < g(fE A (RP ATP)] + g(RP — P ATP) < g (FRA
(RP AtP)) +€e,if t >t 5, by Coo(g, B).

One has, B AtP = (I, A1) = tP((In A t)/t)’ < tP((In AL)/t), since p 2 1, 0 <
(. At)/t<1.

Thus, if t = t.a, [gp(la)]? < g(BALP) + e < q(tP((lnAt)/t)) + € = € +
tP(1/t)q(la At)=e+tPg(ln) = e+ tPq(fa AR) < 2¢,if n 2> n,.

Hence, gp(fn Ah) — 0 as n — oo, for each 0 < h € B, that is f, — 0(qp, B).
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Case 0 < p < 1: We choose 0 < h € B, .5 > 0 as above, and one has

ap(fn AB) = al(fa A BYP) = (£ AB) < a(f2 A BP AY)
+q(h? —RP A1) < g(FEARP A L) +€/2,

if t 2 t.5, by Colg, B).

Hence, gp(fo Ah) < gpl(fa AS)ARAS] +£/2,if s=1t1/P 21, 4.

One can assume f, <5, h < s, s fixed, s =1, 4.

If Ans:={z € X; fa(z) > 6}, one gets g;(fn A h) = q(fE ARP) < q[(s"x,qn'6) A
hP] + q(6° A BP). '

Since 0 < h? € B, Co(q, B) gives q(6? AhP) < €/2 if 67 <7, 0 < 1 < 1; hence,
gp(fa AR) < SP'I(XA,.,g A (1/.9”)h”) +e/2.

Furthermore, 5‘1(XA,,_6 A (l/s’)hP) = q(5XA,,,5 A (6/sp)h?) < qlxa, ;A (h/8)F],
with § fixed, 0 < § < min (1, 61/?).

Since 0 < (h/s)? = (1/5)’h? € B, there exists no = no(e, h, p, s, §) with g[fn A
(h/s)P] < 6e/257P if n 2> no.

Hence, gp(fn A h) < €/2+€/2 =€, hence fn — 0(gp, B). The proof is complete. 0

We recall that in Lemma 3, if 1 < p < 0o only Co(q, |B|?) is needed. Also
q(kf) = kq(f) with 0 < § < oo, & fixed, independent of f € ﬁf, instead of ¢
positive-homogeneous, is sufficient.

LEMMA 4. Let f, f, € R, then fo — f(qp, B) implies f» — f(g, B).

PROOF: Case 1 < p < co: Use Lemma3for 1/p > 1, since (gp), ,(f) = la(F)) />,
then g, is again positive-homogeneous and the assumptions for 1/p are fulfilled.

Case 0 < p < 1: g, is not positive-homogeneous, one has only g,(sf) = sPg,(f),
and the proof of the first part of Lemma 3 works also (with 1/p instead of p), only
in the last line one has, with § = ¢, instead ¢, ¢t = t. s fixed, ﬁllp(l,,) = qp( ,1,/”) =
a(la) < e+ G(EV/P(In A t)/t) = (/P71)Pq(la A t) +e S e+117VPQ(1,) < 26, if 1 > ney,
or gp (l,ltlp) =g(ln) < 2¢, and thus the assertion holds. 0

Observe that |B|P = |B| implies |B|'/? = |B|, so, this condition is also true in
Lemma 2 for 1/p.
The above results together with the Lebesgue convergence Theorem (3), is the key
to proving that the concepts of ¢- and gp-measurability are equivalent.
THEOREM 1.
Mn(q, B) = Mn(gp, B)
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Proor: If f € Mn(q, B), by definition, for 0 < h € B, fNh € B?, so there
are h, € B with hn, — f N h(qg, B); then also ho,Nh — f N h(g, B). By Lemma 3,
hnoNh — fNh(gy, B). Since |hNh — h, N k| £ 2k, the Lebesgue convergence theorem
for B (3), gives fNh € B% , for all h € B, so that f € Mn(gp, B).

On the other hand, if f € Mn(gp, B), for all 0 < h € B then fNh € B9, there
are h, € B with h, — fNh(gy, B). As above h,Nh — fNh(q, B), and the Lebesgue
convergence theorem for B? yields fNh € B?,so f € Mn(g, B). 0

The class R,(B, I), or simply R,, is defined as
R, (B,I):={f€ ﬁx; f is g measurable and g,(|f|) < oo}.

Our immediate goal is to show that, with additional weak assumptions on ¢, R,
is a vector lattice aspace, and the “simple functions” f € B are dense in the metric

gp(]. 1)
For this we need Definition 7 of [3] and the following result concerning the g,-
integrability of g-measurable functions f with g.(|f]) < oo.

An integral metric ¢ is called B-semiadditive if one has

0< hn, € B, sup{q(Zhg); nEN} < o0 = g(hn) —> 0as n — oo,

=1
and ¢ is called B-additiveif 0 < k, k € B imply q(h + k) = q(h) + g(k).
Obviously, ¢ B-additive implies ¢ B-semiadditive.

(8) If ¢ is B-semiadditive and f is g-measurable such that g,(|f|) < co, then
f € B3 [3, Theorem 5.

We recall that by Lemma 1, g, is an integral metric and (gp), < gp on ﬁf

THEOREM 2. Let q be B-semiadditive and 1 < p < oo or q¢ B-additive and
0 <p<oo. Then Ry :={f € Mn(q, B); gp(|f]) < o0} = B%.

PRroOF: By Theorem 1, f € Mn(q, B) implies f € Mn(gp, B), and if gp(|f]) <
00, gpB-semiadditive, by (8), f € B%.

Hence, it is enough to show that g, is B-semiadditive.
n n 4
Case 1  p < oco: If g is B-semiadditive, then q(th) < [q(Zhi) ] =
1 1

n P
4 (2’1;) < k? for all n. Hence, g(h?) = [gp(hn)]? — 0, so that, gp(hn) — 0, as
1

n — 00,
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Case 0 < p < 1: ¢ is B-additive by assumption. Suppose that g, is not B-

m
semiadditive, there exist h, with gp(hn) > €0 and g, (Zh") < k, for all m €
1

N. By Hdlder’s inequality, with »r = 1/p > 1, 1/r +1/s = 1, meq <

...Ma

9?(_,}"11) =

m 1/s m ’
q(z h{:.l) < q[(z hgf)”'.(ZP) ] =g (Zhn>ml/’ < k m!/T or mi-l/e
1 n n .
k/eq a contradiction.

Finally, observe that if |B|’ = |B|, f € B% implies gy(|f|) < co. One has the
above equality if g(h) < oo for each 0 < h € B, and the proof is completed. 0

N

Note that g-semiadditive is not needed in Theorem 1.

Let N, = Np(B, I):={f € ﬁx; gp(|f]) = 0} (g-nulfunctions).

One has BUN, C Ry, N, is closed with respect to +, —, a., |.].

Forall f,g€ ﬁx, f = g9(gp) means that f — g € Ny, (see [3, p.412-413)).

Since g,(|f — g]) = 0 implies f = g(gp), strictly speaking, the elements of R, are
equivalence class of functions defined on X .

With Theorem 2 the theory of integration presented in [3] is available.

3. APPLICATIONS AND EXAMPLES (See Section 3 of (3).)

1. With g(f) = I"(f) := inf{I(g); f < g € B} for all f € R}, one has B? =
Rprop(B, I) (proper Riemann- I-integrable functions or the “two-sided completion” of
Loomis {9, p.170]).

If qe(f) = I, (f) (of Definition (4)), one gets R;(B, I) := B? = closureof B in R*
with respect to the distance d(f, g) := (I;)(|f — gl) (abstract Riemann- I-integrable
functions of [4]), containing the “one-sided completion” of Loomis [9, p.178]).

I~ and I, are positive-homogeneous integral metrics on ﬁf, also they are B-
additive. Here, Ry(B, I) = BT,

We recall that I, is the “essential upper functional” associated with I~ in the
sense of Agner and Portenier [1], so that, R;(B, I) is the set of all the essentially
integrable functions (with respect to I~). Also, in Gould [6], Stone’s axiom BA1 C B
is assumed, so by [7] his results are already subsumed by the R;-space.

2. We consider now B, I arising from finitely-additive set functions p, with arbi-
trary set X .

Q is a semiring of sets from X, p: 8 — Ry is finitely additive on @, B = Bq =
real-valued step functions on 2, and I =1, = [.d, on Bq.

With ¢ =1, q¢ = (I;)z one has B} = Ryrop(ps, 02) (abstract proper Riemann-
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p-integrable functions) and B = Ri(p, ) (Riemann- u-integrable functions of [7]),
which contains L(X, @, g, R) of Dunford-Schwartz [5].

In this situation, I is Bg-additive and a positive-homogeneous integral metric
on X . Also, Bq is Stonian, C (I;, Bn) and Cy (I;, Bn) of (7) hold.

With (1), if I satisfies Daniell’s condition (or I is o-continuous), that is, I(h,) — 0
whenever 0 < hn € B, hp 2 hnyy — 0 pointwise on X, one has that ¢ = I°(f) :=

inf{ > I(hs); hn€ B, f < Y, hn} forall f ¢ ﬁf, is the induced B-additive integral
n=1 n=1

norm with Daniell’s L! = B9.
Finally, if © is a o-ring and p is o-additive, then Ry(y, Q) = L(g, ) modulo
nulfunctions by [7, p.265].
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