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Abstract

This article presents new rationality results for the ratios of critical values of Rankin—Selberg L-functions of
GL(n) x GL(n’) over a totally imaginary field F. The proof is based on a cohomological interpretation of
Langlands’s contant term theorem via rank-one Eisenstein cohomology for the group GL(N)/F, where N = n+n’.
The internal structure of the totally imaginary base field has a delicate effect on the Galois equivariance properties
of the critical values.
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Introduction

The principal aim of this article is to prove a rationality result for the ratios of successive critical
values of Rankin—Selberg L-functions of GL(n) X GL(n’) over a totally imaginary number field F' via
a study of rank-one Eisenstein cohomology for the group GL(N)/F, where N = n + n’. This article
is a generalization of the methods and results of a previous work with Giinter Harder [27] that studied
such a situation for a totally real base field. A fundamental tool is the cohomology of local systems
on the Borel-Serre compactification of a locally symmetric space for GL(N)/F. The technical heart
of the article pertains to analyzing the cohomology of the Borel-Serre boundary, especially for the
contribution coming from maximal parabolic subgroups, that leads to an interpretation of the celebrated
theorem of Langlands on the constant term of an Eisenstein series in terms of maps in cohomology.

Let F be a totally imaginary number field and Fy its maximal totally real subfield. There is at most
one totally imaginary quadratic extension F of Fj contained in F, giving us two distinct cases that have
a bearing on much that is to follow:

1. CM: when there is indeed such an F}, then Fj is the maximal CM subfield of F;
2. TR: if not, then put F| = Fy; here, F is the maximal totally real subfield of F.

The TR-case imposes the restriction that existence of a critical point for Rankin—Selberg L-functions
implies nn’ is even. The CM-case, arguably the more interesting of the two, will impose no such
restrictions; furthermore, whether F itself is CM (F = F}) or not ([F : F;] > 2) has a delicate effect on
Galois equivariance properties of the rationality results.

Put G = Gy = Resp;g(GL(N)/F), and T = Ty the restriction of scalars of the diagonal torus in
GL(N). Let E stand for a large enough finite Galois extension of Q in which F can be embedded. The
meaning of large enough will be clear from context. Take a dominant integral weight 1 € X*(T X E),
and let M g be the algebraic finite-dimensional absolutely-irreducible representation of G X E with
highest weight A. For a level structure Ky C G(Ay), where Ay is the ring of finite adeles of Q, let
M A1, denote the sheaf of E-vector spaces on the locally symmetric space Sl(gf of G with level Ky

(see Section 1.2). A fundamental object of interest is the cohomology group H*(S Gf M 1E)- The

Borel-Serre compactification S’gf = Sl(gf U 68,% gives the long exact sequence

N — i A — . . — Y . —
- HU(SE M) — HI(SE , Mag) — H'(0SF, Mag) — HIN(SE , Mag) -

of modules for the action of a Hecke algebra HI% . Inner cohomology is defined as
H? = Image(H; — H*), within which is a subspace H}, C H} called strongly-inner cohomology which
has the property of capturing cuspidal cohomology at an arithmetic level — that is, for any embedding
of fields ¢ : E — C, one has H!'!(ng,./\/l/l,g) ®g,C= H;usp(SGf,./\/lt/l,c). If 77 is a simple Hecke
module appearing in H!'!(SGf,M AE), then ‘m is the Ky -invariants of the finite part of a cuspidal
automorphic representation ‘7 of G(A) = GLy (Af), whose archimedean component ‘7, has nonzero
relative Lie algebra cohomology with respect to M., ¢; denote this as 7y € Cohy (G, 1). Only strongly-
pure dominant integral weights will support cuspidal cohomology; the structure of the set X, (T X E)
of all such strongly-pure weights has an important bearing on the entire article; see Section 2.3. The
cohomology of the Borel-Serre boundary H '(68Gf ,Ma.E), as a Hecke-module, is built via a spec-
tral sequence from modules that are parabolically induced from the cohomology of Levi subgroups;
see Section 2.6. For N = n + n’, with positive integers n and n’, similar notations will be adopted for
Gn = Resp o(GL(n)/F), Ty, Gy, Ty, etc. Let u € X3,(T, X E) and u” € X5 (T,v X E), and consider
oy € Coh) (G, u) and O'J’, € Cohy(G,y, u’). The contragredient of ‘o’ is denoted ‘o”Y. For¢ : E — C,

apointm € % +Z is said to be critical for the completed Rankin—Selberg L-function if the archimedean
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I"-factors on either side of the functional equation are finite at s = m. The critical set for L(s, ‘o X ‘")
is described in Proposition 3.12. The main result (Theorem 5.16) of this article is the following:

Theorem. Assume that m and m + 1 are critical for L(s, ‘o X ‘a”V).

A IfL(m+1,'0 x‘'c”) =0 for some i, then L(m+1,'c X ‘c’V) =0 for every t.
(ii) Assume F is in the CM-case. Suppose L(m + 1,'c x ‘c”) # 0. Then

’

_n' o L(m,to xta”)
loF/ql 2

. Lim+ 1,0 X to”)

€ E),

where, 0 q is the discriminant of F /Q. For any y € Gal(Q/Q), we have

y(16rol 8 - A TX ) ) () () - bl e T X T
F/Q Lim+1,'0Xto") o o F/Q L(m+1,7°tc x v°tg?V)’

where €, (v), €,w (y) € {£1} are certain signatures (see Definition 2.29) whose product is
trivial if F is a CM field but can be nontrivial in general.
(iii) Assume F is in the TR-case. Then nn’ is even. Suppose L(m + 1, 0 X ‘o) # 0. Then

L(m,'oc x'ac”™)

€ (E),
Lim+1,t0 xta”) {E)
and for any y € Gal(Q/Q), we have
L(m,'oc xtad”) B L(m,”'a xY'g")
Y Lim+1,toxto”™)]  L(m+ 1,7t xyotgh)’

For the proof, consider Eisenstein cohomology of G, which, by definition, is the image of

H'(SGf ,Mak) 2 H '(88Gf ,Mag). We are specifically concerned with the contribution to
Eisenstein cohomology from maximal parabolic subgroups; this is often called rank-one Eisenstein
cohomology. Let P = Resgq(P(n,n)), Where P, is the standard maximal parabolic subgroup of
GLy of type (n,n’), and let Up be the unipotent radical of P. The first technical theorem (Theorem 5.5)
stated as the ‘Manin—Drinfeld principle’ says that the algebraically and parabolically induced represen-
G(Ay)
P(A;)
as an isotypic component from the cohomology of the boundary as a Hecke module. The next technical
result (Theorem 5.6) is to prove that the image of Eisenstein cohomology in this isotypic component
is analogous to a line in a two-dimensional plane. If one passes to a transcendental situation using an
embedding ¢ : E — C, then via Langlands’s constant term theorem, the slope of this line is the ratio of
L-values L(m,'c x ‘oc”™)/L(m + 1,'c X ‘o), times the factor |5F/Q|_""l/2. This latter factor involv-
ing the discriminant of the base field arises as the volume of Up(Q)\Up (A) needed to normalise the
measure so that the constant term map, in cohomology, is the restriction map to the boundary stratum
corresponding to P.

There are two subproblems to solve along the way whose proofs are totally different from those of
the corresponding statements in [27]. The first is a combinatorial lemma (Lemma 3.16) and the second
concerns the map induced in cohomology by the archimedean standard intertwining operator. We now
briefly discuss these two subproblems.

The combinatorial lemma (Lemma 3.16) concerns the criticality of L-values that intervene when

looking at Eisenstein cohomology. On the one hand, one considers the algebraically induced module
ar, O (Ar)
Ind Pay)

of L-functions, one considers the normalized parabolically induced module Ig(s, o ®o’) asin (5.8),
where s is a complex variable. If one specializes the latter at the point of evaluation s = —N /2, then one

tation *Ind (op x 0'}) together with its partner across a standard intertwining operator splits off

(o %o } ) which appears in boundary cohomology. On the other hand, for the analytic theory
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gets the former module. At this point of evaluation, the L-values that intervene are L(—N /2, ‘0" X ‘a”V)
and L(1 — N/2,'0 x ‘o”). Lemma 3.16 characterizes the criticality of these two L-values in terms
of a purely combinatorial condition on the weights p and p’. It also characterizes criticality in terms
of the appearance of the induced module considered above in the cohomology of the boundary in an
optimal degree; this cohomology degree involves subtleties on the lengths of Kostant representatives in
Weyl groups. The ingredient w in the signature €, ,, (y) is a Kostant representative determined by y and
u’ via this combinatorial lemma, and w’ in &, ,,+(y) is a Kostant representative determined by w via
Lemma 5.1. The combinatorial lemma also says that we only need to prove a rationality result for the
particular ratio L(—N/2,'c X ‘a”)/L(1 — N/2,'c x ‘o), for a sufficiently general class of weights
pand py’; see 5.3.2.

Now, we briefly discuss the second subproblem which is taken up in detail in Section 4. Typically,
in a cohomological approach to the study of the special values of L-functions, one is confronted
with an archimedean subproblem. In our context, it takes the following shape. As a consequence of
criticality of the L-values at the point of evaluation, it follows from Casselman—Shahidi [6] that the
archimedean induced module Z, := *Ind% ™ (0 X 0% is irreducible. Similarly, one has an irreducible

P(R)

module 7, := aIndggg (0l,(=n) X 0 (n”)), where Q is the standard parabolic subgroup associate to
P corresponding to the partition N = n’ + n. Lastly, one has an archimedean standard intertwining
isomorphism 7, between these irreducible modules. The second subproblem is to compute the map
induced in relative Lie algebra cohomology by the archimedean standard intertwining operator 7.
It is a consequence of the combinatorial lemma (Lemma 3.10) that there is a highest weight 4 on
GLy /F such that both the relative Lie algebra cohomology groups Hbllt/(g,\/,f,\/;IOo ® M,) and
H~ (an, In: Zeo ® M) are one-dimensional for degree bx = ([F :Q]/2) - N(N —1)/2 (see (2.14))
being the optimal degree in cohomology alluded to in the previous paragraph. We then need to compute
the isomorphism

T2 . HPN (g i Too ® M) — HN (g, By i oo @ M)

between the two one-dimensional vector spaces. If we, a priori, fix bases for these cohomology groups,
then T, gives a nonzero scalar. In Proposition 4.32, one proves that this scalar is, up to rational quantities,
exactly the ratio of local archimedean L-values. The proof uses a well-known factorization of the standard
intertwining operator into rank-one operators; for a simple nontrivial case, see Example 4.30; using
such a factorization the computation boils down to a GL(2)-calculation. The reader is referred to Harder
[25], where a hope is expressed in general, and verified in the context therein, that the rational number
implicit in Proposition 4.32 has a simple shape; this hope should have applications to congruences and
the p-adic interpolation of the ratios of L-values considered in this paper.

Previous work on the arithmetic of L-functions over a totally imaginary field especially worth
mentioning in the context of this article are as follows. For n = n’ = 1, the rationality result in (if) is
due to Harder [22, Cor. 4.2.2]. In general, see Blasius [1] and Harder [22] for GL, see also Harder—
Schappacher [21]; Hida [30] for GL; x GL; and GL; X GL,; Grenie [19] for GL,, x GL,; Harris [29]
for standard L-functions for unitary groups which may be construed as a subclass of L-functions for
GL,, x GL1; Harder [23] and Mceglin [38] for some general aspects of GL,—the result contained in (i)
is due to Mceglin [38, Sect. 5], although our proof is different from [38]. Furthermore, see the author’s
paper [40], Grobner—Harris [14] and Januszewski [33] for GL,, X GL,,_;; Sachdeva [44] for GL3 X GLy;
and Lin [37], Grobner—Harris—Lin [15], Grobner—Lin [16] and Grobner-Sachdeva [18] for different
aspects for GL,, X GL,,. Among these, the results of [15], [16], [18] and [37] come close in scope to the
results of this paper; however, their methods are different and work over a base field that is assumed to
be CM, while often needing a polarization assumption on their representations to descend to a unitary
group, and in some situations being conditional on expected but unproven hypotheses. In contrast, the
method pursued here, which is a generalization of Harder [22] and my work with Harder [26], [27], does
not depend on the results of all the other references mentioned above in this paragraph. Furthermore,
our results are unconditional in that they do not depend on unproven hypotheses.
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There is a celebrated conjecture of Deligne [8, Conj. 2.7] on the critical values of motivic L-functions.
A fundamental aspect of the Langlands program is a conjectural dictionary between strongly-inner Hecke
modules o and pure regular rank n motives M (o s ) over F with coefficients in E (see, for example, [27,
Chap. 7]). Granting this dictionary, Deligne’s conjecture applied to M := Resg;q(M(cr) ® M (0'}"))
conjecturally describes a rationality result for the array {L(m, ‘o X ‘0"V)},.e—c of critical values in
terms of certain periods ¢*(M) of M. To see the main theorem of this article from the perspective of
motivic L-functions necessitates a relation between ¢* (M) and ¢~ (M), for which we refer the reader to
my recent article with Deligne [9]. The appearance of the signatures €, ,, (y) and &, ,,(y) was in fact
suggested by certain calculations in [9] that also allows us to recast Theorem 5.16 more succinctly as
follows. Suppose F is in the CM-case, and suppose F) = Fy(VD) for a totally negative D € Fy. Then
define Ar = Ng,jo(D)FF11/2. Suppose F is in the TR-case. Then define Ay = 1. Fix i = V~1. The
rationality result can be restated as

L(m,'o x ‘o)
Lim+1,t0 xta”)

({9 12N gy € «(E),

(see 5.4.2) and the reciprocity law takes the shape that for every y € Gal(Q/Q), one has

L(m,'c xtc”™)
Lim+1,t0xto")

L(m, 'yoLO_ X )/OLO_/V)

_ (3dp/2 nn’
= (i A .
( r) L(m+ 1,70 X v°tg V)

y (idF/ZAF)nnl

In the TR-case, existence of a critical point will necessitate nn’ to be even, and so we may ignore the
term (i4/2A )™ e Q* from the rationality result and the reciprocity law.

To conclude the introduction, let us note that in the literature on special values of L-functions, the
shape of the results is often of the form that a critical L-value divided by a ‘period’ is suitably algebraic.
To study congruences or p-adic interpolation, the period needs to be normalized up to p-units. One of
the virtues of the above theorem on ratios of critical values is that there is no reference to any period;
one may construe that the result is intrinsic to the L-function itself. Furthermore, the result opens
up new ground to consider the prime factorization of the ratios of L-values; the primes occurring in
the denominator (closely related to the denominators of Eisenstein classes; see Harder [24]) should
produce some nontrivial elements in a Selmer group as predicted by the Bloch-Kato conjectures. Such
considerations will be taken up in a future work. Finally, it is worth amplifying the dictum that whereas
the analytic theory of L-functions is not sensitive to the arithmetic nature of the ground field F, the
arithmetic of special values of L-functions is definitively sensitive to the inner structure of F. For example,
if F is totally real, the Rankin-Selberg integral for GL(2) x GL(2) does not admit a cohomological
interpretation in terms of Poincaré or Serre duality. However, if F' is totally imaginary, then it does
indeed admit an interpretation in terms of Poincaré duality; see Hida [30]. In a different direction, the
period integrals of cusp forms on GL(2n) integrated over GL(n) X GL(n) that Friedberg—Jacquet [11]
studied to get the standard L-function of GL(2n) can be interpreted in cohomology over a totally real
field (see my papers with Grobner [17], and with Dimitrov and Januszewski [10]), but over a general
number field, this seemed unclear until the recent work of Jiang—Sun-Tian [34]. This dependence on
the arithmetic of the base field stems not only from the cohomological vagaries of the representations of
GL,, (R) vis-a-vis those of GL,,(C), but also because the inner structure of the base field informs some
of the constructions with algebraic groups over such base fields — this is why one sees the signatures
&,w(y) and g, ,,(y) when F is in the CM-case but not when F is in the TR-case; such terms did not
appear when the base field is totally real [27] or a CM field [41].

Suggestions to the reader: Any one wishing to read this paper seriously will need my monograph
with Harder [27] by their side. I have tried to make this manuscript reasonably self-contained, but any
time I felt there was nothing to be gained by repetition, I have referenced [27]. For a finer appreciation,
the reader should compare the formal similarities of the results of this manuscript and the results of
[27], while noting the very different proofs — especially with the proofs of the combinatorial lemma in
Section 3.2, and the calculations involving the archimedean intertwining operator in Section 4. For a
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first reading, I recommend that the reader skim through Section | to get familiar with the notations, and
assume the statements of Proposition 3.12, Lemma 3.16, Proposition 4.28 and Proposition 4.32 without
worrying too much about their technical proofs. Finally, the reader should note that we are specifically
studying the contribution to Eisenstein cohomology only from maximal parabolic subgroups.

1. Preliminaries
1.1. Some basic notation

1.1.1. The base field

Let F stand for a totally imaginary finite extension of Q of degree dr = [F : Q]. Let £r = Hom(F, C)
be the set of all complex embeddings, and S., denote the set of archimedean places of F'; denote the
cardinality of S, by r; hence, dr = 2r. There is a canonical surjection X — S ; the fibre over v € S,
is a pair {n,, 77, } of conjugate embeddings; via such a non-canonical choice of 7,, fix the identification
F, ~ C. Let A = Ag be the adele ring of Q, and Ay = A*™ the ring of finite adeles. Then Ar = A®q F,
and Ar y = Ay ®g F. When F is a CM field (i.e., a totally imaginary quadratic extension of a totally
real extension F* (say) of Q, then £+ = Hom(F*, C) = Hom(F*,R), and the restriction from F to F*
gives a canonical surjection X — Xg+; the fiber over n € X+ is a pair of conjugate embeddings that
will be denoted as {7, 77}, with the understanding that the choice of 7 in {5, 7} though not canonical
is nevertheless fixed once and for all. If Xr = {vi,...,va4.}, {®w1,...,wa, } is a Q-basis of F, and
0r = det[oy(w;)], then 9% is the absolute discriminant 6f ;g of F. The square root of the absolute
value of the discriminant, |6 f /Q|1/ 2 as an element of R*/Q%, is independent of the enumeration and
the choice of basis. Let i denote a fixed choice of V—1. Since F is totally imaginary, i%/2 - 6 is a real
number whose absolute value is |0 /Q|1/ 2,

1.1.2. The groups

For an integer N > 2, let Go = GLy /F, and put G = Resg/g(Go) as the Q-group obtained by the Weil
restriction of scalars. To emphasize the dependence on N, G will also be denoted G o and similar
notation will be adopted for other groups to follow. Let By be the subgroup of G of upper-triangular
matrices, Ty the diagonal torus in By, and Zj the center of Go; the corresponding Q-groups via Resr g
will be denoted B, T and Z, respectively. Let S stand for the maximal Q-split torus of Z; note that § ~ G,,,.
Let n and n’ be positive integers such that n + n” = N, and let Py be the maximal parabolic subgroup
of Gy containing By of type (n,n’). The unipotent radical of P is denoted Up, and Levi quotient of
Py is Mp, = GL,, X GL,». Put P = Resg/q(Py), and similarly, Up and Mp. The dimension of Up is
nn'dp = 2nn'r.

1.2. Sheaves on locally symmetric spaces

This brief section is very similar to the situation over a totally real base field [27]. Most of the concepts
in this section apply, possibly with minor modifications, to related groups like GL,,, GL,/, Mp,, etc.

1.2.1. Locally symmetric spaces

Note that G(R) = Go(F ® R) = [l,es.GLN(Fy) = [l,es, GLn(C). Similarly, Z(R) =
Zo(F ®g R) = [],cs., C*1n, where 1y is the identity N X N-matrix; S(R) = R* sits diagonally in
Z(R). The maximal compact subgroup of G(R) will be denoted C; we have Coo = [, s, U(N),
where U(N), the usual compact unitary group in N-variables, is a maximal compact group of GLy (C).
Put Ko, = CooS(R) and note that Ko, = CooS(R)° is a connected group, since —1 € S(R) gets absorbed
into Cw. Define the symmetric space of G as S® := G(R)/K.. For any open compact subgroup
Ky c G(Ay), define the adelic symmetric space: G(A) /KoKy = S6 x (G(Ayr)/Ky). On this space,
G (Q) acts properly discontinuously and we get a quotient

7 : G(R)/KowxG(Af)/Ky — G(Q\(GR)/Keo X G(Af)/Ky). (1.1
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The target space, called the adélic locally symmetric space of G with level structure Ky, is denoted
ng = G(Q\G(A)/KwKy. A typical element in the adelic group G(A) = G(R) X G(Ay) will be
denoted g = go X 8, As in [27, Sect. 2.1.4], one has ng =[], Ti'\G(R)/K; if necessary,
replacing K¢ by a subgroup of finite-index, assume that each I; is torsion-free. It is easy to see that
dim(sgf) = dim(G(R)/Ks) = dim(G(R)/Co) —1 = tN?> 1.

1.2.2. The field of coefficients E

Throughout this paper, let E/Q be a ‘large enough’ finite Galois extension that takes a copy of F.
(The meaning of E being large enough will depend on the context: for example, large enough so that
some Hecke summand in inner-cohomology would split over E. To relate cohomology groups with
automorphic forms, one could drop finiteness and take E = C, or anticipating p-adic interpolation of
the L-values considered here, E could be a large enough p-adic field.) An embedding ¢ : E — C gives
a bijection ¢, : Hom(F, E) — Hom(F,C) given by composition: t,7 = t o 7. If E = C, then there is
a natural notion of complex-conjugation on Hom(F, C) defined by 77(x) = 7n(x). But, on Hom(F, E),
there is no natural notion of complex-conjugation; however, using ¢ : E — C, we can consider the
conjugate T° of 7 defined as ¢.(T*) = T.7. If F is a CM field, then let {1, ¢} denote the Galois group of
F/F7; restriction T +— 1|p+ gives a surjective map Hom(F, E) -» Hom(F*, E); for r € Hom(F, E),
define 7€ by 7¢(x) = 7(c(x)) for all x € F, then {7, 7¢} is the fiber above 7|p+. If E = C, then 7¢ = 7.

1.2.3. Characters of the torus T
For E as above, let X*(T' X E) := Homg_a, (T X E, G,,,), where Homg g is to mean homomorphisms of
E-algebraic groups. There is a natural action of Gal(E/Q) on X*(T' X E). Since T = Resgq(7p), one has

XN(TxE) = P X'(Tyxr.E) = P X" (W),

T.F—>E T.F>E

where the last equality is because Ty is split over F. Let X&(T X E) = X*(T X E) ® Q. The weights are
parametrized as in [27]: 2 € X&(T X E) will be written as A = (A7),.p— g with

N-1
A7 = Z(a}—l)yi +d" -0y = (bT,b%,...,bY),

i=1

where v; is the i-th fundamental weight for SL extended to GLy by making it trivial on the center, and
O is the determinant character of GLy . If ry := (Nd - l’.\zfl_l i(a;—1))/N,thenby =a; +ar+---+
an-—1 —(N—1)+r/1, b2 =ay+---+an- —(N—2)+r,1, ey be] =an-1 —1+r,1, bN = r/l,andconversely,
ai=1=bi=bi1, d = (b1+ - -+by)/N.Aweight A = XN (a;=1)y,+d-dn = (b1,...,bn) € X3(To)
is an integral weight if and only if

a, €Z, 1<i<N-1,
1e X (T)) & b;€Z, Vi < { NdeZ,
Nd=3YN{Vi(a; 1) (mod N).

A weight 1 = (7). p>E € X&(T x E) is integral if and only if each A7 is integral. Next, an integral
weight 1 € X*(Tp) is dominant, for the choice of the Borel subgroup being By, if and only if

by>2by>--->2by & a; >1forl <i <N - 1. (There is no condition on d.)

A weight A = (A7) .r—E € X&(T X E) is dominant-integral if and only if each A7 is dominant-integral.
Let X*(T x E) stand for the set of all dominant-integral weights.
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1.2.4. The sheaf M,

Ford e X*(TXE),put Mg = ®T:FHE M=, where M -/ E is the absolutely-irreducible finite-
dimensional representation of Gy X E = GL,,/ F X, E with highest weight 17. Denote this representation
as (par, Mar). The group G(Q) = GL,(F) acts on M, g diagonally; that is, a € G(Q) acts on a
pure tensor @, m, via a - (®:m;) = ®;pr(7(a))(m;). This representation gives a sheaf /K/lv,l,E of
E-vector spaces on S,((;f: the sections over an open subset V C ng are the locally constant functions

s : w1 (V) — M g such that s(av) = p(a)s(v) for all @ € G(Q), where r is as in (1.1).
Let us digress for a moment to clarify a certain point that seemingly causes some confusion. In
the definition of ng, one could have divided by Z(R)C(R) instead of K; that is, one can consider

G(Q\G(A)/Z(R)C(R)K s . Over this space, the same construction of the sheaf M A,E carries through;
however, for it to be nonzero, the central character of p, has to have the type of an algebraic Hecke
character of F (see [22, 1.1.3]). Let 2 = (A7) r.r—g € X (T X E), and suppose A7 = Zf\;fl(ai’ -y, +
d™ -9, the condition on the central character means d*° +d*°” is a constant independent every embedding
t: E — C, and every T € Hom(F, E). Define X:lg(T X E) to be the subset of X*(T x E) consisting of

all dominant-integral weights which satisfy the algebraicity condition that ‘d*°™ -Lfl‘TT = constant’ for
all 7 € Hom(F, E) and for all ¢ : E < C. To end the digression, for the sheaf M, g on SGf, at this
moment we do not need to impose this algebraicity condition; however, later on for the sheaf to support
interesting cohomology, such as cuspidal cohomology, we will be needing the condition of strong-purity
that will imply algebraicity.

Ifae X;lg(T x E) and K small enough as in 1.2.1, then every stalk of M AE is isomorphic to the

E-vector space M g, in which case the sheaf M AE is alocal system.

2. The cohomology of GLy over a totally imaginary number field

For A € X;flg(T X E), a basic object of study is the sheaf-cohomology group H*(S Gf M A.E)- One of

the main tools is a long exact sequence coming from the Borel-Serre compactification. Another tool is
the relation of these cohomology groups, by passing to a transcendental situation using an embedding
E — C, to the theory of automorphic forms on G. The reader should appreciate that Section 2.3 on
strongly-pure weights has some novel features that do not show up over a totally real base field or over
a CM field.

2.1. Inner cohomology

Let ¢ G be the Borel-Serre compactification of S G , that is, S¢ G =8¢ G UaS< G , where the boundary is
stratlﬁed as 0S¢ G =UpdpSy G with P running through the G(Q) con]ugacy classes of proper parabolic
subgroups deﬁned over Q. (See Borel-Serre [4].) The sheaf M A,E ON S naturally extends to a sheaf
on SG which we also denote by M A.E- Restriction from S¢ G to mduces an isomorphism in cohomol-

ogy: H'(SG  Mag) — H'(SG , M.). Consider the Hecke algebra HG = C2(G(Af)[Ky) of
all locally constant and compactly supported bi-K ¢ -invariant Q-valued functlons on G(Ay); take the
Haar measure on G(A ) to be the product of local Haar measures, and for every prime p, the local
measure is normalized so that vol(G(Z,)) = 1; then ’HG is a Q-algebra under convolution of func-

tions. The cohomology of the boundary H'(@SG M A E) and the cohomology with compact supports

He(S¢ Ko M 1,e) are modules for 7—[1% . There is a long exact sequence of H1G<f -modules:

. —_— i® . — . . —_— b
- — HU(SE . Mag) — H'(SF, M) — H'(3SE,, Mar) —

»° . —
_)H?-I(ng’M/l,E) —_ ..
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The image of cohomology with compact supports inside the full cohomology is called inner or interior
cohomology and is denoted H} := Image(i®) = Im(H? — H*). The theory of Eisenstein cohomology
is designed to describe the image of the restriction map r°. Inner cohomology is a semi-simple module
for the Hecke-algebra. If E/Q is sufficiently large, then there is an isotypical decomposition

HY(SE . Map) = @ HUSE, Map)(rp), @.1)

s €Coh, (G,Kf ,/1)

where ¢ is an isomorphism type of an absolutely irreducible Hgf -module (i.e., there is an E-vector
space V, with an absolutely irreducible action 7y of Hgf ). Let ng =C2(G(Qp)[Kp) be the local
Hecke-algebra. The local factors ”ng are commutative outside a finite set S = Sk, of primes and the
factors for two different primes commute with each other. For p ¢ S, the commutative algebra ’HG acts
on Vz, by a homomorphism 7, HG — E. Let V, be the one-dimensional E-vector space E with

PES Va, =
-module V7, s module is decomposed as a tensor

the dlstlngulshed basis element 1 € E and with the actlon nponit. Then Vy, = Vi, s ®®)

®pesVr, ®F, where the absolutely-irreducible HE Kp.S

product V, 8 = ®pesVn, of absolutely irreducible ’HG -modules. The Hecke algebra decomposes as
J Kp
’Hgf = Hgf s X ®,,¢S”H,gp = ’Hgf,s x HE-S, where the first factor acts on the first factor V +.s and

the second factor acts via the homomorphism 5. : H%*S — E. The set Coh/(G, K¢, 1) of isomorphism
classes which occur with strictly positive multiplicity in (2.1) is called the inner spectrum of G with
A-coefficients and level structure K. Taking the union over all K¢, the inner spectrum of G with
A-coeflicients is defined to be Coh(G,1) = Uk, Coh(G, Ky, ). Since the inner spectrum is
captured, at a transcendental level, by the cohomology of the discrete spectrum, it follows from the strong
multiplicity one theorem for the discrete spectrum for GL,, (see Jacquet [3 1] and Meeglin—Waldspurger
[39]) that 7/ is determined by its restriction ﬂ?c to the central subalgebra HC-S of ’Hgf )

2.2. Cuspidal cohomology

Take E = C and consider A € X;']g(T X C). Denote go (resp., fw) the Lie algebra of G(R) (resp., of
Ko = CoS(R).) The cohomology H* (S Gf M a.c) is the cohomology of the de Rham complex denoted

Q' (S Gf M a.c). The de Rham complex is isomorphic to the relative Lie algebra complex
Q'(ng,ﬂa,c) = Homg, (A®(8eo/E), C™(G(Q\G(A) /K, 7' Is(mp0) ® Mac),

where Cw(G(Q)\G(A)/Kf,w;lls(R)o) consists of all smooth functions ¢ : G(A) — C such that
o(a gkf Seo) = w;l(soo)qﬁ(g), for all a € G(Q), g€ G(A), kf € Ky and soo € S(R)". Abbreviating

w;1|S(R)o as wil,if t € Rog = S(R)?, then wy(r) = N Zrr-cd™ = (2cXib] The identification of
the complexes gives an identification between our basic object of interest over C with the relative Lie
algebra cohomology of the space of smooth automorphic forms twisted by the coefficient system:

H*(SE,, Mac) = H* (80, To0; C™(G(Q\G () /K, 0] 5r)0) ® Miac).
The inclusion Ccusp(G(Q)\G(A)/Kf,w;ol) - C‘”(G(Q)\G(A)/Kf,w;}), of the space of smooth

cusp forms, induces an inclusion in relative Lie algebra cohomology (due to Borel [2]), and cuspidal
cohomology is defined as

Heup(SE . Ma) = H* (g0 Teo: Cong (GQ\G(4) (K, 02)) ® My ).
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Furthermore, H;USP(S,%,M,L@) C H!‘(SGJ‘_,M,LC). Define Cohcusp(G,4,Ky) as the set of all
ny € Cohi(G, A, Ky) which contribute to cuspidal cohomology. The decomposition of cuspforms
into cuspidal automorphic representations gives the following fundamental decomposition for cuspidal
cohomology:

H(:usp(Sl?j- ,Mac) = @ H® (oo, foo3 Moo @ Mac) ® 7y 22)
w€Cobeusp (G, A,Ky)

To clarify a slight abuse of notation: if a cuspidal automorphic representation m contributes to the
above decomposition, then its representation at infinity is 7 (which admits an explicit description that
will be crucial for all the archimedean calculations), and 7y denotes the Ky -invariants of its finite
part. The level structure K ¢ will be clear from context; hence whether 7 denotes the finite-part or its
K ¢ -invariants will be clear from context. Define Coheysp (G, 1) = Ug ; Coheusp (G, Ky, 4).

2.3. Pure weights and strongly-pure weights

2.3.1. Strongly-pure weights over C ~
Ifaweightd = (A7),.rc € X;lg(TxC) supports cuspidal cohomology (i.e., ifHC‘uSp(S,(gf s Mac) #0),
then A satisfies the purity condition

al=a" _forallp: F - C < 3w such that b?+b'7 = w for all 7 and i, (2.3)

i N N—i+l
which follows from the purity lemma [7, Lem. 4.9]. The integer w is called the purity weight of A. The
weight A is said to be pure if it satisfies (2.3), and denote by X7 (T x C) the set of all such pure weights.
Next, recall a theorem of Clozel that says that cuspidal cohomology for GLy /F admits a rational
structure [7, Thm. 3.19], from which it follows that any ¢ € Aut(C) stabilizes cuspidal cohomology,
that is, ¢ A also satisfies the above purity condition, where if 2 = (17),,.rc and ¢ € Aut(C), then 4
is the weight (7 A7),,.r_.c where A7 = AsTlon A pure weight A will be called strongly-pure if €A is
pure with purity-weight w for every ¢ € Aut(C); denote by X, (7T x C) the set of all such strongly-pure
weights. For A € X§,(T x C), note that

bS M 4 bS T —w foralll < j <N, 7:F —C, ¢ € Aut(C)
J N-j+1 =W SJEN,n: » § € Aull).

We have the following inclusions inside the character group of T x C, which are all, in general, strict
inclusions:

Xoo(T'xC) c Xj(T'xC) c X;g(TxC) c X (TxC) c X*(TxC).

2.3.2. Strongly-pure weights over E
The set of strongly-pure weights may be defined at an arithmetic level. Recall the standing assumption
on E that is a finite Galois extension of Q that takes a copy of F; in particular, any embedding ¢ : E — C
factors as ¢ : E — Q c C. Furthermore, ¢ : E — C gives a bijection ¢, : Hom(F, E) — Hom(F,C)
as t.(7) = ¢t o 7, which in turn gives a bijection X*(T X E) — X*(T x C) that maps A = (A7)r.pE to
‘A= (L/ln)n:FHC = (/U_IOU)U:FH(}

Proposition2.4. Let A € X;lg(TxE ) be an algebraic dominant integral weight. Suppose A = (A7) . g
with AT = (b{ > --- > by,). Then, the following are equivalent:

(i) There exists 1 : E — C such that ‘A € X, (T x C); that is, for every y € Gal(Q/Q), we have
Y°tA € X (T x C) with the same purity weight:
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11 IS
“Ji:E — C, Aw € Z such that b} ey en +b;\,_‘?{+1°" = w,

Vy € Gal(Q/Q), Vp: F - C, 1<j<N.”

(ii) Foreveryi: E — C, ‘A € X (T XC), that is, for everyy € Gal(Q/Q), we have ¥°*2 € X0 (T XC)
with the same purity weight:

—1 a1 ~lgn-lom
« ("oyTlon t"oyTlonp _
Iw € Z such that bj + bN—j+1 =W,

Vi:E—C,VyeGal(Q/Q),Vn:F—>C,1<j<N.”

(iii) Foreveryt: E — C, ‘A € Xj(T x C) with the same purity weight,

“Jw € Z such that b‘ °"+b;v°ﬂrl =w,Vi:E—->C Vnp:F—>C,1<j<N.”

Proof. Fix 1y : E — C. Since E/Q is a finite Galois extension, the inclusions

{youwl|yeGal(Q/Q)} c {yot|yeGal(Q/Q),t: E— C} c Hom(E,C)

are all equalities. O

The set of strongly-pure weights over E, denoted X, (T X E), consists of the algebraic dominant
integral weights 4 € X*(T X E) that satisfy any one, and hence all, of the conditions in the above
proposition. It is most convenient to work with the characterization in (iif). There are the following
inclusions within the character group of T X E, which are all, in general, strict inclusions:

Xoo(TXE) ¢ X, (TXE) ¢ X"(TXE) c X"(TxE).

alg

The existence of a strongly-pure weight over a totally imaginary base field ' depends on the internal
structure of F; this is explained over the course of the next four paragraphs.

2.3.3. Interlude on (strongly-)pure weights for a CM field
When the base field F is a CM field, then a pure weight is also strongly-pure. Given any ¢ € Aut(C),
one can check that ¢.(X; (T X C)) = Xj(T xC).

Lemma 2.5. Let 7 : F — Cand ¢ : C — C be field homomorphisms, and let ¢ : C — C stand for
complex conjugation. Then

gocton = cogon,

that is, complex conjugation and any automorphism of C commute on the image of a CM field.

Proof. Letny =goconandn, =cogon. Thenn|p+ = n2|p+ (recall that F* is the maximal totally
real subfield of F). This means that n7; = 17, or 71 = ¢ o 12; if the latter, then ¢ o ¢ o 7 = ¢ o 5. Evaluate
both sides on x € F — F* on which ¢(17(x)) = —n(x) to get a contradiction. O

Let A = (1"),.r—c € Xj (T x C); hence, d”7 + d" =wforally: F — C. Take any ¢ € Aut(C) and
consider ¢ A4; to see its purity, note that

-1 -1 -1 -1 -1 -1
s7lon | pslon 7o, psocon s7lon | peoglon s7lon | psTon _
b; +by_ i = b +by i = b +by i = b +by i =

where the second equality is from Lemma 2.5 above. Hence, A is strongly-pure.
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2.3.4. Interlude on strongly-pure weights for a general totally imaginary field

When F is totally imaginary but not CM, there may exist weights that are pure but not strongly-
pure. The following example is instructive: take F = Q(2'/3, w), where 2!/3 is the real cube root
of 2 and w = €?™/3. Then f = Gal(F/Q) =~ S3 the permutation group in 3 letters taken to be
{273, 213w, 2'3w?}. Let s € S3 correspond to 775 : F — C. Consider the weights A = (17),cs, and
p = (u™)ses, for Resg/o(GL(1)/F) described in the table:

] s H e\ (12) \ (23) \ (13) \(123)\(132)“
AB\lal b |W—a|l ¢ |W—c|lw->
utlla\lw—a|lw—a|lw—-a| a a

where a,b,c,w € Z. For the tautological embedding FF c C, the set Xf is paired into com-
plex conjugates as {(1¢,723)), (1(12), 1(132))> (M(13)-M(123)) }, from which it follows that A is a pure
weight. All other possible pairings of XF into conjugates via automorphisms of C are given by:
{(Mesm12))s M23)-n(123))> (M(13)>M(132) 3> and {(Me,n(13))> (M23)-1(132))> (M(12)-M(123))}; (F being
Galois this simply boils down to composing these embeddings n, by a fixed one 7y, and using
Mg © Ns = Msps)- 1t follows that A is not strongly-pure if w — a, b and ¢ are not all equal, but y is
strongly-pure and has purity weight w.

2.3.5. On the internal structure of a general totally imaginary field

Let F be a totally imaginary field as before. Let Fj be the largest totally real subfield in F. Then there is
at most one totally imaginary quadratic extension F| of Fy inside F. (See, for example, Weil [51].) If
and S are two totally negative elements of Fy giving two possible such extensions Fy(v/a@) and Fo(+/B),
then by maximality of Fy, one has VB € Fy, that is, & = 12 for t € Fy, whence Fo(\/a) = Fo(\V/B).
There are two distinct cases to consider:

(i) CM: when there is indeed such an imaginary quadratic extension F of Fy, then F| is the maximal
CM subfield of F; of course, [F; : Fy] = 2. For example, if F = Q(2'/?, w) asin 2.3.4, then Fy = Q
and F; = Q(w).

(ii)) TR: when there is no imaginary quadratic extension of Fy inside F, then put F; = Fy for the
maximal totally real subfield of F. For example, take Fy to be a cubic totally real field (e.g.,
Fy=Q(&7 + {7‘1), 0= ez”i/7), and take non-square elements a, b € Fy whose conjugates a, a’, a”
and b,b’,b” are such thata > 0, a’ < 0,a” <0and b <0, b’ <0, b” > 0; such a and b exist
by weak-approximation; take F = Fy(+y/a, Vb). Then there is no intermediate CM-subfield between
Fy and F; hence, F; = Fy.

As will be explained later on, that in case TR, asking for a critical point for a Rankin—Selberg
L-function for GL(n) X GL(n")/F will impose the restriction nn’ is even. This should not be surprising
because, as is well-known, for an algebraic Hecke character y over F, if the L-function L(s, y) has
critical points, then that forces us to be in case CM (see [42]).

Notation in the CM-case.

Suppose S (F) (resp., Se (F1)) is the set of archimedean places of F (resp., F1). Enumerate Se, (F1)
as {wi,...,wy}, wherery = dp, /2 = [F1 : Q]/2. For 1 < j <y, let {v;,V;} C XF, be the pair of
conjugate embeddings corresponding to w ;; the non-canonical choice of v; is fixed and is distinguished
in the sense that v; induces the isomorphism Fl,W_,- ~ C.Letk = [F : Fi]. Let v;i,...,vj be the
set of places in Se(F) above w;. Let ¢ : X — X, denote the restriction map o(17) = 71|F,. Suppose
Q_I(Vj) ={nj1,...,njk}. Then g‘l(f/j) = {7,1,...,7,x}, with the indexing being such that the pair
of conjugate embeddings {7,771} corresponds to v;; € Seo(F) forall1 < j <rjand1 <[ < k.

Notation in the TR-case.
Let Sw(Fy) = {wy,..., W, } be an enumeration of the set of archimedean places of Fy, where

dr, = [F1 : QJ; since F) is the maximal totally real subfield of the totally imaginary F, the degree dF,
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can be either even or odd, but the index k = [F : F] is even; suppose k = 2k;. For 1 < j < dp,, let
v; € X, be complex embedding corresponding to w ;. As before, o : Zr — Zp, denotes the restriction
map o(n7) =nl|r,. Letvji,..., v i, be the set of places in S, (F) above w ;, and suppose v j; corresponds
to the pair of conjugate embeddings {7;;,7;}. Then 0! V) ={nj7102:7j2, -« s Njkys Tjiky }-

2.3.6. Strongly-pure weights over F are base-change from F

Proposition 2.6. Suppose 1 € X ,(Resg/q(Tn,0) X E) is a strongly-pure weight. Then there exists
k € X3, (Resp, (T 0) X E) such that A is the base-change of k from Fy to F in the sense that for any
T:F > E A7 =«"Ir,

For brevity, the conclusion will be denoted as A = BCrf, (k).

Proof. Tt suffices to prove the proposition over C, that is, if ‘A € Xj,(Resf/q(Tn,0) X C), then it suffices
to show the existence '« € X, (Resr, /o(Tn,0) X C) such that ‘A = BCf/F, ("«); because, then given the
A in the proposition, take an embedding ¢ : E — C, and let ‘A = ‘A, to which using the statement over C
one gets 'k, which defines a unique « via ‘« = ‘«. It is clear that A = BCg/r, («) because this is so after
applying ¢.

To prove the statement over C, take A € Xj;(Resrq(Tn,0) X C), and suppose A = (17),,.rc with
A7 =(b] 2 b] >--- > b},). Strong-purity gives

BT+ b7 =W, Vy eGal(@/Q), Vi €T, 1< < N.

Also, one has

b+ b =w, VyeGal(Q/Q), VneZp, 1<j<N.
Hence, we get bjy.o'7 = bjy.T”. Exactly as explicated in the proof of Proposition 26 in [42], one gets
bjy.o’7 = b;? for all y in the normal subgroup of Gal(Q/Q) generated by the commutators {gcg~'¢ : g €
Gal(Q/Q)}, and all  : F — C. This means that b;? depends only on 7|, . O

2.4. Strongly inner cohomology

The problem of giving an arithmetic characterization of cuspidal cohomology is addressed in [27, Chap.
5] in great detail for GL over a totally real field. In this article, for GLy over a totally imaginary F,
we will only discuss it en passant and contend ourselves in making the following:

Definition 2.7. Take a field E large enough (as before), and let 1 € X (T X E). The strongly inner
spectrum of A for level structure K ¢ is defined as

Cohi(G,Ky, ) =
{ny € Coh/(G,Ks,) : ‘my € Coheysp(G, Ky, *A) for some embedding ¢ : E — C}.

An irreducible Hecke-summand 7 ¢ in inner cohomology is strongly-inner if under some embedding
¢ rendering the context transcendental, it contributes to cuspidal cohomology. The point of view in
loc.cit. is that the definition is independent of ¢, and hence giving a rational origin (i.e., over E) to
cuspidal summands giving another proof of a result of Clozel that cuspidal cohomology for GLy
admits a rational structure [7, Thm. 3.19]. In this article, one simply appeals to Clozel’s theorem to
observe that the definition of strongly inner spectrum is independent of the choice of embedding ¢; that
is, if 1,/ : E — C are two such embeddings, then

‘s € Coheysp(G,‘A) & “my € Coheysp(G, “A).
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Define strongly-inner cohomology as

Hy(SE, Map) = € HISE . Map)(xy).

s eCohy (G,/l,Kf )
Then, since cuspidal cohomology is contained in inner cohomology, it is clear that
HY(SE . Mag) ®E,.C = Hoyp(SS . Myc)
1] o ALE E, L cusp \OK > A,C)-

For 1 € X;(T X E), 7rf € Cohy (G, Q) (ignoring the level structure) and ¢ : E — C, since
‘ny € Cohcusp(G ‘1), let ‘m stand for the unique global cuspidal automorphic representation of
G(Ag) = GLy (AFr) whose finite part is (‘m)r = ‘my. The representation at infinity (‘m)e, to be
denoted J.; below, will be explicitly described in Section 2.5.

2.4.1. Tate twists

Let m € Z. For 1 € X*(Ty X E), define A + mdy by the rule that if A7 = (b],...,b},), then

(A+mdn)T = (b] +m,...,bJ, +m) for v : F — E.Itis clear that 1 + A+ mdy preserves each of

the properties: dominant, integral, algebraic and (strongly-)pure. As in [27, Sect. 5.2.4], cupping with

the m-th power of the fundamental class ej,, € HO(SGf ,Q[dn]) gives us an isomorphism that maps

(strongly-)inner cohomology to (strongly-)inner cohomology, and suppose 7y € Cohy (G, 1). Then
T} (m)(mp) = myp(—m), where, ¢ (—m) is defined by ¢ (-m)(gs) =7y (g7) ® lgs ™.

2.5. Archimedean considerations

2.5.1. Cuspidal parameters and cohomological representations of GLy (C)

Given a weight 1 = (17),.rc € X, (T X C), for each v € S, (recall that v corresponds to a pair of
complex embeddings {n,,7,} of F into C, with 7,, used to identify F, with C), define the cuspidal
parameters of A at v by

@’ = —wod™ +p and B” = -1 —p.
If A7 = (b7,...,b"), then
o = (af,.ay) = (bl BF —ply p B o D) 08
and similarly,
B = (Bl BR) = (-bP = R I SN Ty D) )

Purity implies that a}.’ + ﬁJV. = —w. Define a representation of GLy (F,) ~ GLy (C) as

Ta, 1= I, A7) = Indg N D (z"fzﬂf ®---®z“?92f‘¥v), (2.10)

where By is the subgroup of all upper-triangular matrices in GLy, and by Ind we mean normalized
(i.e., unitary) parabolic induction. Now define a representation of G(R) = [], GLy (F}):

I, = ®le, (2.11)

VESw

Remark 2.12. Recall that the choice of the embedding 7, in the pair {r,, 7, } was fixed. If the roles
of the 7, and 77,, are reversed, then it is easy to see that the pair (@", 8") of cuspidal parameters would
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be replaced by (woB", woa"), whence, the representation J,, is replaced by its conjugate J,,. See 2.5.2
below.

Some basic properties of J, are described in the following two propositions.
Proposition 2.13. Let A € X, (T x C) and J, as above. Then

1. J, is an irreducible essentially tempered representation admitting a Whittaker model.
2. H*(9,Keo; I ®@ M, c) #0.
3. Let ] be an irreducible essentially tempered representation of G (R).
Suppose that H* (g, Keo; ] @ Mac) # 0then ] =1J,.
4. If m € Coheusp(G, A) (i.e., m is a global cuspidal automorphic representation that contributes to
cuspidal cohomology with respect to a strongly-pure weight ), then mo, = I,.

These are well-known results for GLy (C) and are all easily seen from this elementary observation:
for z € C, let |z|c = zZ; then the representation

Ja, ®11

<?cy/z _ Indgmé«;) (Zal"+w/22ﬂlv+w/2 ® - ® Zalvv+w/22/3,vv+w/2)

is unitarily induced from unitary characters (because of purity) and hence irreducible. A representation
irreducibly induced from essentially discrete series representation is essentially tempered. Admitting
a Whittaker model is a hereditary property. Nonvanishing of cohomology follows from Delorme’s
Lemma (Borel-Wallach [5, Thm. II1.3.3]), and that relative Lie algebra cohomology satisfies a Kiinneth
theorem. Finally, among all representations with given infinitesimal character, there is at most one that
is essentially tempered.

Define the following numbers:

by = N(N-1)/2,

5 = (N* = 1) - b5,

o - (2.14)
by = r1-by,

tf = dim(S°) - bk,

The relation between bz and tlf, is mitigated by an appropriate version of Poincaré duality, which is
the reason why the ‘top-degree’ is defined in terms of the ‘bottom-degree’ and the dimension of the
intervening symmetric space.

Proposition 2.15. Let 1 € X5, (T x C) and Iy as above. Then
HY(g,Keo; A® M) #0 & bh < q < ty.

Furthermore, for extremal degrees q € {bf,, tﬁ, }, we have dim(H4(g, Keo; J2 @ M c)) = 1.

Proof. For each v € Su, we have HY(gly (C),U(N)Zy 0(R)?; Ja, ® My, c) # O if and only if
b% <gqg< t% . This follows, after a minor modification, from Clozel [7, Lemme 3.14]. The cohomology
is in fact an exterior algebra (up to shifting in degree by b%), giving one-dimensionality in bottom
and top degree. Then use the fact that relative Lie algebra cohomology satisfies a Kiinneth theorem.
This gives (g, CowZ(R)?)-cohomology from which the reader may easily deduce the above details
for (g, CwS(R)?) = (g, Keo)-cohomology; it is helpful to note that k= w5 + (r—1) = rf, +
dim(Z(R)?/S(R)). O

There is a piquant numerological relation between the bottom or top degee for the cuspidal coho-
mology of Levi subgroup GL, x GL, of a maximal parabolic subgroup P of an ambient GLy, the
corresponding bottom or top degree for GLy, and the dimension of the unipotent radical of P given
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in the following proposition that has a crucial bearing on certain degree-considerations for Eisenstein
cohomology. For any positive integer r, define b, &, bf" and tf as in (2.14) replacing N by r.

ro bty
Proposition 2.16. Let n and n’ be positive integers with n + n’ = N. Then
L. bF +bF + 1 dim(Up) =

2. tF +tF + 1 d1m(Up) = -1

Proof. Keeping in mind that N = n + n’, (1) follows from the identity

n(n—1) N n’'(n’ - 1) e (n+n)(n+n' -1)
r r r =r .
2 2 " 2

For (2), observe that tf' = (n’r— 1) —rn(n —1)/2 = rn(n+ 1)/2 — 1. Now (2) follows from

-1|-1. O

(rn(n+ ) 1) N (rn’(n’ +1) 1) o = (r(n+n’)(n +n’ +1)
2 2 2

2.5.2. Archimedean constituents: CM-case

If 1o = ®yes., 7y is an irreducible representation of G(R) = [, s, GLn (C),thenthe set {m,, : v € S0}

of the irreducible factors, up to equivalence, will be called as the set of constituents of 7. Let

A € X5, (Resg/o(Tn o) X E), my € Cohy(G,A), and ¢ : E — C. The set of constituents of ‘7o, may be

exphcltly described.

CM-case

Recall from Proposition 2.6 that A = BCp/f, (k); that is, A7 = k7IF1; after applying ¢, one has
‘an = 41F | which is the same as Ao = gtonley Using the notations fixed in 2.3.5, for any
place vj; € So(F) above w; € S (Fy), the ordered pair (ny,,7v;,) of conjugate embeddings of
F restricts to the ordered pair (v, V;) of conjugate embeddings of F1; hence, the ordered pair of

w

Welghts (LA ) s equal to the ordered pair (‘«™7, k™), whence the archimedean component
‘my,, is equivalent to J (“6™i,*k"™i). Just for the moment for brevity, denoting J(‘k™™i, ‘k"™i) by
ij, one concludes that the constltuents of ‘ms is the multi-set {Jy,,...,Jw,, ... ’Jwr, y.. .,JIW” 1,
with each I, appearing k = [F : Fi]-many times; this multi-set may also be variously written as
{[F:F]-Jy |weSw(F1)} = {[F:Fi] -J(*«™,%«”) | w € Sw(F})}. Putting these together one

has
To = Q) ‘meo= (X I, a™)
vESw (F) vESw (F)
“loy,, lov,,
= X Qi w) = (R XRIT kT (@2.17)
weSw(F1) viw weSw(Fy) viw
TR-case

We still have from Proposition 2.6 that 1 = BCfg/, (x); that is, A7 = k7IF1; after applying ¢, one

has ‘A7 = ‘«"!F1 | which is the same as A °7 = k¢ onley Using the notations fixed in 2.3.5, for any
place vj; € S (F) above w; € S (F1), both the embeddings in the ordered pair (17,;,,1,;,) restrict

jL?
to vy,,. Hence, the ordered pair of weights (*‘A""i! ,“A™it) is equal to the ordered pair (‘6”7 , k") —
note that both weights in the ordered pair are the same, whence the archimedean component Ty, 18
equivalent to J(‘«”™7, ‘k”i). Once again, for brevity, denoting J(‘«x"™7, ‘x"™i) by Ty, one concludes
that the constituents of T are elements of the multi-set {Jyy,, ..., 0y, ... ,J Wiy >+ oo g }, with each
Jw; appearing k; = [F : F1]/2-many times; putting these together, one has
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L7Too: ® Lﬂ,v - ® J(L/ll]V’L/lI]V)

VESw (F) VESw (F)

®J(LKVW’LKVW) — ® ®J(K‘71°VW’K‘71°VW) = ® ®JW, (2.18)

weSw (F1) viw weSw (F1) viw weSw (F1) viw

and each of these J,, is self-conjugate from Remark 2.12.

2.5.3. Galois action on archimedean constituents

Let y € Gal(Q/Q). The archimedean constituents of ¥°‘xr is a permutation of the archimedean con-
stituents of ‘mr, possibly up to replacing a local component by its conjugate which will only be relevant
when F is in the CM-case. This is made more precise in the following paragraphs.

The case when F is itself a CM field

If F = F) is a CM field, and Fy its maximal totally real quadratic subfield, for y € Gal(Q/Q)
and v € Zf, from Lemma 2.5, one has y o ¥ = y ov; this means that y permutes the set of pairs
of conjugate embeddings {{v,,, v\, } | w € Sw(F})}, giving an action of y on S, (F7). If we identify
S (F1) = Se(Fo) = ZF,, then the action of y on S (F)) is the same as action of y on Xf, via
composition. It is important to note that y need not map the distinguished embedding corresponding to
w to the distinguished embedding corresponding to y - w; all one can say is that y o vy, € {Vy., V5.0 }.
Suppose k € X (Resg,jo(Tn,0) X E), m1,y € Cohy(Resp, jo(GLy /F1,«)), t : E — C, and ‘m;
the corresponding cuspidal automorphic representation of GLy (A, ). Then ‘7 0 = ®yes. (F)) “T1,ws
where

_ 1 .
Lﬂl,w — J(I.KVW’LKVW) — J(Kl, OVW’KL ovw)‘
By the same token, replacing ¢ by y o ¢, one has

1 ga-1 [ D 1 gn-1 “lgr—lgy
70Lnl,w - J(KI. oy ovw’ K" oy OVW) — J(K‘ oy OVw,KL oy OVW)
Depending on whether y ! o v, = V-l OF Vooi,, from Remark 2.12, it follows that

Tyt df ylovy, = Vol
Yl = (2.19)
Tyt df yloy, = Vylow
Hence, the archimedean components of ¥*‘mr; is a permutation of the archimedean components of ‘m;
up to taking conjugates; this paragraph fixes a mistake in [12, Prop. 3.2, (i)].

When F is totally imaginary in the CM-case.

Let 1 € Xj,(Resp/o(Tw o) X E), A = BCgjp,(«), ny € Cohy(G,2), ¢« : E — C, and
v € Gal(Q/Q). The Galois action on Xz and F, preserves the fibers of the restriction map X — XZp,.
Suppose wi,w; € Seo(F1) and vy, v; € Xp, are the corresponding distinguished elements, and suppose
vy o {v1,v1} = {v;, 7;}. Suppose the fiber over v is {511,712, ..., 71} (recall k = [F : F1]). Then the
fiber over v is {7711, 712, - . ., 1« }; and similarly, if the fiber over v; is {n1,72,...,7;x} and then the
fiber over v; is {771, 7,2, ..., 7,k }. There are two cases:

1. yovy = v;. Thennecessarily, yovy = ¥, yo{ni1,....muk} = {nji,....njxyandyo{fi1, ..., Mk} =

{j1s -k}
2. yovy = v;. Thennecessarily, yovy = v, yo{nii,....mk} = {f71,.... 7k yand yo{sj1, ..., ik} =
{1, mjx}.
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Since F' = F} is already discussed in 2.5.3 above, suppose that k > 1. Suppose y o 1711 = 17;1. Then
it is possible thaty o {n11, 711} # {n;1,7,1}. In particular, the Galois action on Xf does not descend to
give a Galois action of y on S, (F). Similarly, also in case (2). Nevertheless, using (2.17), it follows that

yotﬂ,m — ® ® J(Kt_loy_lovw , KL_IO’y_IOI_/W)’ (220)

wEeSw(F1) viw

and as in (2.19), the inner constituent is given by

o s
L ov__ L oy__ . —
Ik "t k" Ty ity lovw:vy

J(KL"o'y'lovW’KL'IOY'IOVW) — (2.21)

Ly

0 1oy
Loy _ L 'ov__ . —
Ik vt k) iyl oy, =V

yhwe

Hence, the archimedean components of 7°‘xr is a permutation of the archimedean components of ‘7 up
to taking conjugates.

When F is totally imaginary in the TR-case.
The Galois action on Xy and X, preserves the fibers of the restriction map X — Xf,, and since
F is totally real, identify the Galois-sets X, = Seo(F1). Using the notations of (2.18), if

-1 -1
e ® @

wEeSw (F1) viw

then for y € Gal(Q/Q), one has

e = R Q) Iyt ko),

wEeSw(F1) viw

Hence, the archimedean components of ¥°*7r is a permutation of the archimedean components of ‘.

2.6. Boundary cohomology

The cohomology H* (S Gf M 1.e) of the boundary of the Borel-Serre compactification of the locally
symmetric space ng is briefly discussed here, and the reader is referred to [27, Chap. 4] for more

details and proofs. There is a spectral sequence built from the cohomology of the boundary strata d pSg

that converges to the cohomology of the boundary. To understand the cohomology of a single stratum
opS Gf , note that

H‘(b‘pS,?f,J%,E) = H*(P(Q\G(A) /KKy, MaE).
The space P(Q)\G(A)/K«Ky fibers over locally symmetric spaces of Mp. Let Eg, be a complete set

of representatives for P(A;)\G(Af)/Ks. Let KE = Koo N P(R), and for ¢¢ € Bk, let K;’(ff) =
P(Ap)Néy ng;l. Then

P\GA)/KLKs = || P@\P(A)/KEKT ().

ff EEKf
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Letkp : P — P/Up = Mp be the canonical map, and define KgIP = KP(KQ), and for &; € EKf, let
K}'"(&7) = kp(KP (£)). Define

Silip ey, = MP(Q\Mp(A) /KSR (&5).
f S

The underline is to emphasize that we have divided by KM? that may be explicated as follows: for the
maximal parabolic P = Py, ., whose Levi quotient Mp may be identified with the block diagonal
subgroup G, X G, where G, = Rr,o(GL,) and G,» = Rr/q(GL,), one has

KM? = kp(P(R) N Koo) = Mp(R) N Koo =
GL,(C)

veSe

U(n)

n U(N))S(R) = ]_[ (

vESw

U(n,)])S(R).
Note that KX? is connected. Let K}j” (Er)=Up(Ap)NérKy f}l. We have the fibration

Up@\Up (K" €)= PQ\PRIKER]E)) > Y,

The corresponding Leray—Serre spectral sequence is known to degenerate at the E;-level. The coho-
mology of the total space is given in terms of the cohomology of the base with coefficients in the
cohomology of the fiber. For the cohomology of the fiber, if up is the Lie algebra of Up, then the co-
homology of the fiber is the same as the Lie algebra cohomology group H*® (up, M g)-by a classical

theorem due to van Est, which is naturally an algebraic representation of Mp; the associated sheaf on
Mp

STk is denoted by putting a tilde on top. One has
H‘(apS,?,,/\ﬁ/l',l,E) = @ H® §MAF:, ,H'(up,M,l,E) . (2.22)
f ~ K7 (&)
ff G.E.Kf E
Pass to the limit over all open compact subgroups Ky and define H‘(apSG,M,LE) = li_n}K
f

H'(BPSI% , /\7,1,,9). Let SMP .= Mp(Q)\Mp(A)/KYP: (2.22) can be rewritten as

o G 1 Kr of oM A K;Wp(ff)
H(0pS%, M) = @) H* (M7, He (up, Map)) :

ér €Eky

It is clear using Mackey theory that the right-hand side is the K ¢ -invariants of an algebraically induced
representation; hence, one has the following:

Proposition 2.23. The cohomology of dpS© is given by

G(Af)

H*(80pS®, M) = aIndP(Af)

(F (M7, 1t (up, M) ).

The notation *Ind stands for algebraic, or un-normalized, induction.

The following is a brief review of well-known results of Kostant [36] on the structure of
H*(up, M, g). The calculation of the unipotent cohomology group is over the field E. Recall that
GXE =][l;sroE Gg, where Gg = Go Xr,r E = GLy/E. Let Ag, stand for the set of roots of Gy
with respect to T 0, A*GO the subset of positive roots (for choice of Borel subgroup being the upper
triangular subgroup), and Ilg, the set of simple roots. The notations Agr, AES and s are clear. Let
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P = Resg/q(Po) be the parabolic subgroup of G as above, and let P§ := Py X, E. The Weyl group
factors as W = [];.p_,g Wy with each W isomorphic to the permutation group Sy on N-letters. Let
WP be the set of Kostant representatives in the Weyl group W of G corresponding to the parabolic
subgroup P defined as WX = {w = (w7) : wT € WOTPOT}, where

WOTPoT ={w" e W] : wH)la>0, Va e My, }-
0

Here, Iy,,. C HGJ denotes the set of simple roots in the Levi quotient M Py of Pg . The twisted
actionof w e Wond e X*(T)isw-A =W - A7) pg and w7 - AT = w7 (A7 + pp) — py» Where
PN = %Z aeAl, @ For w € WP, the irreducible finite-dimensional representation of Mp X E with

extremal weight w - A is denoted M,, ., . Kostant’s theorem asserts that one has a multiplicity-free
decomposition of Mp X E-modules:

Hi(up, My g) = @ My A E. (2.24)

wew P
l(w)=q

As explained in [27], the above result of Kostant can be parsed over the set of embeddings 7 : F — E.
Denote by H'™) (up, M £)(w) the summand of H?(up, M ) corresponding to the Kostant repre-
sentative w which is nonzero for ¢ = /(w) and isomorphic to M,, .1 . Applying (2.24) to the boundary
cohomology as in Proposition 2.23 gives the following:

Proposition 2.25. The cohomology of dpS© is given by

G(Ay)

G Aq —
H"(apS »M/l,E) = @ aIndP(Af)

wewkp

(Hq—l(w) (§MP, H4(up, M/IE)(W)))

There is a canonical surjection S¥? — SMr  ysing which we may inflate up the cohomology of
SMr to the cohomology of S™7; this will be especially relevant to strongly inner cohomology classes
of SM? which after inducing up to G (A ) will contribute to boundary cohomology; see Section 5.1.2.

2.7. Galois action and local systems in boundary cohomology

For an embedding ¢ : E — C, the map v, induced by a Galois element y € Gal(Q/Q) in unipotent
cohomology

H(up, My c)(‘w) — H(up, Myey c)(7'w),
where, ¢ = [(w) = [(*w) = [(Y**w), will play a role in the proof of the reciprocity law of the main
theorem. By Schur’s lemma, this can be understood by its effect on the highest weight vector for the
irreducible representation H? (up, My c)(‘w) = M.y, . c. Such a highest weight vector h(4, w, t)

will be fixed by fixing a harmonic representative the corresponding cohomology class as in Kostant
[36, Thm. 5.14]. To explicate this vector, note that

Fix an ordering

Hom(F,E) = {Tl,Tz,...,Td}.
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Let A(up,) denote the subset of A* of those positive roots ¢ whose root space X, is in up,. Fix an
ordering

A(uP()) = {(pla 9029 cee Qonn’}'

For example, thinking in terms of upper triangular matrices, this ordering could be taken as the
lexicographic ordering on the set of pairs of indices {(i, j) : 1 <i < n, 1 < j < n’}. Fix a generator e,
for X, for each ¢ € A(up,); note that e, is well defined up to Q*. Let {e,} denote the basis of u}‘,o that

is dual to {e,,}. For a Kostant representative wg € W c W, define ®@,,, = {¢ > 0 : walcp < 0}; then
®,,, € A(up,). With respect to the ordering that it inherits from A(up,), denote ®@,,, = {go;vo, ey (,olwo}
as an ordered set, where [/ = l(wal) = [(wg). Define

* —— * * * . .——
o, = 6‘1";4)0 Ao A e(plwo € AN(up);  qo:=1(wo).

Let e, denote the image e, ® 1 of e, under the canonical map X, — X/ = X, ®F . E. For
w = W)rrse € Wo = [lirmg W, XF,r E, written using the ordering on Hom(F, E) as
w={w™,...,w7d}, define

€, = o ARGy € AUGBE) gi=I(w).
Changing the base to C via ¢ : E — C gives
€ou, = € e, NN EG o, € AN(UpBQO). (2.26)

Fix a weight vector s(47) € M= g for the highest weight 47; then s(1) = s(4]) ® - -- ® s(1)) is the
highest weight vector for M g. For each w € W, fix its representative in G(E), which amounts to
fixing a permutation matrix representing w” in GL,,(E) for each embedding 7 : F — E. Let

s(wd) = par (W™M)s(A]) @ -+ ® para (W ™)s(4]) (2.27)

be the weight vector of extremal weight wA. These vectors can be composed via ¢: s(w ‘4) is the weight
vector in My ¢ of extremal weight ‘w ‘A. Theorem 5.14 of [36] asserts that

h(d,w,t) = e;w ®s('w) (2.28)

is the highest weight vector for HY (up, My c)(‘w). The image of h(4, w, ¢) under the map . induced
by y € Gal(Q/Q) is a multiple of h(4, w,y o ¢); the scaling factor is captured by what y does to the
wedge-products ey, , motivating the following:

Definition 2.29. Let  : E — C and y € Gal(Q/Q). Then we have
e:kbyozw = ELw (Y)ETDLW

for a signature g, ,, (y) € {x1}.

From (2.27), (2.28), and the above definition, one has

YV (h(/ls w, L)) = ELw (7/) . h(d’ w,yo L)- (230)

3. The critical set and a combinatorial lemma

In Section 3.1, we first recall the definition of an integer or possibly a half-integer being critical for
the Rankin—Selberg L-function L(s, o X o’V); see (3.4). Then in Proposition 3.12, we describe the set
of critical points in terms of the highest weights u and u’, from which we get a purely combinatorial
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characterization of when the point of evaluation —/N/2 and the next point 1 — N /2 are critical; see
Corollary 3.13. In Section 3.2, we begin by stating the combinatorial lemma (Lemma 3.16) which
builds on Corollary 3.13 and characterizes criticality of —N /2 and 1 — N/2 also in terms of the existence
of a balanced Kostant representative w whose twisted action on u + u’ yields a dominant integral weight
on the ambient GL /F. The rest of the subsection goes in proving this lemma. This special Weyl group
element w plays an important role in all that follows. For a first reading, we recommend the reader to
assume the statement of Lemma 3.16 and come back to its proof at a later point of time.

3.1. The critical set for L(s,o X o”V)

Let n and n’ be two positive integers, and consider weights p € X (7, x C) and p’ € Xj,(T,» x C)

given by
n-1
w=Wyroc, p'= Z(Cl:] -y, +d"-d = (b?, b)), (3.1
i=1
and similarly,
n'-1
,Ll/ = (/’l,n)r]ZFHC’ #”7 = Z(“;U - I)Yj +d'"-9 = (b;n» R b;:/]) (32)
j=1

Let oy € Cohy (G, p) and o-} € Cohy(G,v, 1) be strongly inner Hecke-summands; these Hecke-
summands take a unique representation at infinity to contribute to the respective cuspidal spectrum
cohomology. Denote 0o = J, and o, = J,». Then 0 = 0o ® 0y and 0’ = 0, ® o, are cuspidal
automorphic representations. We let L(s, 0 X ¢’) stand for the completed standard Rankin—Selberg
L-function of degree nn’. We refer the reader to [47, Sect. 10.1] for a summary of the basic analytic
properties of these L-functions. The purpose of this section is to identify the set of integers or possibly
half-integers m which are critical for L(s, o X o’V). (Note that we have dualized o’.)

3.1.1. Definition of the critical set
For any two half-integers a and S, the local L-factor (see [35]) of the character z — 7?78 of CX is
given by

(s a+f | |la-pB| — —
L(s. 29) = 2020+ ) s+#+¥)~r(s+%ﬂ+ |a2ﬁ| : (3.3)

where, by ~, we mean up to nonzero constants and exponential functions, which are entire and non-
vanishing everywhere and hence are irrelevant to the computation of critical points; see Definition 3.4
below. For any v € S, let {n,,,7, } be the pair of conjugate embeddings of F to C as before. Let

v

@' = —wou'™ +p, = (a.....a}) and B = —u™ —p, = (B.....5))
be the cuspidal parameters of u at v; see (2.8) and (2.9). Similarly, let

A%

a” = —wou™ +p, = (,....ap) and B = - —p, = BY.....B8))
be the cuspidal parameters of u” at v. Note that

n—1 n -1 N , N
5 +Z+ > +Z:§+Z, and ﬁ::ﬁ[.v+ﬁjveE+Z.

.— A4 4%
@=a; +a; €
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Then, it is clear that the quantity ‘”ﬁ |” Bl inside the argument of the I'-function above is in 5 Y.z

This tells us that the critical set for L(s, o >< o) will be a subset of ﬂ +7Z.
Let o and o’ be cuspidal automorphic representations of G, (A) and G, (A), respectively. The set
of critical points for L(s, o X o) is defined to be
Crit(L(s, o0 x o)) :=
{m € % +Z :both Lo, (s,0 X o) and Lo (1 — 5,0 X o’) are finite at s = m} (3.4

If o and ¢’ are cohomological with respect to ¢ and u’, then we denote
Crit(u, u’) := Crit(L(s,0 X o™)). (3.5)

3.1.2. Computing the critical set
Recall the purity conditions

7

o +B =-w, and a!” + 8] = -w'.
We define a quantity a(u, u’), and call it the abelian width between u and u’, as

, w-w d"+d") - (d'" +d"
a(u,pu’y = > = ( ) 2( ). (3.6)

From the local Langlands correspondence and (3.3) on abelian local L-factors, we get

jaf —al¥ — B + B
% ’ 4 J L J
Lo(s,oxo") ~ ]_[ I_ll_l (s—a(y,,u)+ 5 . 3.7
veES, i=
And similarly,
la} —a’¥ = B} +ﬁ’”|
v ’ ’
Lo(l=s,0"x0’) ~ ﬂ Hﬂ (1—s+a(,u,,u)+ 5 (3.8)
vESy, i=
Letm € % +Z. Then m € Crit(y, ¢) if and only if
)~ — By + B
m—a(u,pu')+ 5 > 1, VveS.,ViVj, (3.9)
which is the condition that L, (m, o X ”V) is finite from (3.7), and
oy — o ~ B} + |
l-m+a(u,u’)+ > 1, VveSe,Vi,Vj, (3.10)

2

which is the condition that Lo, (1 — m, o¥ X ¢’) is finite from (3.8). Define the cuspidal width €(u, u")
between u and u’ as

i) = mm{|a —a BB s veSal<i<n, ISan’}. 3.11)
Then (3.9) and (3.10) together gives us the following
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Proposition 3.12. Let u € X5 (T, X C) and p’ € X3,(Ty x C). For oy € Cohy(Gp,u) and
o'} € Cohy(G,y, "), the critical set for the Rankin—-Selberg L-function L(s, o X o) is given by

{’(,u,,u') < f(/l’/l,)

- 2

+a(u,u') < m

Crit(u, p’) = {me %+Z N +a(,u,,u')}.
This is contiguous string of integers or half-integers (depending on whether N is even or odd), centered
around % +a(u, 1), of length €(u, 1').

Corollary 3.13. With notations as in Proposition 3.12, the points s = =N /2 and s = 1 — N /2 are both
critical for L(s, o X o) if and only if

N C(u, p1') , N C(p, p')

-——+1l-—- < , < —=-1+——-=.
2 ;= i) 2 2
Of course, for this to be possible, one needs £(u, p”) > 2 (i.e., that there at least two critical points).

The corollary, which is one part of a combinatorial lemma below (Lemma 3.106), is to be viewed like
this: the two successive L-values at s = —N/2 and s = 1 — N /2 are critical if and only if the abelian
width is bounded in absolute value in terms of the cuspidal width.

Corollary 3.14. Suppose F is in the TR-case and F| = Fy is the maximal totally real subfield of F.
Given p € X;,(T, xC) and u’ € X (T X C), if n and n” are both odd, then €(u, u') = 0; in particular,
the Rankin—Selberg L-function L(s, o X o'V) has no critical points.

Proof. Recall from Proposition 2.6 that u is the base change of a strongly-pure weight over Fj. For
v € Sw(F), one has n,|r, = 7, |F,; hence, u™ = p'. Hence, for the cuspidal parameters, one has
a” = woBY; that is, aiv = ;)1+1—i' If n is odd, then a'z)n+1)/2 = ﬁ(vn+1)/2. Similarly, if n” is odd, then
QEZ'H)/Z = ﬁEZ'm/z' From (3.11), it follows that £(u, u”) = 0, as 0 is realized as the minimum by taking

i=(m+1)/2and j = (n"+1)/2. O

3.1.3. Critical set at an arithmetic level

Let u € X (T, X E) and p’ € X (T,y X E), and take oy € Cohyy(G,, u) and 0'} € Cohy (G, 1’). For
any ¢ : E — C, Proposition 3.12 gives the critical set Crit(‘yu, ‘u’) for the Rankin—Selberg L-function
L(s,'ox‘o").

Corollary 3.15. The critical set Crit(‘u, ‘u’) = Crit(L(s, ‘o X ‘a”V)) is independent of ¢ :
Crit(L(s, ‘o x ‘o)) = Crit(L(s,”'oc x**'c"")), Vi:E — C, Yy € Gal(Q/Q).

Proof. From Remark 2.12, one can deduce €(‘u, ‘p’) = €(Y u, 7w’y and a(‘p, ‘u’) = a(P° u, Yot ).
One can also see this directly, since by the results of 2.5.3, the archimedean components of Y°‘o- are a
permutation of those of ‘o~ up to conjugates; similarly, for ‘o’; since L(s, z?Z%) = L(s, z%Z%), one gets
Loo(s,'0 X '0"V) = Loo(5, 70 X Y°t0Y). O

3.2. Combinatorial lemma

3.2.1. Statement of the lemma
Lemma 3.16. For strongly-pure weights p € X,(T, X C) and ' € X, (T,y x C), and cuspidal Hecke
summands oy € Cohn (G, ), 0'} € Cohy (G, 1), the following are equivalent:

1. The points s = =N /2 and s = 1 — N /2 are both critical for L(s, o X o’V).
2. The abelian width is bounded in terms of the cuspidal width as

(pp)

N
s ’ <___1+—.

N E(p )
——+1-—=E1 <
2 2
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3. There exists w € W¥ such that w=' - (u + u’) is dominant and 1(w) + [(w) = dim(Up,) for all
n:F — C.(Recall: w = (w"),.r—c withw' € WFoxnC Wg, %, C.)

We have already proved (1) <= (2). It remains to prove (2) <= (3). Itis clear that
I(w™) +1(w") =dim(Up,), ¥n: F > C = [(w) = 3 dim(Up).

However, if the degree of F'is greater than 2 (i.e., if r > 1), then the converse is not true in general.

Definition 3.17. A Kostant representative w € W¥ is said to be balanced if
I(w™) +1(w") = dim(Up,), Vn : F — C.

For the benefit of the reader, we will make two passes over the proof of (2) <= (3) in simpler
situations, because the proof in the general case is intricate in details and somewhat tedious; it is the
sort of proof that makes one believe the dictum ‘der Teufel steckt im Detail’.

3.2.2. Explicating (2) < (3) in the simplest nontrivial example

Proof. Let us consider the case of n = n’ = 1 and so N = 2. Take F to be an imaginary quadratic field
with Hom(F,C) = {n,77}. The weights u and u’ are both a pair of integers indexed by Hom(F, C);
we will write u ((a), (a®), u = ((b), (b)), with a,a”, b, b* € Z, with the convention that
1 = (a),u = (a*) and similarly for u’. Note that purity of 4 and u’ is automatic, and the purity
weights are w = a+a*, w = b+b*. The abelian widthis a(u, u’) = M. The cuspidal parameters
at the only complex place v of F are a¥ = (—a), B” = (-a*), @’V = (-=b), B’ = (=b*). The cuspidal
width is £(u, u’) = | —a+a* + b — b*|. The weight u + ” which we would like make dominant using a
balanced Kostant representative has the shape u+u’ = ((a, b), (a*, b*)). For simplicity, let us denote
p:=a-b, p*:=a*—b*. Hence, u + u’ is dominant if and only if p > 0 and p* > 0. The inequalities
in (2) now take the shape

_pr=pl Pt _ PPl

5 S5 = 5 2. (3.18)

Since, Py = By is the Borel subgroup, the Levi subgroup Mp is a torus; hence, Wy, is trivial and
WP =wg. If Wg, is written as {1, s} with s the nontrivial element, then the elements of wP may be
written as Wi = ({1, s}, {17, s*}). The dimension of Up is 2; hence, the balanced elements (of length 1)
of W¥ are (1, s*) and (s, 1). Now, consider three cases depending on the sign of p — p*:

o p = p*. Inthis case, (3.18) reads 0 < p < -2, which is absurd; hence, (2) is violated. If p > 0, then
the only w € W¥ such that w™! - (u + u’) is dominant is w = (1, 1*) which has length 0; hence, (3) is
violated. Similarly, if p < 0, then the only w € W* such that w™! - (u + ') is dominant is w = (s, %),
which has length 2; hence, (3) is violated again. So, both (2) and (3) are false.

o p > p*. In this case, (3.18) simplifies to p* — p < p+ p* < p — p* — 4, which implies that
p >0>-2> p* The only w € WP such that w=! - (u + p’) is dominant is w = (1, s*) which has
length 1; hence, (3) is satisfied.

o p < p*.Inthis case, p* > 0 > —2 > p and the only w € WF that works is (s, 1) which is of length 1.

In all cases, either both (2) and (3) are satisfied, or both are violated. Hence, (2) < (3). O

In the second case (p > p*), one might ask what happens in the degenerate case of p = O and p* = —1.
(So we are violating (2) but keeping p > p*.) This means that u + ¢’ has the shape ((a, a), (b* -1, b%)).
The n component (a, a) is dominant, but one has to make the 77-component (b* — 1, b*) dominant. This
can only be done using s*; however, the reader can easily check that s* - (b* — 1,b%) = (b* — 1, b¥).
In other words, there is no element w such that w="' - (u + u’) is dominant.
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3.2.3. Proof of (2) < (3) for GL,, x GL;
It is most convenient to first understand the case when F is an imaginary quadratic field. Then Zr = {n, 7}
(for a non-canonical choice of  : F — C that is fixed once and for all). As above, we will follow a
notational artifice that all quantities indexed by 77 will be designated with a *. A weight u € X (T,, x C)
may be written as u = {u”7, u"} with 7 = (1 > pp > -+ > py) and p' = (uy =2 5 > -+ > ),
with ,Lti,yj. € Z, and purity implies w = w; + ) ... A weight u” € X;(Ty x C) is simply a pair of

integers u” = {b, b*} with purity weight w’ = b + b*. The weight y + ' is given by
pp = (s gy by B), (W M i b)Y

We are seeking to understand when we can find a Kostant representative w € W¥ which is balanced
(I(w) + I(w?) = dim(Up,) = n) and such that w=! - (u + u’) is a dominant weight. For this, first
identify the Kostant representatives for Py in Go; the simple roots of Mp, are HM,,0 = {e| — ey,
ey —e3, ...,ey_1 —ey}. The Weyl group of Gg is Wi, = S,,41 the symmetric group on n + 1 letters.
We have

wewh — w_l(el —e) >0, W_1(€2—e3) > 0, ...,w_l(en_l —e,) >0

= wl)<w Q) <---<wln).

The elements of W0 and their lengths are listed below:

wT (w e wh) I(w)
S0 =1 0
si:=(n,n+1) 1

sp:=(n-1,n,n+1) 2

Sp—1:=(2,3,...,n+1)|ln—1
sn=(1,2,3,...,n+1)|| n

Note that the (n + 1)-cycle (1,2,...,n+ 1) = (1,2)(2,3)---(n,n + 1) as a product of n simple
transpositions giving its length which applies to the last row and a similar calculation gives all the
other lengths. The Kostant representatives for P are WX = {(w,w") : w,w* € W0}, where
[(w,w*) =1(w) + [ (w*). Hence, the inverses of the balanced Kostant representatives are

{(s0,57)5 (S1,8,_1)s -5 (S0, 850) }-

The twisted action of the Kostant representatives on the weight are given in the table below:

wl (WEWPO) W_l-(#l,#z,-u,ﬂmb)

1 (M1, 2, - - sty b)
(n,n+1) (W1, 12y vy =1, b= L, up + 1)
(n-1,n,n+1) (M1, M2, - 2,6 = 2, oy + L,y + 1) (3.19)

(2,3,...,n+1) (ui,b—n+lLup+1,.. .,y + 1L u,+1)
(,2,3,....,n+ )| (b-nu+1,...,0up—1+1,u,+1)

For the combinatorial lemma (Lemma 3.16), the abelian width is given by

, w-w it —b=b" (i —D)+ (uy_,, —b)
a(p ') = —— = 5 = 5 ;
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and for the cuspidal width, the cuspidal parameters are given by
("_;1), e + ("_;*) e =l - <"2;1>),

* -1 * -3 * -1
ﬁ: (017-~~’an) :(—/,[1 - (nz )7 _#2_%9 ceey _/Jn+ (nz ))’

a= (a,...,ay) =(—u, +

and similarly, @’ = —b, B’ = —b*, from which the cuspidal width is

|t} =+ (n= 1) +b - b"|,
|5 — -1+ (n=3) + b= b7,
{(p, p") = min .

I — 1 — (n=1) +b = b"|

From the shape of a(u, u”) and €(u, u’), it is convenient to introduce the quantities ¢; := u; — b and
C[+(,"k

cj == uj — b*. (These are the p and p* when n = 1.) Then we have a(u, u’) = —4=**, and

*

E(p,p) = min{ [c] —cp+ (n =D, |e3 = cnor + (n=3)], |e, —cr = (n= D] }.

From the dominance of the weights ¢ and u’, we have the inequalities

*

ci—cnt+(n=1) c;—cpo1+(n=3) > - >c,—ci—(n-1).

The proof conveniently breaks into (n + 1) disjoint cases depending on the relative position of 0 in the
above decreasing sequence.

Case0: 0> cj—cp+(n—-1) > ¢;—cpo1+(n=3) > -+ >cp—c1—(n-1),
Case j (1 SjSn—1):cj.—cn_j+1+(n—2j+l)0 > cj.+l—c,,_j+(n—2j—1),

*_

Case n: o

cp+(n=1) 5—cp1+(n=3) > -+ >c,—c1—(n-1)>0.

In Case 0, we have {(u, u’) = —c} + ¢, — (n — 1). Keeping in mind that N = n + 1, the inequalities
in (2) of the lemma read

_(n+1)+1_(—cT+cn—(n—l)) B ci+cn B _(n+1)_1+(—c1‘+cn—(n—1))
2 2 =2 - 2 2

This simplifies to

cl—cp < cj+cp £ —cl+cy—2n-2.
Whence we get
cn 20, ¢j<-n-1.
This is exactly the condition that w=! = (1, s%) under the twisted action makes u + p’ dominant. (See

the last row of (3.19).)
Case n is similar; we have £(u, u’) = ¢}, — ¢ — (n — 1). The inequalities in (2) of the lemma read

_(n+1)+1_(cz—c1—(n—1)) - cr+cl < _(n+1)_1+(c’,‘l—cl—(n—1))
2 2 - 2 - 2 2

This simplifies to

* * *
—-c,+c1 £ cp+cp £ ¢,—c1—2n-2.
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Whence we get

N
220, cp<-n-1

This is exactly the condition that w™! = (s,,, 1*) makes u + 4’ dominant.

Case j breaks up into two sub-cases:

*

Case j1: Ci = Cnojr1 ¥ (n=2j+1)>cp —c’;.+l - (n—-2j-1).
Case j2: ¢ —cp_ju1 +(n=2j+1) <cp_j —cj.ﬂ - (n-2j-1).

*
J

For j1, we have £(u, u’) = c,—j — ¢

T (n —2j — 1) and the inequalities of (2) read

_(n+ 1) N 1_(0,,,]- - C;H —(n-2j-1)) - Cn—j +C;+1
2 2 - 2

, and

Cn—j+cj'+1 < _(n+ 1) 14 (Cn-j _Cju,] -(n=-2j-1))

2 - 2 2
These simplify to
—Cn—j +cj.+1 -2j < cpoy +Cj'+1 < cpj - Cj'+1 —2n+2j-2.
This in turn implies that
Cnj 2 —J, €y < —n+j- L

Next, we see that the defining inequalities of j1 gives in particular that

cj- +cj.+l +2n—4j > cp_j+Cp_jil.
Add ¢, j;1 on both sides of (3.20) to get

Cn—j+l +Cj- +Cj-+1 +2n-4j > Cn—j +2cn—j+],
and applying purity, we can rewrite this as
Cn—j + 2Cj’+1 +2n—4j > cp_j+2cn—j41,
whence
Cnojrl S Chytn=2j < —j—1
Next, add cj. to both sides of (3.20) to get
2cj- + cj.+] +2n—4j > cp_j+cp_ja + cj-,

and applying purity, we can rewrite this as

2%+ ¢, +2n—4) > 2cp_j+

J Jj+l = n-j Jj+1
whence,
cj > Ccpj—n+2j = —n+j.

Putting all this together, we get the following inequalities:

Cn-j2—j, Cpjy1 <—j—1, and c;zj-n, cj+1s—n+]—1.
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For j2, we have €(u, u’) = cj. — Cp—j+1 + (n —2j + 1) and the inequalities of (2) simplifying to
c; >-n+j and cpju <—j- 1
The defining inequalities of j2 may be written as
cj-+c7+1 < Cpoj+Cnojul —2n+4j. (3.21)
Add cj. 41 to both sides of (3.21), apply purity to the right-hand side, and simplify to get
cj+] < -n+j-1.
Next, add c,,—; to both sides of (3.21), apply purity to the left-hand side, and simplify to get
Cn-j 2 —J.
Putting all this together, we see exactly as in Case j1 that
Cn-j 2 =j, Cpju1 <—j—=1, andcj>-n+j, cjy<-n+j-1
Using the table (3.19), we see that

Cnj2~=j, cpjy1 <-j—-1 & s;-(u1,...,HUn, b)is dominant.

ci=2j-n, ¢

. * * * * . .
S+l = s, - (415 My, ") is dominant.

So, in Case j, the required balanced Kostant representative is the inverse of (s, s;_i).

Conversely, if w™! = (s oS j) makes (u + u’) dominant, then we just argue backwards in the above
paragraphs to see that inequalities of (2) are satisfied. Thus far, we have proved (2) <= (3) when F is
imaginary quadratic.

A general totally imaginary field
Now let F be any totally imaginary field. For each v € S,, we have a pair of complex embeddings
{ny, 7y} of F. For any such embedding n, the weight u, has a y-component u"” = (u?, ..., 1) which is
a non-increasing sequence of integers, and similarly, "7 = (b") is just an integer. Define c;? = ;1;.7 -b".
n n

CjtCnjri

The abelian width is given by a(u, u’) = -5, for any j and any 7. For v € S, define £, (u, u")
as the minimum of the absolute values of the following n integers:
c?v —c+(n-1 cz_v —CZX] +(n=-3) > -+ > c,’?v —c?" - (n-1).

Then €(u, u’) = min{¢, (i, u’) : v € Se}. The inequalities of (2) imply that for each v € S, we have

N O (u, 1’
N 6w

, N O (u, 1)
< < - = 3
> > < a(p,p’) < 1+

> 5 (3.22)

Using the same argument as in the imaginary quadratic case, we see that there exists w,, = (w,,,,wj5,) €
W (Poxay X (Poxay €) such that wi' - (w7, p/™), (u, ') is dominant and I(w,,) +[(wy,) = n.
The required balanced Kostant representative then is w = (w,),es.; hence, (3) is satisfied. Con-
versely, if (3) holds, then writing w = (w”7) as w = (w,) with w, = (w,, ,wj;, ), we see that
wil - (@, w'™), (u™, 1’™)) is dominant, and working backwards as in the imaginary quadratic
case, we deduce (3.22) holds for each v, and hence, (2) holds. O
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3.2.4. Proof of (2) < (3) in the general case
First of all, we will prove it in the special case when F is imaginary quadratic (i.e., t = 1).

Parametrizing Kostant representatives

We will need explicit Kostant representatives. Recall that Gy = GLy and Py = Mp,Up, the standard
(n, n")-parabolic subgroup of Gy, where N = n + n’; clearly, dim(Up,) = nn’. Then W, = Sy the
permutation group on N letters, and Wz, = S, X S,. The set of Kostant representatives WP may be
described as

wh = {we Wa, : wl) <---<wl@mandw ' (n+1) <--- <w I (N)}. (3.23)

The set WX is in bijection with the set of all n-tuples x = (ky,...,k,), where | < k; <--- <k, <N.
Any such « corresponds to w, € W¥0, which is uniquely defined by the conditions

wil (1) = ky, ...,wi(n) = ky. (3.24)

If « = (1,2,...,n), then w, is the identity element. There is a self-bijection W0 — W*0 defined by
Wy > Wiy, where

K =N+1-k, < -+ <N+1-ky; K}’.:N+1—k,,_j+1. (3.25)

Let wy = wg, € Wg, denote the element of longest length, which is given by wx (j) = N + 1 — j for
any 1 < j < N; clearly, WZGO = 1. Similarly, w,, and w, are defined, and we have w Mpy = Wn X Wy

Lemma 3.26. With the notations as above, we have

LIw)=(ki=1)+(kr =2)+---+ (k, —n).
2. l(wy) +l(wgv) = nn’ =dim(Up,).
3. Wy = WMp, WiWGo-

Proof. Clearly, [(w,) = [(w;"), and for counting the length of w !, count the number of its shuffles —
that is, count the number of pairs (i, j) with 1 <i < j < N with w;'(i) > w;!(j). But for any such
shuffle, by (3.23), itis clear that ] <i <nandn+1 < j < N. We leave it to the reader to see that for a
fixed i < n, the number of shuffles (i, j) is k; — i. Also, (2) follows from Statement (1) and (3.25). To
see the validity of (3), compute the inverses of both sides onany 1 < j < n:

(WGOWZIWMPO)(]') = (WG()WZI)(n +1- ]) = WGo(kn+l—j) =N+1- kn+l—j = K; = W;‘} (]) O

Twisted action of WP on weights

The usual permutation action of o € S, on an m-tuple is given by o(t1,...,t,) =
(to-1(1ys -+ slg1omy)- If £ := (f1,..., 1), then the twisted action of o~ on ¢ is defined by o - ¢
o(t+p,,) — P,,» which unravels to

O (teeiitm) = (tgry +1=07 (D), tomi) 42 =071 2), oo, Loty +m — 0 (m)).
Now, keeping the combinatorial lemma (Lemma 3.16) in mind, suppose

p=((b1,....bp), (c1o.ncn))s p = (b1, by, (st i),

where each n-tuple or n’-tuple is a non-increasing string of integers satisfying the purity condition
W =Db; +Cpiy1, W = b;. + c;l,_j +1- We are seeking a Kostant representative of optimal length that
‘straightens out’

pu+p = ((br,....bu, by, ..., b)), (Clye s Cpa s Crp))e
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For this, we need the twisted action of w;l on an (n + n’)-tuple like (b4, ..., by, bi, AU b;u)- Given k,
let us define its complement «¢ as the ordered string of integers:

KS =k <o <ky o= {1L2,...,N}\ {ki,ka,... kp}.
It is useful to note that
K = {12 ki =Lk 1, ko= ko4 1, kn=Tkn+1,....N}.
The element w! € W is the permutation that may be written as

1 2 ...nn+1... N
ki ky ... kn kY ..o ky )

and the permutation w, is

1 ... ki—=1 ki ki+1 ... ko—=1 ky ko+1

n+l...n+k;—1 1 n+ky...n+kry—2 2 n+kpy—1...
koot kpaa+1 ook, -1k, ky+1 ... N
.n—1k,1+2... k, n k,+1...NJ|

(The reader should pay some attention to the special cases k; = 1 and k,, = N.) Denoting
(bl""vbn’bi’~"’b;ﬂ) = (dl"'-7dn.7dn+l7-"’dN)a
we have

W;l-(dl,...,dn,dn+1,...,dN) =
(dw,y +1=wi(1), dy,2) +2=wi(2), ... ,dw () +N = wi(N)). (3.27)

Dominance ofvv;l -(dy,...,dnN)
Let us enumerate the inequalities that guarantee dominance of the weight in (3.27):

Proposition 3.28. The weight wi' - (dy, ... ,dn, dps1, . . ., dN) is dominant if and only if the following
conditions are satisfied:

0) Ifky —1>1, then
b;q—l -by = n+k -1

If ky = 1, then there is no such condition.
(1) Ifky = k1 +2, then
()]

[\

bi=by > —n—ki+2,

and
(ii)
b,’(z_z—bz > n+ky—3.

If ko = k| + 1, then there are no such conditions.
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D (1<l <n=1)Ifki1 = ki +2, then
@
b, — b;q+l—l > —n—k;+2I,

and
(ii)
b;cl+1—l—l —biy = n+ky—-20-1.

If ki1 = k; + 1, then there are no such conditions.

n-1) Ifk, = kp—1 +2, then
®
bu_1 - b;c,,,1+2—n >n—ky1-2,
and
(i)

by ,—bn > —n+k,+1.

n—hn

If ky = kn—1 + 1, then there are no such conditions.
(m) Ifk, < N —1, then

’
bn = by 1y = 1~ kn

If k, = N, then there is no such condition.

In the above n + 1 conditions, some of them might be empty; however, not all can be empty.

33

Proof. The tedious argument has the same flavour for each case (1), (2),...(l),...(n—1),(n); as a

representative, let us verify (1). If k, > k; + 2, then looking at the relevant part of w,,

...k] k1+1... k2—1 kz...
.1 }’l+k1 ...n+k2—2 2 ...

we will have two dominance conditions: comparing entries at steps k| and k| + 1 gives
dw, (k) + ki =we(k1) 2 dy, (k41) + ki +1=wie (ki +1),
and similarly, comparing entries at steps k, — 1 and k, gives

Ay, (ko-1) + ko =1 =wy(ka = 1) 2 dy, (k) + ko —wi(k2).

Now, (3.29) unravels to by + k1 — 1 > bl’(1 + 1 — n which is (1)(i), and similarly, (3.30) unravels to
b;(z_z +1—n > by + ky —2 which is (1)(ii). However, if k» = k; + 1, then the corresponding part of the

permutation w, just collapses to
oo ki ky o
o2 00p
and dominance is assured since by > b».
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Proposition 3.31. The weight w;} N (S PO ci, R C;l,) is dominant if and only if the following
conditions are satisfied:

(0¥) IfkY =121, then

b, — b, > n—k,+(N+(w-w)).

kp+l—-n

If k}’ =1, then there is no such condition.
(1Y) Ifky = ki +2, then

()"
b;cn—n —b, 2 —n+k,+1-(N+(w-w")),
and
(i)"
bp1=by oy 2 Nk =2+ (N+(W-Ww)).

If k‘2’ = k‘l’ + 1, then there are no such conditions.

(I') Ifk},, > k) +2, then

()"
by riionsiot — bnotnt 2 knoper =+ (2= 1) = (N + (w = w')),
and
(i)"
bt = by o1y 2 ~knoi+n =21+ (N +(w-w)).
If k;’ﬂ = le + 1, then there are no such conditions.

((n=1)") Ifky, > k,_| +2, then
(0)"

b;<2—2_b2 > n+k2—3—(N+(W—W')),

and

(i)"
by =by, 2 —n—ki+2+(N+(w-w)).

Ifk) = k,‘;_l + 1, then there are no such conditions.
(nY) Ifky, <N -1, then

kot~ bt 2 ntk—1—(N+(w-w)).
If k), = N, then there is no such condition.
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Proof. Apply Proposition 3.28 while replacing

o kjbyk;=N+1—kn+1_j,
o bjbycj=w->bu_j,and
o bibyc=w -b,

n’—j+1°

As an illustrative example, let us make these replacements in case (1) (Z) of Proposition 3.28. Then we get
cl—c;ﬂvz—n—kY+2 =" cl—c}\,+]7kn2—n+kn+l—N,
which may be written as

(W=bp)=(W=b} _)2-n+k,+1-N & b ~by2-n+ky+1-(N+(w-w)),

giving us case (1)Y(¢)". Similarly, all the other cases may be verified. O

Remark 3.32. Let us note the following ‘duality’ relations between the various cases of Proposition 3.28
and Proposition 3.31.

o k=1 k,=N.
(Compare (0)" of Proposition 3.31 with (n) of Proposition 3.28.)
o ky=N < k =1
(Compare (n)" with (0).)
o k}f > k;_l +2 & kpio-j 2 kpr—j+2,for2 < j <n.
(Compare (1)¥(i)¥ with (n — 1) (i) and (1)Y(ii)¥ with (n — 1)(@).)

In this comparison, an inequality of the form b; — b;. > [ in Proposition 3.28 corresponds to
b; - b} > B+ (N + (w—w’)) in Proposition 3.31. Similarly, an inequality of the form b} -b; > Bin
Proposition 3.28 corresponds to b;. —b; = 8- (N + (w—w)) in Proposition 3.31.

The inner structure of the cuspidal width - 1
For the weight u, written as above u = ((b1,...,by), (c1,...,cy)), recall its cuspidal parameters
from (2.8) and (2.9):

_ (n—2i+1 _ n—2i+1)
@ = —b,_ iy + T) Bi = —ci— (T
Similarly, for " = ((b1,...,b},), (cg, ...,Cy,)), we have
ro_ (n'=2j+1) ro_ o (n'=2j+1)
;= =by_j,+—>—, B = ¢ 2 -

Forl <i<nandl < j<n',defined;; :=a;,- B - a;. +,8;.. Applying purity, we have

tij = 2(b), bu—iv1)) + (N+(w—=w"))+-2n"+2(j —i). (3.33)

—j+1 =

These nn’ integers are ordered thus:

51,1 < 51’2 < - < fl,n'
\Y \Y \Y
52’1 < 52,2 < -0 < fg,n/
v v v (3.34)
\Y \Y \Y
fn,l < &1,2 < -0 < gn,n’
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Recall the cuspidal width is defined as
C(u,p’) = min{|6; ;| : 1<i<n, 1<j<n}.

From (3.34), we see that the location of 0 relative to these nn’ integers is important to determine the
cuspidal width.

On how p and ' determine
Consider the j-th column of (3.34). Define £y ; = oo (or a large positive integer), and {41, ; = —00
(or a large negative integer). For each 1 < j < n’, define r; with 0 < r; < n such that

g”fsj

Y
0
\

gr_,-+l,j~

The integer r; defines the location of 0 in the j-th column. For example, if all the £, ; > 0, then r; = n,
and similarly, if all £, ; < O, then r; = 0. Note that

Next, define a string of integers s; by: s; = r; + j — 1; then
O0<s1<sp<---<spy<N-1.
Now define k = k| < --- < k, by

(kiy ook} = {1,2, . NI\ AN = s, N = Sw1s ..., N — 51} (3.35)

The inner structure of the cuspidal width - I1
Suppose there are p strict inequalities in the sequence r; < rp < -+ < rpy; that is, we have

r1:...:rtl < rt[+1:“':r12 < e :rtp <rtp+1:...:rn,'

Let us denote the common values thus:

rW ===y, P ===, PP = == (336)
Note that 1 <t <1 <--- <t, < n’. Define the quantity
0 :=2(p+1)=6(r;,0) = 6(ry,n), (3.37)

where in the last two terms, §(i, j) = 1 ifi = j and 6(i, j) = 0 if i # j. We have the following:
Lemma 3.38. The cuspidal width €(u, u') is the minimum of the set

L = {gr(l),l’ UM, ey gr(z),tl+l’ _gr(2)+l,t2’ €r<!’+1),tp+1’ - r(P+1)+l,n’}

with the understanding that

o if6(r1,0) =1, then r(D =0, and we delete the term frm), | from L, and similarly,
o if6(ry,n) =1, then rP*D) = . and we delete the term = (priyyy,  from L.

The cardinality of the set L is 6.
Proof. This follows from (3.34); the cardinality of L follows from (3.37). O
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The proof of the combinatorial lemma - 1
The proof of (2) <= (3) in Lemma 3.16 for the case of an imaginary quadratic extension follows
from the following:

Proposition 3.39. The following are equivalent:

1. =N+2—-£f(u, ') < (W—=w) < =N -=-2+4+8(u, ).
2. The element w = (Wy, w,v) satisfies w™' - (u+ ') is dominant.

Note that the requirement of the Kostant representative to be balanced is automatically taken care of
by (2), since by Lemma 3.26, (2), we have [(w) = [(wy) + [(w,) = nn’.

Proof. The information contained in the inequalities
“N+2—-0(u, ') < (W=w) £ =N=2+0(u, i)
is clearly equivalent to the set of 26 inequalities
{>2+(N+(w—-w)) and €>2-(N+(w-w")), Vlel. (3.40)

Let us begin the analysis of various cases and consider each of the above inequalities:

o Suppose r; = 0. From (3.35), it follows that r; =0 & k, < N-1 kf > 2. The condition

ry = -+ = r; = 0 (which means the first #{ many columns of (3.34) are negative) implies that
N-t1+1,...,N -1, N are deleted in defining « in (3.35); hence, k,, = N — t;. Now, consider the
term € = =, ()41, 4, = —C1,N-k, € L. From (3.33), we have

—li.N-k, = 2(by — b;cn+l—n) —(N+(w=-w))+2n" —=2(N -k, - 1).
Applying (3.40) to =01 n—k,, gives us
b, -b) >n—k,+(N+(w-w')), and b, -b; > n—k,,

kp+l-n kp+l-n =

which are the same as the bounds in case-(0") of Proposition 3.31 and case-(n) of Proposition 3.28.
o Suppose s = n. From (3.35), it follows that r; =0 &= k| >2 <= k, < N — 1. The condition

Fty4l =+ =Tw =N (which means that in (3.34) the last ¢,-columns are all non-negative) implies
that 1,2,...,N — (n +1,) are deleted in getting « in (3.35); hence, k1 = n’ -, + 1. Now, consider
the term £ = =€, (p+1), o+l = —Cn -k +2 € L. From (3.33), we have

Cnw—kj42 = 2(1)21_1 —b)+(N+(w-=w)) =2k —2n+4.
Applying (3.40) to £, p'—k,+2 gives us
bfq_l -by 2 n+k;—-1, and b;q_l -by > n+ki—-1+(N+(w-w")),

which are exactly the bounds described case-(0) of Proposition 3.28 and case-(n)" of Proposition 3.31.

o Suppose r; > 1. Then the shape of « is of the form
k={ ., N-ri-t;,N=ri+-t1,....N-r,N-r+1,...,N—1,N},
where the @ means that a is deleted from that list. This implies that
kn=N, kp.1=N-1, ..., knps1=N-r1+1, ky_yy =N-r1—t1,...
Hence, we see that

ifl =n—-rithenk;=N—-ri—1t1, kjz1=N—-r1 +1.
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In particular, k;.y — k; = 1+t > 2. Put IY = n — [ + 1. Then, by definition of x", we also have

ky, — k},_, > 2. Note that [Y = n — (n—r;) +1 = r; + 1. Hence, we have kZ1+1 — ky, = 2.Consider

the elements ¢, 1 and —¢, 41, in L. Note that
1 =2(bly = by—pyr1) + (N+(W=wW))=2n"+2(1 —ry).
If we apply (3.40) to £, 1, we get
byy—by_ps1zn"+r1 and by, — by =n"+r—(N+(W-Ww)).

We will leave it to the reader check that these are exactly the inequalities we get from case-(/) (ii) of
Proposition 3.28 and case-(r1)" (i)" of Proposition 3.31. Next, note that

_€r1+l,tl = _2(b/ bn—r]) - (N + (W - W/)) + 2”1, - z(tl —-r - 1)

n’—t+1 -

Apply (3.40) to =&, 41,4, to get

’ ’
bnfrl - bn’—11+1 > —-n +1t —nr
and
bu_r, — b;l,_,lﬂ >-n"+1t—ri+(Nri+(w=w)).

We will leave it to the reader check that these are exactly the inequalities we get from case-(/) (i) of
Proposition 3.28 and case-(r1)"(ii)" of Proposition 3.31. Let us summarize the above three cases as
follows:
1. If r; =0, then (n) and (0Y) hold.
2. If rpy = n, then (0) and (n)" hold.
3. If ry > 1, then (n = r1)(i), (n = ry)(ii), (r{)(@)" and (r})(ii)" hold. (Furthermore, cases (1)
through (r; — 1)V are empty and (n — r; + 1) through (n) are empty.)

o It should be clear now, that for each g with 1 < g < p, using ¢, or (@ as the anchor, we get all the

cases of Proposition 3.28 and Proposition 3.31, and hence, w™" - (i + u’) is dominant.

The entire argument is reversible; that is, if the cases of Proposition 3.28 and Proposition 3.31 hold,
the inequalities in (3.40) are satisfied. This completes the proof of Proposition 3.39. O

The general totally imaginary field

Now if F is any totally imaginary field, then the proof reduces to working with pairs of complex
embeddings (n,,7,) for av € Sy; it is entirely analogous to Section 3.2.3. We will leave the details to
the reader.

3.2.5. The combinatorial lemma at an arithmetic level

All the three statements in Lemma 3.16 work at an arithmetic level. Take u € X;,(7, X E) and
u e X(;'O(Tnf x E), and oy € Cohn (G, u), 0'}. € Cohy(G,, '), and for ¢ : E — C, consider the
statement of the lemma for ‘u, ‘u’, ‘o and ‘o”’; let us add some comments for each of (1), (2) and (3)
of the lemma:

1. From Section 3.1.3, it follows that —% and 1 — % are critical for L(s, ‘o x‘c"V) forany ¢ : E — C.
2. Since u and p’ are strongly-pure, it is easy to see that the abelian width a(‘u, ‘u") and the cuspidal
width €(*u, *u’) are independent of ¢. (See Corollary 3.15.) For the assertion for cuspidal width, the
reader may check from definitions that the £(‘u, ‘u”) is given by taking the minimum of | - 2u,°7 | +
2/‘;'0—;’“ +n—-n"+2j-2i+w—w|overallt: F — E,and allindices 1 <i<n, 1 <j<n'.Ast

varies over Hom(F, E), ¢ o T varies over Hom(F, C), making the above minimum independent of .

https://doi.org/10.1017/fms.2025.48 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.48

Forum of Mathematics, Sigma 39

3. Write w € WS as w = (w7)r.p— . We will say w € WP is balanced if [(w7) + [(wT ) = dim(Up,)
for all T € Hom(F, E) and for all « : E — C; recall that ¢ induces a complex conjugation 7 + T* on
Hom(F, E). (See Remark 3.41 below.)

It should now be clear that (1) & (2) <= (3) of the lemma is independent of ¢ : E — C.

Remark 3.41. Strongly-pure weights u € Xj (7, X E) and " € X3, (T,» X E) being the base-change
from F; (Proposition 2.6), it follows when the conditions of the combinatorial lemma (Lemma 3.16)
hold, that the Kostant representative w = (w”),.p g is also the base-change from F] in the sense that
if 7|F, = 7’|F,, then w7 = w7,

4. Archimedean intertwining operator

As mentioned in the Introduction, typically, in a cohomological approach to the study of the special values
of L-functions, one is confronted with an archimedean subproblem which is taken up in this section. The
problem is to compute the map induced in relative Lie algebra cohomology by the archimedean standard
intertwining operator 7., between two irreducible modules, and show that for optimally chosen bases
for these cohomology groups, this map is essentially scaling by the appropriate ratio of archimedean
L-factors. In 4.1, we go through the GL(2)-calculation which culminates in Proposition 4.20, which is
then used in its generalization in Proposition 4.32, which is the main result of this section. For a first
reading, it is suggested to understand and assume the statements of these two propositions and come
back to their proofs at a later point of time.

4.1. The case of GL,

The calculations in this subsection are in principle the same as in Harder [22, Sect. 3.5], but we need
to go through this exercise to reorganise our thoughts, while using inputs from [27, Chap. 9], so as to
generalize them to GL  in the next subsection. The main result of this subsection is Proposition 4.20.

4.1.1. Explicit cohomology class for GL,

Let u = ((b1, b2), (c1,¢2)) be a pure dominant integral weight for GL,(C) as a real group. Integrality
means by, by, ¢y, cy € Z;dominanceis by > by and ¢ > ¢;; purity means b +c, = by+c, which allows
us to define m := by — by + 1 = ¢; — cp + 1. The cuspidal parameters are (a1, a@z) = (—=by + %, -b, — %
and (B1,82) = (—c1 — % —cy + %) We have the induced representation

1 1 1 1
_ GL,(C) —b2+§ 5=C1—3 —b]—z 5=C2ty
Ju = Inde(C) Z Z ® z Z .

Recall GL,(C) = B,(C)SU(2) with TV := B,(C) N SU(2) ~ SU(1) ~ S!. Let us write ¢'? for an

0
e-if

of SU(2) of dimension k, and y2,,, (¢?) = ¢/?™  then

element of S' which is the element (e(i)g in Tc(l). If (7%, Vi) denotes the irreducible representation

SU(2)

Iy = IndTC(l)

(X2m) = Tom+1 © Toma3 ® - ® Toma2kr1 ® -, 4.1)
since by Frobenius reciprocity, any irreducible representation of SU(2) that appears in J, has to
contain the character y»,, with multiplicity one. Note that 75,,+; is the minimal K-type in the in-
duced representation J,; we denote J, (72,+1) for this minimal K-type as it sits inside the ambient
Ju. Let us next describe (p,, M) restricted to SU(2). We have M4, p,) = Sym?17b2(C2) ® det?
as a representation of GL,(C), where C2 is the standard representation. Hence, p(p, p,)lsu) = Tm-
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Similarly, p (¢, c,)lsu2) = Tm. If g € SU(2), then g = ¢~!; hence, T,, = 7\, = T,,. This implies that
Pulsu@) = Tm ® Tm. Recall Clebsch-Gordon for SU(2): for p > g > 1, we have

Tp®Tqg = Tp—q+l OTp—gi3 @ D Tpig-1. “4.2)
Applying this to p = g = m we get
Pulsu@) = IO O T 4.3)

Denote M, (T2,—1) for the copy of T, as it sits inside M,. Let g, := g1,(C) and £ :=R®u,(C)
be the Lie algebras of the connected real Lie groups GL,(C) and Z,(C)U(2), respectively. Then the
Adjoint-action of SU(2) on g, /¥, is irreducible whose complexification is isomorphic to 3. Further-
more, we have A%(g2/%) ~ A3(g2/%2) ~ 71 and A (g2/F2) ~ A2(g2/%2) ~ 13. We can now describe the
complex HomSU(z)(A‘(gz/fz),J,, ® M,). Apply (4.1) and (4.3) to J, ® M, and then apply (4.2) to
see that the smallest p for which 7, can occur in J,, ® M, is p = 3 and this is realized exactly once as

3 = Tl @ et = T (Tomet) ® My (Tam-1).

Hence, Homgy ) (A*(82/%2), Ju®M,) #0 < e=1,2, and is one-dimensional in these degrees.
Knowing that the differentials for this complex are zero, we deduce that J,, ® M, has nonvanishing
(82, £2)-cohomology only in degrees 1 and 2 and the cohomology group is one-dimensional in these
degrees. Fix a basis [J,,] for

H' (2. 57, ® M) = H'(815(C), Z2(C)U(2); 7, ® M,,) = C[I,]. 4.4)
Now, we express [J,] € Homz,cyu) (1, AT(82/52)* ® Ty (tame1) ® My (Tam-1)), as

[J,u] = ZX;®¢i,a®mm
i,

where {X['} is a basis for (a2/%2)*, and {mg} is a basis for M. (Of course, if mq ¢ My (T2m-1),
then ¢; o = 0.) We call the finite set {¢; o} of vectors in J,, as cohomological vectors. Since H' has
dimension one, a scaling of the basis element [J,,] means jointly scaling this finite set of cohomological
vectors. Furthermore, we contend, via an explicit version of Clebsch—Gordon, that one of the ¢; , is
a highest weight vector of the lowest K-type J, (T2m+1). Call this particular vector as the distinguished
cohomological vector for a given choice of [J,].

4.1.2. The highest weight vector of the lowest K-type in J,

We can explicitly describe such a vector f,,; first of all, since f}, is in the induced representation J,, we
have

1 1 1 1
L “((Z vi)g) = IO | SR ), 4.5)

for all g € GL,(C) and z, w € C*. Next, we note

ia i . .
fﬂ((e e—m)g(e e_,»ﬁ))=e’<2’")“e’<2’")ﬁf,1(g), (4.6)

for all g € GL,(C). The left-equivariance under Tcm is by (4.5), and the right-equivariance under Tfl)
is because of being the highest weight vector in 72,,,41. Finally, f, is completely determined by its values

on SU(2), for which, observe that SU(2) = TLfl) -S0O(2) - TLfl) . For the values of f,, on SO(2), recall that
the weight-vectors of 75,41 maybe enumerated as {f_2, f-2m+2s - - - » f2m—-2 fom }» Where Tc(l) acts on
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fx via the character ¢’P - ¢™*F. So our f, is fom up to a scalar multiple. Let t(6) = (COS(Q) —sin(6) )

sin(@) cos(6) |°
then the weight vectors { -2, f-2m+2, - - - » fam—2 } may be normalized so that

t(0) - fom = cos>™(6) fom + c0s22(6) sin?(0) fom + -+ + Sin®"(0) foom. 4.7)

(Think of the model for 75,41 consisting of homogeneous polynomials of degree 2m in two variables.)
Using the analogue of (4.6) for the other weight vectors, we see that fi (1) = 0if k # 2m. (Here, I is the
2 X 2 identity matrix.) Evaluating (4.7) on I, we get

fu(x(8)) = cos™(8), (4.8)

where we have normalized f,, by f,, (/) = 1. Putting (4.5), (4.6) and (4.8) together, we can write
z * e'P —by+l =—c) —bi-1-—c, 2m i(2m)B
Su w t(0) Bl =2 7w w2 - cos?(0) - e . 4.9)

4.1.3. The cohomology class [J,]o

The compact Lie group SO(2) is the real points of an algebraic group defined over Q, whose Q-points
we denote SO(2)(Q); this consists of all those t(6) such that cos(8), sin(6) € Q. We will scale the
cohomology class [J,], such that the distinguished cohomological vector is rational — that is, takes
rational values on SO(2)(Q); we denote this class by [J,]o. Observe that [J,]o is well defined only up
to homothety by Q. By (4.9), we see that some Q*-multiple of f, is a distinguished cohomological
vector for [J,]o.

4.1.4. The intertwining operator T
Consider the induced representation

1 L1
I, = Indg];(zé?) T TaTy @ PTa ety as Indgz(zg) (x1 () ® x2(w)),

1 1 1 1
where y1(1)(z) = 2727277972 and y»(u)(z) = z 7172 77°*2. The standard intertwining operator

from J, to its ‘companion’ induced representation

GL,(C GL,(C
Ty : Indg 207 O (1) ® x2 () — d2 (5 (o () © xa ()

is given by the integral

rin@ = [ (% o)l i) (4.10)

where du is the Lebesgue measure on C; if u = x + iy then du = dx dy.

Proposition 4.11. Suppose s = —1 and s = 0 are regular points for both L(s, x1(1)x2(n)™") and
L(1 = s, x1(1) "' xa(u)). Then, the representation Indgi‘(zééc) (x1(u) ® x2(u)) is irreducible, and the
standard intertwining operator Ty is an isomorphism.

Proof. Irreducibility follows from [20, Chap. 2, Thm. 3]. The proof of Ty being an isomorphism follows
the same argument as in the proof of [27, Prop. 7.54]. We will elaborate further when we deal with
GLy ; see Proposition 4.28 below. O

4.1.5. The highest weight vector of the lowest K-type on the ‘other side’

Since Ty is an isomorphism of GL, (C)-modules, it maps the minimal SU(2)-type in Ind(y (1) ® x2 (1))
isomorphically onto the minimal SU(2)-type in Ind(y2 (1) ® yi1(u)), and within these SU(2)-types, it
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maps f,,, which is the highest weight vector for Tc(l) described above to a multiple of the highest weight
vector on the other side, which we denote f,. We have the analogues of (4.5) and (4.6) for f;:

3 * - —l —C2+l - 2+l ——(,‘]—l r

fu((Z W)g) = ity prans ~)§(<§:/2f,4(g), (4.12)
([ P _ i(-2m)aiCm)B F
Ju omia|8 Bl =€ e Fu(g) (4.13)

for all g € GLy(C). But, (4.13) also says that f,(I) = O (since m > 1). Let wo = (% }) =
t(—m/2).Then, using (4.7), and evaluating at wo we see (t(6) -f,,)(wo) = cos?™(6) -fﬂ (wo). (The other
summands vanish on wg using the analogue of (4.13).) Hence,

Fu®(8 =7/2)) = fu(wor(6)) = cos™™(8) - fu(wo).
Change 6 +— 6 + 7/2, and noting cos(6 + /2) = —sin(6), we get the analogue of (4.8):
fu(x(6)) = sin®™(0), (4.14)

where we have normalized f,, by fﬂ (wo) = 1. From (4.12), (4.13) and (4.14), we have

i iB .
f,l((z :;)r(@)(e e—iﬁ)) = gzttt sin?m(g) - o/ 2mA. (4.15)

4.1.6. The basic intertwining calculation for GL,
Proposition 4.16.

L0, x1x5")

Tst(fy) ~Qx L(l )(1)(_1 s
’ 2

where, ~gx means equality up to a nonzero rational number.

Proof. 1tis clear that T ( f,,) is a scalar multiple of f,,. To compute that scalar, we evaluate Ty ( f,,) at wo:

o = Lol = Lol

Change to polar coordinates: u = re?. Note that

10\ _ (72 0 \[1 0\(e!?? 0
—ret? 1] ~ 0 €e92f\—r 1]\ 0 ei92)

Hence, applying (4.5) and (4.6), we get

Al - ol e

1 0) (AL =rAY [ A rAS
1) L0 A J\=rASE AL)
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where A, = V1 + 2. Note that A;I,l rA,;l] = t(a) with @ = tan~! (=r). From (4.5) and (4.8), we get
-rA; Af
10 1
fﬂ((_r 1)) = A2m+2'
The integral evaluates to
r dr dae bis
() (o) —/ [ - X @.17)
T H =0 (\/1 +r )2m+2 m

Now, y1x; ' (z) = zz™™, and by (3.3), we have L(s, x1 x5 ") = 2(27)"*"™T'(s+m). The hypothesis
in Proposition 4.11 about s = —1 and s = 0 being critical implies that m > 2.

Hence,
LOxix;")  @eo™ Tim) 2 “18)
L1, x1x;h) (277)‘1"" I'(m+1) m’ )
The proof follows from (4.17) and (4.18). m]

4.1.7. Arithmetic interpretation of the intertwining calculation
Denote the induced representation in the range of Tt as J,, = Ind(y2(u) ® x1(¢)) Now, fix a cohomology
class [J wlo:

H' (82, %:7,© M) = H'(g1,(C), Z2(C)U(2); T, ® M) = C[T,]o. (4.19)

characterised by the property that its distingusihed cohomologlcal vector is rational; hence, up to
Q*-multiples, the vector fﬂ is a cohomological vector for JI Consider the map induced in cohomology
by the operator Ty : J, — I,; at the level of generators, it will map [J,] = Yia X! ® ¢ia ®mgy
oY , X' ® Tst(qﬁi,a) ® mq. Then, in terms of the cohomology classes with rational distinguished
cohomological vectors, Proposition 4.16 may be stated as

Proposition 4.20.

L0, x1x5")

L(l, Yix 2)[;1]0

Ty ( [JH]O) ~Qx

Remark 4.21. Since y1x;'(z) = z”z™, note that L(0, x1x5')/L(1, x1x;") ~gx 7, and similarly,
L(=1, x1¢,")/L(0, x1x;") ~gx 7. We may also state the proposition as

L(_la/\/l)(z_l) =

Tst([J,u]O) QX L(O XIX_l) [J/J]Oa
’ 2

which would be the precise form in which it will generalize to Proposition 4.32.
4.1.8. Rational classes via Delorme’s Lemma

Recall Delorme’s Lemma (see Borel-Wallach [5, Thm. II1.3.3]), which in the current context can be
explicated as

H' (g2, 8237, @ M) =
Ho(g1, 51327271779 @ Mpy-1y(en) ® HO(81,E13 27071772 @ M(pyay(ey)s  (422)
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where g; = gl,(C), f; = su(1), for b, c € Z we abbreviate the character z — z”z¢ simply as z”z¢, and
M by (c) is the algebraic representation zP7¢ of the real group C*. Note that on the right-hand side, in
each factor, we are looking at the relative Lie algebra cohomology for GL;(C) of z7°77¢ & M () (c)
which is nothing but the trivial character! For brevity, denote Hy . = H’(81, 152727 ® M) (¢))-
Parse the isomorphism in Delorme’s Lemma: the map f +— f(12) for f € J, induces an isomorphism
coming from Frobenius reciprocity:

H'(g2,T; " Ind(z7 "' 779 @ 7717 @ M) =
H'(by,tp,; (72 7 @ 70171779 @ M),

where by (resp., fp,) is the real Lie algebra of B,(C) (resp., U(2) N By(C)). The proof of [5, Thm.
II1.3.3] gives that

H' (by, B3 (270 @ 2707172 @ My,) =~
H(ty, By (2702 779 @ 2707 7792) © H (up,, M,)),

where t5, ¥, and up, are the real Lie algebras of the diagonal torus 7> (C) in B, (C), its maximal compact
U(2) N T»(C), and the unipotent radical of B,(C), respectively. To apply Kostant’s theorem (2.24), we
need the Kostant representatives of length 1 for the Borel subgroup in the real reductive group GL;,(C);
if wo = (—01 (1)), then therequired Kostant representatives are w; = (wq, 1) and w, = (1, wq). By direct
calculation, we have

wi-p = (wo, 1) - ((b1,b2), (c1,¢2)) = ((ba = 1,b1+1)(c1,c2)).

Hence, M, ,, as an algebraic irreducible representation for the diagonal torus in GL,(C), is
M (br=1)(c;) ® M(b+1)(cs)» glVing us (4.22) that we rewrite as

. gl ¥_. ~ 0 0
v H (g, 0], 0 M) — H(bz—l,cl) ®H(b1+1,cz)' (4.23)

0
(b,c)

trivial representation. We take for [J,]o, the basis element H Y@, T0;J u ® M,,), such that y; ([J,Jo) =
W(by-1,c1) ® W(by+l,c3)- ~

Now, we work with the cohomology class for the induced module J, in the codomain of 7. Here,
the integral in (4.10) tells us to consider Frobenius reciprocity via the map f +— f(wp), which induces
an isomorphism

Fix a basis w(p,c) for H, which is the rational class corresponding to the cohomology of the

H'(g B 'nd(z P17 @ 7727797 ) @ M) =~
H' (b, 55 (M @ 727797 @ M),

where B is the Borel subgroup of GL,(C) of lower triangular matrices that is opposite to B, (C). In this
situation, we use the Kostant representative w, = (1, wg) to give ourselves the isomosphism

A ag F.T ~ 0 0
Yo+ H (gz’fz’J'u ®M'u) - H(bl,Cz—]) ® H(bz,c1+1)’ (4.24)

We take for [T, ]o, the basis element H' (g2, £; T, ® M), such that ¥y, ([7,]0) = W(by.cr-1) ®W(by.cr41)
It helps to keep the following diagram in mind:
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1 7. " 0 0
H (gz,fz,ﬂﬂ ® Ml-l) —_— H(bz—l,cl) ® H(b1+1,cz)

1 £.7 0 0
H (82,121, ® My) Ywo H(blycz—l) ® H(b2,01+1)
The diagram is not commutative! Proposition 4.20 says that it is commutative up to nonzero rational
numbers and a particular ratio of archimedean L-values. The reader is referred to [27, Sect. 9.6].

4.2. The case of GLy

Now, we generalize Proposition 4.20, or as restated in Remark 4.21, to the case of GLy, giving us the
main result of this subsection in Proposition 4.32.

4.2.1. The induced representations and the standard intertwining operator
Take strongly-pure weights u and u” as in Section 3. Fix an archimedean place v (which we often drop
simply to avoid tedious notation). Consider the induced representation

GL, (C)

oy, =J, = IndBn(C)

(z‘“ZB‘ ®--- ®z"”ZB”), @, Bi € ("5” +Z;
see (2.8) and (2.9) for the cuspidal parameters «; and §;. Abbreviate this as
oy = Ty = g X Xy Wi(z) = 2%

Similarly, we have

_ _ GL,/ (©) [ a} =B, ' 5B (n'-1)
O": = J/A/ = IndBn,(C) (Zalzﬁl ®~--®Zan Zﬁ" )’ a},ﬁ} c nT+Z’

which we abbreviate as
ol = T = WX Xy () = 2 %A
We are interested in the standard intertwining operator

. ay.4GLn~ (C) ay,, 1OLn~ (C) ’
Ty : IndP(n’n/)(C) JuxIpw) — IndP(,,/,n) © Juw (=n) xJ,(n")).

which, in terms of normalized induced representations looks like

G C ’ G C ’
Ty IndP(Lannf> oy B [2) X T (n)2)) —> Indptji) ()C)(J”/(n/Z)xJM(—n /2)). (4.25)

Write
Tu(=n'/2) = Indg S @@ xa),  xi=wi(-n'/2), and

GL,/(C ’ ’ ’ ’
Te(/2) = mdg O (v @ x,),  x)=w(n/2).

Apply transitivity of normalized induction to the representation in the domain of (4.25) to get

GLn () GL, (C) GL, (C) _
Indp ™ (o) (Indsn(m (X1 ® - ® xn) X Indg 7" (x; ®"'®X’/l’)) =

GLy (C , , ) ,
IndBle«(D)(X]®"‘®XH®X1®“'®X”/) =X X XXX X X,
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and, similarly, the induced representation in the target is: x| X - -+ X x;, X x1 X - - - X 5. Hence, (4.25)
takes the shape

T @ X1 XX Xn X Y| XX X = XX X X X X1 X X Xn. (4.26)

For a function f € y1 X -+ X yn X x| X - -+ X x,,, we have the intertwining integral

1, u
Mnxrl’(c) n
where wy is the element of the Weyl group of GL given by the following permutation:
_ 1 2 ...n=-1nn+ln+2...N-1N
YOS \wetwe2  N-IN 1 2 n-1n)

and the measure du on M,x,/ (C) in the integral is taken as the product of the Lebesgue measures on
each coordinate of u.

Proposition 4.28. Assume that the archimedean local factors L(s,J, X J,Vr) and L(1 = 5,7}, X 1,/) are
finite at s = —N /2 and s =1 — N/2. Then

L. the representations x1 X -+ X Yn X Y{ X=X x,, and x| X -+ X x}, X x1 X -+ X xp are irreducible;
and furthermore,

2. the standard intertwining integral Ty in (4.27) converges and gives an isomorphism between these
two irreducible representations.

Proof. The proof follows from the Langlands—Shahidi machinery. For brevity, only for this proof, let
o=J,and o’ =], . Let

1S(s,0®0") = Indg“’v f%((a %) ® (0’ ®||FY)).
The s-variable is introduced using the fundamental weight corresponding to the simple root that is
deleted for the maximal standard parabolic subgroup P, -y whose Levi quotient is the block diagonal

subgroup GL,, X GL,,. Similarly, we let

1§(=s.c®0”) =Indy ™' (o' @ | ¥ @ (r @] 7).
The standard intertwining operator T (s, wo) : Ig (s,0®0") — IS(~s,0®0") is given by the integral
(4.27). Under the hypothesis of the proposition, it follows from Casselman—Shahidi [6, Prop. 5.3] that
the induced representations Ig(—N/Z, T®0’) = )1 X+ X yp X x| XX x;, and Ig (N/2,0®0’) =
X{ XX X, X Y1 X -+ X yp are irreducible. The operator Ty = Ts(~=N/2, wo) being an isomorphism
follows exactly as in the proof of [27, Prop. 7.54]; this part of the proof uses Shahidi’s results on local
constants [46]. O

4.2.2. Factorizing the intertwining operator

For1 <i < N-1,lets; = (i,i + 1) be the i-th simple reflection corresponding to the i-th simple root
a; = e;—e;y1. Its easy to see that a positive root e; —e; (positivity isi < j) is mapped to a negative root by
woifandonlyif 1 <i<nandrn+1 < j < N, and hence /(wg) = nn’. Furthermore, its easy to see that

wo = (Spr...8281) - (SN2 ... SuSn—1)(SN=1 - - - Sns150),

where the right-hand side is grouped into n parenthetical expressions each of which is a product of n’
simple reflections, hence giving a minimal expression of wy in terms of /(w) many simple reflections.
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This gives a factorization
Tq=Ta(wo) = (T(sw)o---0T(sp) oT(s1)) o o (T(sny-1) o---0T(sps1) 0 T(sn)),  (4.29)

which is well known in the Langlands—Shahidi method; see, for example, [47, Thm. 4.2.2] as applied to
our situation.

Example 4.30. To visualise such a factorisation, consider the simple but nontrivial example: take n = 3
and n’ = 2. Then the right-hand side of (4.29) is the sequence of operators:

T(s3) : X1 X2 X X3 X X] X X5 — X1 X)x2XX] X X3 XX}

T(s4) @ x1Xx2X x| X x3Xx; = X1 X X2 X X[ X X5 X X3

T(s2) @ X1 Xx2X)X{XX5X X3 — X1 XX| X X2 X X3 X X3

T(s3) @ X1 XX{XX2XX5X X3 — X1 XX X X5 XX2X X3

T(s1) @ x1 XX]XX5XX2X X3 — X[ X X1 X X3 XX2XX3

T(s2) @ x| XX1XX5XX2X X3 — X[ XX, X X1 X X2 X X3

The point is that at every intermediate stage, there are only two characters y; and )(]’. that are
getting switched. The corresponding integral is happening over the coordinate u;; in the variable
u € My, (C) thatappears in (4.27). The measure du, as mentioned above, is the product of the Lebesgue
measures du; ;. Such an intermediate integral is the induction to GL of a GL;-intertwining integral, and
we have seen that it corresponds to scaling by a factor L« (0, y; /\/}‘1)/ Lo(1, xi X]’.‘l) (up to a nonzero
rational). This implies that 7 will have a scaling factor of the product of all intermediate scaling factors,
towards which note the easy lemma:

Lemma 4.31.

AR e

1—”—[L wOxix) I L5007 La(-%. 0w x0l)

i=1 j=1 Lo (l XiX 3 l) i=1 j=1 Loo(l—%,l//i‘l’}_l) Loo(l_%’o-ooxo-o/:).

4.2.3. The intertwining operator in cohomology
Let # = 70 stand for the underlying (g, x5 )-module of Indgl;’\zg)j) X1® ®xn®)x ® - ®x,),
and similarly, # = # that of Indgf:l[‘ég:) (X]®-+-®x,, ® X1 ® - ® xyn). Rewrite the factorization
in (4.29) as

Ty=T" o---0T?oT', TF:. #¥1' 5 7Ffor1 <k <nn'.

with each #¥ being an irreducible principal series representation, and each T is the induction of a
GL,-intertwining operator as explained. Note that

GLn (C / / GLn (C / ,

Indg 1@ @ xa @ x| @@ x,) ="Indy V(61 @ @& @ @ @),
where & = /\(l(N 2”1) = zpi(#) and & (w) =y (" 2’+]) are all algebraic
characters of C*X. Similarly, each £¥ is the algebraic parabolic induction of an algebraic character of
the diagonal torus. Delorme’s lemma identifies the one-dimensional cohomology group H?~ (gn, fx;

JF* ® M,) as a tensor product of the GL; cohomology groups for the &;’s and 5;.’5; as in (4.23), but
simplifying notations, we have

Vi HN (an.tn: 75X ®@ M) — (product of GL; cohomology groups).

This product of GL;-cohomology groups may be identified with each other for 1 < k < nn’. Fixing
a rational basis wp ) for each of the GL-classes and so for their tensor product, we define a basis

element [ 7¥]o for HPN (gn, En: F5 ® M) via vl
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We start with 7! : #° — #! and note that this is the induction from (n — 1,2,n’ — 1)-parabolic
subgroup of GLy of the GL,-intertwining operator that switches x, and y/. Proposition 4.20 applied

to T! gives
L0, xnx;™")
T ([FN0) ~ox ————I[S"o-
@ Loxax| D
At the next step, from the factorisation in (4.29), we will get
. L0, xnx;™")
(1) (L7 o) 217,

& L)
and so on. Using Lemma 4.3 1, Proposition 4.20 generalizes to the following:

Proposition 4.32.

Lm(—%,o'ooxo';‘,’) -

Slo-

T([Flo) ~ox

N
Loo(l - 7,0’00 XO'O’X

The reader is referred to Harder [25] where a hope is expressed in general, and verified in the context
therein, that the rational number implicit in ~g~ has a simple shape. See (4.17) and (4.18) above in the
simplest possible case of n = n’ = 1.

5. The main theorem on special values of L-functions for GL, x GL,;

Before the main theorem on L-values (Theorem 5.16) can be stated and proved, two technical results on
the boundary cohomology are necessary; the first is what is known as a ‘Manin—Drinfeld’ principle and
the second is on rank-one Eisenstein cohomology.

5.1. A Manin-Drinfeld Principle

The main purpose of this subsection is to state and prove Theorem 5.5.

5.1.1. Kostant representatives

To begin, two important lemmas about Kostant representatives from [27, Sect. 5.3.2] are recorded
below. Recall that P = Resg/q(Po) and Py = P, ) is the maximal parabolic subgroup of type
(n,n") of Go = GLN/F. Let Qg = P,y ») be the associate parabolic, and O = Resg/g(Qo). Let
My, = Mg, — {ap,}. Let wp, be the unique element of Wy = W, such that wp, (ILy,, ) € Ilg, and
wp,(ap,) < 0, it is the longest Kostant representative for W¥o.

Lemma 5.1. With notations as above, one has

1. The map w — w’ := wpw gives a bijection WF' — WC. If w = (W')r.r—E, then by definition,
wpw = (Wp,W)rFE-

2. This bijection has the property that [(w™) + [(w'") = dim (Up;).

3. wis balanced if and only if w’ is balanced.
Similarly, there is the following self-bijection of W

Lemma 5.2. Let wg be the element of longest length in the Weyl group W¢ of G, and similarly, let wy,,
be the element of longest length in the Weyl group Wyy,,. Then

1. The map w +— w" := way,, - w - wg gives a bijection WE — WP,

2. This bijection has the property that [(wT) + [(w'") = dim (UPOT).

3. wis balanced if and only if w" is balanced.
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5.1.2. Induced representations in boundary cohomology

The conditions imposed by the combinatorial lemma (Lemma 3.16) have a consequence on the
occurrences of induced representations as Hecke summands in the boundary cohomology. Recall that
E is a large enough Galois extension of Q that takes a copy of F. Consider strongly-pure weights
u € Xy (Ty X E) and u” € X5 (T,y X E). Let oy € Cohy (G, 1) and o-ji € Cohy (G, 1’) be strongly-
inner Hecke-summands. The effect of the related balanced representatives: w’, w¥ and w"’ on certain
weights are recorded in the following:

Proposition 5.3. Assume that the weights y and ' satisfy the conditions of the combinatorial lemma
(Lemma 3.16). Hence, there is a balanced element w € W¥ such that A := w™' - (u + ') is dominant.
Then (after recalling the notations in Section 2.4.1),

1. w A=W —ndy)+(u+nd,),
2. wY - AY = (u = n'dy) + (0 +ndy), and
30wy A =+

For a proof of the above proposition, the reader is referred to [27, Sect. 5.3.4]. The appearance
of various induced modules in boundary cohomology in bottom and top degrees are recorded in the
following:

Proposition 5.4. Let the notations be as above.

1. The module aIndg((ﬁ;c)) (of x O’}) appears in H¥% (9pS©, ./’\‘/l’,l,E),

where qp, = bY, = bY + bF, + 1 dim(Up).

G(A , , . —
2. The module aIndggA;; (O'f (n) x op (=n")) appears in H% (6QSG, MaEg).

The contragredient of the algebraically-induced modules is

G(A) ’ G(A) v ’ 4
aIndP(A;)(O'f ><0'f)" = aIndP(A;)(O_f (n") XO'fV(—n))-

Furthermore, for the contragredients and cohomology in top-degree, we have

G(Ar) . G \f

3) aIndP(Af) (0'}’ (n") x O'J’,"(—n)) appears in H¥ (0pS”, My k),
where q; = tlf, 1=+ tf, + % dim(Up).

a G(Ay)
(4) ?Ind 0(hy)

Proof. For (1), use the summand in Proposition 2.25 indexed by the balanced Kostant representative
w € WP provided by Lemma 3.16. For (2), use w’ € W2 from Lemma 5.1, and then use (1) of
Proposition 5.3. For (3), use w¥ € WP from Lemma 5.2, and then use (2) of Proposition 5.3. For (4),
use w¥’ € W€ from Lemma 5.1 and 5.2, and (3) of Proposition 5.3. The assertions of the cohomology
degrees is clear from Proposition 2.15 and 2.16. O

(0'}V X O’}’) appears in H% (9pS°, /’\‘/l’,,v,E)_

5.1.3. The Manin-Drinfeld principle

Continue with the notations u € X3,(T, X E), u" € X5 (T X E), oy € Cohy(Gy, ), and o-J’, €
Cohy (G, u’). Assume that u and u’ satisfy the conditions of the combinatorial lemma (Lemma 3.16),
andletd = w™!-(u+pu’). Let K s be an open-compact subgroup of G (A 1) such that aIndg((ﬁ)’:)) (oy xo'} )
has nonzero K -fixed vectors; suppose k is the dimension of these K -fixed vectors. Let

G(Ayr)

Ky
P(Af) ’

I(of,0f)pw = “Ind (Hb"f*bf' (SM?, Miy.2) (op X lf}))
and similarly, define

G(Ar)

’ ’ a A ’ ’ Ky
I,f(crf (n), o (=n"))o,w = IndQ(Af)(Hb5+b5(SMQ,er./z)(ch (n) X oy (-n ))) .
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Now, go to ‘top-degree’ for the contragredient modules and define

G(Ay)

Ky
P(Ayr) ’

(0 (), o (=m)pwr 1= “Ind 0 (H 0 (SMP, Mo ) (07 () x o (<))

and similarly, define

G(Ar)

F o F — , Ky
Gl [ (Mo, My ) (ot x )

I,S (o, o-} Jo,wv = “Ind

Theorem 5.5. Let the notations be as above.

1. The sum
I[S,(o-f B 0-} )P,w 5] I[S,(o-} (}’l), agf (_n/))Q,w'

is a 2k-dimensional E-vector space that is isotypic in H1® ((98Gf M A.E). Note that if Q = P, then

w’ # w. Furthermore, there is a HY"S-equivariant projection

Re qu(aSGf,M/l,E) — Iﬁ(af,a})p,w @12(0'}(’1)907(—”’))Q,w"

A
2. Similarly, in ‘top-degree’, the sum
(@ (1), ] (=m)pwe ® 10,08

is a 2k-dimensional E-vector space that is isotypic in H% (88Gf , /F\/lv/lv,E). Note that if Q = P, then

wY’ £ w'. Furthermore, there is a H%S-equivariant projection

R, o o HUOSE Mug) — Lo} n).0f (-m)pae @ Lo 0F o
The above theorem is the exact analogue of [27, Thm. 5.12], and the proof is identical. To help the
reader, the two key-ideas are adumbrated as follows:

o There is a spectral sequence — built from the cohomology of various boundary strata xS, as R
runs over G (Q)-conjugacy classes of parabolic subgroups of G — that converges to the boundary
cohomology H*(dS®, -). This spectral sequence was alluded to in Section 2.6 and is discussed in
greater detail in [27, Sect. 4.1]. The basic idea here is that up to semi-simplification the cohomology
of the boundary is built from parabolically induced representations.

o Recall the strong multiplicity one theorem of Jacquet and Shalika for isobaric automorphic repre-
sentations [32, Thm. 4.4]. The two induced modules in 12 (of, o-} )p.w and 12 (o-j} (n),0¢ (=n"))o,w
are themselves, of course, H%S-equivalent, and more importantly, after applying Jacquet—Shalika,
they are not almost-everywhere equivalent to any other induced module anywhere else in boundary
cohomology; see [27, Sect. 5.3.3] for more details.

5.2. Eisenstein cohomology

All the statements in [27, Chap. 6] go through mutatis mutandis in the current situation. Therefore, the
discussion below is very brief and just enough details are provided for this article to be reasonably self-
contained, and to be able to state the main theorem on rank-one Eisenstein cohomology in Theorem 5.6
below.
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5.2.1. Poincaré duality and consequences
The Poincaré duality pairings on S/ G and 0S¢ G are compatible with the maps in the long exact sequence

in Section 2.1:

H* (S, Myp) x HE*(SZ . Mak) — E
: fT
H* (9SG, M) X HY7 (088, M) — E

Here, dim(ng) = bk +1k, = d;and so dim(asgf) =d-1=qp+q;. A consequence of the above
diagram is that Eisenstein cohomology, defined as

HEL (0SE Maug) = Image(H"(SK Mag) — Hq(O"SG.,MA E) |,

is a maximal isotropic subspace of boundary cohomology; that is,

HE (0SE . Myg) = Hy ™08, Mup)*.

5.2.2. Main result on rank-one Eisenstein cohomology
With notations as in Section 5.1.3, consider the following maps starting from global cohomology
H (S Gf , M g) and ending with an isotypic component in boundary cohomology:

HO (SE , Mup)

|

HY (95, . Mae)

we
it

(@0 paw ® I3 (). (=)o,

Recall from Theorem 5.5 that I} (o7, Tl )pw @ Is(cr (n),0f(-n"))g,w is a E-vector space of di-
mension 2k. In the self—assoc1ate case, replace Q by P The proof of the main result on Eisenstein
cohomology stated below also needs the analogue of the above maps for cohomology in degree g, for
the coeflicient system M v g

Theorem 5.6. For brevity, let

Hqt

3oy 0p) = R o (HEOSE Map), S(op,00)" = R, (H,

0'[0'

(331% M k).

1. In the non-self-associate cases (n # n’), we have
(a) IP (or, o" ) is an E-subspace of dimension k.
(b) I (oy, oy )" is an E-subspace of dimension k.
2. In the self- assoczate case (n = n’), the same assertions hold by putting Q = P.

It helps to have a mental picture of when k = 1 (i.e., then b (or, o-;.) is a line in the ambient two-

dimensional space IZ(O'f , o-ji )p.w @ 12(0'} (n), 07 (=n"))o,w); as will be seen later, the ‘slope’ of this
line contains arithmetic information about Z-values.
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A very brief sketch of proof. The proof works exactly as explained in [27, Sect. 6.2.2], and involves two
basic steps:

(i) The first step is to show that both Sb(af , 0'}) and 3’ (o7, o-} )" have dimension at least k; this is
achieved by going to a transcendental level and appealing to Langlands’s constant term theorem and
producing enough cohomology classes in the image. The essential features are reviewed in Section
5.2.3 below, and for more details, the reader is referred to [27, Sect. 6.3.7].

(ii) The second step, after invoking properties of the Poincaré duality pairing reviewed above, is to
show that both 3 (of, 0'}) and I (o, 0'} )Y have dimension exactly k. This step works exactly as
in [27, Sect. 6.2.2.2].

5.2.3. L-values and rank-one Eisenstein cohomology
The key ingredient in the main theorem on the rationality of these L-values is the role played by the
L-values in the above result on rank-one Eisenstein cohomology.

Induced representations

Let o (resp., o) be a cuspidal automorphic representation of G, (A) (resp., G, (A)). The relation
with the previous ‘arithmetic’ notation is that given oy € Cohn (G, u) and given ¢ : E — C, think
of ‘oy to be the finite part of a cuspidal automorphic representation ‘o, etc. The ¢ is fixed and it is
suppressed until otherwise mentioned. Consider the induced representation / g (s, 0 ® 0’) consisting of
all smooth functions f : G(A) — V4, ® V- such that

Flmug) = |8p|(m)26p|(m)¥ (o ® o) (m) £(). (5.7

forallm € Mp(A),u € Up(A) and g € G(A); where V,, (resp., V) is the subspace inside the space
of cusp forms on G,(A) (resp., G,/ (A)) realizing the representation o (resp., o). In other words,
Ig(s, oc®o’) = Indgéﬁ))((a' ® | |"ﬁl5) ® (0’ ®||7*)), where Indg denotes the normalized parabolic
induction. In terms of algebraic or un-normalized induction, we have

1S(s,000") = aIndgég((a RI¥*T)® (o' ® |75 1)). (5.8)

Specifically, note the point of evaluation so = —N [2:

G(A)
P(A)

G(A)

a
Ind 0(4)

(c®0') = IF(5,0 @ 0")ls=—ny2, “Indg ) (07 (n) ®@ o (=n')) = I5(5,0" ® T)|s=n 2-

The finite parts of the induced representations appear in boundary cohomology.
Standard intertwining operators

There is an element wp € W, the Weyl group of G, which is uniquely determined by the property
wp(llg — {ap}) C g and wp(ap) < 0. If we write wp = (wITJO)T;FHE, then for each 7, as a

permutation matrix in GLy, we have w;o = [ L, L ] .The parabolic subgroup Q, which is associate to
n

P, corresponds towp (Il —{ap}). Since w}o‘l diag(h, h’) W;O = diag(h’, h) for all diag(h, h’) € Mp,
we get wp(o ® 0’) = 0’ ® o as arepresentation of Mo (A). The global standard intertwining operator

TSfQ(s, oo IS(s,c00) — Ig(—s, o' ®0)

is given by the integral

16 re e = [

f(wp ug)du. (5.9)
Ug (A) -
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See 5.2.3 for the choice of measure du. Abbreviate TSfQ (s,000") as Ty (s, o0 ®0"’). The global standard
intertwining operator factorizes as a product of local standard intertwining operators: Ty (s, 0 ® o’) =
®, Ty (s, 0y ® 0, ), where the local operator is given by a similar local integral. (At an archimedean place,
the effect of this operator in relative Lie algebra cohomology has already been described in Section 4.)

Eisenstein series
Let f € If,(s,a x o’), for g € G(A) the value f(g) is a cusp form on Mp(A). By the defining
equivariance property of f, the complex number f(g)(m) determines and is determined by f(mg)(1)

for any m € Mp(A). Henceforth, f € Ig (s, 0 x o) will be identified with the complex valued function
g f (g) (1); that is, one has embedded

1850 x07) = C(Up(AMp(Q\G(4), ) € €(P@\G(A),03)),
where wZ! is a simplified notation for the central character of o ® o’ restricted to S(R)°. If op €
Coh(G,, u), a-;. € Coh(Gy u’) and ¢ : E — C, then w is the product of the central characters

WM., WM, Testricted to S(R)°. Given f € Ig(s, o X g’), thought of as a function on P(Q)\G (A),
define the corresponding Eisenstein series Eisp (s, f) € C*(G(Q)\G(A), w;,') by the usual averaging

over P(Q\G(Q),

Bisp(s,f)(g) = >, f(rg), (5.10)
YEP(Q\G(Q

which is convergent if R (s) > 0 and has meromorphic continuation to the entire complex plane. This
provides an intertwining operator

Bisp(s,0 x0”) : I§(s,0x0") — C*(GQ\G(4), w3 );

denote Eisp (s, 0-xo™") (f) simply as Eisp (s, f). To construct a map in cohomology, one needs to evaluate
at s = —N /2, begging the question whether the Eisenstein series is holomorphic at s = —N /2. For this,
it is well known that one has to show that the constant term of the Eisenstein series is holomorphic at
s=-N/2.

The constant term map
For the parabolic subgroup Q, the constant term map, denoted 72 : C*(G(Q)\G(A),wZ) —
C*(Mo(QUo(A)\G(A), w), is given by

o= [ swgd (5.11)
Up (Q\Ug (A)

The choice of the global measure du

In the integrals defining the intertwining operator (5.9) and the constant term map (5.11), the choice
of measure du on Ug(A) needs to be fixed, where Ug = Resg/q(Ug,) is the unipotent radical of the
maximal parabolic subgroup Q; recall that Q is the standard maximal parabolic subgroup of GL(N)
corresponding to N = n’ +n. To begin, take the global measure “du on Up(A) = Ug,(AF) as a product
over the coordinates of Ug, of the additive measure dx on Ag, which in turn is a product [, dx, of
local additive measures dx,, on F;; for a finite place v normalise dx, by vol(O,) = 1, where O, is the
ring of integers of F,, and for an archimedean v take dx, as the Lebesgue measure on C. The notation
Ldu is to suggest that this measure is well suited for the purposes of the analytic theory of L-functions.
For the constant term map (5.1 1) to correspond to the restriction map in cohomology, the global measure
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should be normalized by asking vol(Ug, (F)\Ug,(AFr)) = 1; see Borel [3, Sect. 6]. Hence, consider
the global measure on U (A) = Ug, (AF):

d . 1 L

u =

_ du.
= Vol (Ug,(F)\Ug, (AF)) “

Of course, volr, (Ug,(F)\Ug,(AF)) = Voldl(F\AF)dim(UQo) = voldi(F\AF)""'. Recall some clas-
sical algebraic number theory (see Tate [50, Sect. 4.1]) for the volume of F\ A . For the measure dx on
A, the volume of a fundamental domain for the action of F on Ar is [6Fq| 172 1f the set Hom(F, C)
of complex embeddings of F is enumerated as, say, {07, ...,0q, }, and suppose {wi,...,wq, } is a
Q-basis of F, then the absolute discriminant of F is defined as 6 /g = det[oy(w)] 2. The square root of
the absolute value of the discriminant, |6 g 1/2 a5 an element of R* /Q%, is independent of the enumer-
ation and the choice of basis. For the main theorem on L-values, the choice of measure can be changed
by a nonzero rational number, which will still give the same rationality results and the reciprocity laws
as in Theorem 5.16. Define the global measure on Ug (A) = Ug,(AF) as

nn’
du = |6pgl” 2 du. (5.12)

Theorem of Langlands on the constant term of an Eisenstein series
Theorem 5.13 (Langlands). Let f € IS (s, 0 X 0/).

1. In the non-self-associate cases (n # n’), one hasFC o Eisp(s, f) = Ty(s, o x ') (f).
2. In the self-associate cases (n = n’ and P = Q), one has F¥ o Eisp(s, f) = f+Tu(s,0 X ) (f).

Suppose f = ®, f, is a pure tensor in /§ (s, c®c’), and for v ¢ S, suppose f,, = f is the normalized
spherical vector (normalized to take the value 1 on the identity), and similarly, fg is such a vector in
the v-th component of IS(—S, o’ ® o). Then from [47, Thm. 6.3.1], we have the fundamental analytic
identity

nTn’ LS(s, 0 x ")

LS(S tlox O"V) ®y¢s f\? ®ves Tsl(ss oy ® U\:)fv- (5.14)

FC(Bisp (s, f) = 16F/al”

The proof of the main theorem on the arithmetic of special values of L(s, o X o’) comes from seeing
the contribution of this identity in cohomology.

Holomorphy of the Eisenstein series at the point of evaluation

Given weights u € X3,(T, x E) and p’ € X, (T,y X E) and strongly-inner Hecke-summands
or € Cohy(Gp, p) and a'} € Cohy (G, '), recall then that ‘o and ‘o’ are cuspidal automorphic
representations of G, (A) = GL, (Ar) and G, (A) = GL,/(Ap) for any ¢ : E — C. The pair (u, u’) of
weights is said to be on the right of the unitary axis if the abelian width is bounded above by the point
of evaluation:

a(p,p’) < =N/2.
To explain the terminology, it is clear from the definition of the cuspidal parameters (2.8), (2.9), and the
archimedean representation (2.10) that ‘o = ‘o, ® | |[™"/? for a unitary cuspidal representation ‘o,;

similarly, ‘o’ = ‘o, ® | |™/2. Hence, we have

L(s,ocx‘c") = L(s—a(u, p'), oy x"'o)).
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Now, suppose (u, 1”) is on the right of the unitary axis. Then for the L-value in the denominator of the

right-hand side of (5.14) at the point of evaluation s = —%, we have

LS(-Y+1,'ox'0™) = L5(1 - & —a(u, 1), ‘ou x ‘o)) # 0,
since 1 — % —a(u, p’) > 1, by a nonvanishing result for Rankin—Selberg L-functions recalled in [27,
Thm. 7.1, (4)]. Of course, the nonvanishing of this L-value, the holomorphy of the Eisenstein series

Eisp(s, f) or of its constant term are all intimately linked. We have the following well-known result
([39] and [28, Chap. IV §5]).

Theorem 5.15. Suppose we are given weights u € X5, (T, X E) and ' € X;,(T,y X E), strongly-inner
Hecke-summands oy € Cohy (G, ) and 0';. € Cohy (G, '), andant : E — C. Assume that (u, i)
is on the right of the unitary axis. Then Eisp (s, f) is holomorphic at s = —N /2, unless we are in the
exceptional case n =n’ and ‘o’ = ‘o @ | |77 L.

The poles on the right of the unitary axis are simple and contribute to the residual spectrum
[28], and then the assertion follows from [39]. The exceptional case exactly corresponds to when the
numerator of of the right-hand side of (5.14) at the point of evaluation is a pole at 1, that is, when
L(—% —a(p, '), ‘o, x ‘o) is apole at 1, which is possible only when n = n’ and ‘o’ = ‘o ® | |7
To parse this further: If ‘o’ = ‘o ® || |" for any integer r, then u’ = u — r. Then the cuspidal parameters
for u” and u are related thus: " = @} +r, B;” = B! +r; hence, the cuspidal width £(u,u’) = 0.
For the main theorem on L-values, we will assume the conditions imposed by the combinatorial lemma
(Lemma 3.16), and in particular, we will have £(u, u’) > 2 to guarantee at least two critical values.
Hence, the exceptional case will not be relevant to us.

5.3. The main theorem on L-values

5.3.1. Statement of the main theorem
Theorem 5.16. Let n and n’ be two positive integers. Let F be a totally imaginary field, and E a finite
Galois extension of Q that contains a copy of F. Consider strongly-pure weights u € Xg (T, X E)
and ' € X5o(Ty X E). Let oy € Cohy(Gy,p) and 0'} € Cohy (G, u") be strongly-inner Hecke-
summands, and assume that E is large enough to contain all the Hecke-eigenvalues for oy and 0'} . Let
t: E — C be an embedding. Recall then that ‘o and ‘o’ are cuspidal automorphic representations of
G,(A) =GL,(AF) and G,v(A) = GL,y (AFR), respectively. Put N =n+n’'.

Suppose that m € % +Z is such that both m and 1 + m are critical for the Rankin—Selberg L-function
L(s,'ox‘'o").

1. Iffor some v, L(1+m,'0c x‘'c”) =0, then 1 + m —a(u,u’) = % and
L(l+m,'ocx'c”) = L(%7L0-M ‘o) =0

is the central critical value. Furthermore, L(1 + m,‘'c X ‘c’") = 0 for every t.
2. Assume F is in the CM-case. Suppose that L(1 +m, ‘o X ‘0”) # 0. Then we have
n/

_n' o L(m, o x‘ta”)
loF/al™ 2

L(1+m,toxta”)

€ ((E).

Since L(m,'c X ‘c”) = L(-N/2,'0c(N/2 + m) X *a”), the pair (u — N/2 — m, u") of weights
satisfies Lemma 3.16 giving a balanced Kostant representative w € WP, Letw’ € W2 be determined
by Lemma 5. 1. Furthermore, for any y € Gal(Q/Q), we have

s Lo ‘o x ") s m L x )
2 = & &, . 2 .
Y|10F /0l L +m o xio ww(Y) - &0w (¥) - 10F 0l L+ m. 7o X707
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3. Assume F is in the TR-case. Then nn' is even. Suppose that L(1 + m, ‘o X ‘a’V) # 0. Then we have

L(m,'o x'ac”)

€ (E).
L(l+m,toxtoh) «(E)
Furthermore, for any y € Gal(Q/Q), we have
L(m, LO.XLO_IV) ~ L(m’yoto_xyoto_lv)
L(1+m,toxto”)]  L(1+m, 7o x7°tah)’

As mentioned in the introduction, statement (1) is originally due to Mceglin [38, Sect. 5]; our proof
below is independent of [38]. More generally, the assertion on the vanishing of the central critical value
is a special case of Deligne’s conjecture [8, Conj. 2.7, (ii)] based on a suggestion of Benedict Gross that
the order of vanishing at a critical point is independent of the embedding ¢.

5.3.2. Proof of the main theorem
Finiteness of the relevant L-values

The paragraph after Theorem 5.15 says that if L(s, ‘o ® X‘c’") has a pole at m € % + Z, then the
cuspidal width €(u, u’) = 0; a situation which is ruled out by the hypothesis that requires two critical
points. Hence, all the L-values under consideration are finite — a fact that will be used without further
comment.

It suffices to prove Theorem 5.16 for the point of evaluation m = —N [2

If the theorem is known for the critical points s = —% and 1 — % and for all possible u, u’, o¢, 0%,
then one can deduce the theorem for any pair of successive critical points m, m+1 fora given oy and o’,..
This follows from using Tate-twists (Section 2.4.1) and the combinatorial lemma (Lemma 3.16). Take
any integer r and replace u by u—rd, and oy by oy (r). Note that ‘ (o¢ (r)) = ‘o ®| |”. The condition
tha —% and 1 - % are critical for L(s, ‘o ®| |" X‘c”) = L(s+r,'c® x‘'c""), after the combinatorial
lemma, bounds the abelian width a(u —rd,,, u’) by the cuspidal width £(u —rd,,, u’) as in (2) of Lemma
3.16. Now, the crucial point is that, whereas for the abelian width one has a(u —rd,, ') = a(u, ') —r,
but for the cuspidal width one has independence of r in as much as €(u — rd,, u’) = €(u, u’). This
bounds the possible twisting integers r above and below as

N 7’ 7
N C(p, 1) Cauy) < -1 < _ﬂ_Hl’(ﬂ,ﬂ)

< s -3 > —a(p, p1').

As r ranges over this set, using the critical set described in Proposition 3.12, one sees that

L(—%, to(r)yx ‘o) L(r - %, Lo xta”)

L(1 -5, to(r) x o) O L(r+1- .o xtom)

runs over the set of all successive pairs of critical points; no more and no less! The number of possible
ris€(u, u”) — 1, which is exactly the number of pairs of successive critical points.

Being on the right versus on the left of the unitary axis
Suppose that (u, u’) is on the right of the unitary axis: a(u, u’) < —%. Then (1) is vacuously true

since L(1 — %, tox o) = L(1 - % —a(p,pu’), oy X ‘o)) # 0 by a well-known nonvanishing

result for Rankin—Selberg L-functions as already mentioned before. Next, recall that the Eisenstein
series Eisp(s, f) is holomorphic at s = —%, and at this point of evaluation, (2) and (3) will be
proved below. Granting this, suppose, on the other hand, that (u,u’) is on the left of the unitary

axis; that is, a(u, u’) > —%. Then, a(u’, u) < %; that is, (u’, u) is on the right of the unitary axis

for the point of evaluation is %, so we get the holomorphy of Eisg(s, f) at s = % and whence
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statement (2) for L(s, ‘o’ x ‘oV) and for s = % And as above, (1) is in fact vacuously true because
L(1+ %, to' xtoY)=L(1+ % —a(y’,p), o, x o)) # 0. Statement (2) for this situation says

nn' L(%’LO_IXLO_V)

6/ 2
PRL T T+ N o x o)

€ L(E),

where the L-value in the denominator is not zero. Suppose the L-value in the numerator is 0 (which

can happen in the special case % —a(u',p) = %). Then the Galois equivariance in (2) implies that

L %, to’ x taV) = 0 for every t. Applying the functional equation ([27, (3), Thm. 7.1]) to the above

ratio of L-values, we get

n 8(%, Lo’ X toY) L(1- %, Lo x o)

n
0r sl % - -
/e s(l+%,‘o"x‘o"’) L(-X g xtam)

€ ((E).

For brevity, let 7 := ‘o’ X ‘oV. The global epsilon-factor is a product of local factors as &(s,7) =
[T, e(s, 7y, ¥y), where we have fixed an additive character v : F\Ar — C*. (See, for example,
[47, Sect. 10.1].) At a non-archimedean place v, the local factor has the form &(s,7,,¥,) =
W(ty)gq\ /29 m)teWn)) yhere W(t,) is the local root number, g, the cardinality of the residue
field of F,,, and ¢(t,) and c(y,)) are integers defined to be the conductoral exponents of the respective
data; it follows that (N /2, 1,,,¥,)/e(1 + N/2,7,,4,) is an integral power of ¢,. At an archimedean
place, it follows from [35, (4.7)] that the local factor is a constant, and hence the ratio is 1. Whence,
e(%, to' xtaY)/e(1 + %, to’ x taV) is a nonzero integer, from which it follows that

nn’ L(1 - %, Lo xta’)

Spiol” 2
16F /ol LE o x o)

e WE). (5.17)

From the functional equation, it is clear that L(1 — %, loxto) =0 L(%, Lo’ xtaY) =0,
proving (1) when (u, u’) is on the left of the unitary axis. If L(1 — %, to x to’) # 0, then taking
reciprocal of the ratio on the left-hand side of (5.17), (2) will follow when (u, u”) is on the left of the
unitary axis. (See also [27, Sect. 7.3.2.5] for a slightly different way to argue this point if (u, u”) is on
the left of the unitary axis.) The discussion is the same for (3).

Proof of the rationality result

After the above reductions, it suffices to prove (2) and (3) of Theorem 5.16 when (u, u’) is on the
right of the unitary axis and for m = —N /2. This involves Eisenstein cohomology. Assume henceforth
that (u, u’) is on the right of the unitary axis. For now, F is any totally imaginary field (either CM
or TR). By Theorem 5.6, the subspace 3” (of, 0')’(,), which is the image of global cohomology in the
2k-dimensional E-vector space I (o7, T pw @ I (0} (n), ¢ (=n"))g,w, is a k-dimensional
E-subspace, and furthermore, from the proof of that theorem, we get an intertwining operator Tgis (o, o’)
defined over E such that in the non-self-associate case (n # n’), we have

S (op.0p) = (€ Tin(@. o) O) | € € 0y, 0 e

and in the self-associate case, we will have
S (or.0p) = (€ E4 T, o) @) | € € Loy, ) pw .
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The idea of the proof is to take Tgi(0-, 0’) to a transcendental level, use the constant term theorem
which gives L-values, and then descend back to an arithmetic level, giving a rationality result for the
said L-values. Take an ¢ : E — C, and consider Tgis(0, 0’) ®g,, C. We have

Sos.iop) = (€ T3 08 '0)') : £ [0y o) )pn

in the non-self-associate case, and with analogous modification for the self-associate case. Here,
Tst(—%, ‘c ® ‘'o’)* is the map induced by the standard intertwining operator in relative Lie algebra
cohomology. For brevity, let ¢ = o x o’. The global operator Ty (—%, ‘o)* factors into local standard
intertwining operators. The discussion in [27, Sect. 7.3.2.1] involving rationality properties of local
standard intertwining operators at finite places goes through verbatim in our situation. (See also my
paper [43] where this discussion is situated in a broader context.) We have for Tgis(0-, 0’) ®g,, C the
following expression (the exact analogue of [27, (7.38)]):

L(-Y. oy x ‘o)

Or/al™ 2 — R 1Y, ')
L(l_%,LO'f Xto-fv) 568520 ’ 2 Y
& (R Tm(e,) (D @ QY Tin (@, ) (1) 86, C. (5.18)
VES_f veS

The local operators Tic,,, (o, ) (1) and T3
interest for us being that they are defined over E. For the archimedean component T ( —%, ‘o)t we
use Proposition 4.32 to get for Tgis(0, 0’) ®g,, C the following expression involving values of the

completed L-function:

(o) (1) are exactly as in loc.cit.; the point of immediate

nn’ L(_%’LO.XLO_IV)
-7 . ar ar
O™ T (c @ T () (1) ® (V%)Tm(g)(l)) ®.C. (519

nn’
We conclude that the complex number |6f/g|” 2 L(-X, o xto™)/L(1 - ¥ to x ‘") is in «(E).
When F is in case-TR, existence of a critical point implies nn’ is even (Corollary 3.14), which forces

l0F/Ql” 2 € Q.

Proof of reciprocity

For Galois equivariance, apply ¥ € Gal(Q/Q), to the objects and maps in the first paragraph of
Section 5.2.2, while keeping in mind the behaviour of cohomology groups as Hecke modules under
changing the base field E. Assume now that F is a totally imaginary field in the CM-case. The claim is
that Galois-action and Eisenstein operator Tgis (0, 0’) intertwine as

(] ® 7) ° (TEis(O—a O—/) ®F,. Q) = 5L,w(7) : SL,W'(’)/) : TEis(O—a 0—/) ®F,yo1 Q (5.20)

From this claim and (5.19), the reciprocity law will follow. To prove this claim, take n # n’ (the reader
can easily modify the argument for the self-associate case) and consider the following diagram

Tiis(07,07) @k, g

Iy (o} (n), 07 (=n"))o.w @, Q

lm

ILS,(O-} (n), agfr (_n’))Q,w/ ®E,yoz Q

[ls,(o—f70—})P,w ®F ¢ Q

\Ll@y

ILS,(G-f s 0—} )P,w ®F,you Q

Tiis (07,07) ®E, 0.1
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The left (resp., right) vertical arrow introduces the signature &, ., (y) (resp., €, (y)), and the
diagram commutes up to the product of these two signatures. For the left vertical arrow, re-
call from 5.1.3 that the induced module Ig(af,a'} )p.w appears in boundary cohomology as

G(Ay)

a
IndP(Af)

- _ Ks _
(Hb5+b£'(SM”,MW.,1,E)(0'f xa'j’,)) .Hence,IS(O'f,O'})p,W®E,1QappearsasaHecke-

G(Af) [ ybF +bF, vl .
P(A;) (H n O, (SMP,M,W_,A,Q)). Recall from (2.30) that v maps the the highest

weight vector of the coefficient system M., .) 5 t0 £,,,, () times the highest weight vector of the co-
efficient system M.y, 1o, ¢ €xplaining the homothety by &, (y) in the left vertical arrow. Similarly,

the induced module 12(0'} (n),0(-n"))g,w ®E,, Q appears in aIndg((ﬁ;)) (Hb'erbff (SMp, le/,ll’Q))
for w’ related to w by Lemma 5.1. Hence, in the right vertical arrow, one gets a homothety by &, /().
Hence the claim, and whence the reciprocity law.

If the totally imaginary field F is in case CM, then the proof of (2) is complete. In case of TR, the
rationality and the Galois-equivariance, as will be now shown, will simplify to give the corresponding

statements in (3). Assume now that F' is TR, and that F; is the maximal totally real subfield of F.

summand in *Ind

nn’
Existence of a critical point implies nn’ is even by Corollary 3.14; hence, [6F/g|” 2 € Q, and so we
may absorb it into ¢(E) and ignore it from the Galois-equivariance. The simplified Galois equivariance
in (3) follows from the following:

Lemma 5.21. Suppose that F is TR. Then €, ,,(y) =1 =&, w (y).

Proof. Recall the notations from 2.3.5: X, = {v,...,vq,}, 0 : Zr — ZF,, k = 2k, and Q‘l(vj) =
{nj1, 71, ... 0k 7k - Since u and p” are strongly-pure weights that are the base-change from weight
over Fi, the Kostant representative w (and then so also w’) has the property that all the constituents w7,
as n varies over o~ ! (v i), are copies of the same element of Sy —the Weyl group of GLy; in particular,
since w is balanced, [(w”) + [(w) = nn’ and [(w") = [(w') since 1 and 7 have the same restriction
to F; hence, [(w7) = nn’ /2. Recalling the notations from Section 2.7, consider the wedge product

* . * *

= A A A ey A
eq"w,["j] ecblw".fl ‘o ed)tw"-fkl ¢

4y '7j1

*

[
PN

All the individual factors such as ey, or ey, _ are identical and have degree nn’/2. Hence, the

nji wlji

total degree of ey, isnn’/2 - k = nn’k;. From (2.26), one gets

[vjl

= e('blw’[ VANREIEIAN e<'1>1w,

e*
Dy, vl [le 1’

Denote the action of y on X, for the ordering fixed above, as 7r, (v), and let &, (y) denote its signature.
Then one has
« ’ 2 %
(1 ®7)e<1>‘w = €F (7)(nn k) €Pyor,, >
from Definition 2.29, one has &,,,(y) = &f, (y)(""’kl)2 = 1 since nn’k; = 0 (mod 2). Similarly,
EL,W/(Y) =1 o

This concludes the proof of Theorem 5.16.

5.4. Compatibility with Deligne’s Conjecture

5.4.1. Statement of Deligne’s Conjecture

In this subsection, Deligne’s celebrated conjecture on the special values of motivic L-functions is
formulated for the ratios of successive successive critical L-values for Rankin—Selberg L-functions. The
notations of [8] will be freely used; a motive M over Q with coefficients in a field E will be thought
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in terms of its Betti, de Rham and ¢-adic realizations. Attached to a critical motive M are its periods
c¢*(M) € (E®C)* asin loc.cit., that are well defined in (E ® C)*/E*. We begin with a relation between
the two periods over a totally imaginary base field F. Recall from the introduction that if F is in the
CM-case, then F is its maximal CM subfield which is totally imaginary quadratic over the totally real
subfield Fy; suppose F; = Fo(VD) for a totally negative D € Fy. Then define

AF] = 1ﬂVFO/Q(D), AF = Agl::FlJ.

If F is in the TR-case, then F| = Fj is the maximal totally real subfield. Then define

Ap =1, Ap = AT =1

1
The following result is stated in my paper with Deligne; see [9, Thm. 3.4.2]:

Proposition 5.22. Let My be a pure motive of rank n over a totally imaginary number field F with
coefficients in a number field E. Put M = Resp q(Mo), and suppose that M has no middle Hodge type.
Let ¢*(M) be the periods defined in [8]. Then

ct(M)
c™ (M)

= (1®Ap)", in(E®C)*/E*.

Under the identification £ ® C = [[,.g_cC, the element 1 ® A is +1 in each component of
(E ® C)*/E*, since its square is trivial. Based on Proposition 5.22, Deligne’s conjecture [8] for the
ratios of successive critical values of the completed L-function of M may be stated as the following:

Conjecture 5.23 (Deligne). Let My be a pure motive of rank n over a totally imaginary F with coefficients
in E. Put M = Resgo(Mo), and suppose that M has no middle Hodge type. For v : E — C, let L(s,1, M)
denote the completed L-function attached to (M, ). Put L(s, M) = {L(s,t, M)},.g—c for the array of
L-functions taking values in E ® C. Suppose m and m+ 1 are critical integers for L(s, M), and assuming
that L(m + 1, M) # 0, we have

L(m,M)

m = (1®id1€/2AF)n, in (E®C)/Ex

A word of explanation is in order since, in [8], Deligne formulated his conjecture for critical values
of Ly (s, M) — the finite-part of the L-function attached to M. From Conjecture 2.8 and (5.1.8) of [8]
for M as above, one can deduce

LrmM) () g (miy-ndr 2y M)

=) inE ® C.
Ly (m+1,M) o ME®

Knowing the L-factor at infinity, one has Lo, (m, M)/Le(m + 1, M) = 1 ® (2m)/2; hence, for the
completed L-function, one can deduce
L(m, M)
Lim+1,M)

¢t (M)

sn-dp /2
- e Sy

(5.24)
It is clear now that (5.24) and Proposition 5.22 give Conjecture 5.23.

There is conjectural correspondence between oy € Cohi(Resg,o(GL,,/F), u/E) and a pure regular
motive M (o y) of rank n over F with coefficients in E (see [7] or [27, Chap. 7]). Given such a oy and
also o, € Cohyi(Resg/o(GL/F), u’/E), Conjecture 5.23 appliedto M = M (of) ® M(a‘}") gives the

S
following conjecture or the Rankin—Selberg L-functions L(s, ‘o X ‘c”):

Conjecture 5.25 (Deligne’s conjecture for Rankin—Selberg L-functions). Let the notations and
hypotheses be as in Theorem 5.16. Then
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L(m,'o xtad”™)
Lim+1,toxto”)

(NS € uE),

and furthermore, for every y € Gal(Q/Q), we have the reciprocity law:

L(m,'oc x ‘")
Lim+1,toxto”)

L(m,” o x°a”)

2dp /2 nn’
i9F7A .
7|( F) L(m+1,7°t0 xY°tg’V)

— (idp/ZAF)nn’

5.4.2. Theorem 5.16 implies Conjecture 5.25

If F is in the TR-case, then existence of a critical point implies nn’ is even (Corollary 3.14), hence
(i9F2A gy = §drnn’/2 = 41 that may be absorbed into «(E) and ignored from the Galois-equivarance,
which is exactly the content of (3) of Theorem 5.16. Assume henceforth that F' is in the CM-case. The
required compatibility follows from the equality of signatures in the following:

Proposition 5.26.

Y5k /0™ )

((idp/ZAF)nn’)
|"n,/2 '8L,w('y) '8L,W'(7) = 7—

loF/q (idr 2Ap)m
The proof uses the following lemma.

Lemma 5.27. Let F be a totally imaginary field in the CM-case and suppose F| the maximal CM
subfield of F. Then, as elements of C*/Q*, we have

. 1/2
l6r/al'? = 19772 A - (NF, o (65 /1)) !
Proof of Lemma 5.27. Transitivity of discriminant for the tower of fields £/ F/Q gives 6 g = 5%/:(3’] .
Nr,o(dF/F,). Since the degree [F : Fo] = 2[F : F1] is even, one has
67/0"? = INkyQ(r/r)I'? (mod Q7).

[F:Fi] |
Fi/Fy

fields F'/F}/Fy; using the Fy-basis {1, \/5} for F, one has 6, /r, = 4D; therefore,

Next, one has 6r;r, = 0 Nr,/F,(6F/F,), by using transitivity of discriminant for the tower of

Nroa(8F k) = NryodD)FF Y N o (Ngy 5, (07 7))
= Ngyjo(D)F V. N o (8F/F,)  (mod Q).

Since F1/Q is a CM-extension, Nr,;o(dF/F,) > 0; hence,

. 1/2
|6F/Q|1/2 = |1\’F0/Q(5F/FO)|1/2 = |NF0/Q(D)|[F'F‘]/2'(NF./Q(5F/F])) / (mod Q).
Since D < 0 in Fy, we see that (—1)[F°3Q]NFO/Q(D) > 0. Hence,

INFo oD = (1) CINg o (D)) 12 = (iUFRRIA g A
= i[FOQ][FFl]AF — idF/zAF.

O
After the above lemma, the proof of Proposition 5.26 follows from the following:
Lemma 5.28.
(NFy o (0F/r)"™ )
Np, jo(6p/F)™ 12

Y
5L,w(7) '8L,w’(7) =
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Proof. Suppose F is a CM field. Then FF = Fi; hence, the right-hand side is 1. We contend
that in this case, the left-hand side is also 1, or that &,,,(y) = &,(y). One may suppose that
the ordering on Hom(F, E) is fixed such that conjugate embeddings are paired: Hom(F,E) =
{11, 71,72, T2, ..., Tr, Tr }. After composing with ¢ : E — C, one gets an enumeration: Hom(F,C) =

{m.,m1,12, 72, - ..., 7 }. For brevity and, hopefully, additional clarity, denote efbw o =€, efbw ,

7
and rewrite (2.26) as

* = * P *
oy, = €0, A A €o i (5.29)

The action of y gives
(1 ® y)(eq)'w) = ed)wY‘”IN/Ofn Ao A e‘bwywnn/ofn ’ (5'30)

The right-hand sides of (5.29) and (5.30) differ by the signature €, ,, () that one seeks to identify.
Each pair of conjugates embeddings {7;,77;} corresponds to a place v; of F; as before, 7; is called
the distinguished embedding — a base point in that pair of conjugate embeddings. The ordering on
Hom(F, C) fixes an ordering {vy, ..., v, } on S (F). Let ¢ (y) denote the permutation of y on S, (F),
and e (y) its signature. Foreach 1 < j < r,let/; = I[(w'/) and l;f = [(w'i); then [; + I = nn’ since w
is balanced. The total degree of efbwm is nn’; interchanging two successive factors of (5.29) introduces

the signature (—1)(""/)2 = (=1)™". Finally, let Jy :={j |y onj is not distinguished.}. Then one has

gow() = er ()™ [ [ (D" (5.31)

Jj€Jy

since the term £ ()™ arises by the permutation of the factors of (5.29) to get the factors of (5.30);
and then within each such factor indexed by j € Jy, the constituent factors in e, =~ A eg . get
w 'l wij

interchanged. Similarly,

St,w’(’y) — SF(,y)nn’ ﬂ(_l)l(w"l_i)l(w’rl_f). (532)

jed,

From Lemma 5.1, it follows that [(w'%) = nn’ — (W) = l; and [(w') = nn’ — [(w) = [;; hence,

(=IO = (—1)515; whence, £, () = &0 (7).
Now suppose F is a totally imaginary field in the CM-case and F) its maximal CM subfield. In
preparation, fix orderings on X, X, and S« (F}) in a compatible way as follows:

1. fix an ordering {w1,...,w, } on S (F1);

2. then fix the ordering {vi,va,...,Vs,V1,V2,..., 7y}, Where the pair of conjugate embeddings
{v;,V;} map to w;, and recall that we call v; as the distinguished embedding;

3. finally, to fix an ordering on Zp, let Zr(v) denote the fiber over v € Zp, under the canonical
restriction map Xy — Xp,;if v < v’ in Zf,. Then each element in Zf (v) is less than every element
of X (v’), and within each fiber £ (v), fix any ordering.

The Galois element y induces permutations on ¢, Xr, and S, (F1) giving the commutative diagram:

o 7 (y) e

\L 7p () i

Xp ———————> X,

\L Moo (¥) i

Se(F1) ——— Sw(F1)
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Define 75 (y) to be the permutation of X that induces 7f, (y) on Xf,, and
if rp, (y)(7) = ', then AF(y) is an order preserving bijection g (v) — Zp(v').
Define the permutation . (y) of Zr by
mr(y) = mp(y) o Ap(y). (5.33)

Observe that 77, (y) induces the identity permutation on X, , and denote 7r(ZF ) (y) for the permutation
that 7. () induces on the fiber Xr (v) above v. Let £(x) denote the signature of a permutation . The
proof of Lemma 5.28 follows from the following two sub-lemmas.

Sublemma 5.34.
ELw (y) - 5L,w’(7) = 8(77% (,y))nn’
Sublemma 5.35.

o)
Nrjo(SF /)2 F

Proof of Sublemma 5.34. Define J,, = {j : nr(y)(n;) is not distinguished}. Keeping in mind that
strongly-pure weights such as y and u’ are the base-change of (strongly-)pure weights from Fj, we
deduce that the constituents (‘w”),.r_c of the Kostant representative ‘w are such that if n|r, = 1’|F,,
then %" and w” are the same element in Sy — the Weyl group of GLy. For 1 < j < ry, denote
lj =1(*'w'it) and l;‘. =1('wi). One has [; + l.’; = nn’ since w is balanced. Also, denote [,, = [(‘w") for
any € Zr(v). We claim that

fun) = elma) " [TEDE T sy, ) D" (5.36)

J€Jy VEXF,

Recall that the signature €, ,, (y) is determined by the action of y on the wedge-product in (2.26):
ey, =e€g oy VA ey o The proof of (5.36) boils down to becoming aware how the factors in this
w w wldp

wedge-product are permuted, and what signature is introduced in un-permuting them. The following
scheme depicts from bottom to top, the places of Fj, embeddings of F;, embeddings of F, and the
lengths of the Kostant representatives they parametrize:

l(whit) =1; (wik) =1; l(wﬁfl):l;‘. l(w’7f’<)=l;‘.

Njk

7

71

e o
\Wj /

Group together the wedge-factors as follows:

nj1

N

Vj

* * *

oy, = Cop, N A Py,
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where, foreach 1 < j < ry,

ey = e; A e;
@] Q1 T TR

and for each v; € Zp,,

* *

e: = e A Aes . e =e5  A--ANes .
(1)[,,]_] q)w 7j1 <I>w jk (1)[‘7,7'] KI)W 1j1 <1)w jk

* *
Recall that € has degree /; and e(DW,_W

has degree kl;f. Therefore, ej‘bl J has degree kl; + kl;‘. = knn’. Now, the permutation 7| (y) on
wj

* * *
has degree lj. Hence, ed)[vj] has degree kl;, and ecp[‘;j]

Seo(F1) = {W1,...,wy } can be undone by the signature s(7r1(,o()/))(”""‘)2

. Next, only for those j € J,,
the two factors in efplvjl A e:ijl get interchanged, giving the signature (_1)111}13' Finally, adjusting for
the action of y on X, (i.e., now working with 77 (), which only permutes internally within each fiber
X (v)over v € Zf,), one sees the signature a(ﬂ’ZF ) ()/))l3 for each such v. This proves the claim (5.36).

For any integer a, since a®> = a (mod 2), (5.36) simplifies to

Eow() = e(ma)™ - [0 T e, o, )™ (5.37)

jer, VeTp,

Similarly, using the relation of w’ with w, one has

o (7) = e(ma)™ ™ [TEDI T e, ()" (5.38)

Jj€Jy VEZFI

Multiply (5.37) and (5.38) to get

nn’

eow@) - eow) = [ el o, = | T] etly | = s@o)™. o

VGZFI VEZF]

Proof of Sublemma 5.35. For x € F), one has Np, ;o(x) = I—[‘,GEFl v(x) > 0. Let {p1, ..., px} denote

the set of all embeddings of F into F| over Fy, for some algebraic closure Fy of Fy; let {wy, ..., w;} be
an F-basis for F; then 6 F, = det[pi(wj)]z. Hence,

Nryo(rir) = [ ] v(detlpi(wp)]®) = [ detlpf (wp)]?,

VGZF] VGZFI

where {p},...,p/} is the set of all embeddings of F' into C that restrict to v : F; — C. We may take
p; to be ¥ o p; for any extension ¥ : Fi; — C of v. Whence,

[} (w))]
o 07 (w))]
Npjo(Srr)'? = +det N : (5.39)

(o) (w))]

where the appropriate sign + is chosen to make the right-hand side positive. Each block [p} (w;)] is a
k x k-block. Apply vy to (5.39), and the change in the sign of the determinant on the right is the requisite
sign ¥(Nr, 1067 /7,)"/?) /NF, jo(6FF,)1/%. The blocks are permuted according to 7f, (y) which does
not change the sign. Hence, the signature is accounted for by assuming that the blocks remain where

https://doi.org/10.1017/fms.2025.48 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.48

Forum of Mathematics, Sigma 65

they are and looking at how each block’s rows are permuted internally; in other words, keeping (5.33)
in mind, the requisite signature is

[ 20,0, ) = ey, o
VEZFI
This concludes the proof of Lemma 5.28. m}

This concludes the proof of Proposition 5.26, proving compatibility of our main theorem with
Deligne’s conjecture.

5.5. An example

If we take n = n’ = 1, then the main result and techniques are all due to Harder [22]. However, the
signature &, ,, (y) - €,.w (), that can be nontrivial in general, is missing in [22]. Furthermore, the subtle
distinction between when F is in the CM-case and when it is in the TR-case is not seen in [22] and
it becomes apparent only in the larger context of this article. This case n = n’ = 1 is also extensively
discussed in [42], wherein examples are constructed to show the nontriviality of these signatures. As an
alternative, it is worth the effort to illustrate the content of the main theorem in the simplest nontrivial
example: when n = n’ = 1 and F is an imaginary quadratic field, not so much by appealing to Harder
[22], or this article, but rather via recourse to modular forms of CM type. Here, o and o’ are both
algebraic Hecke characters, and the main theorem concerns the ratios of successive critical values of
the L-function attached to the algebraic Hecke character: y = oo’~!. After relabelling, take o = y an
algebraic Hecke character, and for o/, take the trivial character. This GL(1)-example is instructive, and
was helpful to the author to see some finer details.

For an imaginary quadratic field F, let Hom(F,C) = {n,7j}; the choice of 5 is not canonical; it
induces an isomorphism 1 : Fo ~ C. Let y : F*\A} — C* be an algebraic Hecke character; this
means that y is a continuous homomorphism whose infinite component yo, : FX — C* is of the form
Yoo(2) = 2P74, for integers p and g. Then y € Coh(GL,/F, ) with g = (u, u) and u” = —p and
um = —q. The weight u is strongly-pure with purity weight w = —p — q. One also has

A\2
X (2) = (?) (z2)™?, t=p-qeZ

As recalled in (3.3), the I'-factors at infinity (up to nonzero constants and exponentials) on either side
of the functional equation are

Leo(s ) ~T(s =%+ 1) L (1-s,x™) ~T(1 -5+ %+ 1),

Assume, without any loss of generality (if necessary, replacing y by xy~!), that £ > 0, (i.e., p > q).
Then Lo (s, ¥) ~ (s + p) and Loo(1 — 5, y~') ~ I'(1 — s — g). The critical set for L(s, y) is the set
of ¢ consecutive integers: {1 — p, 2 — p, ..., —q}. The critical set is nonempty if £ > 1, and we have
¢ many critical points and ¢ — 1 pairs of successive critical points. The cuspidal width ¢(u, 0) between
u and the weight u’ = 0 is €(u,0) = €. If we were to apply the main theorem to the pair y and the
trivial Hecke character (which is cohomological with respect to u” = 0), then the combinatorial lemma
(Lemma 3.16) imposes the condition ¢ > 2, and Theorem 5.16 gives a rationality result for the ratios
L(m, x)/L(m + 1, x) of all successive critical values. This theorem can also be seen independently by
appealing to the rationality results of Shimura for L-functions of modular forms.

Take 7 = n(y) = AI% (x) to be the automorphic induction of y from F to Q. Then r is a cuspidal
automorphic representation of GL,(Ag). The representation 7., at the infinite place is, by definition,
Al]é (x~), which in turn is defined by asking for its Langlands parameter to be the induced representation

)2
Indv‘,‘,vi€ (X)) = Indgf(z — (ﬁ) ) ® | |]£W/ 2 This is exactly the representation that has cohomology
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with respect to the irreducible representation of GL(2) with highest weight 1 = (p, ¢). By the standard
dictionary between modular forms and automorphic representations (see, for example, Gelbart [13]),
there is a primitive modular form f, of weight k = p — g + 1 such that 7 () = n(f,) ® | |™%/2. One of
the properties of this dictionary gives us the following equality of L-functions:

L(s, f) = Lis = %2 n(£)) = Lis - 52 + ¥ 2(x)) = L(s - p, x).

The critical set for L(s, f) is the string of integers {1,2, ...,k — 1}. A word about the normalizations
of these L-functions: first of all, L(s, f,) is the Hecke L-function of the modular form f,, which has a
functional equation with respect to s <> k — s. For a cuspidal automorphic representation x, as applied
to m()y) or to w(f,), the functional equation is with respect to s <> 1 — s. The L-function L(s, ) also
has a functional equation with respect to s <> 1 — s. Furthermore, for any Dirichlet character w, by
which we mean a character w : Q* \A& — C* of finite-order, there is the equality

L(s, fy,w) = L(s —p,,\/®a)F),

where wf" := wo Np /o is the base-change of w from Q to F. In particular, if w = wFq is the quadratic

Dirichlet character of Q attached to F by class field theory, then

L(S’ fX’wF/Q) = L(S, f/\/),

since the base-change of wp g back to F is the trivial character. This is also seen at the level of
representations since () =~ 7(x) ® wr/q.

From Shimura [49] applied to f,, there exists two periods u*(f),) € C*, such that for any critical
integer r € {1, ...,k — 1}, and any primitive Dirichlet character ¢, one has

Lyp(r, fy.¥) ~ 2ad) u™(f)8(¥),

where g(¢) is the GauBl sum of i, and the choice of periods is dictated by the parities of » and  via
Y(=1) = £(-1)"; and ~ is a simplified notation to mean that the ratio of the left-hand side divided by
everything on the right-hand side is algebraic, and is Gal(Q/Q)-equivariant:

y Ly(r, fy.¥) _ Ly (r.,” fy, 7¢)
(2mi)"u*(fy )8 (¥) Qui) u* (Y f)s("¥)’

The finite part of the L-function Ly (r, f,,¢) is completed using the archimedean I'-factor
Loo(s, fy, ) = 2(2m)~°T'(s). In terms of the completed L-function, the above relation takes the form

L(r, fe.¥) = Vu™(f)e).

Take r = 1 and use the above relation once for ¢ the trivial character and then for = wr g to deduce

ut(fy) = u (fy) 8(wrjg).

Next, apply Shimura’s result to L(s, f),) for s = rand s = r + 1, where r € {1,...,k — 2} (possible
when k > 3, that is, £ > 2), and divide one by the other to deduce

L(r, f)()
L(r+1, f,)

Vy € Gal(Q/Q).

= lg(OJF/Q),

while using i> € Q* and g(a)p/Q)2 € Q*. Since L(s, f,) = L(s — p, x), and putting r — p = m, one
gets for the ratio of two successive critical values of the completed L-function of y the rationality result

L(m, x)

ig(wF/Q)m €Q,
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and furthermore,

L(m, x)
Lim+1,y)

L(m,” x)

y|ig(wr/g) = tg(wr/q)

One has used that ¥ f,, = fr, which follows from the definition of f, (see [48, Sect. 5]). To see that
the above result is indeed an instance of Theorem 5.16, one needs the basic fact about quadratic Gauss
sums: i g(wr/q) = [6F ol (mod Q). It is shown in [41] that this example generalizes from GL(1)
over an imaginary quadratic extension to GL(n) over a CM field.
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