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Abstract
This article presents new rationality results for the ratios of critical values of Rankin–Selberg L-functions of
GL(𝑛) × GL(𝑛′) over a totally imaginary field 𝐹. The proof is based on a cohomological interpretation of
Langlands’s contant term theorem via rank-one Eisenstein cohomology for the group GL(𝑁)/𝐹, where 𝑁 = 𝑛 + 𝑛′.
The internal structure of the totally imaginary base field has a delicate effect on the Galois equivariance properties
of the critical values.
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Introduction

The principal aim of this article is to prove a rationality result for the ratios of successive critical
values of Rankin–Selberg L-functions of GL(𝑛) × GL(𝑛′) over a totally imaginary number field F via
a study of rank-one Eisenstein cohomology for the group GL(𝑁)/𝐹, where 𝑁 = 𝑛 + 𝑛′. This article
is a generalization of the methods and results of a previous work with Günter Harder [27] that studied
such a situation for a totally real base field. A fundamental tool is the cohomology of local systems
on the Borel–Serre compactification of a locally symmetric space for GL(𝑁)/𝐹. The technical heart
of the article pertains to analyzing the cohomology of the Borel–Serre boundary, especially for the
contribution coming from maximal parabolic subgroups, that leads to an interpretation of the celebrated
theorem of Langlands on the constant term of an Eisenstein series in terms of maps in cohomology.

Let F be a totally imaginary number field and 𝐹0 its maximal totally real subfield. There is at most
one totally imaginary quadratic extension 𝐹1 of 𝐹0 contained in F, giving us two distinct cases that have
a bearing on much that is to follow:

1. CM: when there is indeed such an 𝐹1, then 𝐹1 is the maximal CM subfield of F;
2. TR: if not, then put 𝐹1 = 𝐹0; here, 𝐹1 is the maximal totally real subfield of F.

The TR-case imposes the restriction that existence of a critical point for Rankin–Selberg L-functions
implies 𝑛𝑛′ is even. The CM-case, arguably the more interesting of the two, will impose no such
restrictions; furthermore, whether F itself is CM (𝐹 = 𝐹1) or not ([𝐹 : 𝐹1] ≥ 2) has a delicate effect on
Galois equivariance properties of the rationality results.

Put 𝐺 = 𝐺𝑁 = Res𝐹/Q(GL(𝑁)/𝐹), and 𝑇 = 𝑇𝑁 the restriction of scalars of the diagonal torus in
GL(𝑁). Let E stand for a large enough finite Galois extension of Q in which F can be embedded. The
meaning of large enough will be clear from context. Take a dominant integral weight 𝜆 ∈ 𝑋∗(𝑇 × 𝐸),
and let M𝜆,𝐸 be the algebraic finite-dimensional absolutely-irreducible representation of 𝐺 × 𝐸 with
highest weight 𝜆. For a level structure 𝐾 𝑓 ⊂ 𝐺 (A 𝑓 ), where A 𝑓 is the ring of finite adeles of Q, let
M̃𝜆,𝐸 denote the sheaf of E-vector spaces on the locally symmetric space S𝐺

𝐾 𝑓
of G with level 𝐾 𝑓

(see Section 1.2). A fundamental object of interest is the cohomology group 𝐻•(S𝐺
𝐾 𝑓

,M̃𝜆,𝐸 ). The
Borel–Serre compactification S̄𝐺

𝐾 𝑓
= S𝐺

𝐾 𝑓
∪ 𝜕S𝐺

𝐾 𝑓
gives the long exact sequence

· · ·𝐻𝑖
𝑐 (S𝐺

𝐾 𝑓
,M̃𝜆,𝐸 )

𝔦•−→ 𝐻𝑖 (S̄𝐺
𝐾 𝑓

,M̃𝜆,𝐸 )
𝔯•−→ 𝐻𝑖 (𝜕S𝐺

𝐾 𝑓
,M̃𝜆,𝐸 )

𝔡•−→ 𝐻𝑖+1
𝑐 (S𝐺

𝐾 𝑓
,M̃𝜆,𝐸 ) · · ·

of modules for the action of a Hecke algebra H𝐺
𝐾 𝑓

. Inner cohomology is defined as
𝐻•! = Image(𝐻•𝑐 → 𝐻•), within which is a subspace 𝐻•!! ⊂ 𝐻•! called strongly-inner cohomology which
has the property of capturing cuspidal cohomology at an arithmetic level – that is, for any embedding
of fields 𝜄 : 𝐸 → C, one has 𝐻•!! (S𝐺

𝐾 𝑓
,M̃𝜆,𝐸 ) ⊗𝐸, 𝜄 C = 𝐻•cusp (S𝐺

𝐾 𝑓
,M̃𝜄𝜆,C). If 𝜋 𝑓 is a simple Hecke

module appearing in 𝐻•!!(S𝐺
𝐾 𝑓

,M̃𝜆,𝐸 ), then 𝜄𝜋 𝑓 is the 𝐾 𝑓 -invariants of the finite part of a cuspidal
automorphic representation 𝜄𝜋 of 𝐺 (A) = GL𝑁 (A𝐹 ), whose archimedean component 𝜄𝜋∞ has nonzero
relative Lie algebra cohomology with respect to M𝜄𝜆,C; denote this as 𝜋 𝑓 ∈ Coh!! (𝐺, 𝜆). Only strongly-
pure dominant integral weights will support cuspidal cohomology; the structure of the set 𝑋+00 (𝑇 × 𝐸)
of all such strongly-pure weights has an important bearing on the entire article; see Section 2.3. The
cohomology of the Borel–Serre boundary 𝐻•(𝜕S𝐺

𝐾 𝑓
,M̃𝜆,𝐸 ), as a Hecke-module, is built via a spec-

tral sequence from modules that are parabolically induced from the cohomology of Levi subgroups;
see Section 2.6. For 𝑁 = 𝑛 + 𝑛′, with positive integers n and 𝑛′, similar notations will be adopted for
𝐺𝑛 = Res𝐹/Q(GL(𝑛)/𝐹), 𝑇𝑛, 𝐺𝑛′ , 𝑇𝑛′ , etc. Let 𝜇 ∈ 𝑋+00(𝑇𝑛 × 𝐸) and 𝜇′ ∈ 𝑋+00 (𝑇𝑛′ × 𝐸), and consider
𝜎 𝑓 ∈ Coh!! (𝐺𝑛, 𝜇) and 𝜎′𝑓 ∈ Coh!!(𝐺𝑛′ , 𝜇

′). The contragredient of 𝜄𝜎′ is denoted 𝜄𝜎′v. For 𝜄 : 𝐸 → C,
a point 𝑚 ∈ 𝑁

2 +Z is said to be critical for the completed Rankin–Selberg L-function if the archimedean
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Γ-factors on either side of the functional equation are finite at 𝑠 = 𝑚. The critical set for 𝐿(𝑠, 𝜄𝜎 × 𝜄𝜎′v)
is described in Proposition 3.12. The main result (Theorem 5.16) of this article is the following:

Theorem. Assume that m and 𝑚 + 1 are critical for 𝐿(𝑠, 𝜄𝜎 × 𝜄𝜎′v).

(i) If 𝐿(𝑚 + 1, 𝜄𝜎 × 𝜄𝜎′v) = 0 for some 𝜄, then 𝐿(𝑚 + 1, 𝜄𝜎 × 𝜄𝜎′v) = 0 for every 𝜄.
(ii) Assume F is in the CM-case. Suppose 𝐿(𝑚 + 1, 𝜄𝜎 × 𝜄𝜎′v) ≠ 0. Then

|𝛿𝐹/Q |−
𝑛𝑛′

2 · 𝐿(𝑚, 𝜄𝜎 × 𝜄𝜎′v)
𝐿(𝑚 + 1, 𝜄𝜎 × 𝜄𝜎′v) ∈ 𝜄(𝐸),

where, 𝛿𝐹/Q is the discriminant of 𝐹/Q. For any 𝛾 ∈ Gal(Q̄/Q), we have

𝛾

(
|𝛿𝐹/Q |−

𝑛𝑛′

2 · 𝐿(𝑚, 𝜄𝜎 × 𝜄𝜎′v)
𝐿(𝑚 + 1, 𝜄𝜎 × 𝜄𝜎′v)

)
= 𝜀 𝜄,𝑤 (𝛾) · 𝜀 𝜄,𝑤′ (𝛾) · |𝛿𝐹/Q |−

𝑛𝑛′

2 · 𝐿(𝑚, 𝛾◦ 𝜄𝜎 × 𝛾◦ 𝜄𝜎′v)
𝐿(𝑚 + 1, 𝛾◦ 𝜄𝜎 × 𝛾◦ 𝜄𝜎′v) ,

where 𝜀 𝜄,𝑤 (𝛾), 𝜀 𝜄,𝑤′ (𝛾) ∈ {±1} are certain signatures (see Definition 2.29) whose product is
trivial if F is a CM field but can be nontrivial in general.

(iii) Assume F is in the TR-case. Then 𝑛𝑛′ is even. Suppose 𝐿(𝑚 + 1, 𝜄𝜎 × 𝜄𝜎′v) ≠ 0. Then

𝐿(𝑚, 𝜄𝜎 × 𝜄𝜎′v)
𝐿(𝑚 + 1, 𝜄𝜎 × 𝜄𝜎′v) ∈ 𝜄(𝐸),

and for any 𝛾 ∈ Gal(Q̄/Q), we have

𝛾

(
𝐿(𝑚, 𝜄𝜎 × 𝜄𝜎′v)

𝐿(𝑚 + 1, 𝜄𝜎 × 𝜄𝜎′v)

)
=

𝐿(𝑚, 𝛾◦ 𝜄𝜎 × 𝛾◦ 𝜄𝜎′v)
𝐿(𝑚 + 1, 𝛾◦ 𝜄𝜎 × 𝛾◦ 𝜄𝜎′v) .

For the proof, consider Eisenstein cohomology of 𝐺, which, by definition, is the image of
𝐻•(S̄𝐺

𝐾 𝑓
,M̃𝜆,𝐸 )

𝔯•−→ 𝐻•(𝜕S𝐺
𝐾 𝑓

,M̃𝜆,𝐸 ). We are specifically concerned with the contribution to
Eisenstein cohomology from maximal parabolic subgroups; this is often called rank-one Eisenstein
cohomology. Let 𝑃 = Res𝐹/Q(𝑃(𝑛,𝑛′) ), where 𝑃(𝑛,𝑛′) is the standard maximal parabolic subgroup of
GL𝑁 of type (𝑛, 𝑛′), and let𝑈𝑃 be the unipotent radical of 𝑃. The first technical theorem (Theorem 5.5)
stated as the ‘Manin–Drinfeld principle’ says that the algebraically and parabolically induced represen-
tation aInd𝐺 (A 𝑓 )

𝑃 (A 𝑓 ) (𝜎 𝑓 × 𝜎′𝑓 ) together with its partner across a standard intertwining operator splits off
as an isotypic component from the cohomology of the boundary as a Hecke module. The next technical
result (Theorem 5.6) is to prove that the image of Eisenstein cohomology in this isotypic component
is analogous to a line in a two-dimensional plane. If one passes to a transcendental situation using an
embedding 𝜄 : 𝐸 → C, then via Langlands’s constant term theorem, the slope of this line is the ratio of
L-values 𝐿(𝑚, 𝜄𝜎 × 𝜄𝜎′v)/𝐿(𝑚 + 1, 𝜄𝜎 × 𝜄𝜎′v), times the factor |𝛿𝐹/Q |−𝑛𝑛

′/2. This latter factor involv-
ing the discriminant of the base field arises as the volume of 𝑈𝑃 (Q)\𝑈𝑃 (A) needed to normalise the
measure so that the constant term map, in cohomology, is the restriction map to the boundary stratum
corresponding to P.

There are two subproblems to solve along the way whose proofs are totally different from those of
the corresponding statements in [27]. The first is a combinatorial lemma (Lemma 3.16) and the second
concerns the map induced in cohomology by the archimedean standard intertwining operator. We now
briefly discuss these two subproblems.

The combinatorial lemma (Lemma 3.16) concerns the criticality of L-values that intervene when
looking at Eisenstein cohomology. On the one hand, one considers the algebraically induced module
aInd𝐺 (A 𝑓 )

𝑃 (A 𝑓 ) (𝜎 𝑓 ×𝜎′𝑓 ) which appears in boundary cohomology. On the other hand, for the analytic theory
of L-functions, one considers the normalized parabolically induced module 𝐼𝐺𝑃 (𝑠, 𝜎 ⊗ 𝜎′) as in (5.8),
where s is a complex variable. If one specializes the latter at the point of evaluation 𝑠 = −𝑁/2, then one
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gets the former module. At this point of evaluation, the L-values that intervene are 𝐿(−𝑁/2, 𝜄𝜎 × 𝜄𝜎′v)
and 𝐿(1 − 𝑁/2, 𝜄𝜎 × 𝜄𝜎′v). Lemma 3.16 characterizes the criticality of these two L-values in terms
of a purely combinatorial condition on the weights 𝜇 and 𝜇′. It also characterizes criticality in terms
of the appearance of the induced module considered above in the cohomology of the boundary in an
optimal degree; this cohomology degree involves subtleties on the lengths of Kostant representatives in
Weyl groups. The ingredient w in the signature 𝜀 𝜄,𝑤 (𝛾) is a Kostant representative determined by 𝜇 and
𝜇′ via this combinatorial lemma, and 𝑤′ in 𝜀 𝜄,𝑤′ (𝛾) is a Kostant representative determined by w via
Lemma 5.1. The combinatorial lemma also says that we only need to prove a rationality result for the
particular ratio 𝐿(−𝑁/2, 𝜄𝜎 × 𝜄𝜎′v)/𝐿(1 − 𝑁/2, 𝜄𝜎 × 𝜄𝜎′v), for a sufficiently general class of weights
𝜇 and 𝜇′; see 5.3.2.

Now, we briefly discuss the second subproblem which is taken up in detail in Section 4. Typically,
in a cohomological approach to the study of the special values of L-functions, one is confronted
with an archimedean subproblem. In our context, it takes the following shape. As a consequence of
criticality of the L-values at the point of evaluation, it follows from Casselman–Shahidi [6] that the
archimedean induced module I∞ := aInd𝐺 (R)

𝑃 (R) (𝜎∞×𝜎
′
∞) is irreducible. Similarly, one has an irreducible

module Ĩ∞ := aInd𝐺 (R)
𝑄 (R) (𝜎

′
∞(−𝑛) × 𝜎∞(𝑛′)), where Q is the standard parabolic subgroup associate to

P corresponding to the partition 𝑁 = 𝑛′ + 𝑛. Lastly, one has an archimedean standard intertwining
isomorphism 𝑇∞ between these irreducible modules. The second subproblem is to compute the map
induced in relative Lie algebra cohomology by the archimedean standard intertwining operator 𝑇∞.
It is a consequence of the combinatorial lemma (Lemma 3.16) that there is a highest weight 𝜆 on
GL𝑁 /𝐹 such that both the relative Lie algebra cohomology groups 𝐻𝑏𝐹𝑁 (𝔤𝑁 , 𝔨𝑁 ; I∞ ⊗M𝜆) and
𝐻𝑏𝐹𝑁 (𝔤𝑁 , 𝔨𝑁 ; Ĩ∞ ⊗M𝜆) are one-dimensional for degree 𝑏𝐹𝑁 = ([𝐹 : Q]/2) · 𝑁 (𝑁 − 1)/2 (see (2.14))
being the optimal degree in cohomology alluded to in the previous paragraph. We then need to compute
the isomorphism

𝑇•∞ : 𝐻𝑏C𝑁 (𝔤𝑁 , 𝔨𝑁 ; I∞ ⊗M𝜆) → 𝐻𝑏C𝑁 (𝔤𝑁 , 𝔨𝑁 ; Ĩ∞ ⊗M𝜆)

between the two one-dimensional vector spaces. If we, a priori, fix bases for these cohomology groups,
then𝑇•∞ gives a nonzero scalar. In Proposition 4.32, one proves that this scalar is, up to rational quantities,
exactly the ratio of local archimedean L-values. The proof uses a well-known factorization of the standard
intertwining operator into rank-one operators; for a simple nontrivial case, see Example 4.30; using
such a factorization the computation boils down to a GL(2)-calculation. The reader is referred to Harder
[25], where a hope is expressed in general, and verified in the context therein, that the rational number
implicit in Proposition 4.32 has a simple shape; this hope should have applications to congruences and
the p-adic interpolation of the ratios of L-values considered in this paper.

Previous work on the arithmetic of L-functions over a totally imaginary field especially worth
mentioning in the context of this article are as follows. For 𝑛 = 𝑛′ = 1, the rationality result in (𝑖𝑖) is
due to Harder [22, Cor. 4.2.2]. In general, see Blasius [1] and Harder [22] for GL1, see also Harder–
Schappacher [21]; Hida [30] for GL2 × GL1 and GL2 × GL2; Grenie [19] for GL𝑛 × GL𝑛; Harris [29]
for standard L-functions for unitary groups which may be construed as a subclass of L-functions for
GL𝑛 × GL1; Harder [23] and Mœglin [38] for some general aspects of GL𝑛–the result contained in (𝑖)
is due to Mœglin [38, Sect. 5], although our proof is different from [38]. Furthermore, see the author’s
paper [40], Grobner–Harris [14] and Januszewski [33] for GL𝑛 ×GL𝑛−1; Sachdeva [44] for GL3 ×GL1;
and Lin [37], Grobner–Harris–Lin [15], Grobner–Lin [16] and Grobner–Sachdeva [18] for different
aspects for GL𝑛 ×GL𝑛′ . Among these, the results of [15], [16], [18] and [37] come close in scope to the
results of this paper; however, their methods are different and work over a base field that is assumed to
be CM, while often needing a polarization assumption on their representations to descend to a unitary
group, and in some situations being conditional on expected but unproven hypotheses. In contrast, the
method pursued here, which is a generalization of Harder [22] and my work with Harder [26], [27], does
not depend on the results of all the other references mentioned above in this paragraph. Furthermore,
our results are unconditional in that they do not depend on unproven hypotheses.
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There is a celebrated conjecture of Deligne [8, Conj. 2.7] on the critical values of motivic L-functions.
A fundamental aspect of the Langlands program is a conjectural dictionary between strongly-inner Hecke
modules 𝜎 𝑓 and pure regular rank n motives 𝑀 (𝜎 𝑓 ) over F with coefficients in E (see, for example, [27,
Chap. 7]). Granting this dictionary, Deligne’s conjecture applied to 𝑀 := Res𝐹/Q(𝑀 (𝜎 𝑓 ) ⊗ 𝑀 (𝜎′v𝑓 ))
conjecturally describes a rationality result for the array {𝐿(𝑚, 𝜄𝜎 × 𝜄𝜎′v)} 𝜄:𝐸→C of critical values in
terms of certain periods 𝑐±(𝑀) of M. To see the main theorem of this article from the perspective of
motivic L-functions necessitates a relation between 𝑐+(𝑀) and 𝑐−(𝑀), for which we refer the reader to
my recent article with Deligne [9]. The appearance of the signatures 𝜀 𝜄,𝑤 (𝛾) and 𝜀 𝜄,𝑤′ (𝛾) was in fact
suggested by certain calculations in [9] that also allows us to recast Theorem 5.16 more succinctly as
follows. Suppose F is in the CM-case, and suppose 𝐹1 = 𝐹0 (

√
𝐷) for a totally negative 𝐷 ∈ 𝐹0. Then

define Δ𝐹 = 𝑁𝐹0/Q(𝐷) [𝐹 :𝐹1 ]/2. Suppose F is in the TR-case. Then define Δ𝐹 = 1. Fix 𝔦 =
√
−1. The

rationality result can be restated as

(𝔦𝑑𝐹/2Δ𝐹 )𝑛𝑛
′ 𝐿(𝑚, 𝜄𝜎 × 𝜄𝜎′v)
𝐿(𝑚 + 1, 𝜄𝜎 × 𝜄𝜎′v) ∈ 𝜄(𝐸),

(see 5.4.2) and the reciprocity law takes the shape that for every 𝛾 ∈ Gal(Q̄/Q), one has

𝛾

(
(𝔦𝑑𝐹/2Δ𝐹 )𝑛𝑛

′ 𝐿(𝑚, 𝜄𝜎 × 𝜄𝜎′v)
𝐿(𝑚 + 1, 𝜄𝜎 × 𝜄𝜎′v)

)
= (𝔦𝑑𝐹/2Δ𝐹 )𝑛𝑛

′ 𝐿(𝑚, 𝛾◦ 𝜄𝜎 × 𝛾◦ 𝜄𝜎′v)
𝐿(𝑚 + 1, 𝛾◦ 𝜄𝜎 × 𝛾◦ 𝜄𝜎′v) .

In the TR-case, existence of a critical point will necessitate 𝑛𝑛′ to be even, and so we may ignore the
term (𝔦𝑑𝐹/2Δ𝐹 )𝑛𝑛

′ ∈ Q× from the rationality result and the reciprocity law.
To conclude the introduction, let us note that in the literature on special values of L-functions, the

shape of the results is often of the form that a critical L-value divided by a ‘period’ is suitably algebraic.
To study congruences or p-adic interpolation, the period needs to be normalized up to p-units. One of
the virtues of the above theorem on ratios of critical values is that there is no reference to any period;
one may construe that the result is intrinsic to the L-function itself. Furthermore, the result opens
up new ground to consider the prime factorization of the ratios of L-values; the primes occurring in
the denominator (closely related to the denominators of Eisenstein classes; see Harder [24]) should
produce some nontrivial elements in a Selmer group as predicted by the Bloch-Kato conjectures. Such
considerations will be taken up in a future work. Finally, it is worth amplifying the dictum that whereas
the analytic theory of L-functions is not sensitive to the arithmetic nature of the ground field F, the
arithmetic of special values of L-functions is definitively sensitive to the inner structure of F. For example,
if F is totally real, the Rankin-Selberg integral for GL(2) × GL(2) does not admit a cohomological
interpretation in terms of Poincaré or Serre duality. However, if F is totally imaginary, then it does
indeed admit an interpretation in terms of Poincaré duality; see Hida [30]. In a different direction, the
period integrals of cusp forms on GL(2𝑛) integrated over GL(𝑛) × GL(𝑛) that Friedberg–Jacquet [11]
studied to get the standard L-function of GL(2𝑛) can be interpreted in cohomology over a totally real
field (see my papers with Grobner [17], and with Dimitrov and Januszewski [10]), but over a general
number field, this seemed unclear until the recent work of Jiang–Sun–Tian [34]. This dependence on
the arithmetic of the base field stems not only from the cohomological vagaries of the representations of
GL𝑚(R) vis-à-vis those of GL𝑚(C), but also because the inner structure of the base field informs some
of the constructions with algebraic groups over such base fields – this is why one sees the signatures
𝜀 𝜄,𝑤 (𝛾) and 𝜀 𝜄,𝑤′ (𝛾) when F is in the CM-case but not when F is in the TR-case; such terms did not
appear when the base field is totally real [27] or a CM field [41].

Suggestions to the reader: Any one wishing to read this paper seriously will need my monograph
with Harder [27] by their side. I have tried to make this manuscript reasonably self-contained, but any
time I felt there was nothing to be gained by repetition, I have referenced [27]. For a finer appreciation,
the reader should compare the formal similarities of the results of this manuscript and the results of
[27], while noting the very different proofs – especially with the proofs of the combinatorial lemma in
Section 3.2, and the calculations involving the archimedean intertwining operator in Section 4. For a
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first reading, I recommend that the reader skim through Section 1 to get familiar with the notations, and
assume the statements of Proposition 3.12, Lemma 3.16, Proposition 4.28 and Proposition 4.32 without
worrying too much about their technical proofs. Finally, the reader should note that we are specifically
studying the contribution to Eisenstein cohomology only from maximal parabolic subgroups.

1. Preliminaries

1.1. Some basic notation

1.1.1. The base field
Let F stand for a totally imaginary finite extension of Q of degree 𝑑𝐹 = [𝐹 : Q] . Let Σ𝐹 = Hom(𝐹,C)
be the set of all complex embeddings, and S∞ denote the set of archimedean places of F; denote the
cardinality of S∞ by r; hence, 𝑑𝐹 = 2r. There is a canonical surjection Σ𝐹 → S∞; the fibre over 𝑣 ∈ S∞
is a pair {𝜂𝑣 , 𝜂𝑣 } of conjugate embeddings; via such a non-canonical choice of 𝜂𝑣 , fix the identification
𝐹𝑣 � C. Let A = AQ be the adèle ring of Q, and A 𝑓 = A∞ the ring of finite adèles. Then A𝐹 = A ⊗Q 𝐹,
and A𝐹, 𝑓 = A 𝑓 ⊗Q 𝐹. When F is a CM field (i.e., a totally imaginary quadratic extension of a totally
real extension 𝐹+ (say) of Q, then Σ𝐹+ = Hom(𝐹+,C) = Hom(𝐹+,R), and the restriction from F to 𝐹+

gives a canonical surjection Σ𝐹 → Σ𝐹+ ; the fiber over 𝜂 ∈ Σ𝐹+ is a pair of conjugate embeddings that
will be denoted as {𝜂, 𝜂}, with the understanding that the choice of 𝜂 in {𝜂, 𝜂} though not canonical
is nevertheless fixed once and for all. If Σ𝐹 = {𝜈1, . . . , 𝜈𝑑𝐹 }, {𝜔1, . . . , 𝜔𝑑𝐹 } is a Q-basis of F, and
𝜃𝐹 = det[𝜎𝑖 (𝜔 𝑗 )], then 𝜃2

𝐹 is the absolute discriminant 𝛿𝐹/Q of F. The square root of the absolute
value of the discriminant, |𝛿𝐹/Q |1/2, as an element of R×/Q×, is independent of the enumeration and
the choice of basis. Let 𝔦 denote a fixed choice of

√
−1. Since F is totally imaginary, 𝔦𝑑𝐹/2 · 𝜃𝐹 is a real

number whose absolute value is |𝛿𝐹/Q |1/2.

1.1.2. The groups
For an integer 𝑁 ≥ 2, let 𝐺0 = GL𝑁 /𝐹, and put 𝐺 = Res𝐹/Q(𝐺0) as the Q-group obtained by the Weil
restriction of scalars. To emphasize the dependence on N, 𝐺0 will also be denoted 𝐺𝑁 ,0 and similar
notation will be adopted for other groups to follow. Let 𝐵0 be the subgroup of 𝐺0 of upper-triangular
matrices, 𝑇0 the diagonal torus in 𝐵0, and 𝑍0 the center of 𝐺0; the corresponding Q-groups via Res𝐹/Q
will be denoted 𝐵,𝑇 and Z, respectively. Let S stand for the maximalQ-split torus of Z; note that 𝑆 � G𝑚.
Let n and 𝑛′ be positive integers such that 𝑛 + 𝑛′ = 𝑁, and let 𝑃0 be the maximal parabolic subgroup
of 𝐺0 containing 𝐵0 of type (𝑛, 𝑛′). The unipotent radical of 𝑃0 is denoted 𝑈𝑃0 and Levi quotient of
𝑃0 is 𝑀𝑃0 = GL𝑛 × GL𝑛′ . Put 𝑃 = Res𝐹/Q(𝑃0), and similarly, 𝑈𝑃 and 𝑀𝑃 . The dimension of 𝑈𝑃 is
𝑛𝑛′𝑑𝐹 = 2𝑛𝑛′r.

1.2. Sheaves on locally symmetric spaces

This brief section is very similar to the situation over a totally real base field [27]. Most of the concepts
in this section apply, possibly with minor modifications, to related groups like GL𝑛, GL𝑛′ , 𝑀𝑃0 , etc.

1.2.1. Locally symmetric spaces
Note that 𝐺 (R) = 𝐺0(𝐹 ⊗Q R) =

∏
𝑣 ∈S∞ GL𝑁 (𝐹𝑣 ) �

∏
𝑣 ∈S∞ GL𝑁 (C). Similarly, 𝑍 (R) =

𝑍0 (𝐹 ⊗Q R) �
∏

𝑣 ∈S∞ C
×1𝑁 , where 1𝑁 is the identity 𝑁 × 𝑁-matrix; 𝑆(R) = R× sits diagonally in

𝑍 (R). The maximal compact subgroup of 𝐺 (R) will be denoted 𝐶∞; we have 𝐶∞ =
∏

𝑣 ∈S∞ U(𝑁),
where U(𝑁), the usual compact unitary group in N-variables, is a maximal compact group of GL𝑁 (C).
Put 𝐾∞ = 𝐶∞𝑆(R) and note that 𝐾∞ = 𝐶∞𝑆(R)◦ is a connected group, since −1 ∈ 𝑆(R) gets absorbed
into 𝐶∞. Define the symmetric space of G as S𝐺 := 𝐺 (R)/𝐾∞. For any open compact subgroup
𝐾 𝑓 ⊂ 𝐺 (A 𝑓 ), define the adèlic symmetric space: 𝐺 (A)/𝐾∞𝐾 𝑓 = S𝐺 × (𝐺 (A 𝑓 )/𝐾 𝑓 ). On this space,
𝐺 (Q) acts properly discontinuously and we get a quotient

𝜋 : 𝐺 (R)/𝐾∞ × 𝐺 (A 𝑓 )/𝐾 𝑓 −→ 𝐺 (Q)\
(
𝐺 (R)/𝐾∞ × 𝐺 (A 𝑓 )/𝐾 𝑓

)
. (1.1)
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The target space, called the adèlic locally symmetric space of G with level structure 𝐾 𝑓 , is denoted
S𝐺
𝐾 𝑓

= 𝐺 (Q)\𝐺 (A)/𝐾∞𝐾 𝑓 . A typical element in the adèlic group 𝐺 (A) = 𝐺 (R) × 𝐺 (A 𝑓 ) will be
denoted 𝑔 = 𝑔∞ × 𝑔

𝑓
. As in [27, Sect. 2.1.4], one has S𝐺

𝐾 𝑓
�

∐𝑚
𝑖=1 Γ𝑖\𝐺 (R)/𝐾∞; if necessary,

replacing 𝐾 𝑓 by a subgroup of finite-index, assume that each Γ𝑖 is torsion-free. It is easy to see that
dim(S𝐺

𝐾 𝑓
) = dim(𝐺 (R)/𝐾∞) = dim(𝐺 (R)/𝐶∞) − 1 = r𝑁2 − 1.

1.2.2. The field of coefficients E
Throughout this paper, let 𝐸/Q be a ‘large enough’ finite Galois extension that takes a copy of 𝐹.
(The meaning of E being large enough will depend on the context: for example, large enough so that
some Hecke summand in inner-cohomology would split over E. To relate cohomology groups with
automorphic forms, one could drop finiteness and take 𝐸 = C, or anticipating p-adic interpolation of
the L-values considered here, E could be a large enough p-adic field.) An embedding 𝜄 : 𝐸 → C gives
a bijection 𝜄∗ : Hom(𝐹, 𝐸) → Hom(𝐹,C) given by composition: 𝜄∗𝜏 = 𝜄 ◦ 𝜏. If 𝐸 = C, then there is
a natural notion of complex-conjugation on Hom(𝐹,C) defined by 𝜂(𝑥) = 𝜂(𝑥). But, on Hom(𝐹, 𝐸),
there is no natural notion of complex-conjugation; however, using 𝜄 : 𝐸 → C, we can consider the
conjugate 𝜏 𝜄 of 𝜏 defined as 𝜄∗(𝜏 𝜄) = 𝜄∗𝜏. If F is a CM field, then let {1, 𝑐} denote the Galois group of
𝐹/𝐹+; restriction 𝜏 ↦→ 𝜏 |𝐹+ gives a surjective map Hom(𝐹, 𝐸) � Hom(𝐹+, 𝐸); for 𝜏 ∈ Hom(𝐹, 𝐸),
define 𝜏𝑐 by 𝜏𝑐 (𝑥) = 𝜏(𝑐(𝑥)) for all 𝑥 ∈ 𝐹, then {𝜏, 𝜏𝑐} is the fiber above 𝜏 |𝐹+ . If 𝐸 = C, then 𝜏𝑐 = 𝜏.

1.2.3. Characters of the torus T
For E as above, let 𝑋∗(𝑇 ×𝐸) := Hom𝐸−alg(𝑇 ×𝐸,G𝑚), where Hom𝐸−alg is to mean homomorphisms of
E-algebraic groups. There is a natural action of Gal(𝐸/Q) on 𝑋∗(𝑇×𝐸). Since𝑇 = Res𝐹/Q(𝑇0), one has

𝑋∗(𝑇 × 𝐸) =
⊕

𝜏:𝐹→𝐸

𝑋∗(𝑇0 ×𝐹,𝜏 𝐸) =
⊕

𝜏:𝐹→𝐸

𝑋∗(𝑇0),

where the last equality is because 𝑇0 is split over F. Let 𝑋∗
Q
(𝑇 × 𝐸) = 𝑋∗(𝑇 × 𝐸) ⊗ Q. The weights are

parametrized as in [27]: 𝜆 ∈ 𝑋∗
Q
(𝑇 × 𝐸) will be written as 𝜆 = (𝜆𝜏)𝜏:𝐹→𝐸 with

𝜆𝜏 =
𝑁−1∑
𝑖=1
(𝑎𝜏

𝑖 − 1)𝛄𝑖 + 𝑑𝜏 · 𝛅𝑁 = (𝑏𝜏
1 , 𝑏

𝜏
2 , . . . , 𝑏

𝜏
𝑁 ),

where 𝛄𝑖 is the i-th fundamental weight for SL𝑁 extended to GL𝑁 by making it trivial on the center, and
𝛅𝑁 is the determinant character of GL𝑁 . If 𝑟𝜆 := (𝑁𝑑 −

∑𝑁−1
𝑖=1 𝑖(𝑎𝑖 − 1))/𝑁, then 𝑏1 = 𝑎1 + 𝑎2 + · · · +

𝑎𝑁−1−(𝑁−1)+𝑟𝜆, 𝑏2 = 𝑎2+· · ·+𝑎𝑁−1−(𝑁−2)+𝑟𝜆, . . . , 𝑏𝑁−1 = 𝑎𝑁−1−1+𝑟𝜆, 𝑏𝑁 = 𝑟𝜆,and conversely,
𝑎𝑖−1 = 𝑏𝑖−𝑏𝑖+1, 𝑑 = (𝑏1+· · ·+𝑏𝑁 )/𝑁.A weight𝜆 =

∑𝑁−1
𝑖=1 (𝑎𝑖−1)𝛄𝑖+𝑑 ·𝛅𝑁 = (𝑏1, . . . , 𝑏𝑁 ) ∈ 𝑋∗

Q
(𝑇0)

is an integral weight if and only if

𝜆 ∈ 𝑋∗(𝑇0) ⇐⇒ 𝑏𝑖 ∈ Z, ∀𝑖 ⇐⇒
⎧⎪⎪⎨⎪⎪⎩
𝑎𝑖 ∈ Z, 1 ≤ 𝑖 ≤ 𝑁 − 1,
𝑁𝑑 ∈ Z,
𝑁𝑑 ≡

∑𝑁−1
𝑖=1 𝑖(𝑎𝑖 − 1) (mod 𝑁).

A weight 𝜆 = (𝜆𝜏)𝜏:𝐹→𝐸 ∈ 𝑋∗
Q
(𝑇 × 𝐸) is integral if and only if each 𝜆𝜏 is integral. Next, an integral

weight 𝜆 ∈ 𝑋∗(𝑇0) is dominant, for the choice of the Borel subgroup being 𝐵0, if and only if

𝑏1 ≥ 𝑏2 ≥ · · · ≥ 𝑏𝑁 ⇐⇒ 𝑎𝑖 ≥ 1 for 1 ≤ 𝑖 ≤ 𝑁 − 1. (There is no condition on 𝑑.)

A weight 𝜆 = (𝜆𝜏)𝜏:𝐹→𝐸 ∈ 𝑋∗
Q
(𝑇 × 𝐸) is dominant-integral if and only if each 𝜆𝜏 is dominant-integral.

Let 𝑋+(𝑇 × 𝐸) stand for the set of all dominant-integral weights.
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1.2.4. The sheaf M̃𝜆,𝐸

For 𝜆 ∈ 𝑋+(𝑇 × 𝐸), put M𝜆,𝐸 =
⊗

𝜏:𝐹→𝐸 M𝜆𝜏 , where M𝜆𝜏/𝐸 is the absolutely-irreducible finite-
dimensional representation of𝐺0×𝜏𝐸 = GL𝑛/𝐹×𝜏𝐸 with highest weight𝜆𝜏 .Denote this representation
as (𝜌𝜆𝜏 ,M𝜆𝜏 ). The group 𝐺 (Q) = GL𝑛 (𝐹) acts on M𝜆,𝐸 diagonally; that is, 𝑎 ∈ 𝐺 (Q) acts on a
pure tensor ⊗𝜏𝑚𝜏 via 𝑎 · (⊗𝜏𝑚𝜏) = ⊗𝜏𝜌𝜆𝜏 (𝜏(𝑎)) (𝑚𝜏). This representation gives a sheaf M̃𝜆,𝐸 of
E-vector spaces on S𝐺

𝐾 𝑓
: the sections over an open subset 𝑉 ⊂ S𝐺

𝐾 𝑓
are the locally constant functions

𝑠 : 𝜋−1 (𝑉) →M𝜆,𝐸 such that 𝑠(𝑎𝑣) = 𝜌(𝑎)𝑠(𝑣) for all 𝑎 ∈ 𝐺 (Q), where 𝜋 is as in (1.1).
Let us digress for a moment to clarify a certain point that seemingly causes some confusion. In

the definition of S𝐺
𝐾 𝑓

, one could have divided by 𝑍 (R)𝐶 (R) instead of 𝐾∞; that is, one can consider
𝐺 (Q)\𝐺 (A)/𝑍 (R)𝐶 (R)𝐾 𝑓 . Over this space, the same construction of the sheaf M̃𝜆,𝐸 carries through;
however, for it to be nonzero, the central character of 𝜌𝜆 has to have the type of an algebraic Hecke
character of F (see [22, 1.1.3]). Let 𝜆 = (𝜆𝜏)𝜏:𝐹→𝐸 ∈ 𝑋+(𝑇 × 𝐸), and suppose 𝜆𝜏 =

∑𝑁−1
𝑖=1 (𝑎𝜏

𝑖 − 1)𝛄𝑖 +
𝑑𝜏 ·𝛅, the condition on the central character means 𝑑 𝜄◦𝜏+𝑑 𝜄◦𝜏 is a constant independent every embedding
𝜄 : 𝐸 → C, and every 𝜏 ∈ Hom(𝐹, 𝐸). Define 𝑋+alg(𝑇 × 𝐸) to be the subset of 𝑋+(𝑇 × 𝐸) consisting of
all dominant-integral weights which satisfy the algebraicity condition that ‘𝑑 𝜄◦𝜏 + 𝑑 𝜄◦𝜏 = constant’ for
all 𝜏 ∈ Hom(𝐹, 𝐸) and for all 𝜄 : 𝐸 ↩→ C. To end the digression, for the sheaf M̃𝜆,𝐸 on S𝐺

𝐾 𝑓
, at this

moment we do not need to impose this algebraicity condition; however, later on for the sheaf to support
interesting cohomology, such as cuspidal cohomology, we will be needing the condition of strong-purity
that will imply algebraicity.

If 𝜆 ∈ 𝑋+alg(𝑇 × 𝐸) and 𝐾 𝑓 small enough as in 1.2.1, then every stalk of M̃𝜆,𝐸 is isomorphic to the
E-vector space M𝜆,𝐸 , in which case the sheaf M̃𝜆,𝐸 is a local system.

2. The cohomology of GL𝑁 over a totally imaginary number field

For 𝜆 ∈ 𝑋+alg(𝑇 × 𝐸), a basic object of study is the sheaf-cohomology group 𝐻•(S𝐺
𝐾 𝑓

,M̃𝜆,𝐸 ). One of
the main tools is a long exact sequence coming from the Borel–Serre compactification. Another tool is
the relation of these cohomology groups, by passing to a transcendental situation using an embedding
𝐸 ↩→ C, to the theory of automorphic forms on G. The reader should appreciate that Section 2.3 on
strongly-pure weights has some novel features that do not show up over a totally real base field or over
a CM field.

2.1. Inner cohomology

Let S̄𝐺
𝐾 𝑓

be the Borel–Serre compactification of S𝐺
𝐾 𝑓

, that is, S̄𝐺
𝐾 𝑓

= S𝐺
𝐾 𝑓
∪𝜕S𝐺

𝐾 𝑓
, where the boundary is

stratified as 𝜕S𝐺
𝐾 𝑓

= ∪𝑃𝜕𝑃S𝐺
𝐾 𝑓

with P running through the 𝐺 (Q)-conjugacy classes of proper parabolic
subgroups defined over Q. (See Borel–Serre [4].) The sheaf M̃𝜆,𝐸 on S𝐺

𝐾 𝑓
naturally extends to a sheaf

on S̄𝐺
𝐾 𝑓

which we also denote by M̃𝜆,𝐸 . Restriction from S̄𝐺
𝐾 𝑓

to induces an isomorphism in cohomol-

ogy: 𝐻•(S̄𝐺
𝐾 𝑓

,M̃𝜆,𝐸 )
∼−→ 𝐻•(S𝐺

𝐾 𝑓
,M̃𝜆,𝐸 ). Consider the Hecke algebra H𝐺

𝐾 𝑓
= 𝐶∞𝑐 (𝐺 (A 𝑓 )//𝐾 𝑓 ) of

all locally constant and compactly supported bi-𝐾 𝑓 -invariant Q-valued functions on 𝐺 (A 𝑓 ); take the
Haar measure on 𝐺 (A 𝑓 ) to be the product of local Haar measures, and for every prime p, the local
measure is normalized so that vol(𝐺 (Z𝑝)) = 1; then H𝐺

𝐾 𝑓
is a Q-algebra under convolution of func-

tions. The cohomology of the boundary 𝐻•(𝜕S𝐺
𝐾 𝑓

,M̃𝜆,𝐸 ) and the cohomology with compact supports
𝐻•𝑐 (S𝐺

𝐾 𝑓
,M̃𝜆,𝐸 ) are modules for H𝐺

𝐾 𝑓
. There is a long exact sequence of H𝐺

𝐾 𝑓
-modules:

· · · −→ 𝐻𝑖
𝑐 (S𝐺

𝐾 𝑓
,M̃𝜆,𝐸 )

𝔦•−→ 𝐻𝑖 (S̄𝐺
𝐾 𝑓

,M̃𝜆,𝐸 )
𝔯•−→ 𝐻𝑖 (𝜕S𝐺

𝐾 𝑓
,M̃𝜆,𝐸 )

𝔡•−→
𝔡•−→ 𝐻𝑖+1

𝑐 (S𝐺
𝐾 𝑓

,M̃𝜆,𝐸 ) −→ · · ·
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The image of cohomology with compact supports inside the full cohomology is called inner or interior
cohomology and is denoted 𝐻•! := Image(𝔦•) = Im(𝐻•𝑐 → 𝐻•). The theory of Eisenstein cohomology
is designed to describe the image of the restriction map 𝔯•. Inner cohomology is a semi-simple module
for the Hecke-algebra. If 𝐸/Q is sufficiently large, then there is an isotypical decomposition

𝐻•! (S𝐺
𝐾 𝑓

,M𝜆,𝐸 ) =
⊕

𝜋 𝑓 ∈Coh! (𝐺,𝐾 𝑓 ,𝜆)
𝐻•! (S𝐺

𝐾 𝑓
,M𝜆,𝐸 ) (𝜋 𝑓 ), (2.1)

where 𝜋 𝑓 is an isomorphism type of an absolutely irreducible H𝐺
𝐾 𝑓

-module (i.e., there is an E-vector
space 𝑉𝜋 𝑓 with an absolutely irreducible action 𝜋 𝑓 of H𝐺

𝐾 𝑓
). Let H𝐺

𝐾𝑝
= 𝐶∞𝑐 (𝐺 (Q𝑝)//𝐾𝑝) be the local

Hecke-algebra. The local factors H𝐺
𝐾𝑝

are commutative outside a finite set S = S𝐾 𝑓 of primes and the
factors for two different primes commute with each other. For 𝑝 ∉ S, the commutative algebra H𝐺

𝐾𝑝
acts

on 𝑉𝜋 𝑓 by a homomorphism 𝜋𝑝 : H𝐺
𝐾𝑝
→ 𝐸. Let 𝑉𝜋𝑝 be the one-dimensional E-vector space E with

the distinguished basis element 1 ∈ 𝐸 and with the action 𝜋𝑝 on it. Then 𝑉𝜋 𝑓 = 𝑉𝜋 𝑓 ,S ⊗ ⊗′𝑝∉S𝑉𝜋𝑝 =

⊗𝑝∈S𝑉𝜋𝑝 ⊗ 𝐸, where the absolutely-irreducible H𝐺
𝐾 𝑓 ,S-module𝑉𝜋 𝑓 ,S module is decomposed as a tensor

product 𝑉𝜋 𝑓 ,S = ⊗𝑝∈S𝑉𝜋𝑝 of absolutely irreducible H𝐺
𝐾𝑝

-modules. The Hecke algebra decomposes as
H𝐺

𝐾 𝑓
= H𝐺

𝐾 𝑓 ,S × ⊗𝑝∉SH𝐺
𝐾𝑝

= H𝐺
𝐾 𝑓 ,S ×H

𝐺,S, where the first factor acts on the first factor 𝑉𝜋 𝑓 ,S and
the second factor acts via the homomorphism 𝜋S

𝑓 : H𝐺,S → 𝐸. The set Coh!(𝐺, 𝐾 𝑓 , 𝜆) of isomorphism
classes which occur with strictly positive multiplicity in (2.1) is called the inner spectrum of G with
𝜆-coefficients and level structure 𝐾 𝑓 . Taking the union over all 𝐾 𝑓 , the inner spectrum of G with
𝜆-coefficients is defined to be Coh! (𝐺, 𝜆) =

⋃
𝐾 𝑓

Coh! (𝐺, 𝐾 𝑓 , 𝜆). Since the inner spectrum is
captured, at a transcendental level, by the cohomology of the discrete spectrum, it follows from the strong
multiplicity one theorem for the discrete spectrum for GL𝑛 (see Jacquet [31] and Mœglin–Waldspurger
[39]) that 𝜋 𝑓 is determined by its restriction 𝜋S

𝑓 to the central subalgebra H𝐺,S of H𝐺
𝐾 𝑓

.

2.2. Cuspidal cohomology

Take 𝐸 = C and consider 𝜆 ∈ 𝑋+alg(𝑇 × C). Denote 𝔤∞ (resp., 𝔨∞) the Lie algebra of 𝐺 (R) (resp., of
𝐾∞ = 𝐶∞𝑆(R).) The cohomology 𝐻•(S𝐺

𝐾 𝑓
,M̃𝜆,C) is the cohomology of the de Rham complex denoted

Ω•(S𝐺
𝐾 𝑓

,M̃𝜆,C). The de Rham complex is isomorphic to the relative Lie algebra complex

Ω•(S𝐺
𝐾 𝑓

,M̃𝜆,C) = Hom𝐾∞ (Λ•(𝔤∞/𝔨∞), C∞(𝐺 (Q)\𝐺 (A)/𝐾 𝑓 , 𝜔
−1
𝜆 |𝑆 (R)0 ) ⊗M𝜆,C),

where C∞(𝐺 (Q)\𝐺 (A)/𝐾 𝑓 , 𝜔
−1
𝜆 |𝑆 (R)0 ) consists of all smooth functions 𝜙 : 𝐺 (A) → C such that

𝜙(𝑎 𝑔 𝑘 𝑓 𝑠∞) = 𝜔−1
𝜆 (𝑠∞)𝜙(𝑔), for all 𝑎 ∈ 𝐺 (Q), 𝑔 ∈ 𝐺 (A), 𝑘 𝑓 ∈ 𝐾 𝑓 and 𝑠∞ ∈ 𝑆(R)0. Abbreviating

𝜔−1
𝜆 |𝑆 (R)0 as 𝜔−1

∞ , if 𝑡 ∈ R>0 � 𝑆(R)0, then 𝜔𝜆 (𝑡) = 𝑡𝑁
∑
𝜏:𝐹→C 𝑑

𝜏
= 𝑡

∑
𝜏
∑
𝑖 𝑏

𝜏
𝑖 . The identification of

the complexes gives an identification between our basic object of interest over C with the relative Lie
algebra cohomology of the space of smooth automorphic forms twisted by the coefficient system:

𝐻•(S𝐺
𝐾 𝑓

,M̃𝜆,C) = 𝐻•(𝔤∞, 𝔨∞; C∞(𝐺 (Q)\𝐺 (A)/𝐾 𝑓 , 𝜔
−1
𝜆 |𝑆 (R)0 ) ⊗M𝜆,C).

The inclusion C∞cusp(𝐺 (Q)\𝐺 (A)/𝐾 𝑓 , 𝜔
−1
∞ ) ⊂ C∞(𝐺 (Q)\𝐺 (A)/𝐾 𝑓 , 𝜔

−1
∞ ), of the space of smooth

cusp forms, induces an inclusion in relative Lie algebra cohomology (due to Borel [2]), and cuspidal
cohomology is defined as

𝐻•cusp (S𝐺
𝐾 𝑓

,M̃𝜆,C) := 𝐻•
(
𝔤∞, 𝔨∞; C∞cusp(𝐺 (Q)\𝐺 (A)/𝐾 𝑓 , 𝜔

−1
∞ ) ⊗M𝜆

)
.

https://doi.org/10.1017/fms.2025.48 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.48


Forum of Mathematics, Sigma 11

Furthermore, 𝐻•cusp (S𝐺
𝐾 𝑓

,M𝜆,C) ⊂ 𝐻•! (S𝐺
𝐾 𝑓

,M𝜆,C). Define Cohcusp(𝐺, 𝜆, 𝐾 𝑓 ) as the set of all
𝜋 𝑓 ∈ Coh! (𝐺, 𝜆, 𝐾 𝑓 ) which contribute to cuspidal cohomology. The decomposition of cuspforms
into cuspidal automorphic representations gives the following fundamental decomposition for cuspidal
cohomology:

𝐻•cusp (S𝐺
𝐾 𝑓

,M̃𝜆,C) :=
⊕

𝜋∈Cohcusp (𝐺,𝜆,𝐾 𝑓 )
𝐻•(𝔤∞, 𝔨∞; 𝜋∞ ⊗M𝜆,C) ⊗ 𝜋 𝑓 . (2.2)

To clarify a slight abuse of notation: if a cuspidal automorphic representation 𝜋 contributes to the
above decomposition, then its representation at infinity is 𝜋∞ (which admits an explicit description that
will be crucial for all the archimedean calculations), and 𝜋 𝑓 denotes the 𝐾 𝑓 -invariants of its finite
part. The level structure 𝐾 𝑓 will be clear from context; hence whether 𝜋 𝑓 denotes the finite-part or its
𝐾 𝑓 -invariants will be clear from context. Define Cohcusp (𝐺, 𝜆) =

⋃
𝐾 𝑓

Cohcusp (𝐺, 𝐾 𝑓 , 𝜆).

2.3. Pure weights and strongly-pure weights

2.3.1. Strongly-pure weights over C
If a weight𝜆 = (𝜆𝜂)𝜂:𝐹→C ∈ 𝑋+alg(𝑇×C) supports cuspidal cohomology (i.e., if 𝐻•cusp(S𝐺

𝐾 𝑓
,M̃𝜆,C) ≠ 0),

then 𝜆 satisfies the purity condition

𝑎
𝜂
𝑖 = 𝑎

�̄�
𝑁−𝑖 for all 𝜂 : 𝐹 → C ⇐⇒ ∃w such that 𝑏𝜂

𝑖 + 𝑏
�̄�
𝑁−𝑖+1 = w for all 𝜂 and 𝑖, (2.3)

which follows from the purity lemma [7, Lem. 4.9]. The integer w is called the purity weight of 𝜆. The
weight 𝜆 is said to be pure if it satisfies (2.3), and denote by 𝑋+0 (𝑇 ×C) the set of all such pure weights.
Next, recall a theorem of Clozel that says that cuspidal cohomology for GL𝑁 /𝐹 admits a rational
structure [7, Thm. 3.19], from which it follows that any 𝜍 ∈ Aut(C) stabilizes cuspidal cohomology,
that is, 𝜍𝜆 also satisfies the above purity condition, where if 𝜆 = (𝜆𝜂)𝜂:𝐹→C and 𝜍 ∈ Aut(C), then 𝜍𝜆

is the weight (𝜎𝜆𝜂)𝜂:𝐹→C where 𝜍𝜆𝜂 = 𝜆𝜍−1◦𝜂 . A pure weight 𝜆 will be called strongly-pure if 𝜍𝜆 is
pure with purity-weight w for every 𝜍 ∈ Aut(C); denote by 𝑋+00 (𝑇 ×C) the set of all such strongly-pure
weights. For 𝜆 ∈ 𝑋+00 (𝑇 × C), note that

𝑏
𝜍−1◦𝜂
𝑗 + 𝑏𝜍−1◦𝜂

𝑁− 𝑗+1 = w, for all 1 ≤ 𝑗 ≤ 𝑁, 𝜂 : 𝐹 → C, 𝜍 ∈ Aut(C).

We have the following inclusions inside the character group of 𝑇 × C, which are all, in general, strict
inclusions:

𝑋+00(𝑇 × C) ⊂ 𝑋+0 (𝑇 × C) ⊂ 𝑋+alg(𝑇 × C) ⊂ 𝑋+(𝑇 × C) ⊂ 𝑋∗(𝑇 × C).

2.3.2. Strongly-pure weights over E
The set of strongly-pure weights may be defined at an arithmetic level. Recall the standing assumption
on E that is a finite Galois extension ofQ that takes a copy of F; in particular, any embedding 𝜄 : 𝐸 → C
factors as 𝜄 : 𝐸 → Q̄ ⊂ C. Furthermore, 𝜄 : 𝐸 → C gives a bijection 𝜄∗ : Hom(𝐹, 𝐸) → Hom(𝐹,C)
as 𝜄∗(𝜏) = 𝜄 ◦ 𝜏, which in turn gives a bijection 𝑋∗(𝑇 × 𝐸) → 𝑋∗(𝑇 × C) that maps 𝜆 = (𝜆𝜏)𝜏:𝐹→𝐸 to
𝜄𝜆 = ( 𝜄𝜆𝜂)𝜂:𝐹→C = (𝜆 𝜄−1◦𝜂)𝜂:𝐹→C.

Proposition 2.4. Let 𝜆 ∈ 𝑋+alg(𝑇×𝐸) be an algebraic dominant integral weight. Suppose 𝜆 = (𝜆𝜏)𝜏:𝐹→𝐸

with 𝜆𝜏 = (𝑏𝜏
1 ≥ · · · ≥ 𝑏𝜏

𝑁 ). Then, the following are equivalent:

(i) There exists 𝜄 : 𝐸 → C such that 𝜄𝜆 ∈ 𝑋+00(𝑇 × C); that is, for every 𝛾 ∈ Gal(Q̄/Q), we have
𝛾◦ 𝜄𝜆 ∈ 𝑋+0 (𝑇 × C) with the same purity weight:
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“∃ 𝜄 : 𝐸 → C, ∃w ∈ Z such that 𝑏
𝜄−1◦𝛾−1◦𝜂
𝑗 + 𝑏 𝜄−1◦𝛾−1◦�̄�

𝑁− 𝑗+1 = w,

∀𝛾 ∈ Gal(Q̄/Q), ∀𝜂 : 𝐹 → C, 1 ≤ 𝑗 ≤ 𝑁.”

(ii) For every 𝜄 : 𝐸 → C, 𝜄𝜆 ∈ 𝑋+00 (𝑇 ×C), that is, for every 𝛾 ∈ Gal(Q̄/Q), we have 𝛾◦ 𝜄𝜆 ∈ 𝑋+00 (𝑇 ×C)
with the same purity weight:

“∃w ∈ Z such that 𝑏
𝜄−1◦𝛾−1◦𝜂
𝑗 + 𝑏 𝜄−1◦𝛾−1◦�̄�

𝑁− 𝑗+1 = w,

∀ 𝜄 : 𝐸 → C, ∀ 𝛾 ∈ Gal(Q̄/Q), ∀𝜂 : 𝐹 → C, 1 ≤ 𝑗 ≤ 𝑁.”

(iii) For every 𝜄 : 𝐸 → C, 𝜄𝜆 ∈ 𝑋+0 (𝑇 × C) with the same purity weight,

“∃w ∈ Z such that 𝑏
𝜄−1◦𝜂
𝑗 + 𝑏 𝜄−1◦�̄�

𝑁− 𝑗+1 = w, ∀ 𝜄 : 𝐸 → C, ∀𝜂 : 𝐹 → C, 1 ≤ 𝑗 ≤ 𝑁.”

Proof. Fix 𝜄0 : 𝐸 → C. Since 𝐸/Q is a finite Galois extension, the inclusions

{𝛾 ◦ 𝜄0 | 𝛾 ∈ Gal(Q̄/Q)} ⊂ {𝛾 ◦ 𝜄 | 𝛾 ∈ Gal(Q̄/Q), 𝜄 : 𝐸 → C} ⊂ Hom(𝐸,C)

are all equalities. �

The set of strongly-pure weights over E, denoted 𝑋+00(𝑇 × 𝐸), consists of the algebraic dominant
integral weights 𝜆 ∈ 𝑋∗(𝑇 × 𝐸) that satisfy any one, and hence all, of the conditions in the above
proposition. It is most convenient to work with the characterization in (𝑖𝑖𝑖). There are the following
inclusions within the character group of 𝑇 × 𝐸 , which are all, in general, strict inclusions:

𝑋+00 (𝑇 × 𝐸) ⊂ 𝑋+alg(𝑇 × 𝐸) ⊂ 𝑋+(𝑇 × 𝐸) ⊂ 𝑋∗(𝑇 × 𝐸).

The existence of a strongly-pure weight over a totally imaginary base field F depends on the internal
structure of F; this is explained over the course of the next four paragraphs.

2.3.3. Interlude on (strongly-)pure weights for a CM field
When the base field F is a CM field, then a pure weight is also strongly-pure. Given any 𝜍 ∈ Aut(C),
one can check that 𝜍∗(𝑋+0 (𝑇 × C)) = 𝑋+0 (𝑇 × C).

Lemma 2.5. Let 𝜂 : 𝐹 → C and 𝜍 : C → C be field homomorphisms, and let 𝔠 : C → C stand for
complex conjugation. Then

𝜍 ◦ 𝔠 ◦ 𝜂 = 𝔠 ◦ 𝜍 ◦ 𝜂,

that is, complex conjugation and any automorphism of C commute on the image of a CM field.

Proof. Let 𝜂1 = 𝜍 ◦ 𝔠 ◦ 𝜂 and 𝜂2 = 𝔠 ◦ 𝜍 ◦ 𝜂. Then 𝜂1 |𝐹+ = 𝜂2 |𝐹+ (recall that 𝐹+ is the maximal totally
real subfield of F). This means that 𝜂1 = 𝜂2 or 𝜂1 = 𝔠 ◦ 𝜂2; if the latter, then 𝜍 ◦ 𝔠 ◦ 𝜂 = 𝜍 ◦ 𝜂. Evaluate
both sides on 𝑥 ∈ 𝐹 − 𝐹+ on which 𝔠(𝜂(𝑥)) = −𝜂(𝑥) to get a contradiction. �

Let 𝜆 = (𝜆𝜂)𝜂:𝐹→C ∈ 𝑋+0 (𝑇 × C); hence, 𝑑𝜂 + 𝑑 �̄� = w for all 𝜂 : 𝐹 → C. Take any 𝜍 ∈ Aut(C) and
consider 𝜍𝜆; to see its purity, note that

𝑏
𝜍−1◦𝜂
𝑗 + 𝑏𝜍−1◦�̄�

𝑁− 𝑗+1 = 𝑏
𝜍−1◦𝜂
𝑗 + 𝑏𝜍−1◦𝔠◦𝜂

𝑁− 𝑗+1 = 𝑏
𝜍−1◦𝜂
𝑗 + 𝑏𝔠◦𝜍

−1◦𝜂
𝑁− 𝑗+1 = 𝑏

𝜍−1◦𝜂
𝑗 + 𝑏𝜍−1◦𝜂

𝑁− 𝑗+1 = w,

where the second equality is from Lemma 2.5 above. Hence, 𝜆 is strongly-pure.

https://doi.org/10.1017/fms.2025.48 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.48


Forum of Mathematics, Sigma 13

2.3.4. Interlude on strongly-pure weights for a general totally imaginary field
When F is totally imaginary but not CM, there may exist weights that are pure but not strongly-
pure. The following example is instructive: take 𝐹 = Q(21/3, 𝜔), where 21/3 is the real cube root
of 2 and 𝜔 = 𝑒2𝜋𝑖/3. Then Σ𝐹 = Gal(𝐹/Q) � 𝑆3 the permutation group in 3 letters taken to be
{21/3, 21/3𝜔, 21/3𝜔2}. Let 𝑠 ∈ 𝑆3 correspond to 𝜂𝑠 : 𝐹 → C. Consider the weights 𝜆 = (𝜆𝜂𝑠 )𝑠∈𝑆3 and
𝜇 = (𝜇𝜂𝑠 )𝑠∈𝑆3 for Res𝐹/Q(GL(1)/𝐹) described in the table:

𝑠 𝑒 (12) (23) (13) (123) (132)
𝜆𝜂𝑠 𝑎 𝑏 w − 𝑎 𝑐 w − 𝑐 w − 𝑏
𝜇𝜂𝑠 𝑎 w − 𝑎 w − 𝑎 w − 𝑎 𝑎 𝑎

where 𝑎, 𝑏, 𝑐,w ∈ Z. For the tautological embedding 𝐹 ⊂ C, the set Σ𝐹 is paired into com-
plex conjugates as {(𝜂𝑒, 𝜂 (23) ), (𝜂 (12) , 𝜂 (132) ), (𝜂 (13) , 𝜂 (123) )}, from which it follows that 𝜆 is a pure
weight. All other possible pairings of Σ𝐹 into conjugates via automorphisms of C are given by:
{(𝜂𝑒, 𝜂 (12) ), (𝜂 (23) , 𝜂 (123) ), (𝜂 (13) , 𝜂 (132) )}, and {(𝜂𝑒, 𝜂 (13) ), (𝜂 (23) , 𝜂 (132) ), (𝜂 (12) , 𝜂 (123) )}; (F being
Galois this simply boils down to composing these embeddings 𝜂𝑠 by a fixed one 𝜂𝑠0 , and using
𝜂𝑠0 ◦ 𝜂𝑠 = 𝜂𝑠0𝑠). It follows that 𝜆 is not strongly-pure if w − 𝑎, 𝑏 and c are not all equal, but 𝜇 is
strongly-pure and has purity weight w.

2.3.5. On the internal structure of a general totally imaginary field
Let F be a totally imaginary field as before. Let 𝐹0 be the largest totally real subfield in F. Then there is
at most one totally imaginary quadratic extension 𝐹1 of 𝐹0 inside F. (See, for example, Weil [51].) If 𝛼
and 𝛽 are two totally negative elements of 𝐹0 giving two possible such extensions 𝐹0 (

√
𝛼) and 𝐹0 (

√
𝛽),

then by maximality of 𝐹0, one has
√
𝛼𝛽 ∈ 𝐹0, that is, 𝛼 = 𝑡2𝛽 for 𝑡 ∈ 𝐹0, whence 𝐹0 (

√
𝛼) = 𝐹0 (

√
𝛽).

There are two distinct cases to consider:
(i) CM: when there is indeed such an imaginary quadratic extension 𝐹1 of 𝐹0, then 𝐹1 is the maximal

CM subfield of F; of course, [𝐹1 : 𝐹0] = 2. For example, if 𝐹 = Q(21/3, 𝜔) as in 2.3.4, then 𝐹0 = Q
and 𝐹1 = Q(𝜔).

(ii) TR: when there is no imaginary quadratic extension of 𝐹0 inside F, then put 𝐹1 = 𝐹0 for the
maximal totally real subfield of F. For example, take 𝐹0 to be a cubic totally real field (e.g.,
𝐹0 = Q(𝜁7 + 𝜁−1

7 ), 𝜁7 = 𝑒2𝜋𝑖/7), and take non-square elements 𝑎, 𝑏 ∈ 𝐹0 whose conjugates 𝑎, 𝑎′, 𝑎′′
and 𝑏, 𝑏′, 𝑏′′ are such that 𝑎 > 0, 𝑎′ < 0, 𝑎′′ < 0 and 𝑏 < 0, 𝑏′ < 0, 𝑏′′ > 0; such a and b exist
by weak-approximation; take 𝐹 = 𝐹0 (

√
𝑎,
√
𝑏). Then there is no intermediate CM-subfield between

𝐹0 and F; hence, 𝐹1 = 𝐹0.

As will be explained later on, that in case TR, asking for a critical point for a Rankin–Selberg
L-function for GL(𝑛) ×GL(𝑛′)/𝐹 will impose the restriction 𝑛𝑛′ is even. This should not be surprising
because, as is well-known, for an algebraic Hecke character 𝜒 over F, if the L-function 𝐿(𝑠, 𝜒) has
critical points, then that forces us to be in case CM (see [42]).

Notation in the CM-case.
Suppose S∞(𝐹) (resp., S∞(𝐹1)) is the set of archimedean places of F (resp., 𝐹1). Enumerate S∞(𝐹1)

as {𝑤1, . . . , 𝑤r1 }, where r1 = 𝑑𝐹1/2 = [𝐹1 : Q]/2. For 1 ≤ 𝑗 ≤ r1, let {𝜈 𝑗 , �̄� 𝑗 } ⊂ Σ𝐹1 be the pair of
conjugate embeddings corresponding to 𝑤 𝑗 ; the non-canonical choice of 𝜈 𝑗 is fixed and is distinguished
in the sense that 𝜈 𝑗 induces the isomorphism 𝐹1,𝑤𝑗 � C. Let 𝑘 = [𝐹 : 𝐹1] . Let 𝑣 𝑗1, . . . , 𝑣 𝑗𝑘 be the
set of places in S∞(𝐹) above 𝑤 𝑗 . Let 𝜚 : Σ𝐹 → Σ𝐹1 denote the restriction map 𝜚(𝜂) = 𝜂 |𝐹1 . Suppose
𝜚−1 (𝜈 𝑗 ) = {𝜂 𝑗1, . . . , 𝜂 𝑗𝑘 }. Then 𝜚−1 (�̄� 𝑗 ) = {𝜂 𝑗1, . . . , 𝜂 𝑗𝑘 }, with the indexing being such that the pair
of conjugate embeddings {𝜂 𝑗𝑙 , 𝜂 𝑗𝑙} corresponds to 𝑣 𝑗𝑙 ∈ S∞(𝐹) for all 1 ≤ 𝑗 ≤ r1 and 1 ≤ 𝑙 ≤ 𝑘.

Notation in the TR-case.
Let S∞(𝐹1) = {𝑤1, . . . , 𝑤𝑑𝐹1

} be an enumeration of the set of archimedean places of 𝐹1, where
𝑑𝐹1 = [𝐹1 : Q]; since 𝐹1 is the maximal totally real subfield of the totally imaginary F, the degree 𝑑𝐹1
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can be either even or odd, but the index 𝑘 = [𝐹 : 𝐹1] is even; suppose 𝑘 = 2𝑘1. For 1 ≤ 𝑗 ≤ 𝑑𝐹1 , let
𝜈 𝑗 ∈ Σ𝐹1 be complex embedding corresponding to 𝑤 𝑗 . As before, 𝜚 : Σ𝐹 → Σ𝐹1 denotes the restriction
map 𝜚(𝜂) = 𝜂 |𝐹1 . Let 𝑣 𝑗1, . . . , 𝑣 𝑗𝑘1 be the set of places in S∞(𝐹) above 𝑤 𝑗 , and suppose 𝑣 𝑗𝑖 corresponds
to the pair of conjugate embeddings {𝜂 𝑗𝑖 , 𝜂 𝑗𝑖}. Then 𝜚−1 (𝜈 𝑗 ) = {𝜂 𝑗1, 𝜂 𝑗1, 𝜂 𝑗2, 𝜂 𝑗2, . . . , 𝜂 𝑗𝑘1 , 𝜂 𝑗𝑘1 }.

2.3.6. Strongly-pure weights over F are base-change from 𝐹1

Proposition 2.6. Suppose 𝜆 ∈ 𝑋+00 (Res𝐹/Q(𝑇𝑁 ,0) × 𝐸) is a strongly-pure weight. Then there exists
𝜅 ∈ 𝑋+00(Res𝐹1/Q(𝑇𝑁 ,0) × 𝐸) such that 𝜆 is the base-change of 𝜅 from 𝐹1 to F in the sense that for any
𝜏 : 𝐹 → 𝐸 , 𝜆𝜏 = 𝜅𝜏 |𝐹1 .

For brevity, the conclusion will be denoted as 𝜆 = BC𝐹/𝐹1 (𝜅).

Proof. It suffices to prove the proposition over C, that is, if ′𝜆 ∈ 𝑋+00 (Res𝐹/Q(𝑇𝑁 ,0) ×C), then it suffices
to show the existence ′𝜅 ∈ 𝑋+00 (Res𝐹1/Q(𝑇𝑁 ,0) ×C) such that ′𝜆 = BC𝐹/𝐹1 (′𝜅); because, then given the
𝜆 in the proposition, take an embedding 𝜄 : 𝐸 → C, and let ′𝜆 = 𝜄𝜆, to which using the statement over C
one gets ′𝜅, which defines a unique 𝜅 via 𝜄𝜅 = ′𝜅. It is clear that 𝜆 = BC𝐹/𝐹1 (𝜅) because this is so after
applying 𝜄.

To prove the statement over C, take 𝜆 ∈ 𝑋+00 (Res𝐹/Q(𝑇𝑁 ,0) × C), and suppose 𝜆 = (𝜆𝜂)𝜂:𝐹→C with
𝜆𝜂 = (𝑏𝜂

1 ≥ 𝑏
𝜂
2 ≥ · · · ≥ 𝑏

𝜂
𝑁 ). Strong-purity gives

𝑏
𝛾◦𝜂
𝑁− 𝑗+1 + 𝑏

𝛾◦�̄�
𝑗 = w, ∀𝛾 ∈ Gal(Q̄/Q), ∀𝜂 ∈ Σ𝐹 , 1 ≤ 𝑗 ≤ 𝑁.

Also, one has

𝑏
𝛾◦𝜂
𝑁− 𝑗+1 + 𝑏

𝛾◦𝜂
𝑗 = w, ∀𝛾 ∈ Gal(Q̄/Q), ∀𝜂 ∈ Σ𝐹 , 1 ≤ 𝑗 ≤ 𝑁.

Hence, we get 𝑏𝛾◦�̄�𝑗 = 𝑏
𝛾◦𝜂
𝑗 . Exactly as explicated in the proof of Proposition 26 in [42], one gets

𝑏
𝛾◦𝜂
𝑗 = 𝑏

𝜂
𝑗 for all 𝛾 in the normal subgroup of Gal(Q̄/Q) generated by the commutators {𝑔𝔠𝑔−1𝔠 : 𝑔 ∈

Gal(Q̄/Q)}, and all 𝜂 : 𝐹 → C. This means that 𝑏𝜂
𝑗 depends only on 𝜂 |𝐹1 . �

2.4. Strongly inner cohomology

The problem of giving an arithmetic characterization of cuspidal cohomology is addressed in [27, Chap.
5] in great detail for GL𝑁 over a totally real field. In this article, for GL𝑁 over a totally imaginary F,
we will only discuss it en passant and contend ourselves in making the following:

Definition 2.7. Take a field E large enough (as before), and let 𝜆 ∈ 𝑋+00 (𝑇 × 𝐸). The strongly inner
spectrum of 𝜆 for level structure 𝐾 𝑓 is defined as

Coh!! (𝐺, 𝐾 𝑓 , 𝜆) =

{𝜋 𝑓 ∈ Coh!(𝐺, 𝐾 𝑓 , 𝜆) : 𝜄𝜋 𝑓 ∈ Cohcusp(𝐺, 𝐾 𝑓 ,
𝜄𝜆) for some embedding 𝜄 : 𝐸 → C}.

An irreducible Hecke-summand 𝜋 𝑓 in inner cohomology is strongly-inner if under some embedding
𝜄 rendering the context transcendental, it contributes to cuspidal cohomology. The point of view in
loc.cit. is that the definition is independent of 𝜄, and hence giving a rational origin (i.e., over E) to
cuspidal summands giving another proof of a result of Clozel that cuspidal cohomology for GL𝑁

admits a rational structure [7, Thm. 3.19]. In this article, one simply appeals to Clozel’s theorem to
observe that the definition of strongly inner spectrum is independent of the choice of embedding 𝜄; that
is, if 𝜄, 𝜄′ : 𝐸 → C are two such embeddings, then

𝜄𝜋 𝑓 ∈ Cohcusp (𝐺, 𝜄𝜆) ⇐⇒ 𝜄′𝜋 𝑓 ∈ Cohcusp(𝐺, 𝜄
′
𝜆).
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Define strongly-inner cohomology as

𝐻•!! (S𝐺
𝐾 𝑓

,M̃𝜆,𝐸 ) =
⊕

𝜋 𝑓 ∈Coh!! (𝐺,𝜆,𝐾 𝑓 )
𝐻•! (S𝐺

𝐾 𝑓
,M̃𝜆,𝐸 ) (𝜋 𝑓 ).

Then, since cuspidal cohomology is contained in inner cohomology, it is clear that

𝐻•!! (S𝐺
𝐾 𝑓

,M̃𝜆,𝐸 ) ⊗𝐸, 𝜄 C � 𝐻•cusp (S𝐺
𝐾 𝑓

,M̃𝜄𝜆,C).

For 𝜆 ∈ 𝑋+00 (𝑇 × 𝐸), 𝜋 𝑓 ∈ Coh!! (𝐺, 𝜆) (ignoring the level structure) and 𝜄 : 𝐸 → C, since
𝜄𝜋 𝑓 ∈ Cohcusp (𝐺, 𝜄𝜆), let 𝜄𝜋 stand for the unique global cuspidal automorphic representation of
𝐺 (AQ) = GL𝑁 (A𝐹 ) whose finite part is ( 𝜄𝜋) 𝑓 = 𝜄𝜋 𝑓 . The representation at infinity ( 𝜄𝜋)∞, to be
denoted J𝜄𝜆 below, will be explicitly described in Section 2.5.

2.4.1. Tate twists
Let 𝑚 ∈ Z. For 𝜆 ∈ 𝑋+(𝑇𝑁 × 𝐸), define 𝜆 + 𝑚𝛅𝑁 by the rule that if 𝜆𝜏 = (𝑏𝜏

1 , . . . , 𝑏
𝜏
𝑁 ), then

(𝜆 + 𝑚𝛅𝑁 )𝜏 = (𝑏𝜏
1 + 𝑚, . . . , 𝑏𝜏

𝑁 + 𝑚) for 𝜏 : 𝐹 → 𝐸. It is clear that 𝜆 ↦→ 𝜆 + 𝑚𝛅𝑁 preserves each of
the properties: dominant, integral, algebraic and (strongly-)pure. As in [27, Sect. 5.2.4], cupping with
the m-th power of the fundamental class 𝑒𝛅𝑁 ∈ 𝐻0 (S𝐺

𝐾 𝑓
,Q[𝛅𝑁 ]) gives us an isomorphism that maps

(strongly-)inner cohomology to (strongly-)inner cohomology, and suppose 𝜋 𝑓 ∈ Coh!!(𝐺, 𝜆). Then
𝑇•Tate (𝑚) (𝜋 𝑓 ) = 𝜋 𝑓 (−𝑚), where, 𝜋 𝑓 (−𝑚) is defined by 𝜋 𝑓 (−𝑚) (𝑔 𝑓 ) = 𝜋 𝑓 (𝑔 𝑓 ) ⊗ ||𝑔 𝑓 ||−𝑚.

2.5. Archimedean considerations

2.5.1. Cuspidal parameters and cohomological representations of GL𝑁 (C)
Given a weight 𝜆 = (𝜆𝜂)𝜂:𝐹→C ∈ 𝑋+00 (𝑇 × C), for each 𝑣 ∈ S∞ (recall that v corresponds to a pair of
complex embeddings {𝜂𝑣 , 𝜂𝑣 } of F into C, with 𝜂𝑣 used to identify 𝐹𝑣 with C), define the cuspidal
parameters of 𝜆 at v by

𝛼𝑣 := −𝑤0𝜆
𝜂𝑣 + 𝜌 and 𝛽𝑣 := −𝜆 �̄�𝑣 − 𝜌.

If 𝜆𝜂 = (𝑏𝜂
1 , . . . , 𝑏

𝜂
𝑁 ), then

𝛼𝑣 = (𝛼𝑣
1 , . . . , 𝛼

𝑣
𝑁 ) =

(
−𝑏𝜂𝑣

𝑁 +
(𝑁−1)

2 , −𝑏𝜂𝑣
𝑁−1 +

(𝑁−3)
2 , . . . , −𝑏𝜂𝑣

1 −
(𝑁−1)

2

)
, (2.8)

and similarly,

𝛽𝑣 := (𝛽𝑣1 , . . . , 𝛽
𝑣
𝑁 ) =

(
−𝑏 �̄�𝑣

1 −
(𝑁−1)

2 , −𝑏 �̄�𝑣
2 −

(𝑁−3)
2 , . . . , −𝑏 �̄�𝑣

𝑁 +
(𝑁−1)

2

)
. (2.9)

Purity implies that 𝛼𝑣
𝑗 + 𝛽

𝑣
𝑗 = −w. Define a representation of GL𝑁 (𝐹𝑣 ) � GL𝑁 (C) as

J𝜆𝑣 := J(𝜆𝜂𝑣 , 𝜆 �̄�𝑣 ) := IndGL𝑁 (C)
𝐵𝑁 (C)

(
𝑧𝛼

𝑣
1 𝑧𝛽

𝑣
1 ⊗ · · · ⊗ 𝑧𝛼

𝑣
𝑁 𝑧𝛽

𝑣
𝑁

)
, (2.10)

where 𝐵𝑁 is the subgroup of all upper-triangular matrices in GL𝑁 , and by Ind we mean normalized
(i.e., unitary) parabolic induction. Now define a representation of 𝐺 (R) =

∏
𝑣 GL𝑁 (𝐹𝑣 ):

J𝜆 :=
⊗
𝑣 ∈S∞

J𝜆𝑣 . (2.11)

Remark 2.12. Recall that the choice of the embedding 𝜂𝑣 in the pair {𝜂𝑣 , 𝜂𝑣 } was fixed. If the roles
of the 𝜂𝑣 and 𝜂𝑣 are reversed, then it is easy to see that the pair (𝛼𝑣 , 𝛽𝑣 ) of cuspidal parameters would
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be replaced by (𝑤0𝛽
𝑣 , 𝑤0𝛼

𝑣 ), whence, the representation J𝑣 is replaced by its conjugate J̄𝑣 . See 2.5.2
below.

Some basic properties of J𝜆 are described in the following two propositions.

Proposition 2.13. Let 𝜆 ∈ 𝑋+00(𝑇 × C) and J𝜆 as above. Then

1. J𝜆 is an irreducible essentially tempered representation admitting a Whittaker model.
2. 𝐻•(𝔤, 𝐾∞; J𝜆 ⊗M𝜆,C) ≠ 0.
3. Let J be an irreducible essentially tempered representation of 𝐺 (R).

Suppose that 𝐻•(𝔤, 𝐾∞; J ⊗M𝜆,C) ≠ 0 then J = J𝜆.
4. If 𝜋 ∈ Cohcusp (𝐺, 𝜆) (i.e., 𝜋 is a global cuspidal automorphic representation that contributes to

cuspidal cohomology with respect to a strongly-pure weight 𝜆), then 𝜋∞ � J𝜆.

These are well-known results for GL𝑁 (C) and are all easily seen from this elementary observation:
for 𝑧 ∈ C, let |𝑧 |C = 𝑧𝑧; then the representation

J𝜆𝑣 ⊗ | |
w/2
C

= IndGL𝑁 (C)
𝐵𝑁 (C)

(
𝑧𝛼

𝑣
1 +w/2𝑧𝛽

𝑣
1 +w/2 ⊗ · · · ⊗ 𝑧𝛼

𝑣
𝑁 +w/2𝑧𝛽

𝑣
𝑁 +w/2

)
is unitarily induced from unitary characters (because of purity) and hence irreducible. A representation
irreducibly induced from essentially discrete series representation is essentially tempered. Admitting
a Whittaker model is a hereditary property. Nonvanishing of cohomology follows from Delorme’s
Lemma (Borel–Wallach [5, Thm. III.3.3]), and that relative Lie algebra cohomology satisfies a Künneth
theorem. Finally, among all representations with given infinitesimal character, there is at most one that
is essentially tempered.

Define the following numbers:

𝑏C𝑁 = 𝑁 (𝑁 − 1)/2,
𝑡C𝑁 = (𝑁2 − 1) − 𝑏C𝑁 ,

𝑏𝐹𝑁 = r · 𝑏C𝑁 ,

𝑡𝐹𝑁 = dim(S𝐺) − 𝑏𝐹𝑁 .

(2.14)

The relation between 𝑏𝐹𝑁 and 𝑡𝐹𝑁 is mitigated by an appropriate version of Poincaré duality, which is
the reason why the ‘top-degree’ is defined in terms of the ‘bottom-degree’ and the dimension of the
intervening symmetric space.

Proposition 2.15. Let 𝜆 ∈ 𝑋+00(𝑇 × C) and J𝜆 as above. Then

𝐻𝑞 (𝔤, 𝐾∞; J𝜆 ⊗M𝜆,C) ≠ 0 ⇐⇒ 𝑏𝐹𝑁 ≤ 𝑞 ≤ 𝑡𝐹𝑁 .

Furthermore, for extremal degrees 𝑞 ∈ {𝑏𝐹𝑁 , 𝑡𝐹𝑁 }, we have dim(𝐻𝑞 (𝔤, 𝐾∞; J𝜆 ⊗M𝜆,C)) = 1.

Proof. For each 𝑣 ∈ S∞, we have 𝐻𝑞 (𝔤𝔩𝑁 (C),U(𝑁)𝑍𝑁 ,0(R)0; J𝜆𝑣 ⊗M𝜆𝑣 ,C) ≠ 0 if and only if
𝑏C𝑁 ≤ 𝑞 ≤ 𝑡C𝑁 . This follows, after a minor modification, from Clozel [7, Lemme 3.14]. The cohomology
is in fact an exterior algebra (up to shifting in degree by 𝑏C𝑁 ), giving one-dimensionality in bottom
and top degree. Then use the fact that relative Lie algebra cohomology satisfies a Künneth theorem.
This gives (𝔤, 𝐶∞𝑍 (R)0)-cohomology from which the reader may easily deduce the above details
for (𝔤, 𝐶∞𝑆(R)0) = (𝔤, 𝐾∞)-cohomology; it is helpful to note that 𝑡𝐹𝑁 = r𝑡C𝑁 + (r − 1) = r𝑡C𝑁 +
dim(𝑍 (R)0/𝑆(R)0). �

There is a piquant numerological relation between the bottom or top degee for the cuspidal coho-
mology of Levi subgroup GL𝑛 × GL𝑛′ of a maximal parabolic subgroup P of an ambient GL𝑁 , the
corresponding bottom or top degree for GL𝑁 , and the dimension of the unipotent radical of P given
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in the following proposition that has a crucial bearing on certain degree-considerations for Eisenstein
cohomology. For any positive integer r, define 𝑏C𝑟 , 𝑡

C
𝑟 , 𝑏

𝐹
𝑟 and 𝑡𝐹𝑟 as in (2.14) replacing N by r.

Proposition 2.16. Let n and 𝑛′ be positive integers with 𝑛 + 𝑛′ = 𝑁. Then

1. 𝑏𝐹𝑛 + 𝑏𝐹𝑛′ +
1
2 dim(𝑈𝑃) = 𝑏𝐹𝑁 .

2. 𝑡𝐹𝑛 + 𝑡𝐹𝑛′ +
1
2 dim(𝑈𝑃) = 𝑡𝐹𝑁 − 1.

Proof. Keeping in mind that 𝑁 = 𝑛 + 𝑛′, (1) follows from the identity

r
𝑛(𝑛 − 1)

2
+ r

𝑛′(𝑛′ − 1)
2

+ r𝑛𝑛′ = r
(𝑛 + 𝑛′) (𝑛 + 𝑛′ − 1)

2
.

For (2), observe that 𝑡𝐹𝑛 = (𝑛2r − 1) − r𝑛(𝑛 − 1)/2 = r𝑛(𝑛 + 1)/2 − 1. Now (2) follows from(
r
𝑛(𝑛 + 1)

2
− 1

)
+
(
r
𝑛′(𝑛′ + 1)

2
− 1

)
+ r𝑛𝑛′ =

(
r
(𝑛 + 𝑛′) (𝑛 + 𝑛′ + 1)

2
− 1

)
− 1. �

2.5.2. Archimedean constituents: CM-case
If 𝜋∞ = ⊗𝑣 ∈S∞𝜋𝑣 is an irreducible representation of𝐺 (R) =

∏
𝑣 ∈S∞ GL𝑁 (C),then the set {𝜋𝑣 : 𝑣 ∈ S∞}

of the irreducible factors, up to equivalence, will be called as the set of constituents of 𝜋∞. Let
𝜆 ∈ 𝑋+00 (Res𝐹/Q(𝑇𝑁 ,0) × 𝐸), 𝜋 𝑓 ∈ Coh!! (𝐺, 𝜆), and 𝜄 : 𝐸 → C. The set of constituents of 𝜄𝜋∞ may be
explicitly described.

CM-case
Recall from Proposition 2.6 that 𝜆 = BC𝐹/𝐹1 (𝜅); that is, 𝜆𝜏 = 𝜅𝜏 |𝐹1 ; after applying 𝜄, one has

𝜄𝜆𝜂 = 𝜄𝜅𝜂 |𝐹1 , which is the same as 𝜆 𝜄−1◦𝜂 = 𝜅 𝜄
−1◦𝜂 |𝐹1 . Using the notations fixed in 2.3.5, for any

place 𝑣 𝑗𝑙 ∈ S∞(𝐹) above 𝑤 𝑗 ∈ S∞(𝐹1), the ordered pair (𝜂𝑣𝑗𝑙 , 𝜂𝑣𝑗𝑙 ) of conjugate embeddings of
F restricts to the ordered pair (𝜈𝑤𝑗 , �̄�𝑤𝑗 ) of conjugate embeddings of 𝐹1; hence, the ordered pair of
weights ( 𝜄𝜆𝜂𝑣𝑗𝑙 , 𝜄𝜆

�̄�𝑣𝑗𝑙 ) is equal to the ordered pair ( 𝜄𝜅𝜈𝑤𝑗 , 𝜄𝜅 �̄�𝑤𝑗 ), whence the archimedean component
𝜄𝜋𝑣𝑗𝑙 is equivalent to J( 𝜄𝜅𝜈𝑤𝑗 , 𝜄𝜅 �̄�𝑤𝑗 ). Just for the moment, for brevity, denoting J( 𝜄𝜅𝜈𝑤𝑗 , 𝜄𝜅 �̄�𝑤𝑗 ) by
J𝑤𝑗 , one concludes that the constituents of 𝜄𝜋∞ is the multi-set {J𝑤1 , . . . , J𝑤1 , . . . , J𝑤r1

, . . . , J𝑤r1
},

with each J𝑤𝑗 appearing 𝑘 = [𝐹 : 𝐹1]-many times; this multi-set may also be variously written as
{[𝐹 : 𝐹1] · J𝑤 | 𝑤 ∈ S∞(𝐹1)} = {[𝐹 : 𝐹1] · J( 𝜄𝜅𝜈𝑤 , 𝜄𝜅 �̄�𝑤 ) | 𝑤 ∈ S∞(𝐹1)}. Putting these together one
has

𝜄𝜋∞ =
⊗

𝑣 ∈S∞ (𝐹 )

𝜄𝜋𝑣 =
⊗

𝑣 ∈S∞ (𝐹 )
J( 𝜄𝜆𝜂𝑣 , 𝜄𝜆 �̄�𝑣 )

=
⊗

𝑤 ∈S∞ (𝐹1)

⊗
𝑣 |𝑤
J( 𝜄𝜅𝜈𝑤 , 𝜄𝜅 �̄�𝑤 ) =

⊗
𝑤 ∈S∞ (𝐹1)

⊗
𝑣 |𝑤
J(𝜅 𝜄−1◦𝜈𝑤 , 𝜅 𝜄

−1◦�̄�𝑤 ). (2.17)

TR-case
We still have from Proposition 2.6 that 𝜆 = BC𝐹/𝐹1 (𝜅); that is, 𝜆𝜏 = 𝜅𝜏 |𝐹1 ; after applying 𝜄, one

has 𝜄𝜆𝜂 = 𝜄𝜅𝜂 |𝐹1 , which is the same as 𝜆 𝜄−1◦𝜂 = 𝜅 𝜄
−1◦𝜂 |𝐹1 . Using the notations fixed in 2.3.5, for any

place 𝑣 𝑗𝑙 ∈ S∞(𝐹) above 𝑤 𝑗 ∈ S∞(𝐹1), both the embeddings in the ordered pair (𝜂𝑣𝑗𝑙 , 𝜂𝑣𝑗𝑙 ) restrict
to 𝜈𝑤𝑗 . Hence, the ordered pair of weights ( 𝜄𝜆𝜂𝑣𝑗𝑙 , 𝜄𝜆

�̄�𝑣𝑗𝑙 ) is equal to the ordered pair ( 𝜄𝜅𝜈𝑤𝑗 , 𝜄𝜅𝜈𝑤𝑗 ) –
note that both weights in the ordered pair are the same, whence the archimedean component 𝜄𝜋𝑣𝑗𝑙 is
equivalent to J( 𝜄𝜅𝜈𝑤𝑗 , 𝜄𝜅𝜈𝑤𝑗 ). Once again, for brevity, denoting J( 𝜄𝜅𝜈𝑤𝑗 , 𝜄𝜅𝜈𝑤𝑗 ) by J𝑤𝑗 , one concludes
that the constituents of 𝜄𝜋∞ are elements of the multi-set {J𝑤1 , . . . , J𝑤1 , . . . , J𝑤r1

, . . . , J𝑤r1
}, with each

J𝑤𝑗 appearing 𝑘1 = [𝐹 : 𝐹1]/2-many times; putting these together, one has
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𝜄𝜋∞ =
⊗

𝑣 ∈S∞ (𝐹 )

𝜄𝜋𝑣 =
⊗

𝑣 ∈S∞ (𝐹 )
J( 𝜄𝜆𝜂𝑣 , 𝜄𝜆𝜂𝑣 )

=
⊗

𝑤 ∈S∞ (𝐹1)

⊗
𝑣 |𝑤
J( 𝜄𝜅𝜈𝑤 , 𝜄𝜅𝜈𝑤 ) =

⊗
𝑤 ∈S∞ (𝐹1)

⊗
𝑣 |𝑤
J(𝜅 𝜄−1◦𝜈𝑤 , 𝜅 𝜄

−1◦𝜈𝑤 ) =
⊗

𝑤 ∈S∞ (𝐹1)

⊗
𝑣 |𝑤
J𝑤 , (2.18)

and each of these J𝑤 is self-conjugate from Remark 2.12.

2.5.3. Galois action on archimedean constituents
Let 𝛾 ∈ Gal(Q̄/Q). The archimedean constituents of 𝛾◦ 𝜄𝜋 is a permutation of the archimedean con-
stituents of 𝜄𝜋, possibly up to replacing a local component by its conjugate which will only be relevant
when F is in the CM-case. This is made more precise in the following paragraphs.

The case when F is itself a CM field
If 𝐹 = 𝐹1 is a CM field, and 𝐹0 its maximal totally real quadratic subfield, for 𝛾 ∈ Gal(Q̄/Q)

and 𝜈 ∈ Σ𝐹1 from Lemma 2.5, one has 𝛾 ◦ �̄� = 𝛾 ◦ 𝜈; this means that 𝛾 permutes the set of pairs
of conjugate embeddings {{𝜈𝑤 , �̄�𝑤 } | 𝑤 ∈ S∞(𝐹1)}, giving an action of 𝛾 on S∞(𝐹1). If we identify
S∞(𝐹1) = S∞(𝐹0) = Σ𝐹0 , then the action of 𝛾 on S∞(𝐹1) is the same as action of 𝛾 on Σ𝐹0 via
composition. It is important to note that 𝛾 need not map the distinguished embedding corresponding to
w to the distinguished embedding corresponding to 𝛾 · 𝑤; all one can say is that 𝛾 ◦ 𝜈𝑤 ∈ {𝜈𝛾 ·𝑤 , �̄�𝛾 ·𝑤 }.
Suppose 𝜅 ∈ 𝑋+00 (Res𝐹1/Q(𝑇𝑁 ,0) × 𝐸), 𝜋1, 𝑓 ∈ Coh!! (Res𝐹1/Q(GL𝑁 /𝐹1, 𝜅)), 𝜄 : 𝐸 → C, and 𝜄𝜋1
the corresponding cuspidal automorphic representation of GL𝑁 (A𝐹1). Then 𝜄𝜋1,∞ = ⊗𝑤 ∈S∞ (𝐹1)

𝜄𝜋1,𝑤 ,
where

𝜄𝜋1,𝑤 = J( 𝜄𝜅𝜈𝑤 , 𝜄𝜅 �̄�𝑤 ) = J(𝜅 𝜄−1◦𝜈𝑤 , 𝜅 𝜄
−1◦�̄�𝑤 ).

By the same token, replacing 𝜄 by 𝛾 ◦ 𝜄, one has

𝛾◦ 𝜄𝜋1,𝑤 = J(𝜅 𝜄−1◦𝛾−1◦𝜈𝑤 , 𝜅 𝜄
−1◦𝛾−1◦�̄�𝑤 ) = J(𝜅 𝜄−1◦𝛾−1◦𝜈𝑤 , 𝜅 𝜄

−1◦𝛾−1◦𝜈𝑤 )

Depending on whether 𝛾−1 ◦ 𝜈𝑤 = 𝜈𝛾−1 ·𝑤 or 𝜈𝛾−1 ·𝑤 , from Remark 2.12, it follows that

𝛾◦ 𝜄𝜋1,𝑤 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜄𝜋1,𝛾−1 ·𝑤 if 𝛾−1 ◦ 𝜈𝑤 = 𝜈𝛾−1 ·𝑤 ,

𝜄𝜋1,𝛾−1 ·𝑤 if 𝛾−1 ◦ 𝜈𝑤 = 𝜈𝛾−1 ·𝑤 .

(2.19)

Hence, the archimedean components of 𝛾◦ 𝜄𝜋1 is a permutation of the archimedean components of 𝜄𝜋1
up to taking conjugates; this paragraph fixes a mistake in [12, Prop. 3.2, (i)].

When F is totally imaginary in the CM-case.
Let 𝜆 ∈ 𝑋+00 (Res𝐹/Q(𝑇𝑁 ,0) × 𝐸), 𝜆 = BC𝐹/𝐹1 (𝜅), 𝜋 𝑓 ∈ Coh!! (𝐺, 𝜆), 𝜄 : 𝐸 → C, and

𝛾 ∈ Gal(Q̄/Q). The Galois action on Σ𝐹 and Σ𝐹1 preserves the fibers of the restriction map Σ𝐹 → Σ𝐹1 .
Suppose 𝑤1, 𝑤 𝑗 ∈ S∞(𝐹1) and 𝜈1, 𝜈 𝑗 ∈ Σ𝐹1 are the corresponding distinguished elements, and suppose
𝛾 ◦ {𝜈1, �̄�1} = {𝜈 𝑗 , �̄� 𝑗 }. Suppose the fiber over 𝜈1 is {𝜂11, 𝜂12, . . . , 𝜂1𝑘 } (recall 𝑘 = [𝐹 : 𝐹1]). Then the
fiber over �̄�1 is {𝜂11, 𝜂12, . . . , 𝜂1𝑘 }; and similarly, if the fiber over 𝜈 𝑗 is {𝜂 𝑗1, 𝜂 𝑗2, . . . , 𝜂 𝑗𝑘 } and then the
fiber over �̄� 𝑗 is {𝜂 𝑗1, 𝜂 𝑗2, . . . , 𝜂 𝑗𝑘 }. There are two cases:

1. 𝛾◦𝜈1 = 𝜈 𝑗 . Then necessarily, 𝛾◦�̄�1 = �̄� 𝑗 , 𝛾◦{𝜂11, . . . , 𝜂1𝑘 } = {𝜂 𝑗1, . . . , 𝜂 𝑗𝑘 } and 𝛾◦{𝜂11, . . . , 𝜂1𝑘 } =
{𝜂 𝑗1, . . . , 𝜂 𝑗𝑘 }.

2. 𝛾◦𝜈1 = �̄� 𝑗 . Then necessarily, 𝛾◦�̄�1 = 𝜈 𝑗 , 𝛾◦{𝜂11, . . . , 𝜂1𝑘 } = {𝜂 𝑗1, . . . , 𝜂 𝑗𝑘 } and 𝛾◦{𝜂11, . . . , 𝜂1𝑘 } =
{𝜂 𝑗1, . . . , 𝜂 𝑗𝑘 }.
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Since 𝐹 = 𝐹1 is already discussed in 2.5.3 above, suppose that 𝑘 > 1. Suppose 𝛾 ◦ 𝜂11 = 𝜂 𝑗1. Then
it is possible that 𝛾 ◦ {𝜂11, 𝜂11} ≠ {𝜂 𝑗1, 𝜂 𝑗1}. In particular, the Galois action on Σ𝐹 does not descend to
give a Galois action of 𝛾 on 𝑆∞(𝐹). Similarly, also in case (2). Nevertheless, using (2.17), it follows that

𝛾◦ 𝜄𝜋∞ =
⊗

𝑤 ∈S∞ (𝐹1)

⊗
𝑣 |𝑤
J(𝜅 𝜄−1◦𝛾−1◦𝜈𝑤 , 𝜅 𝜄

−1◦𝛾−1◦�̄�𝑤 ), (2.20)

and as in (2.19), the inner constituent is given by

J(𝜅 𝜄−1◦𝛾−1◦𝜈𝑤 , 𝜅 𝜄
−1◦𝛾−1◦�̄�𝑤 ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
J(𝜅 𝜄

−1◦𝜈𝛾−1 ·𝑤 , 𝜅 𝜄
−1◦�̄�𝛾−1 ·𝑤 ) if 𝛾−1 ◦ 𝜈𝑤 = 𝜈𝛾−1 ·𝑤 ,

J(𝜅 𝜄
−1◦𝜈𝛾−1 ·𝑤 , 𝜅 𝜄

−1◦�̄�𝛾−1 ·𝑤 ) if 𝛾−1 ◦ 𝜈𝑤 = 𝜈𝛾−1 ·𝑤 .

(2.21)

Hence, the archimedean components of 𝛾◦ 𝜄𝜋 is a permutation of the archimedean components of 𝜄𝜋 up
to taking conjugates.

When F is totally imaginary in the TR-case.
The Galois action on Σ𝐹 and Σ𝐹1 preserves the fibers of the restriction map Σ𝐹 → Σ𝐹1 , and since

𝐹1 is totally real, identify the Galois-sets Σ𝐹1 = S∞(𝐹1). Using the notations of (2.18), if

𝜄𝜋∞ =
⊗

𝑤 ∈S∞ (𝐹1)

⊗
𝑣 |𝑤
J(𝜅 𝜄−1◦𝜈𝑤 , 𝜅 𝜄

−1◦𝜈𝑤 ),

then for 𝛾 ∈ Gal(Q̄/Q), one has

(𝛾◦ 𝜄𝜋)∞ =
⊗

𝑤 ∈S∞ (𝐹1)

⊗
𝑣 |𝑤
J(𝜅 𝜄

−1◦𝜈𝛾−1◦𝑤 , 𝜅 𝜄
−1◦𝜈𝛾−1◦𝑤 ).

Hence, the archimedean components of 𝛾◦ 𝜄𝜋 is a permutation of the archimedean components of 𝜄𝜋.

2.6. Boundary cohomology

The cohomology 𝐻•(𝜕S𝐺
𝐾 𝑓

,M̃𝜆,𝐸 ) of the boundary of the Borel–Serre compactification of the locally
symmetric space S𝐺

𝐾 𝑓
is briefly discussed here, and the reader is referred to [27, Chap. 4] for more

details and proofs. There is a spectral sequence built from the cohomology of the boundary strata 𝜕𝑃S𝐺
𝐾 𝑓

that converges to the cohomology of the boundary. To understand the cohomology of a single stratum
𝜕𝑃S𝐺

𝐾 𝑓
, note that

𝐻•(𝜕𝑃S𝐺
𝐾 𝑓

,M̃𝜆,𝐸 ) = 𝐻•(𝑃(Q)\𝐺 (A)/𝐾∞𝐾 𝑓 ,M̃𝜆,𝐸 ).

The space 𝑃(Q)\𝐺 (A)/𝐾∞𝐾 𝑓 fibers over locally symmetric spaces of 𝑀𝑃 . Let Ξ𝐾 𝑓 be a complete set
of representatives for 𝑃(A 𝑓 )\𝐺 (A 𝑓 )/𝐾 𝑓 . Let 𝐾𝑃

∞ = 𝐾∞ ∩ 𝑃(R), and for 𝜉 𝑓 ∈ Ξ𝐾 𝑓 , let 𝐾𝑃
𝑓 (𝜉 𝑓 ) =

𝑃(A 𝑓 ) ∩ 𝜉 𝑓 𝐾 𝑓 𝜉
−1
𝑓 . Then

𝑃(Q)\𝐺 (A)/𝐾0
∞𝐾 𝑓 =

∐
𝜉 𝑓 ∈Ξ𝐾 𝑓

𝑃(Q)\𝑃(A)/𝐾𝑃
∞𝐾

𝑃
𝑓 (𝜉 𝑓 ).
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Let 𝜅𝑃 : 𝑃 → 𝑃/𝑈𝑃 = 𝑀𝑃 be the canonical map, and define 𝐾𝑀𝑃
∞ = 𝜅𝑃 (𝐾𝑃

∞), and for 𝜉 𝑓 ∈ Ξ𝐾 𝑓 , let
𝐾𝑀𝑃

𝑓 (𝜉 𝑓 ) = 𝜅𝑃 (𝐾𝑃
𝑓 (𝜉 𝑓 )). Define

S𝑀𝑃

𝐾
𝑀𝑃
𝑓
( 𝜉 𝑓 )

:= 𝑀𝑃 (Q)\𝑀𝑃 (A)/𝐾𝑀𝑃
∞ 𝐾𝑀𝑃

𝑓 (𝜉 𝑓 ).

The underline is to emphasize that we have divided by 𝐾𝑀𝑃
∞ that may be explicated as follows: for the

maximal parabolic 𝑃 = 𝑃(𝑛,𝑛′) , whose Levi quotient 𝑀𝑃 may be identified with the block diagonal
subgroup 𝐺𝑛 × 𝐺𝑛′ where 𝐺𝑛 = 𝑅𝐹/Q(GL𝑛) and 𝐺𝑛′ = 𝑅𝐹/Q(GL𝑛′ ), one has

𝐾𝑀𝑃
∞ = 𝜅𝑃 (𝑃(R) ∩ 𝐾∞) = 𝑀𝑃 (R) ∩ 𝐾∞ =∏

𝑣 ∈S∞

( [
GL𝑛 (C)

GL𝑛′ (C)

]
∩ U(𝑁)

)
𝑆(R) =

∏
𝑣 ∈S∞

( [
U(𝑛)

U(𝑛′)

] )
𝑆(R).

Note that 𝐾𝑀𝑃
∞ is connected. Let 𝐾𝑈𝑃

𝑓 (𝜉 𝑓 ) = 𝑈𝑃 (A 𝑓 ) ∩ 𝜉 𝑓 𝐾 𝑓 𝜉
−1
𝑓 . We have the fibration

𝑈𝑃 (Q)\𝑈𝑃 (A)/𝐾𝑈𝑃

𝑓 (𝜉 𝑓 ) ↩→ 𝑃(Q)\𝑃(A)/𝐾𝑃
∞𝐾

𝑃
𝑓 (𝜉 𝑓 ) � S𝑀𝑃

𝐾
𝑀𝑃
𝑓
( 𝜉 𝑓 )

.

The corresponding Leray–Serre spectral sequence is known to degenerate at the 𝐸2-level. The coho-
mology of the total space is given in terms of the cohomology of the base with coefficients in the
cohomology of the fiber. For the cohomology of the fiber, if 𝔲𝑃 is the Lie algebra of 𝑈𝑃 , then the co-
homology of the fiber is the same as the Lie algebra cohomology group 𝐻•(𝔲𝑃 ,M𝜆,𝐸 )–by a classical
theorem due to van Est, which is naturally an algebraic representation of 𝑀𝑃; the associated sheaf on
S𝑀𝑃

𝐾
𝑀𝑃
𝑓
( 𝜉 𝑓 )

is denoted by putting a tilde on top. One has

𝐻•(𝜕𝑃S𝐺
𝐾 𝑓

,M̃𝜆,𝐸 ) =
⊕

𝜉 𝑓 ∈Ξ𝐾 𝑓

𝐻•
(
S𝑀𝑃

𝐾
𝑀𝑃
𝑓
( 𝜉 𝑓 )

, �𝐻•(𝔲𝑃 ,M𝜆,𝐸 )
)
. (2.22)

Pass to the limit over all open compact subgroups 𝐾 𝑓 and define 𝐻•(𝜕𝑃S𝐺 ,M̃𝜆,𝐸 ) := lim−−→𝐾 𝑓

𝐻•(𝜕𝑃S𝐺
𝐾 𝑓

,M̃𝜆,𝐸 ). Let S𝑀𝑃 := 𝑀𝑃 (Q)\𝑀𝑃 (A)/𝐾𝑀𝑃
∞ ; (2.22) can be rewritten as

𝐻•(𝜕𝑃S𝐺 ,M̃𝜆,𝐸 )𝐾 𝑓 =
⊕

𝜉 𝑓 ∈Ξ𝐾 𝑓

𝐻•
(
S𝑀𝑃 , �𝐻•(𝔲𝑃 ,M𝜆,𝐸 )

)𝐾𝑀𝑃
𝑓
( 𝜉 𝑓 )

.

It is clear using Mackey theory that the right-hand side is the 𝐾 𝑓 -invariants of an algebraically induced
representation; hence, one has the following:

Proposition 2.23. The cohomology of 𝜕𝑃S𝐺 is given by

𝐻•(𝜕𝑃S𝐺 ,M̃𝜆,𝐸 ) = aInd𝐺 (A 𝑓 )
𝑃 (A 𝑓 )

(
𝐻•(S𝑀𝑃 , �𝐻•(𝔲𝑃 ,M𝜆,𝐸 ))

)
.

The notation aInd stands for algebraic, or un-normalized, induction.

The following is a brief review of well-known results of Kostant [36] on the structure of
𝐻•(𝔲𝑃 ,M𝜆,𝐸 ). The calculation of the unipotent cohomology group is over the field E. Recall that
𝐺 × 𝐸 =

∏
𝜏:𝐹→𝐸 𝐺𝜏

0 , where 𝐺𝜏
0 = 𝐺0 ×𝐹,𝜏 𝐸 = GL𝑁 /𝐸. Let 𝚫𝐺0 stand for the set of roots of 𝐺0

with respect to 𝑇𝑁 ,0, 𝚫+𝐺0
the subset of positive roots (for choice of Borel subgroup being the upper

triangular subgroup), and 𝚷𝐺0 the set of simple roots. The notations 𝚫𝐺𝜏
0

, 𝚫+𝐺𝜏
0

and 𝚷𝐺𝜏
0

are clear. Let
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𝑃 = Res𝐹/Q(𝑃0) be the parabolic subgroup of G as above, and let 𝑃𝜏
0 := 𝑃0 ×𝜏 𝐸. The Weyl group

factors as 𝑊 =
∏

𝜏:𝐹→𝐸 𝑊 𝜏
0 with each 𝑊 𝜏

0 isomorphic to the permutation group 𝔖𝑁 on N-letters. Let
𝑊𝑃 be the set of Kostant representatives in the Weyl group W of G corresponding to the parabolic
subgroup P defined as 𝑊𝑃 = {𝑤 = (𝑤𝜏) : 𝑤𝜏 ∈ 𝑊 𝜏

0
𝑃𝜏

0 }, where

𝑊 𝜏
0
𝑃𝜏

0 := {𝑤𝜏 ∈ 𝑊 𝜏
0 : (𝑤𝜏)−1𝛼 > 0, ∀𝛼 ∈ 𝚷𝑀𝑃𝜏0

}.

Here, 𝚷𝑀𝑃𝜏0
⊂ 𝚷𝐺𝜏

0
denotes the set of simple roots in the Levi quotient 𝑀𝑃𝜏

0
of 𝑃𝜏

0 . The twisted
action of 𝑤 ∈ 𝑊 on 𝜆 ∈ 𝑋∗(𝑇) is 𝑤 · 𝜆 = (𝑤𝜏 · 𝜆𝜏)𝜏:𝐹→𝐸 and 𝑤𝜏 · 𝜆𝜏 = 𝑤𝜏 (𝜆𝜏 + 𝛒𝑁 ) − 𝛒𝑁 , where
𝛒𝑁 = 1

2
∑

𝛼∈𝚫+
𝐺0

𝛼. For 𝑤 ∈ 𝑊𝑃 , the irreducible finite-dimensional representation of 𝑀𝑃 × 𝐸 with
extremal weight 𝑤 · 𝜆 is denoted M𝑤 ·𝜆,𝐸 . Kostant’s theorem asserts that one has a multiplicity-free
decomposition of 𝑀𝑃 × 𝐸-modules:

𝐻𝑞 (𝔲𝑃 ,M𝜆,𝐸 ) �
⊕

𝑤 ∈𝑊 𝑃

𝑙 (𝑤)=𝑞

M𝑤 ·𝜆,𝐸 . (2.24)

As explained in [27], the above result of Kostant can be parsed over the set of embeddings 𝜏 : 𝐹 → 𝐸.
Denote by 𝐻𝑙 (𝑤) (𝔲𝑃 ,M𝜆,𝐸 ) (𝑤) the summand of 𝐻𝑞 (𝔲𝑃 ,M𝜆,𝐸 ) corresponding to the Kostant repre-
sentative w which is nonzero for 𝑞 = 𝑙 (𝑤) and isomorphic to M𝑤 ·𝜆,𝐸 . Applying (2.24) to the boundary
cohomology as in Proposition 2.23 gives the following:

Proposition 2.25. The cohomology of 𝜕𝑃S𝐺 is given by

𝐻𝑞 (𝜕𝑃S𝐺 ,M̃𝜆,𝐸 ) =
⊕

𝑤 ∈𝑊 𝑃

aInd𝐺 (A 𝑓 )
𝑃 (A 𝑓 )

(
𝐻𝑞−𝑙 (𝑤) (S𝑀𝑃 , �𝐻𝑞 (𝔲𝑃 ,M𝜆,𝐸 ) (𝑤))

)
.

There is a canonical surjection S𝑀𝑃 → S𝑀𝑃 , using which we may inflate up the cohomology of
S𝑀𝑃 to the cohomology of S𝑀𝑃 ; this will be especially relevant to strongly inner cohomology classes
of S𝑀𝑃 , which after inducing up to 𝐺 (A 𝑓 ) will contribute to boundary cohomology; see Section 5.1.2.

2.7. Galois action and local systems in boundary cohomology

For an embedding 𝜄 : 𝐸 → C, the map 𝛾∗ induced by a Galois element 𝛾 ∈ Gal(Q̄/Q) in unipotent
cohomology

𝐻𝑞 (𝔲𝑃 ,M𝜄𝜆,C) ( 𝜄𝑤) → 𝐻𝑞 (𝔲𝑃 ,M𝛾◦𝜄𝜆,C) (𝛾◦ 𝜄𝑤),

where, 𝑞 = 𝑙 (𝑤) = 𝑙 ( 𝜄𝑤) = 𝑙 (𝛾◦ 𝜄𝑤), will play a role in the proof of the reciprocity law of the main
theorem. By Schur’s lemma, this can be understood by its effect on the highest weight vector for the
irreducible representation 𝐻𝑞 (𝔲𝑃 ,M𝜄𝜆,C) ( 𝜄𝑤) � M𝜄𝑤 · 𝜄𝜆,C. Such a highest weight vector h(𝜆, 𝑤, 𝜄)
will be fixed by fixing a harmonic representative the corresponding cohomology class as in Kostant
[36, Thm. 5.14]. To explicate this vector, note that

𝔲𝑃 ⊗ 𝐸 =
⊕

𝜏:𝐹→𝐸

𝔲𝜏
𝑃0

; 𝔲𝜏
𝑃0

:= 𝔲𝑃0 ⊗𝐹,𝜏 𝐸.

Fix an ordering

Hom(𝐹, 𝐸) = {𝜏1, 𝜏2, . . . , 𝜏𝑑}.
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Let 𝚫(𝔲𝑃0) denote the subset of 𝚫+ of those positive roots 𝜑 whose root space 𝑋𝜑 is in 𝔲𝑃0 . Fix an
ordering

𝚫(𝔲𝑃0) = {𝜑1, 𝜑2, . . . , 𝜑𝑛𝑛′ }.

For example, thinking in terms of upper triangular matrices, this ordering could be taken as the
lexicographic ordering on the set of pairs of indices {(𝑖, 𝑗) : 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛′}. Fix a generator 𝑒𝜑
for 𝑋𝜑 for each 𝜑 ∈ 𝚫(𝔲𝑃0); note that 𝑒𝜑 is well defined up to Q×. Let {𝑒∗𝜑} denote the basis of 𝔲∗𝑃0

that
is dual to {𝑒𝜑}. For a Kostant representative 𝑤0 ∈ 𝑊𝑃0 ⊂ 𝑊𝐺0 , define Φ𝑤0 = {𝜑 > 0 : 𝑤−1

0 𝜑 < 0}; then
Φ𝑤0 ⊂ 𝚫(𝔲𝑃0). With respect to the ordering that it inherits from 𝚫(𝔲𝑃0), denote Φ𝑤0 = {𝜑

𝑤0
1 , . . . , 𝜑𝑤0

𝑙 }
as an ordered set, where 𝑙 = 𝑙 (𝑤−1

0 ) = 𝑙 (𝑤0). Define

𝑒∗Φ𝑤0
:= 𝑒∗

𝜑
𝑤0
1
∧ · · · ∧ 𝑒∗

𝜑
𝑤0
𝑙

∈ ∧𝑞0 (𝔲∗𝑃0
); 𝑞0 := 𝑙 (𝑤0).

Let 𝑒𝜏𝜑 denote the image 𝑒𝜑 ⊗ 1 of 𝑒𝜑 under the canonical map 𝑋𝜑 → 𝑋 𝜏
𝜑 = 𝑋𝜑 ⊗𝐹,𝜏 𝐸 . For

𝑤 = (𝑤𝜏)𝜏:𝐹→𝐸 ∈ 𝑊𝐺 =
∏

𝜏:𝐹→𝐸 𝑊𝐺0 ×𝐹,𝜏 𝐸 , written using the ordering on Hom(𝐹, 𝐸) as
𝑤 = {𝑤𝜏1 , . . . , 𝑤𝜏𝑑 }, define

𝑒∗Φ𝑤
:= 𝑒∗Φ𝑤𝜏1

∧ · · · ∧ 𝑒∗Φ𝑤𝜏𝑑
∈ ∧𝑞 (𝔲∗𝑃 ⊗ 𝐸); 𝑞 := 𝑙 (𝑤).

Changing the base to C via 𝜄 : 𝐸 → C gives

𝑒∗Φ𝜄𝑤
:= 𝑒∗Φ𝑤 𝜄◦𝜏1

∧ · · · ∧ 𝑒∗Φ𝑤 𝜄◦𝜏𝑑
∈ ∧𝑞 (𝔲∗𝑃 ⊗Q C). (2.26)

Fix a weight vector s(𝜆𝜏) ∈M𝜆𝜏 ,𝐸 for the highest weight 𝜆𝜏 ; then s(𝜆) = s(𝜆𝜏
1 ) ⊗ · · · ⊗ s(𝜆𝜏

𝑑) is the
highest weight vector for M𝜆,𝐸 . For each 𝑤 ∈ 𝑊, fix its representative in 𝐺 (𝐸), which amounts to
fixing a permutation matrix representing 𝑤𝜏 in GL𝑛 (𝐸) for each embedding 𝜏 : 𝐹 → 𝐸 . Let

s(𝑤𝜆) := 𝜌𝜆𝜏1 (𝑤𝜏1 )s(𝜆𝜏
1 ) ⊗ · · · ⊗ 𝜌𝜆𝜏𝑑 (𝑤𝜏𝑑 )s(𝜆𝜏

𝑑) (2.27)

be the weight vector of extremal weight 𝑤𝜆. These vectors can be composed via 𝜄: s( 𝜄𝑤 𝜄𝜆) is the weight
vector in M𝜄𝜆,C of extremal weight 𝜄𝑤 𝜄𝜆. Theorem 5.14 of [36] asserts that

h(𝜆, 𝑤, 𝜄) = 𝑒∗Φ𝜄𝑤
⊗ s( 𝜄𝑤 𝜄𝜆) (2.28)

is the highest weight vector for 𝐻𝑞 (𝔲𝑃 ,M𝜄𝜆,C) ( 𝜄𝑤). The image of h(𝜆, 𝑤, 𝜄) under the map 𝛾∗ induced
by 𝛾 ∈ Gal(Q̄/Q) is a multiple of h(𝜆, 𝑤, 𝛾 ◦ 𝜄); the scaling factor is captured by what 𝛾 does to the
wedge-products 𝑒∗Φ𝜄𝑤

, motivating the following:

Definition 2.29. Let 𝜄 : 𝐸 → C and 𝛾 ∈ Gal(Q̄/Q). Then we have

𝑒∗Φ𝛾◦𝜄𝑤
= 𝜀 𝜄,𝑤 (𝛾)𝑒∗Φ𝜄𝑤

for a signature 𝜀 𝜄,𝑤 (𝛾) ∈ {±1}.

From (2.27), (2.28), and the above definition, one has

𝛾∗(h(𝜆, 𝑤, 𝜄)) = 𝜀 𝜄,𝑤 (𝛾) · h(𝜆, 𝑤, 𝛾 ◦ 𝜄). (2.30)

3. The critical set and a combinatorial lemma

In Section 3.1, we first recall the definition of an integer or possibly a half-integer being critical for
the Rankin–Selberg L-function 𝐿(𝑠, 𝜎 × 𝜎′v); see (3.4). Then in Proposition 3.12, we describe the set
of critical points in terms of the highest weights 𝜇 and 𝜇′, from which we get a purely combinatorial
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characterization of when the point of evaluation −𝑁/2 and the next point 1 − 𝑁/2 are critical; see
Corollary 3.13. In Section 3.2, we begin by stating the combinatorial lemma (Lemma 3.16) which
builds on Corollary 3.13 and characterizes criticality of −𝑁/2 and 1−𝑁/2 also in terms of the existence
of a balanced Kostant representative w whose twisted action on 𝜇+ 𝜇′ yields a dominant integral weight
on the ambient GL𝑁 /𝐹. The rest of the subsection goes in proving this lemma. This special Weyl group
element w plays an important role in all that follows. For a first reading, we recommend the reader to
assume the statement of Lemma 3.16 and come back to its proof at a later point of time.

3.1. The critical set for 𝐿(𝑠, 𝜎 × 𝜎′v)

Let n and 𝑛′ be two positive integers, and consider weights 𝜇 ∈ 𝑋+00(𝑇𝑛 × C) and 𝜇′ ∈ 𝑋+00(𝑇𝑛′ × C)
given by

𝜇 = (𝜇𝜂)𝜂:𝐹→C, 𝜇𝜂 =
𝑛−1∑
𝑖=1
(𝑎𝜂

𝑖 − 1)𝛄𝑖 + 𝑑𝜂 · 𝛅 = (𝑏𝜂
1 , . . . , 𝑏

𝜂
𝑛 ), (3.1)

and similarly,

𝜇′ = (𝜇′𝜂)𝜂:𝐹→C, 𝜇′𝜂 =
𝑛′−1∑
𝑗=1
(𝑎′𝜂𝑖 − 1)𝛄 𝑗 + 𝑑 ′𝜂 · 𝛅 = (𝑏′𝜂1 , . . . , 𝑏

′𝜂
𝑛′ ). (3.2)

Let 𝜎 𝑓 ∈ Coh!! (𝐺𝑛, 𝜇) and 𝜎′𝑓 ∈ Coh!!(𝐺𝑛′ , 𝜇
′) be strongly inner Hecke-summands; these Hecke-

summands take a unique representation at infinity to contribute to the respective cuspidal spectrum
cohomology. Denote 𝜎∞ = J𝜇 and 𝜎′∞ = J𝜇′ . Then 𝜎 = 𝜎∞ ⊗ 𝜎 𝑓 and 𝜎′ = 𝜎′∞ ⊗ 𝜎′𝑓 are cuspidal
automorphic representations. We let 𝐿(𝑠, 𝜎 × 𝜎′) stand for the completed standard Rankin–Selberg
L-function of degree 𝑛𝑛′. We refer the reader to [47, Sect. 10.1] for a summary of the basic analytic
properties of these L-functions. The purpose of this section is to identify the set of integers or possibly
half-integers m which are critical for 𝐿(𝑠, 𝜎 × 𝜎′v). (Note that we have dualized 𝜎′.)

3.1.1. Definition of the critical set
For any two half-integers 𝛼 and 𝛽, the local L-factor (see [35]) of the character 𝑧 ↦→ 𝑧𝛼𝑧𝛽 of C× is
given by

𝐿(𝑠, 𝑧𝛼𝑧𝛽) = 2(2𝜋)−
(
𝑠+ 𝛼+𝛽2 +

|𝛼−𝛽 |
2

)
Γ

(
𝑠 + 𝛼 + 𝛽

2
+ |𝛼 − 𝛽 |

2

)
∼ Γ

(
𝑠 + 𝛼 + 𝛽

2
+ |𝛼 − 𝛽 |

2

)
, (3.3)

where, by ∼, we mean up to nonzero constants and exponential functions, which are entire and non-
vanishing everywhere and hence are irrelevant to the computation of critical points; see Definition 3.4
below. For any 𝑣 ∈ S∞, let {𝜂𝑣 , 𝜂𝑣 } be the pair of conjugate embeddings of F to C as before. Let

𝛼𝑣 = −𝑤0𝜇
𝜂𝑣 + 𝛒𝑛 = (𝛼𝑣

1 , . . . , 𝛼
𝑣
𝑛 ) and 𝛽𝑣 = −𝜇 �̄�𝑣 − 𝛒𝑛 = (𝛽𝑣1 , . . . , 𝛽

𝑣
𝑛)

be the cuspidal parameters of 𝜇 at v; see (2.8) and (2.9). Similarly, let

𝛼′𝑣 = −𝑤0𝜇
′𝜂𝑣 + 𝛒𝑛′ = (𝛼′𝑣1 , . . . , 𝛼′𝑣𝑛′ ) and 𝛽′𝑣 = −𝜇′�̄�𝑣 − 𝛒𝑛′ = (𝛽′𝑣1 , . . . , 𝛽′𝑣𝑛′ )

be the cuspidal parameters of 𝜇′ at 𝑣. Note that

𝛼 := 𝛼𝑣
𝑖 + 𝛼

′𝑣
𝑗 ∈

𝑛 − 1
2
+ Z + 𝑛′ − 1

2
+ Z =

𝑁

2
+ Z, and 𝛽 := 𝛽𝑣𝑖 + 𝛽

′𝑣
𝑗 ∈

𝑁

2
+ Z.
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Then, it is clear that the quantity 𝛼+𝛽
2 +

|𝛼−𝛽 |
2 inside the argument of the Γ-function above is in 𝑁

2 + Z.
This tells us that the critical set for 𝐿(𝑠, 𝜎 × 𝜎′) will be a subset of 𝑁

2 + Z.
Let 𝜎 and 𝜎′ be cuspidal automorphic representations of 𝐺𝑛 (A) and 𝐺𝑛′ (A), respectively. The set

of critical points for 𝐿(𝑠, 𝜎 × 𝜎′v) is defined to be

Crit(𝐿(𝑠, 𝜎 × 𝜎′v)) :={
𝑚 ∈ 𝑁

2 + Z : both 𝐿∞(𝑠, 𝜎 × 𝜎′v) and 𝐿∞(1 − 𝑠, 𝜎v × 𝜎′) are finite at 𝑠 = 𝑚
}
. (3.4)

If 𝜎 and 𝜎′ are cohomological with respect to 𝜇 and 𝜇′, then we denote

Crit(𝜇, 𝜇′) := Crit(𝐿(𝑠, 𝜎 × 𝜎′v)). (3.5)

3.1.2. Computing the critical set
Recall the purity conditions

𝛼𝑣
𝑖 + 𝛽

𝑣
𝑖 = −w, and 𝛼′𝑣𝑖 + 𝛽

′𝑣
𝑖 = −w′.

We define a quantity 𝑎(𝜇, 𝜇′), and call it the abelian width between 𝜇 and 𝜇′, as

𝑎(𝜇, 𝜇′) :=
w − w′

2
=
(𝑑𝜂 + 𝑑 �̄�) − (𝑑 ′𝜂 + 𝑑 ′�̄�)

2
. (3.6)

From the local Langlands correspondence and (3.3) on abelian local L-factors, we get

𝐿∞(𝑠, 𝜎 × 𝜎′v) ∼
∏
𝑣 ∈S∞

𝑛∏
𝑖=1

𝑛′∏
𝑗=1

Γ

(
𝑠 − 𝑎(𝜇, 𝜇′) +

|𝛼𝑣
𝑖 − 𝛼

′𝑣
𝑗 − 𝛽𝑣𝑖 + 𝛽

′𝑣
𝑗 |

2

)
. (3.7)

And similarly,

𝐿∞(1 − 𝑠, 𝜎v × 𝜎′) ∼
∏
𝑣 ∈S∞

𝑛∏
𝑖=1

𝑛′∏
𝑗=1

Γ

(
1 − 𝑠 + 𝑎(𝜇, 𝜇′) +

|𝛼𝑣
𝑖 − 𝛼

′𝑣
𝑗 − 𝛽𝑣𝑖 + 𝛽

′𝑣
𝑗 |

2

)
. (3.8)

Let 𝑚 ∈ 𝑁
2 + Z. Then 𝑚 ∈ Crit(𝜇, 𝜇′) if and only if

𝑚 − 𝑎(𝜇, 𝜇′) +
|𝛼𝑣

𝑖 − 𝛼
′𝑣
𝑗 − 𝛽𝑣𝑖 + 𝛽

′𝑣
𝑗 |

2
≥ 1, ∀𝑣 ∈ S∞,∀𝑖,∀ 𝑗 , (3.9)

which is the condition that 𝐿∞(𝑚, 𝜎 × 𝜎′v) is finite from (3.7), and

1 − 𝑚 + 𝑎(𝜇, 𝜇′) +
|𝛼𝑣

𝑖 − 𝛼
′𝑣
𝑗 − 𝛽𝑣𝑖 + 𝛽

′𝑣
𝑗 |

2
≥ 1, ∀𝑣 ∈ S∞,∀𝑖,∀ 𝑗 , (3.10)

which is the condition that 𝐿∞(1 − 𝑚, 𝜎v × 𝜎′) is finite from (3.8). Define the cuspidal width ℓ(𝜇, 𝜇′)
between 𝜇 and 𝜇′ as

ℓ(𝜇, 𝜇′) := min
{
|𝛼𝑣

𝑖 − 𝛼
′𝑣
𝑗 − 𝛽𝑣𝑖 + 𝛽

′𝑣
𝑗 | : 𝑣 ∈ S∞, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛′

}
. (3.11)

Then (3.9) and (3.10) together gives us the following
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Proposition 3.12. Let 𝜇 ∈ 𝑋+00 (𝑇𝑛 × C) and 𝜇′ ∈ 𝑋+00 (𝑇𝑛′ × C). For 𝜎 𝑓 ∈ Coh!!(𝐺𝑛, 𝜇) and
𝜎′𝑓 ∈ Coh!! (𝐺𝑛′ , 𝜇

′), the critical set for the Rankin–Selberg L-function 𝐿(𝑠, 𝜎 × 𝜎′v) is given by

Crit(𝜇, 𝜇′) =

{
𝑚 ∈ 𝑁

2 + Z : 1 − ℓ(𝜇, 𝜇′)
2

+ 𝑎(𝜇, 𝜇′) ≤ 𝑚 ≤ ℓ(𝜇, 𝜇′)
2

+ 𝑎(𝜇, 𝜇′)
}
.

This is contiguous string of integers or half-integers (depending on whether N is even or odd), centered
around 1

2 + 𝑎(𝜇, 𝜇
′), of length ℓ(𝜇, 𝜇′).

Corollary 3.13. With notations as in Proposition 3.12, the points 𝑠 = −𝑁/2 and 𝑠 = 1 − 𝑁/2 are both
critical for 𝐿(𝑠, 𝜎 × 𝜎′v) if and only if

−𝑁
2
+ 1 − ℓ(𝜇, 𝜇′)

2
≤ 𝑎(𝜇, 𝜇′) ≤ −𝑁

2
− 1 + ℓ(𝜇, 𝜇′)

2
.

Of course, for this to be possible, one needs ℓ(𝜇, 𝜇′) ≥ 2 (i.e., that there at least two critical points).
The corollary, which is one part of a combinatorial lemma below (Lemma 3.16), is to be viewed like
this: the two successive L-values at 𝑠 = −𝑁/2 and 𝑠 = 1 − 𝑁/2 are critical if and only if the abelian
width is bounded in absolute value in terms of the cuspidal width.

Corollary 3.14. Suppose F is in the TR-case and 𝐹1 = 𝐹0 is the maximal totally real subfield of F.
Given 𝜇 ∈ 𝑋+00(𝑇𝑛 ×C) and 𝜇′ ∈ 𝑋+00 (𝑇𝑛′ ×C), if n and 𝑛′ are both odd, then ℓ(𝜇, 𝜇′) = 0; in particular,
the Rankin–Selberg L-function 𝐿(𝑠, 𝜎 × 𝜎′v) has no critical points.

Proof. Recall from Proposition 2.6 that 𝜇 is the base change of a strongly-pure weight over 𝐹1. For
𝑣 ∈ S∞(𝐹), one has 𝜂𝑣 |𝐹1 = 𝜂𝑣 |𝐹1 ; hence, 𝜇𝜂𝑣 = 𝜇 �̄�𝑣 . Hence, for the cuspidal parameters, one has
𝛼𝑣 = 𝑤0𝛽

𝑣 ; that is, 𝛼𝑣
𝑖 = 𝛽𝑣𝑛+1−𝑖 . If n is odd, then 𝛼𝑣

(𝑛+1)/2 = 𝛽𝑣(𝑛+1)/2. Similarly, if 𝑛′ is odd, then
𝛼′𝑣(𝑛′+1)/2 = 𝛽′𝑣(𝑛′+1)/2. From (3.11), it follows that ℓ(𝜇, 𝜇′) = 0, as 0 is realized as the minimum by taking
𝑖 = (𝑛 + 1)/2 and 𝑗 = (𝑛′ + 1)/2. �

3.1.3. Critical set at an arithmetic level
Let 𝜇 ∈ 𝑋+00 (𝑇𝑛 × 𝐸) and 𝜇′ ∈ 𝑋+00 (𝑇𝑛′ × 𝐸), and take 𝜎 𝑓 ∈ Coh!!(𝐺𝑛, 𝜇) and 𝜎′𝑓 ∈ Coh!! (𝐺𝑛′ , 𝜇

′). For
any 𝜄 : 𝐸 → C, Proposition 3.12 gives the critical set Crit( 𝜄𝜇, 𝜄𝜇′) for the Rankin–Selberg L-function
𝐿(𝑠, 𝜄𝜎 × 𝜄𝜎′v).

Corollary 3.15. The critical set Crit( 𝜄𝜇, 𝜄𝜇′) = Crit(𝐿(𝑠, 𝜄𝜎 × 𝜄𝜎′v)) is independent of 𝜄 :

Crit(𝐿(𝑠, 𝜄𝜎 × 𝜄𝜎′v)) = Crit(𝐿(𝑠, 𝛾◦ 𝜄𝜎 × 𝛾◦ 𝜄𝜎′v)), ∀ 𝜄 : 𝐸 → C, ∀𝛾 ∈ Gal(Q̄/Q).

Proof. From Remark 2.12, one can deduce ℓ( 𝜄𝜇, 𝜄𝜇′) = ℓ(𝛾◦ 𝜄𝜇, 𝛾◦ 𝜄𝜇′) and 𝑎( 𝜄𝜇, 𝜄𝜇′) = 𝑎(𝛾◦ 𝜄𝜇, 𝛾◦ 𝜄𝜇′).
One can also see this directly, since by the results of 2.5.3, the archimedean components of 𝛾◦ 𝜄𝜎 are a
permutation of those of 𝜄𝜎 up to conjugates; similarly, for 𝜄𝜎′; since 𝐿(𝑠, 𝑧𝛼𝑧𝛽) = 𝐿(𝑠, 𝑧𝛽𝑧𝛼), one gets
𝐿∞(𝑠, 𝜄𝜎 × 𝜄𝜎′v) = 𝐿∞(𝑠, 𝛾◦ 𝜄𝜎 × 𝛾◦ 𝜄𝜎′v). �

3.2. Combinatorial lemma

3.2.1. Statement of the lemma
Lemma 3.16. For strongly-pure weights 𝜇 ∈ 𝑋+00 (𝑇𝑛 × C) and 𝜇′ ∈ 𝑋+00 (𝑇𝑛′ × C), and cuspidal Hecke
summands 𝜎 𝑓 ∈ Coh!!(𝐺𝑛, 𝜇), 𝜎′𝑓 ∈ Coh!! (𝐺𝑛′ , 𝜇

′), the following are equivalent:

1. The points 𝑠 = −𝑁/2 and 𝑠 = 1 − 𝑁/2 are both critical for 𝐿(𝑠, 𝜎 × 𝜎′v).
2. The abelian width is bounded in terms of the cuspidal width as

−𝑁
2
+ 1 − ℓ(𝜇, 𝜇′)

2
≤ 𝑎(𝜇, 𝜇′) ≤ −𝑁

2
− 1 + ℓ(𝜇, 𝜇′)

2
.
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3. There exists 𝑤 ∈ 𝑊𝑃 such that 𝑤−1 · (𝜇 + 𝜇′) is dominant and 𝑙 (𝑤𝜂) + 𝑙 (𝑤 �̄�) = dim(𝑈𝑃0 ) for all
𝜂 : 𝐹 → C. (Recall: 𝑤 = (𝑤𝜂)𝜂:𝐹→C with 𝑤𝜂 ∈ 𝑊𝑃0×𝜂C ⊂ 𝑊𝐺0 ×𝜂 C.)

We have already proved (1) ⇐⇒ (2). It remains to prove (2) ⇐⇒ (3). It is clear that

𝑙 (𝑤𝜂) + 𝑙 (𝑤 �̄�) = dim(𝑈𝑃0), ∀𝜂 : 𝐹 → C =⇒ 𝑙 (𝑤) = 1
2 dim(𝑈𝑃).

However, if the degree of F is greater than 2 (i.e., if r > 1), then the converse is not true in general.

Definition 3.17. A Kostant representative 𝑤 ∈ 𝑊𝑃 is said to be balanced if

𝑙 (𝑤𝜂) + 𝑙 (𝑤 �̄�) = dim(𝑈𝑃0), ∀𝜂 : 𝐹 → C.

For the benefit of the reader, we will make two passes over the proof of (2) ⇐⇒ (3) in simpler
situations, because the proof in the general case is intricate in details and somewhat tedious; it is the
sort of proof that makes one believe the dictum ‘der Teufel steckt im Detail’.

3.2.2. Explicating (2) ⇐⇒ (3) in the simplest nontrivial example
Proof. Let us consider the case of 𝑛 = 𝑛′ = 1 and so 𝑁 = 2. Take F to be an imaginary quadratic field
with Hom(𝐹,C) = {𝜂, 𝜂}. The weights 𝜇 and 𝜇′ are both a pair of integers indexed by Hom(𝐹,C);
we will write 𝜇 = ((𝑎), (𝑎∗)), 𝜇′ = ((𝑏), (𝑏∗)), with 𝑎, 𝑎∗, 𝑏, 𝑏∗ ∈ Z, with the convention that
𝜇𝜂 = (𝑎), 𝜇 �̄� = (𝑎∗) and similarly for 𝜇′. Note that purity of 𝜇 and 𝜇′ is automatic, and the purity
weights are w = 𝑎+𝑎∗, w′ = 𝑏+𝑏∗. The abelian width is 𝑎(𝜇, 𝜇′) = 𝑎+𝑎∗−𝑏−𝑏∗

2 . The cuspidal parameters
at the only complex place v of F are 𝛼𝑣 = (−𝑎), 𝛽𝑣 = (−𝑎∗), 𝛼′𝑣 = (−𝑏), 𝛽′𝑣 = (−𝑏∗). The cuspidal
width is ℓ(𝜇, 𝜇′) = | − 𝑎 + 𝑎∗ + 𝑏 − 𝑏∗ |. The weight 𝜇 + 𝜇′ which we would like make dominant using a
balanced Kostant representative has the shape 𝜇 + 𝜇′ = ((𝑎, 𝑏), (𝑎∗, 𝑏∗)). For simplicity, let us denote
𝑝 := 𝑎 − 𝑏, 𝑝∗ := 𝑎∗ − 𝑏∗. Hence, 𝜇 + 𝜇′ is dominant if and only if 𝑝 ≥ 0 and 𝑝∗ ≥ 0. The inequalities
in (2) now take the shape

− |𝑝
∗ − 𝑝 |
2

≤ 𝑝 + 𝑝∗
2

≤ |𝑝
∗ − 𝑝 |
2

− 2. (3.18)

Since, 𝑃0 = 𝐵0 is the Borel subgroup, the Levi subgroup 𝑀𝑃 is a torus; hence, 𝑊𝑀𝑃 is trivial and
𝑊𝑃 = 𝑊𝐺 . If 𝑊𝐺0 is written as {1, 𝑠} with s the nontrivial element, then the elements of 𝑊𝑃 may be
written as𝑊𝐺 = ({1, 𝑠}, {1∗, 𝑠∗}). The dimension of𝑈𝑃 is 2; hence, the balanced elements (of length 1)
of 𝑊𝑃 are (1, 𝑠∗) and (𝑠, 1). Now, consider three cases depending on the sign of 𝑝 − 𝑝∗:

◦ 𝑝 = 𝑝∗. In this case, (3.18) reads 0 ≤ 𝑝 ≤ −2, which is absurd; hence, (2) is violated. If 𝑝 ≥ 0, then
the only 𝑤 ∈ 𝑊𝑃 such that 𝑤−1 · (𝜇 + 𝜇′) is dominant is 𝑤 = (1, 1∗) which has length 0; hence, (3) is
violated. Similarly, if 𝑝 < 0, then the only 𝑤 ∈ 𝑊𝑃 such that 𝑤−1 · (𝜇+ 𝜇′) is dominant is 𝑤 = (𝑠, 𝑠∗),
which has length 2; hence, (3) is violated again. So, both (2) and (3) are false.

◦ 𝑝 > 𝑝∗. In this case, (3.18) simplifies to 𝑝∗ − 𝑝 ≤ 𝑝 + 𝑝∗ ≤ 𝑝 − 𝑝∗ − 4, which implies that
𝑝 ≥ 0 > −2 ≥ 𝑝∗. The only 𝑤 ∈ 𝑊𝑃 such that 𝑤−1 · (𝜇 + 𝜇′) is dominant is 𝑤 = (1, 𝑠∗) which has
length 1; hence, (3) is satisfied.

◦ 𝑝 < 𝑝∗. In this case, 𝑝∗ ≥ 0 > −2 ≥ 𝑝 and the only 𝑤 ∈ 𝑊𝑃 that works is (𝑠, 1) which is of length 1.

In all cases, either both (2) and (3) are satisfied, or both are violated. Hence, (2) ⇐⇒ (3). �

In the second case (𝑝 > 𝑝∗), one might ask what happens in the degenerate case of 𝑝 = 0 and 𝑝∗ = −1.
(So we are violating (2) but keeping 𝑝 > 𝑝∗.) This means that 𝜇+ 𝜇′ has the shape ((𝑎, 𝑎), (𝑏∗ −1, 𝑏∗)).
The 𝜂 component (𝑎, 𝑎) is dominant, but one has to make the 𝜂-component (𝑏∗ − 1, 𝑏∗) dominant. This
can only be done using 𝑠∗; however, the reader can easily check that 𝑠∗ · (𝑏∗ − 1, 𝑏∗) = (𝑏∗ − 1, 𝑏∗).
In other words, there is no element w such that 𝑤−1 · (𝜇 + 𝜇′) is dominant.
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3.2.3. Proof of (2) ⇐⇒ (3) for GL𝑛 × GL1
It is most convenient to first understand the case when F is an imaginary quadratic field. ThenΣ𝐹 = {𝜂, 𝜂}
(for a non-canonical choice of 𝜂 : 𝐹 → C that is fixed once and for all). As above, we will follow a
notational artifice that all quantities indexed by 𝜂 will be designated with a ∗. A weight 𝜇 ∈ 𝑋+0 (𝑇𝑛 ×C)
may be written as 𝜇 = {𝜇𝜂 , 𝜇 �̄�} with 𝜇𝜂 = (𝜇1 ≥ 𝜇2 ≥ · · · ≥ 𝜇𝑛) and 𝜇 �̄� = (𝜇∗1 ≥ 𝜇∗2 ≥ · · · ≥ 𝜇∗𝑛),
with 𝜇𝑖 , 𝜇

∗
𝑗 ∈ Z, and purity implies w = 𝜇𝑖 + 𝜇∗𝑛−𝑖+1. A weight 𝜇′ ∈ 𝑋+0 (𝑇1 × C) is simply a pair of

integers 𝜇′ = {𝑏, 𝑏∗} with purity weight w′ = 𝑏 + 𝑏∗. The weight 𝜇 + 𝜇′ is given by

𝜇 + 𝜇′ = {(𝜇1, 𝜇2, . . . , 𝜇𝑛, 𝑏), (𝜇∗1, 𝜇
∗
2, . . . , 𝜇

∗
𝑛, 𝑏
∗)}.

We are seeking to understand when we can find a Kostant representative 𝑤 ∈ 𝑊𝑃 which is balanced
(𝑙 (𝑤𝜂) + 𝑙 (𝑤 �̄�) = dim(𝑈𝑃0) = 𝑛) and such that 𝑤−1 · (𝜇 + 𝜇′) is a dominant weight. For this, first
identify the Kostant representatives for 𝑃0 in 𝐺0; the simple roots of 𝑀𝑃0 are 𝚷𝑀𝑃0

= {𝑒1 − 𝑒2,
𝑒2 − 𝑒3, . . . , 𝑒𝑛−1 − 𝑒𝑛}. The Weyl group of 𝐺0 is 𝑊𝐺0 = 𝔖𝑛+1 the symmetric group on 𝑛 + 1 letters.
We have

𝑤 ∈ 𝑊𝑃0 ⇐⇒ 𝑤−1(𝑒1 − 𝑒2) > 0, 𝑤−1 (𝑒2 − 𝑒3) > 0, . . . , 𝑤−1 (𝑒𝑛−1 − 𝑒𝑛) > 0
⇐⇒ 𝑤−1(1) < 𝑤−1 (2) < · · · < 𝑤−1 (𝑛).

The elements of 𝑊𝑃0 and their lengths are listed below:

𝑤−1 (𝑤 ∈ 𝑊𝑃0) 𝑙 (𝑤)
𝑠0 := 1 0
𝑠1 := (𝑛, 𝑛 + 1) 1
𝑠2 := (𝑛 − 1, 𝑛, 𝑛 + 1) 2

...
...

𝑠𝑛−1 := (2, 3, . . . , 𝑛 + 1) 𝑛 − 1
𝑠𝑛 := (1, 2, 3, . . . , 𝑛 + 1) 𝑛

Note that the (𝑛 + 1)-cycle (1, 2, . . . , 𝑛 + 1) = (1, 2) (2, 3) · · · (𝑛, 𝑛 + 1) as a product of n simple
transpositions giving its length which applies to the last row and a similar calculation gives all the
other lengths. The Kostant representatives for P are 𝑊𝑃 = {(𝑤, 𝑤∗) : 𝑤, 𝑤∗ ∈ 𝑊𝑃0 }, where
𝑙 (𝑤, 𝑤∗) = 𝑙 (𝑤) + 𝑙 (𝑤∗). Hence, the inverses of the balanced Kostant representatives are

{(𝑠0, 𝑠
∗
𝑛), (𝑠1, 𝑠

∗
𝑛−1), . . . , (𝑠𝑛, 𝑠

∗
0)}.

The twisted action of the Kostant representatives on the weight are given in the table below:

𝑤−1 (𝑤 ∈ 𝑊𝑃0) 𝑤−1 · (𝜇1, 𝜇2, . . . , 𝜇𝑛, 𝑏)
1 (𝜇1, 𝜇2, . . . , 𝜇𝑛, 𝑏)

(𝑛, 𝑛 + 1) (𝜇1, 𝜇2, . . . , 𝜇𝑛−1, 𝑏 − 1, 𝜇𝑛 + 1)
(𝑛 − 1, 𝑛, 𝑛 + 1) (𝜇1, 𝜇2, . . . , 𝜇𝑛−2, 𝑏 − 2, 𝜇𝑛−1 + 1, 𝜇𝑛 + 1)

...
...

(2, 3, . . . , 𝑛 + 1) (𝜇1, 𝑏 − 𝑛 + 1, 𝜇2 + 1, . . . , 𝜇𝑛−1 + 1, 𝜇𝑛 + 1)
(1, 2, 3, . . . , 𝑛 + 1) (𝑏 − 𝑛, 𝜇1 + 1, . . . , 𝜇𝑛−1 + 1, 𝜇𝑛 + 1)

(3.19)

For the combinatorial lemma (Lemma 3.16), the abelian width is given by

𝑎(𝜇, 𝜇′) =
w − w′

2
=

𝜇𝑖 + 𝜇∗𝑛−𝑖+1 − 𝑏 − 𝑏∗

2
=
(𝜇𝑖 − 𝑏) + (𝜇∗𝑛−𝑖+1 − 𝑏∗)

2
,
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and for the cuspidal width, the cuspidal parameters are given by

𝛼 = (𝛼1, . . . , 𝛼𝑛) = (−𝜇𝑛 + (𝑛−1)
2 , −𝜇𝑛−1 + (𝑛−3)

2 , . . . , −𝜇1 − (𝑛−1)
2 ),

𝛽 = (𝛼1, . . . , 𝛼𝑛) = (−𝜇∗1 −
(𝑛−1)

2 , −𝜇∗2 −
(𝑛−3)

2 , . . . , −𝜇∗𝑛 +
(𝑛−1)

2 ),

and similarly, 𝛼′ = −𝑏, 𝛽′ = −𝑏∗, from which the cuspidal width is

ℓ(𝜇, 𝜇′) = min

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
|𝜇∗1 − 𝜇𝑛 + (𝑛 − 1) + 𝑏 − 𝑏∗ |,
|𝜇∗2 − 𝜇𝑛−1 + (𝑛 − 3) + 𝑏 − 𝑏∗ |,

...
|𝜇∗𝑛 − 𝜇1 − (𝑛 − 1) + 𝑏 − 𝑏∗ |

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

From the shape of 𝑎(𝜇, 𝜇′) and ℓ(𝜇, 𝜇′), it is convenient to introduce the quantities 𝑐𝑖 := 𝜇𝑖 − 𝑏 and
𝑐∗𝑖 := 𝜇∗𝑖 − 𝑏∗. (These are the p and 𝑝∗ when 𝑛 = 1.) Then we have 𝑎(𝜇, 𝜇′) = 𝑐𝑖+𝑐∗𝑛−𝑖+1

2 , and

ℓ(𝜇, 𝜇′) = min{ |𝑐∗1 − 𝑐𝑛 + (𝑛 − 1) |, |𝑐∗2 − 𝑐𝑛−1 + (𝑛 − 3) |, |𝑐∗𝑛 − 𝑐1 − (𝑛 − 1) | }.

From the dominance of the weights 𝜇 and 𝜇′, we have the inequalities

𝑐∗1 − 𝑐𝑛 + (𝑛 − 1) 𝑐∗2 − 𝑐𝑛−1 + (𝑛 − 3) > · · · > 𝑐∗𝑛 − 𝑐1 − (𝑛 − 1).

The proof conveniently breaks into (𝑛 + 1) disjoint cases depending on the relative position of 0 in the
above decreasing sequence.

Case 0: 0 > 𝑐∗1 − 𝑐𝑛 + (𝑛 − 1) > 𝑐∗2 − 𝑐𝑛−1 + (𝑛 − 3) > · · · > 𝑐∗𝑛 − 𝑐1 − (𝑛 − 1),

Case j (1 ≤ 𝑗 ≤ 𝑛 − 1): 𝑐∗𝑗 − 𝑐𝑛− 𝑗+1 + (𝑛 − 2 𝑗 + 1) 0 > 𝑐∗𝑗+1 − 𝑐𝑛− 𝑗 + (𝑛 − 2 𝑗 − 1),

Case n: 𝑐∗1 − 𝑐𝑛 + (𝑛 − 1) 𝑐∗2 − 𝑐𝑛−1 + (𝑛 − 3) > · · · > 𝑐∗𝑛 − 𝑐1 − (𝑛 − 1) > 0.

In Case 0, we have ℓ(𝜇, 𝜇′) = −𝑐∗1 + 𝑐𝑛 − (𝑛 − 1). Keeping in mind that 𝑁 = 𝑛 + 1, the inequalities
in (2) of the lemma read

− (𝑛 + 1)
2
+ 1 −

(−𝑐∗1 + 𝑐𝑛 − (𝑛 − 1))
2

≤
𝑐∗1 + 𝑐𝑛

2
≤ − (𝑛 + 1)

2
− 1 +

(−𝑐∗1 + 𝑐𝑛 − (𝑛 − 1))
2

This simplifies to

𝑐∗1 − 𝑐𝑛 ≤ 𝑐∗1 + 𝑐𝑛 ≤ −𝑐
∗
1 + 𝑐𝑛 − 2𝑛 − 2.

Whence we get

𝑐𝑛 ≥ 0, 𝑐∗1 ≤ −𝑛 − 1.

This is exactly the condition that 𝑤−1 = (1, 𝑠∗𝑛) under the twisted action makes 𝜇 + 𝜇′ dominant. (See
the last row of (3.19).)

Case n is similar; we have ℓ(𝜇, 𝜇′) = 𝑐∗𝑛 − 𝑐1 − (𝑛 − 1). The inequalities in (2) of the lemma read

− (𝑛 + 1)
2
+ 1 −

(𝑐∗𝑛 − 𝑐1 − (𝑛 − 1))
2

≤
𝑐∗𝑛 + 𝑐1

2
≤ − (𝑛 + 1)

2
− 1 +

(𝑐∗𝑛 − 𝑐1 − (𝑛 − 1))
2

This simplifies to

−𝑐∗𝑛 + 𝑐1 ≤ 𝑐∗𝑛 + 𝑐1 ≤ 𝑐∗𝑛 − 𝑐1 − 2𝑛 − 2.
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Whence we get

𝑐∗𝑛 ≥ 0, 𝑐1 ≤ −𝑛 − 1.

This is exactly the condition that 𝑤−1 = (𝑠𝑛, 1∗) makes 𝜇 + 𝜇′ dominant.

Case j breaks up into two sub-cases:
Case j1: 𝑐∗𝑗 − 𝑐𝑛− 𝑗+1 + (𝑛 − 2 𝑗 + 1) ≥ 𝑐𝑛− 𝑗 − 𝑐∗𝑗+1 − (𝑛 − 2 𝑗 − 1).
Case j2: 𝑐∗𝑗 − 𝑐𝑛− 𝑗+1 + (𝑛 − 2 𝑗 + 1) < 𝑐𝑛− 𝑗 − 𝑐∗𝑗+1 − (𝑛 − 2 𝑗 − 1).
For j1, we have ℓ(𝜇, 𝜇′) = 𝑐𝑛− 𝑗 − 𝑐∗𝑗+1 − (𝑛 − 2 𝑗 − 1) and the inequalities of (2) read

− (𝑛 + 1)
2
+ 1−

(𝑐𝑛− 𝑗 − 𝑐∗𝑗+1 − (𝑛 − 2 𝑗 − 1))
2

≤
𝑐𝑛− 𝑗 + 𝑐∗𝑗+1

2
, and

𝑐𝑛− 𝑗 + 𝑐∗𝑗+1
2

≤ − (𝑛 + 1)
2
− 1 +

(𝑐𝑛− 𝑗 − 𝑐∗𝑗+1 − (𝑛 − 2 𝑗 − 1))
2

.

These simplify to

−𝑐𝑛− 𝑗 + 𝑐∗𝑗+1 − 2 𝑗 ≤ 𝑐𝑛− 𝑗 + 𝑐∗𝑗+1 ≤ 𝑐𝑛− 𝑗 − 𝑐∗𝑗+1 − 2𝑛 + 2 𝑗 − 2.

This in turn implies that

𝑐𝑛− 𝑗 ≥ − 𝑗 , 𝑐∗𝑗+1 ≤ −𝑛 + 𝑗 − 1.

Next, we see that the defining inequalities of j1 gives in particular that

𝑐∗𝑗 + 𝑐∗𝑗+1 + 2𝑛 − 4 𝑗 ≥ 𝑐𝑛− 𝑗 + 𝑐𝑛− 𝑗+1. (3.20)

Add 𝑐𝑛− 𝑗+1 on both sides of (3.20) to get

𝑐𝑛− 𝑗+1 + 𝑐∗𝑗 + 𝑐∗𝑗+1 + 2𝑛 − 4 𝑗 ≥ 𝑐𝑛− 𝑗 + 2𝑐𝑛− 𝑗+1,

and applying purity, we can rewrite this as

𝑐𝑛− 𝑗 + 2𝑐∗𝑗+1 + 2𝑛 − 4 𝑗 ≥ 𝑐𝑛− 𝑗 + 2𝑐𝑛− 𝑗+1,

whence

𝑐𝑛− 𝑗+1 ≤ 𝑐∗𝑗+1 + 𝑛 − 2 𝑗 ≤ − 𝑗 − 1.

Next, add 𝑐∗𝑗 to both sides of (3.20) to get

2𝑐∗𝑗 + 𝑐∗𝑗+1 + 2𝑛 − 4 𝑗 ≥ 𝑐𝑛− 𝑗 + 𝑐𝑛− 𝑗+1 + 𝑐∗𝑗 ,

and applying purity, we can rewrite this as

2𝑐∗𝑗 + 𝑐∗𝑗+1 + 2𝑛 − 4 𝑗 ≥ 2𝑐𝑛− 𝑗 + 𝑐∗𝑗+1

whence,

𝑐∗𝑗 ≥ 𝑐𝑛− 𝑗 − 𝑛 + 2 𝑗 ≥ −𝑛 + 𝑗 .

Putting all this together, we get the following inequalities:

𝑐𝑛− 𝑗 ≥ − 𝑗 , 𝑐𝑛− 𝑗+1 ≤ − 𝑗 − 1, and 𝑐∗𝑗 ≥ 𝑗 − 𝑛, 𝑐∗𝑗+1 ≤ −𝑛 + 𝑗 − 1.
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For j2, we have ℓ(𝜇, 𝜇′) = 𝑐∗𝑗 − 𝑐𝑛− 𝑗+1 + (𝑛 − 2 𝑗 + 1) and the inequalities of (2) simplifying to

𝑐∗𝑗 ≥ −𝑛 + 𝑗 and 𝑐𝑛− 𝑗+1 ≤ − 𝑗 − 1.

The defining inequalities of j2 may be written as

𝑐∗𝑗 + 𝑐∗𝑗+1 ≤ 𝑐𝑛− 𝑗 + 𝑐𝑛− 𝑗+1 − 2𝑛 + 4 𝑗 . (3.21)

Add 𝑐∗𝑗+1 to both sides of (3.21), apply purity to the right-hand side, and simplify to get

𝑐∗𝑗+1 ≤ −𝑛 + 𝑗 − 1.

Next, add 𝑐𝑛− 𝑗 to both sides of (3.21), apply purity to the left-hand side, and simplify to get

𝑐𝑛− 𝑗 ≥ − 𝑗 .

Putting all this together, we see exactly as in Case j1 that

𝑐𝑛− 𝑗 ≥ − 𝑗 , 𝑐𝑛− 𝑗+1 ≤ − 𝑗 − 1, and 𝑐∗𝑗 ≥ −𝑛 + 𝑗 , 𝑐∗𝑗+1 ≤ −𝑛 + 𝑗 − 1.

Using the table (3.19), we see that

𝑐𝑛− 𝑗 ≥ − 𝑗 , 𝑐𝑛− 𝑗+1 ≤ − 𝑗 − 1 ⇐⇒ 𝑠 𝑗 · (𝜇1, . . . , 𝜇𝑛, 𝑏) is dominant.

𝑐∗𝑗 ≥ 𝑗 − 𝑛, 𝑐∗𝑗+1 ≤ −𝑛 + 𝑗 − 1 ⇐⇒ 𝑠∗𝑛− 𝑗 · (𝜇∗1, . . . , 𝜇
∗
𝑛, 𝑏
∗) is dominant.

So, in Case j, the required balanced Kostant representative is the inverse of (𝑠 𝑗 , 𝑠∗𝑛− 𝑗 ).
Conversely, if 𝑤−1 = (𝑠 𝑗 , 𝑠∗𝑛− 𝑗 ) makes (𝜇 + 𝜇′) dominant, then we just argue backwards in the above

paragraphs to see that inequalities of (2) are satisfied. Thus far, we have proved (2) ⇐⇒ (3) when F is
imaginary quadratic.

A general totally imaginary field
Now let F be any totally imaginary field. For each 𝑣 ∈ S∞ we have a pair of complex embeddings

{𝜂𝑣 , 𝜂𝑣 } of F. For any such embedding 𝜂, the weight 𝜇, has a 𝜂-component 𝜇𝜂 = (𝜇𝜂
1 , . . . , 𝜇

𝜂
𝑛 ) which is

a non-increasing sequence of integers, and similarly, 𝜇′𝜂 = (𝑏𝜂) is just an integer. Define 𝑐𝜂𝑗 = 𝜇
𝜂
𝑗 − 𝑏

𝜂 .

The abelian width is given by 𝑎(𝜇, 𝜇′) =
𝑐
𝜂
𝑗 +𝑐

�̄�
𝑛− 𝑗+1

2 , for any j and any 𝜂. For 𝑣 ∈ S∞, define ℓ𝑣 (𝜇, 𝜇′)
as the minimum of the absolute values of the following n integers:

𝑐
�̄�𝑣
1 − 𝑐

𝜂𝑣
𝑛 + (𝑛 − 1) 𝑐 �̄�𝑣2 − 𝑐

𝜂𝑣
𝑛−1 + (𝑛 − 3) > · · · > 𝑐

�̄�𝑣
𝑛 − 𝑐

𝜂𝑣
1 − (𝑛 − 1).

Then ℓ(𝜇, 𝜇′) = min{ℓ𝑣 (𝜇, 𝜇′) : 𝑣 ∈ S∞}. The inequalities of (2) imply that for each 𝑣 ∈ S∞, we have

−𝑁
2
+ 1 − ℓ𝑣 (𝜇, 𝜇′)

2
≤ 𝑎(𝜇, 𝜇′) ≤ −𝑁

2
− 1 + ℓ𝑣 (𝜇, 𝜇′)

2
. (3.22)

Using the same argument as in the imaginary quadratic case, we see that there exists𝑤𝑣 = (𝑤𝜂𝑣 , 𝑤 �̄�𝑣 ) ∈
𝑊 (𝑃0×𝜂𝑣C)×(𝑃0×�̄�𝑣C) such that 𝑤−1

𝑣 · ((𝜇𝜂𝑣 , 𝜇′𝜂𝑣 ), (𝜇 �̄�𝑣 , 𝜇′�̄�𝑣 )) is dominant and 𝑙 (𝑤𝜂𝑣 ) + 𝑙 (𝑤 �̄�𝑣 ) = 𝑛.
The required balanced Kostant representative then is 𝑤 = (𝑤𝑣 )𝑣 ∈S∞ ; hence, (3) is satisfied. Con-
versely, if (3) holds, then writing 𝑤 = (𝑤𝜂) as 𝑤 = (𝑤𝑣 ) with 𝑤𝑣 = (𝑤𝜂𝑣 , 𝑤 �̄�𝑣 ), we see that
𝑤−1

𝑣 · ((𝜇𝜂𝑣 , 𝜇′𝜂𝑣 ), (𝜇 �̄�𝑣 , 𝜇′�̄�𝑣 )) is dominant, and working backwards as in the imaginary quadratic
case, we deduce (3.22) holds for each v, and hence, (2) holds. �
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3.2.4. Proof of (2) ⇐⇒ (3) in the general case
First of all, we will prove it in the special case when F is imaginary quadratic (i.e., 𝔯 = 1).

Parametrizing Kostant representatives
We will need explicit Kostant representatives. Recall that 𝐺0 = GL𝑁 and 𝑃0 = 𝑀𝑃0𝑈𝑃0 the standard

(𝑛, 𝑛′)-parabolic subgroup of 𝐺0, where 𝑁 = 𝑛 + 𝑛′; clearly, dim(𝑈𝑃0 ) = 𝑛𝑛′. Then 𝑊𝐺0 = 𝔖𝑁 the
permutation group on N letters, and 𝑊𝑀𝑃0

= 𝔖𝑛 ×𝔖𝑛′ . The set of Kostant representatives 𝑊𝑃0 may be
described as

𝑊𝑃0 = {𝑤 ∈ 𝑊𝐺0 : 𝑤−1 (1) < · · · < 𝑤−1 (𝑛) and 𝑤−1(𝑛 + 1) < · · · < 𝑤−1(𝑁)}. (3.23)

The set 𝑊𝑃0 is in bijection with the set of all n-tuples 𝜅 = (𝑘1, . . . , 𝑘𝑛), where 1 ≤ 𝑘1 < · · · < 𝑘𝑛 ≤ 𝑁 .
Any such 𝜅 corresponds to 𝑤𝜅 ∈ 𝑊𝑃0 , which is uniquely defined by the conditions

𝑤−1
𝜅 (1) = 𝑘1, . . . , 𝑤

−1
𝜅 (𝑛) = 𝑘𝑛. (3.24)

If 𝜅 = (1, 2, . . . , 𝑛), then 𝑤𝜅 is the identity element. There is a self-bijection 𝑊𝑃0 → 𝑊𝑃0 defined by
𝑤𝜅 ↦→ 𝑤𝜅v , where

𝜅v := 𝑁 + 1 − 𝑘𝑛 < · · · < 𝑁 + 1 − 𝑘1; 𝜅v
𝑗 = 𝑁 + 1 − 𝑘𝑛− 𝑗+1. (3.25)

Let 𝑤𝑁 = 𝑤𝐺0 ∈ 𝑊𝐺0 denote the element of longest length, which is given by 𝑤𝑁 ( 𝑗) = 𝑁 + 1 − 𝑗 for
any 1 ≤ 𝑗 ≤ 𝑁; clearly, 𝑤2

𝐺0
= 1. Similarly, 𝑤𝑛 and 𝑤𝑛′ are defined, and we have 𝑤𝑀𝑃0

= 𝑤𝑛 × 𝑤𝑛′ .

Lemma 3.26. With the notations as above, we have

1. 𝑙 (𝑤𝜅 ) = (𝑘1 − 1) + (𝑘2 − 2) + · · · + (𝑘𝑛 − 𝑛).
2. 𝑙 (𝑤𝜅 ) + 𝑙 (𝑤𝜅v ) = 𝑛𝑛′ = dim(𝑈𝑃0 ).
3. 𝑤𝜅v = 𝑤𝑀𝑃0

𝑤𝜅𝑤𝐺0 .

Proof. Clearly, 𝑙 (𝑤𝜅 ) = 𝑙 (𝑤−1
𝜅 ), and for counting the length of 𝑤−1

𝜅 , count the number of its shuffles –
that is, count the number of pairs (𝑖, 𝑗) with 1 ≤ 𝑖 < 𝑗 ≤ 𝑁 with 𝑤−1

𝜅 (𝑖) > 𝑤−1
𝜅 ( 𝑗). But for any such

shuffle, by (3.23), it is clear that 1 ≤ 𝑖 ≤ 𝑛 and 𝑛 + 1 ≤ 𝑗 ≤ 𝑁 . We leave it to the reader to see that for a
fixed 𝑖 ≤ 𝑛, the number of shuffles (𝑖, 𝑗) is 𝑘𝑖 − 𝑖. Also, (2) follows from Statement (1) and (3.25). To
see the validity of (3), compute the inverses of both sides on any 1 ≤ 𝑗 ≤ 𝑛:

(𝑤𝐺0𝑤
−1
𝜅 𝑤𝑀𝑃0

) ( 𝑗) = (𝑤𝐺0𝑤
−1
𝜅 ) (𝑛 + 1 − 𝑗) = 𝑤𝐺0 (𝑘𝑛+1− 𝑗 ) = 𝑁 + 1 − 𝑘𝑛+1− 𝑗 = 𝜅v

𝑗 = 𝑤−1
𝜅v ( 𝑗). �

Twisted action of 𝑊𝑃0 on weights
The usual permutation action of 𝜎 ∈ 𝑆𝑚 on an m-tuple is given by 𝜎(𝑡1, . . . , 𝑡𝑚) =

(𝑡𝜎−1 (1) , . . . , 𝑡𝜎−1 (𝑚) ). If 𝑡 := (𝑡1, . . . , 𝑡𝑚), then the twisted action of 𝜎 on 𝑡 is defined by 𝜎 · 𝑡 =
𝜎(𝑡 + 𝛒𝑚) − 𝛒𝑚, which unravels to

𝜎 · (𝑡1, . . . , 𝑡𝑚) = (𝑡𝜎−1 (1) + 1 − 𝜎−1(1), 𝑡𝜎−1 (2) + 2 − 𝜎−1(2), . . . , 𝑡𝜎−1 (𝑚) + 𝑚 − 𝜎−1(𝑚)).

Now, keeping the combinatorial lemma (Lemma 3.16) in mind, suppose

𝜇 = ((𝑏1, . . . , 𝑏𝑛), (𝑐1, . . . , 𝑐𝑛)), 𝜇′ = ((𝑏′1, . . . , 𝑏
′
𝑛′ ), (𝑐′1, . . . , 𝑐

′
𝑛′ )),

where each n-tuple or 𝑛′-tuple is a non-increasing string of integers satisfying the purity condition
w = 𝑏𝑖 + 𝑐𝑛−𝑖+1, w′ = 𝑏′𝑗 + 𝑐′𝑛′− 𝑗+1. We are seeking a Kostant representative of optimal length that
‘straightens out’

𝜇 + 𝜇′ = ((𝑏1, . . . , 𝑏𝑛, 𝑏
′
1, . . . , 𝑏

′
𝑛′ ), (𝑐1, . . . , 𝑐𝑛, 𝑐

′
1, . . . , 𝑐

′
𝑛′ )).
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For this, we need the twisted action of 𝑤−1
𝜅 on an (𝑛 + 𝑛′)-tuple like (𝑏1, . . . , 𝑏𝑛, 𝑏

′
1, . . . , 𝑏

′
𝑛′ ). Given 𝜅,

let us define its complement 𝜅𝑐 as the ordered string of integers:

𝜅𝑐 := 𝑘𝑐1 < · · · < 𝑘𝑐𝑛′ := {1, 2, . . . , 𝑁} \ {𝑘1, 𝑘2, . . . , 𝑘𝑛}.

It is useful to note that

𝜅𝑐 = {1, 2, . . . , 𝑘1 − 1, 𝑘1 + 1, . . . , 𝑘2 − 1, 𝑘2 + 1, . . . , 𝑘𝑛 − 1, 𝑘𝑛 + 1, . . . , 𝑁}.

The element 𝑤−1
𝜅 ∈ 𝑊𝑃0 is the permutation that may be written as(

1 2 . . . 𝑛 𝑛 + 1 . . . 𝑁
𝑘1 𝑘2 . . . 𝑘𝑛 𝑘𝑐1 . . . 𝑘𝑐𝑛′

)
,

and the permutation 𝑤𝜅 is(
1 . . . 𝑘1 − 1 𝑘1 𝑘1 + 1 . . . 𝑘2 − 1 𝑘2 𝑘2 + 1 . . .

𝑛 + 1 . . . 𝑛 + 𝑘1 − 1 1 𝑛 + 𝑘1 . . . 𝑛 + 𝑘2 − 2 2 𝑛 + 𝑘2 − 1 . . .

. . . 𝑘𝑛−1 𝑘𝑛−1 + 1 . . . 𝑘𝑛 − 1 𝑘𝑛 𝑘𝑛 + 1 . . . 𝑁

. . . 𝑛 − 1 𝑘𝑛−1 + 2 . . . 𝑘𝑛 𝑛 𝑘𝑛 + 1 . . . 𝑁

)
.

(The reader should pay some attention to the special cases 𝑘1 = 1 and 𝑘𝑛 = 𝑁 .) Denoting

(𝑏1, . . . , 𝑏𝑛, 𝑏
′
1, . . . , 𝑏

′
𝑛′ ) = (𝑑1, . . . , 𝑑𝑛, 𝑑𝑛+1, . . . , 𝑑𝑁 ),

we have

𝑤−1
𝜅 ·(𝑑1, . . . , 𝑑𝑛, 𝑑𝑛+1, . . . , 𝑑𝑁 ) =

(𝑑𝑤𝜅 (1) + 1 − 𝑤𝜅 (1), 𝑑𝑤𝜅 (2) + 2 − 𝑤𝜅 (2), . . . , 𝑑𝑤𝜅 (𝑁 ) + 𝑁 − 𝑤𝜅 (𝑁)). (3.27)

Dominance of 𝑤−1
𝜅 · (𝑑1, . . . , 𝑑𝑁 )

Let us enumerate the inequalities that guarantee dominance of the weight in (3.27):

Proposition 3.28. The weight 𝑤−1
𝜅 · (𝑑1, . . . , 𝑑𝑛, 𝑑𝑛+1, . . . , 𝑑𝑁 ) is dominant if and only if the following

conditions are satisfied:

(0) If 𝑘1 − 1 ≥ 1, then

𝑏′𝑘1−1 − 𝑏1 ≥ 𝑛 + 𝑘1 − 1.

If 𝑘1 = 1, then there is no such condition.
(1) If 𝑘2 ≥ 𝑘1 + 2, then

(i)

𝑏1 − 𝑏′𝑘1
≥ −𝑛 − 𝑘1 + 2,

and
(ii)

𝑏′𝑘2−2 − 𝑏2 ≥ 𝑛 + 𝑘2 − 3.

If 𝑘2 = 𝑘1 + 1, then there are no such conditions.

...
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(l) (1 ≤ 𝑙 ≤ 𝑛 − 1) If 𝑘𝑙+1 ≥ 𝑘𝑙 + 2, then
(i)

𝑏𝑙 − 𝑏′𝑘𝑙+1−𝑙 ≥ −𝑛 − 𝑘𝑙 + 2𝑙,

and
(ii)

𝑏′𝑘𝑙+1−𝑙−1 − 𝑏𝑙+1 ≥ 𝑛 + 𝑘𝑙+1 − 2𝑙 − 1.

If 𝑘𝑙+1 = 𝑘𝑙 + 1, then there are no such conditions.

...

(n – 1) If 𝑘𝑛 ≥ 𝑘𝑛−1 + 2, then
(i)

𝑏𝑛−1 − 𝑏′𝑘𝑛−1+2−𝑛 ≥ 𝑛 − 𝑘𝑛−1 − 2,

and
(ii)

𝑏′𝑘𝑛−𝑛 − 𝑏𝑛 ≥ −𝑛 + 𝑘𝑛 + 1.

If 𝑘𝑛 = 𝑘𝑛−1 + 1, then there are no such conditions.
(n) If 𝑘𝑛 ≤ 𝑁 − 1, then

𝑏𝑛 − 𝑏′𝑘𝑛+1−𝑛 ≥ 𝑛 − 𝑘𝑛

If 𝑘𝑛 = 𝑁 , then there is no such condition.

In the above 𝑛 + 1 conditions, some of them might be empty; however, not all can be empty.

Proof. The tedious argument has the same flavour for each case (1), (2), . . . (𝑙), . . . (𝑛 − 1), (𝑛); as a
representative, let us verify (1). If 𝑘2 ≥ 𝑘1 + 2, then looking at the relevant part of 𝑤𝜅 ,(

. . . 𝑘1 𝑘1 + 1 . . . 𝑘2 − 1 𝑘2 . . .

. . . 1 𝑛 + 𝑘1 . . . 𝑛 + 𝑘2 − 2 2 . . .

)
we will have two dominance conditions: comparing entries at steps 𝑘1 and 𝑘1 + 1 gives

𝑑𝑤𝜅 (𝑘1) + 𝑘1 − 𝑤𝜅 (𝑘1) ≥ 𝑑𝑤𝜅 (𝑘1+1) + 𝑘1 + 1 − 𝑤𝜅 (𝑘1 + 1), (3.29)

and similarly, comparing entries at steps 𝑘2 − 1 and 𝑘2 gives

𝑑𝑤𝜅 (𝑘2−1) + 𝑘2 − 1 − 𝑤𝜅 (𝑘2 − 1) ≥ 𝑑𝑤𝜅 (𝑘2) + 𝑘2 − 𝑤𝜅 (𝑘2). (3.30)

Now, (3.29) unravels to 𝑏1 + 𝑘1 − 1 ≥ 𝑏′𝑘1
+ 1 − 𝑛 which is (1)(i), and similarly, (3.30) unravels to

𝑏′𝑘2−2 + 1 − 𝑛 ≥ 𝑏2 + 𝑘2 − 2 which is (1)(ii). However, if 𝑘2 = 𝑘1 + 1, then the corresponding part of the
permutation 𝑤𝜅 just collapses to (

. . . 𝑘1 𝑘2 . . .

. . . 1 2 . . .

)
,

and dominance is assured since 𝑏1 ≥ 𝑏2. �

https://doi.org/10.1017/fms.2025.48 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.48


34 A. Raghuram

Proposition 3.31. The weight 𝑤−1
𝜅v · (𝑐1, . . . , 𝑐𝑛, 𝑐

′
1, . . . , 𝑐

′
𝑛′ ) is dominant if and only if the following

conditions are satisfied:

(0v) If 𝑘v
1 − 1 ≥ 1, then

𝑏𝑛 − 𝑏′𝑘𝑛+1−𝑛 ≥ 𝑛 − 𝑘𝑛 + (𝑁 + (w − w′)).

If 𝑘v
1 = 1, then there is no such condition.

(1v) If 𝑘v
2 ≥ 𝑘v

1 + 2, then
(𝑖)v

𝑏′𝑘𝑛−𝑛 − 𝑏𝑛 ≥ −𝑛 + 𝑘𝑛 + 1 − (𝑁 + (w − w′)),

and
(𝑖𝑖)v

𝑏𝑛−1 − 𝑏′𝑘𝑛−1+2−𝑛 ≥ 𝑛 − 𝑘𝑛−1 − 2 + (𝑁 + (w − w′)).

If 𝑘v
2 = 𝑘v

1 + 1, then there are no such conditions.

...

(𝑙v) If 𝑘v
𝑙+1 ≥ 𝑘v

𝑙 + 2, then
(𝑖)v

𝑏′𝑘𝑛−𝑙+1−𝑛+𝑙−1 − 𝑏𝑛−𝑙+1 ≥ 𝑘𝑛−𝑙+1 − 𝑛 + (2𝑙 − 1) − (𝑁 + (w − w′)),

and
(𝑖𝑖)v

𝑏𝑛−𝑙 − 𝑏′𝑘𝑛−𝑙+1−𝑛+𝑙 ≥ −𝑘𝑛−𝑙 + 𝑛 − 2𝑙 + (𝑁 + (w − w′)).

If 𝑘v
𝑙+1 = 𝑘v

𝑙 + 1, then there are no such conditions.

...

((𝑛 − 1)v) If 𝑘v
𝑛 ≥ 𝑘v

𝑛−1 + 2, then
(𝑖)v

𝑏′𝑘2−2 − 𝑏2 ≥ 𝑛 + 𝑘2 − 3 − (𝑁 + (w − w′)),

and
(𝑖𝑖)v

𝑏1 − 𝑏′𝑘1
≥ −𝑛 − 𝑘1 + 2 + (𝑁 + (w − w′)).

If 𝑘v
𝑛 = 𝑘v

𝑛−1 + 1, then there are no such conditions.
(𝑛v) If 𝑘v

𝑛 ≤ 𝑁 − 1, then

𝑏′𝑘1−1 − 𝑏1 ≥ 𝑛 + 𝑘1 − 1 − (𝑁 + (w − w′)).

If 𝑘v
𝑛 = 𝑁 , then there is no such condition.
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Proof. Apply Proposition 3.28 while replacing

◦ 𝑘 𝑗 by 𝑘v
𝑗 = 𝑁 + 1 − 𝑘𝑛+1− 𝑗 ,

◦ 𝑏 𝑗 by 𝑐 𝑗 = w − 𝑏𝑛+1− 𝑗 , and
◦ 𝑏′𝑗 by 𝑐′𝑗 = w′ − 𝑏′𝑛′− 𝑗+1,

As an illustrative example, let us make these replacements in case (1) (𝑖) of Proposition 3.28. Then we get

𝑐1 − 𝑐′𝑘v
1
≥ −𝑛 − 𝑘v

1 + 2 ⇐⇒ 𝑐1 − 𝑐′𝑁+1−𝑘𝑛 ≥ −𝑛 + 𝑘𝑛 + 1 − 𝑁,

which may be written as

(w − 𝑏𝑛) − (w − 𝑏′𝑘𝑛−𝑛) ≥ −𝑛 + 𝑘𝑛 + 1 − 𝑁 ⇐⇒ 𝑏′𝑘𝑛−𝑛 − 𝑏𝑛 ≥ −𝑛 + 𝑘𝑛 + 1 − (𝑁 + (w − w′)),

giving us case (1)v(𝑖)v. Similarly, all the other cases may be verified. �

Remark 3.32. Let us note the following ‘duality’ relations between the various cases of Proposition 3.28
and Proposition 3.31.

◦ 𝑘v
1 = 1 ⇐⇒ 𝑘𝑛 = 𝑁 .

(Compare (0)v of Proposition 3.31 with (𝑛) of Proposition 3.28.)
◦ 𝑘v

𝑛 = 𝑁 ⇐⇒ 𝑘1 = 1.
(Compare (𝑛)v with (0).)

◦ 𝑘v
𝑗 ≥ 𝑘v

𝑗−1 + 2 ⇐⇒ 𝑘𝑛+2− 𝑗 ≥ 𝑘𝑛+1− 𝑗 + 2, for 2 ≤ 𝑗 ≤ 𝑛.
(Compare (1)v(𝑖)v with (𝑛 − 1) (𝑖𝑖) and (1)v(𝑖𝑖)v with (𝑛 − 1) (𝑖).)

In this comparison, an inequality of the form 𝑏𝑖 − 𝑏′𝑗 ≥ 𝛽 in Proposition 3.28 corresponds to
𝑏𝑖 − 𝑏′𝑗 ≥ 𝛽 + (𝑁 + (w − w′)) in Proposition 3.31. Similarly, an inequality of the form 𝑏′𝑗 − 𝑏𝑖 ≥ 𝛽 in
Proposition 3.28 corresponds to 𝑏′𝑗 − 𝑏𝑖 ≥ 𝛽 − (𝑁 + (w − w′)) in Proposition 3.31.

The inner structure of the cuspidal width - I
For the weight 𝜇, written as above 𝜇 = ((𝑏1, . . . , 𝑏𝑛), (𝑐1, . . . , 𝑐𝑛)), recall its cuspidal parameters

from (2.8) and (2.9):

𝛼𝑖 = −𝑏𝑛−𝑖+1 + (𝑛−2𝑖+1)
2 𝛽𝑖 = −𝑐𝑖 − (𝑛−2𝑖+1)

2 .

Similarly, for 𝜇′ = ((𝑏′1, . . . , 𝑏
′
𝑛′ ), (𝑐′1, . . . , 𝑐

′
𝑛′ )), we have

𝛼′𝑗 = −𝑏′𝑛′− 𝑗+1 +
(𝑛′−2 𝑗+1)

2 , 𝛽′𝑗 = −𝑐′𝑗 −
(𝑛′−2 𝑗+1)

2 .

For 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑛′, define ℓ𝑖, 𝑗 := 𝛼𝑖 − 𝛽𝑖 − 𝛼′𝑗 + 𝛽′𝑗 . Applying purity, we have

ℓ𝑖, 𝑗 = 2(𝑏′𝑛′− 𝑗+1 − 𝑏𝑛−𝑖+1) + (𝑁 + (w − w′)) + −2𝑛′ + 2( 𝑗 − 𝑖). (3.33)

These 𝑛𝑛′ integers are ordered thus:

ℓ1,1 < ℓ1,2 < · · · < ℓ1,𝑛′

< < <

ℓ2,1 < ℓ2,2 < · · · < ℓ2,𝑛′

< < <

...
...

< < <

ℓ𝑛,1 < ℓ𝑛,2 < · · · < ℓ𝑛,𝑛′

(3.34)
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Recall the cuspidal width is defined as

ℓ(𝜇, 𝜇′) = min{|ℓ𝑖, 𝑗 | : 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛′}.

From (3.34), we see that the location of 0 relative to these 𝑛𝑛′ integers is important to determine the
cuspidal width.

On how 𝜇 and 𝜇′ determine 𝜅

Consider the j-th column of (3.34). Define ℓ0, 𝑗 = ∞ (or a large positive integer), and ℓ𝑛+1, 𝑗 = −∞
(or a large negative integer). For each 1 ≤ 𝑗 ≤ 𝑛′, define 𝑟 𝑗 with 0 ≤ 𝑟 𝑗 ≤ 𝑛 such that

ℓ𝑟 𝑗 , 𝑗

≤

0

<
ℓ𝑟 𝑗+1, 𝑗 .

The integer 𝑟 𝑗 defines the location of 0 in the j-th column. For example, if all the ℓ∗, 𝑗 ≥ 0, then 𝑟 𝑗 = 𝑛,
and similarly, if all ℓ∗, 𝑗 < 0, then 𝑟 𝑗 = 0. Note that

0 ≤ 𝑟1 ≤ 𝑟2 ≤ · · · ≤ 𝑟𝑛′ ≤ 𝑛.

Next, define a string of integers 𝑠 𝑗 by: 𝑠 𝑗 = 𝑟 𝑗 + 𝑗 − 1; then

0 ≤ 𝑠1 < 𝑠2 < · · · < 𝑠𝑛′ ≤ 𝑁 − 1.

Now define 𝜅 = 𝑘1 < · · · < 𝑘𝑛 by

{𝑘1, . . . , 𝑘𝑛} := {1, 2, . . . , 𝑁} \ {𝑁 − 𝑠𝑛′ , 𝑁 − 𝑠𝑛′−1, . . . , 𝑁 − 𝑠1}. (3.35)

The inner structure of the cuspidal width - II
Suppose there are p strict inequalities in the sequence 𝑟1 ≤ 𝑟2 ≤ · · · ≤ 𝑟𝑛′ ; that is, we have

𝑟1 = · · · = 𝑟𝑡1 < 𝑟𝑡1+1 = · · · = 𝑟𝑡2 < · · · = 𝑟𝑡𝑝 < 𝑟𝑡𝑝+1 = · · · = 𝑟𝑛′ .

Let us denote the common values thus:

𝑟 (1) := 𝑟1 = · · · = 𝑟𝑡1 , 𝑟 (2) := 𝑟𝑡1+1 = · · · = 𝑟𝑡2 , . . . , 𝑟 (𝑝+1) := 𝑟𝑡𝑝+1 = · · · = 𝑟𝑛′ . (3.36)

Note that 1 ≤ 𝑡1 < 𝑡2 < · · · < 𝑡𝑝 < 𝑛′. Define the quantity

𝛿 := 2(𝑝 + 1) − 𝛿(𝑟1, 0) − 𝛿(𝑟𝑛′ , 𝑛), (3.37)

where in the last two terms, 𝛿(𝑖, 𝑗) = 1 if 𝑖 = 𝑗 and 𝛿(𝑖, 𝑗) = 0 if 𝑖 ≠ 𝑗 . We have the following:
Lemma 3.38. The cuspidal width ℓ(𝜇, 𝜇′) is the minimum of the set

L := {ℓ𝑟 (1) , 1, −ℓ𝑟 (1) +1, 𝑡1 , ℓ𝑟 (2) , 𝑡1+1, −ℓ𝑟 (2) +1, 𝑡2 , . . . ℓ𝑟 (𝑝+1) , 𝑡𝑝+1, −ℓ𝑟 (𝑝+1) +1, 𝑛′ }

with the understanding that

◦ if 𝛿(𝑟1, 0) = 1, then 𝑟 (1) = 0, and we delete the term ℓ𝑟 (1) , 1 from L, and similarly,
◦ if 𝛿(𝑟𝑛′ , 𝑛) = 1, then 𝑟 (𝑝+1) = 𝑛, and we delete the term −ℓ𝑟 (𝑝+1) +1, 𝑛′ from L.

The cardinality of the set L is 𝛿.

Proof. This follows from (3.34); the cardinality of L follows from (3.37). �
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The proof of the combinatorial lemma - I
The proof of (2) ⇐⇒ (3) in Lemma 3.16 for the case of an imaginary quadratic extension follows

from the following:
Proposition 3.39. The following are equivalent:
1. −𝑁 + 2 − ℓ(𝜇, 𝜇′) ≤ (w − w′) ≤ −𝑁 − 2 + ℓ(𝜇, 𝜇′).
2. The element 𝑤 = (𝑤𝜅 , 𝑤𝜅v ) satisfies 𝑤−1 · (𝜇 + 𝜇′) is dominant.

Note that the requirement of the Kostant representative to be balanced is automatically taken care of
by (2), since by Lemma 3.26, (2), we have 𝑙 (𝑤) = 𝑙 (𝑤𝜅 ) + 𝑙 (𝑤𝜅v ) = 𝑛𝑛′.

Proof. The information contained in the inequalities

−𝑁 + 2 − ℓ(𝜇, 𝜇′) ≤ (w − w′) ≤ −𝑁 − 2 + ℓ(𝜇, 𝜇′)

is clearly equivalent to the set of 2𝛿 inequalities

ℓ ≥ 2 + (𝑁 + (w − w′)) and ℓ ≥ 2 − (𝑁 + (w − w′)), ∀ℓ ∈ L. (3.40)

Let us begin the analysis of various cases and consider each of the above inequalities:
◦ Suppose 𝑟1 = 0. From (3.35), it follows that 𝑟1 = 0 ⇐⇒ 𝑘𝑛 ≤ 𝑁 − 1 ⇐⇒ 𝑘v

1 ≥ 2. The condition
𝑟1 = · · · = 𝑟𝑡1 = 0 (which means the first 𝑡1 many columns of (3.34) are negative) implies that
𝑁 − 𝑡1 + 1, . . . , 𝑁 − 1, 𝑁 are deleted in defining 𝜅 in (3.35); hence, 𝑘𝑛 = 𝑁 − 𝑡1. Now, consider the
term ℓ = −ℓ𝑟 (1) +1, 𝑡1 = −ℓ1,𝑁−𝑘𝑛 ∈ L. From (3.33), we have

−ℓ1,𝑁−𝑘𝑛 = 2(𝑏𝑛 − 𝑏′𝑘𝑛+1−𝑛) − (𝑁 + (w − w′)) + 2𝑛′ − 2(𝑁 − 𝑘𝑛 − 1).

Applying (3.40) to −ℓ1,𝑁−𝑘𝑛 gives us

𝑏𝑛 − 𝑏′𝑘𝑛+1−𝑛 ≥ 𝑛 − 𝑘𝑛 + (𝑁 + (w − w′)), and 𝑏𝑛 − 𝑏′𝑘𝑛+1−𝑛 ≥ 𝑛 − 𝑘𝑛,

which are the same as the bounds in case-(0v) of Proposition 3.31 and case-(𝑛) of Proposition 3.28.
◦ Suppose 𝑟𝑛′ = 𝑛. From (3.35), it follows that 𝑟1 = 0 ⇐⇒ 𝑘1 ≥ 2 ⇐⇒ 𝑘v

𝑛 ≤ 𝑁 − 1. The condition
𝑟𝑡𝑝+1 = · · · = 𝑟𝑛′ = 𝑛 (which means that in (3.34) the last 𝑡𝑝-columns are all non-negative) implies
that 1, 2, . . . , 𝑁 − (𝑛 + 𝑡𝑝) are deleted in getting 𝜅 in (3.35); hence, 𝑘1 = 𝑛′ − 𝑡𝑝 + 1. Now, consider
the term ℓ = −ℓ𝑟 (𝑝+1) , 𝑡𝑝+1 = −ℓ𝑛,𝑛′−𝑘1+2 ∈ L. From (3.33), we have

ℓ𝑛,𝑛′−𝑘1+2 = 2(𝑏′𝑘1−1 − 𝑏1) + (𝑁 + (w − w′)) − 2𝑘1 − 2𝑛 + 4.

Applying (3.40) to ℓ𝑛,𝑛′−𝑘1+2 gives us

𝑏′𝑘1−1 − 𝑏1 ≥ 𝑛 + 𝑘1 − 1, and 𝑏′𝑘1−1 − 𝑏1 ≥ 𝑛 + 𝑘1 − 1 + (𝑁 + (w − w′)),

which are exactly the bounds described case-(0) of Proposition 3.28 and case-(𝑛)v of Proposition 3.31.
◦ Suppose 𝑟1 ≥ 1. Then the shape of 𝜅 is of the form

𝜅 = {. . . , 𝑁 − 𝑟1 − 𝑡1, %𝑁 − 𝑟1 + −𝑡1, . . . , &𝑁 − 𝑟1, 𝑁 − 𝑟1 + 1, . . . , 𝑁 − 1, 𝑁},

where the �̂� means that a is deleted from that list. This implies that

𝑘𝑛 = 𝑁, 𝑘𝑛−1 = 𝑁 − 1, . . . , 𝑘𝑛−𝑟1+1 = 𝑁 − 𝑟1 + 1, 𝑘𝑛−𝑟1 = 𝑁 − 𝑟1 − 𝑡1, . . .

Hence, we see that

if 𝑙 := 𝑛 − 𝑟1 then 𝑘𝑙 = 𝑁 − 𝑟1 − 𝑡1, 𝑘𝑙+1 = 𝑁 − 𝑟1 + 1.
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In particular, 𝑘𝑙+1 − 𝑘𝑙 = 1 + 𝑡1 ≥ 2. Put 𝑙v = 𝑛 − 𝑙 + 1. Then, by definition of 𝜅v, we also have
𝑘v
𝑙v − 𝑘v

𝑙v−1 ≥ 2. Note that 𝑙v = 𝑛 − (𝑛 − 𝑟1) + 1 = 𝑟1 + 1. Hence, we have 𝑘v
𝑟1+1 − 𝑘v

𝑟1 ≥ 2.Consider
the elements ℓ𝑟1 ,1 and −ℓ𝑟1+1,𝑡1 in L. Note that

ℓ𝑟1 ,1 = 2(𝑏′𝑛′ − 𝑏𝑛−𝑟1+1) + (𝑁 + (w − w′)) − 2𝑛′ + 2(1 − 𝑟1).

If we apply (3.40) to ℓ𝑟1 ,1, we get

𝑏′𝑛′ − 𝑏𝑛−𝑟1+1 ≥ 𝑛′ + 𝑟1 and 𝑏′𝑛′ − 𝑏𝑛−𝑟1+1 ≥ 𝑛′ + 𝑟1 − (𝑁 + (w − w′)).

We will leave it to the reader check that these are exactly the inequalities we get from case-(𝑙) (𝑖𝑖) of
Proposition 3.28 and case-(𝑟1)v(𝑖)v of Proposition 3.31. Next, note that

−ℓ𝑟1+1,𝑡1 = −2(𝑏′𝑛′−𝑡1+1 − 𝑏𝑛−𝑟1) − (𝑁 + (w − w′)) + 2𝑛′ − 2(𝑡1 − 𝑟1 − 1).

Apply (3.40) to −ℓ𝑟1+1,𝑡1 to get

𝑏𝑛−𝑟1 − 𝑏′𝑛′−𝑡1+1 ≥ −𝑛
′ + 𝑡1 − 𝑟1

and

𝑏𝑛−𝑟1 − 𝑏′𝑛′−𝑡1+1 ≥ −𝑛
′ + 𝑡1 − 𝑟1 + (𝑁𝑟1 + (w − w′)).

We will leave it to the reader check that these are exactly the inequalities we get from case-(𝑙) (𝑖) of
Proposition 3.28 and case-(𝑟1)v(𝑖𝑖)v of Proposition 3.31. Let us summarize the above three cases as
follows:
1. If 𝑟1 = 0, then (𝑛) and (0v) hold.
2. If 𝑟𝑛′ = 𝑛, then (0) and (𝑛)v hold.
3. If 𝑟1 ≥ 1, then (𝑛 − 𝑟1) (𝑖), (𝑛 − 𝑟1) (𝑖𝑖), (𝑟v

1) (𝑖)
v and (𝑟v

1) (𝑖𝑖)
v hold. (Furthermore, cases (1)v

through (𝑟1 − 1)v are empty and (𝑛 − 𝑟1 + 1) through (𝑛) are empty.)
◦ It should be clear now, that for each q with 1 ≤ 𝑞 ≤ 𝑝, using 𝑡𝑞 or 𝑟 (𝑞) as the anchor, we get all the

cases of Proposition 3.28 and Proposition 3.31, and hence, 𝑤−1 · (𝜇 + 𝜇′) is dominant.

The entire argument is reversible; that is, if the cases of Proposition 3.28 and Proposition 3.31 hold,
the inequalities in (3.40) are satisfied. This completes the proof of Proposition 3.39. �

The general totally imaginary field
Now if F is any totally imaginary field, then the proof reduces to working with pairs of complex

embeddings (𝜂𝑣 , 𝜂𝑣 ) for a 𝑣 ∈ S∞; it is entirely analogous to Section 3.2.3. We will leave the details to
the reader.

3.2.5. The combinatorial lemma at an arithmetic level
All the three statements in Lemma 3.16 work at an arithmetic level. Take 𝜇 ∈ 𝑋+00 (𝑇𝑛 × 𝐸) and
𝜇′ ∈ 𝑋+00(𝑇𝑛′ × 𝐸), and 𝜎 𝑓 ∈ Coh!! (𝐺𝑛, 𝜇), 𝜎′𝑓 ∈ Coh!!(𝐺𝑛′ , 𝜇

′), and for 𝜄 : 𝐸 → C, consider the
statement of the lemma for 𝜄𝜇, 𝜄𝜇′, 𝜄𝜎 and 𝜄𝜎′; let us add some comments for each of (1), (2) and (3)
of the lemma:

1. From Section 3.1.3, it follows that − 𝑁
2 and 1 − 𝑁

2 are critical for 𝐿(𝑠, 𝜄𝜎 × 𝜄𝜎′v) for any 𝜄 : 𝐸 → C.
2. Since 𝜇 and 𝜇′ are strongly-pure, it is easy to see that the abelian width 𝑎( 𝜄𝜇, 𝜄𝜇′) and the cuspidal

width ℓ( 𝜄𝜇, 𝜄𝜇′) are independent of 𝜄. (See Corollary 3.15.) For the assertion for cuspidal width, the
reader may check from definitions that the ℓ( 𝜄𝜇, 𝜄𝜇′) is given by taking the minimum of | −2𝜇 𝜄◦𝜏

𝑛−𝑖+1 +
2𝜇′𝜄◦𝜏𝑛′− 𝑗+1 + 𝑛− 𝑛

′ + 2 𝑗 − 2𝑖 +w−w′ | over all 𝜏 : 𝐹 → 𝐸, and all indices 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛′. As 𝜏
varies over Hom(𝐹, 𝐸), 𝜄 ◦ 𝜏 varies over Hom(𝐹,C), making the above minimum independent of 𝜄.
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3. Write 𝑤 ∈ 𝑊𝐺 as 𝑤 = (𝑤𝜏)𝜏:𝐹→𝐸 . We will say 𝑤 ∈ 𝑊𝑃 is balanced if 𝑙 (𝑤𝜏) + 𝑙 (𝑤𝜏 𝜄 ) = dim(𝑈𝑃0 )
for all 𝜏 ∈ Hom(𝐹, 𝐸) and for all 𝜄 : 𝐸 → C; recall that 𝜄 induces a complex conjugation 𝜏 ↦→ 𝜏 𝜄 on
Hom(𝐹, 𝐸). (See Remark 3.41 below.)

It should now be clear that (1) ⇐⇒ (2) ⇐⇒ (3) of the lemma is independent of 𝜄 : 𝐸 → C.

Remark 3.41. Strongly-pure weights 𝜇 ∈ 𝑋+00(𝑇𝑛 × 𝐸) and 𝜇′ ∈ 𝑋+00 (𝑇𝑛′ × 𝐸) being the base-change
from 𝐹1 (Proposition 2.6), it follows when the conditions of the combinatorial lemma (Lemma 3.16)
hold, that the Kostant representative 𝑤 = (𝑤𝜏)𝜏:𝐹→𝐸 is also the base-change from 𝐹1 in the sense that
if 𝜏 |𝐹1 = 𝜏′ |𝐹1 , then 𝑤𝜏 = 𝑤𝜏′ .

4. Archimedean intertwining operator

As mentioned in the Introduction, typically, in a cohomological approach to the study of the special values
of L-functions, one is confronted with an archimedean subproblem which is taken up in this section. The
problem is to compute the map induced in relative Lie algebra cohomology by the archimedean standard
intertwining operator 𝑇∞ between two irreducible modules, and show that for optimally chosen bases
for these cohomology groups, this map is essentially scaling by the appropriate ratio of archimedean
L-factors. In 4.1, we go through the GL(2)-calculation which culminates in Proposition 4.20, which is
then used in its generalization in Proposition 4.32, which is the main result of this section. For a first
reading, it is suggested to understand and assume the statements of these two propositions and come
back to their proofs at a later point of time.

4.1. The case of GL2

The calculations in this subsection are in principle the same as in Harder [22, Sect. 3.5], but we need
to go through this exercise to reorganise our thoughts, while using inputs from [27, Chap. 9], so as to
generalize them to GL𝑁 in the next subsection. The main result of this subsection is Proposition 4.20.

4.1.1. Explicit cohomology class for GL2
Let 𝜇 = ((𝑏1, 𝑏2), (𝑐1, 𝑐2)) be a pure dominant integral weight for GL2 (C) as a real group. Integrality
means 𝑏1, 𝑏2, 𝑐1, 𝑐2 ∈ Z; dominance is 𝑏1 ≥ 𝑏2 and 𝑐1 ≥ 𝑐2; purity means 𝑏1+𝑐2 = 𝑏2+𝑐1, which allows
us to define 𝑚 := 𝑏1 − 𝑏2 + 1 = 𝑐1 − 𝑐2 + 1. The cuspidal parameters are (𝛼1, 𝛼2) = (−𝑏2 + 1

2 ,−𝑏1 − 1
2 )

and (𝛽1, 𝛽2) = (−𝑐1 − 1
2 ,−𝑐2 + 1

2 ). We have the induced representation

J𝜇 = IndGL2 (C)
𝐵2 (C)

(
𝑧−𝑏2+

1
2 𝑧−𝑐1−

1
2 ⊗ 𝑧−𝑏1−

1
2 𝑧−𝑐2+

1
2

)
.

Recall GL2(C) = 𝐵2 (C)SU(2) with 𝑇 (1)𝑐 := 𝐵2 (C) ∩ SU(2) ≈ SU(1) ≈ S1. Let us write 𝑒𝑖 𝜃 for an
element of S1 which is the element

(
𝑒𝑖𝜃 0
0 𝑒−𝑖𝜃

)
in 𝑇 (1)𝑐 . If (𝜏𝑘 , 𝑉𝑘 ) denotes the irreducible representation

of SU(2) of dimension k, and 𝜒2𝑚(𝑒𝑖 𝜃 ) = 𝑒𝑖 (2𝑚) 𝜃 , then

J𝜇 = IndSU(2)
𝑇 (1)𝑐

(𝜒2𝑚) ≈ 𝜏2𝑚+1 ⊕ 𝜏2𝑚+3 ⊕ · · · ⊕ 𝜏2𝑚+2𝑘+1 ⊕ · · · , (4.1)

since by Frobenius reciprocity, any irreducible representation of SU(2) that appears in J𝜇 has to
contain the character 𝜒2𝑚 with multiplicity one. Note that 𝜏2𝑚+1 is the minimal K-type in the in-
duced representation J𝜇; we denote J𝜇 (𝜏2𝑚+1) for this minimal K-type as it sits inside the ambient
J𝜇. Let us next describe (𝜌𝜇,M𝜇) restricted to SU(2). We have M(𝑏1 ,𝑏2) = Sym𝑏1−𝑏2 (C2) ⊗ det𝑏2

as a representation of GL2(C), where C2 is the standard representation. Hence, 𝜌 (𝑏1 ,𝑏2) |SU(2) = 𝜏𝑚.
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Similarly, 𝜌 (𝑐1 ,𝑐2) |SU(2) = 𝜏𝑚. If 𝑔 ∈ SU(2), then �̄� = 𝑡𝑔−1; hence, 𝜏𝑚 = 𝜏∨𝑚 = 𝜏𝑚. This implies that
𝜌𝜇 |SU(2) = 𝜏𝑚 ⊗ 𝜏𝑚. Recall Clebsch-Gordon for SU(2): for 𝑝 ≥ 𝑞 ≥ 1, we have

𝜏𝑝 ⊗ 𝜏𝑞 = 𝜏𝑝−𝑞+1 ⊕ 𝜏𝑝−𝑞+3 ⊕ · · · ⊕ 𝜏𝑝+𝑞−1. (4.2)

Applying this to 𝑝 = 𝑞 = 𝑚 we get

𝜌𝜇 |SU(2) = 𝜏1 ⊕ 𝜏3 ⊕ · · · ⊕ 𝜏2𝑚−1. (4.3)

Denote M𝜇 (𝜏2𝑚−1) for the copy of 𝜏2𝑚−1 as it sits inside M𝜇 . Let 𝔤2 := 𝔤𝔩2(C) and 𝔨2 := R ⊕ 𝔲2(C)
be the Lie algebras of the connected real Lie groups GL2(C) and 𝑍2(C)U(2), respectively. Then the
Adjoint-action of SU(2) on 𝔤2/𝔨2 is irreducible whose complexification is isomorphic to 𝜏3. Further-
more, we have ∧0(𝔤2/𝔨2) ≈ ∧3(𝔤2/𝔨2) ≈ 𝜏1 and ∧1(𝔤2/𝔨2) ≈ ∧2(𝔤2/𝔨2) ≈ 𝜏3. We can now describe the
complex HomSU(2) (∧•(𝔤2/𝔨2), J𝜇 ⊗M𝜇). Apply (4.1) and (4.3) to J𝜇 ⊗M𝜇 and then apply (4.2) to
see that the smallest p for which 𝜏𝑝 can occur in J𝜇 ⊗M𝜇 is 𝑝 = 3 and this is realized exactly once as

𝜏3 ↩→ 𝜏2𝑚+1 ⊗ 𝜏2𝑚−1 = J𝜇 (𝜏2𝑚+1) ⊗M𝜇 (𝜏2𝑚−1).

Hence, HomSU(2) (∧•(𝔤2/𝔨2), J𝜇 ⊗M𝜇) ≠ 0 ⇐⇒ • = 1, 2, and is one-dimensional in these degrees.
Knowing that the differentials for this complex are zero, we deduce that J𝜇 ⊗M𝜇 has nonvanishing
(𝔤2, 𝔨2)-cohomology only in degrees 1 and 2 and the cohomology group is one-dimensional in these
degrees. Fix a basis [J𝜇] for

𝐻1(𝔤2, 𝔨2; J𝜇 ⊗M𝜇) = 𝐻1(𝔤𝔩2 (C), 𝑍2 (C)U(2); J𝜇 ⊗M𝜇) = C[J𝜇] . (4.4)

Now, we express [J𝜇] ∈ Hom𝑍2 (C)U(2) (11,∧1(𝔤2/𝔨2)∗ ⊗ J𝜇 (𝜏2𝑚+1) ⊗M𝜇 (𝜏2𝑚−1)), as

[J𝜇] =
∑
𝑖,𝛼

𝑋∗𝑖 ⊗ 𝜙𝑖,𝛼 ⊗ 𝑚𝛼,

where {𝑋∗𝑖 } is a basis for (𝔤2/𝔨2)∗, and {𝑚𝛼} is a basis for M𝜇 . (Of course, if 𝑚𝛼 ∉ M𝜇 (𝜏2𝑚−1),
then 𝜙𝑖,𝛼 = 0.) We call the finite set {𝜙𝑖,𝛼} of vectors in J𝜇 as cohomological vectors. Since 𝐻1 has
dimension one, a scaling of the basis element [J𝜇] means jointly scaling this finite set of cohomological
vectors. Furthermore, we contend, via an explicit version of Clebsch–Gordon, that one of the 𝜙𝑖,𝛼 is
a highest weight vector of the lowest K-type J𝜇 (𝜏2𝑚+1). Call this particular vector as the distinguished
cohomological vector for a given choice of [J𝜇].

4.1.2. The highest weight vector of the lowest K-type in J𝜇
We can explicitly describe such a vector 𝑓𝜇; first of all, since 𝑓𝜇 is in the induced representation J𝜇 we
have

𝑓𝜇

((
𝑧 ∗
𝑤

)
𝑔

)
= 𝑧−𝑏2+

1
2 𝑧−𝑐1−

1
2 · 𝑤−𝑏1−

1
2 �̄�−𝑐2+

1
2 ·

((( 𝑧
𝑤

(((1/2
C

𝑓𝜇 (𝑔), (4.5)

for all 𝑔 ∈ GL2 (C) and 𝑧, 𝑤 ∈ C×. Next, we note

𝑓𝜇

((
𝑒𝑖𝛼

𝑒−𝑖𝛼

)
𝑔

(
𝑒𝑖𝛽

𝑒−𝑖𝛽

))
= 𝑒𝑖 (2𝑚)𝛼𝑒𝑖 (2𝑚)𝛽 𝑓𝜇 (𝑔), (4.6)

for all 𝑔 ∈ GL2 (C). The left-equivariance under 𝑇 (1)𝑐 is by (4.5), and the right-equivariance under 𝑇 (1)𝑐

is because of being the highest weight vector in 𝜏2𝑚+1. Finally, 𝑓𝜇 is completely determined by its values
on SU(2), for which, observe that SU(2) = 𝑇 (1)𝑐 ·SO(2) ·𝑇 (1)𝑐 . For the values of 𝑓𝜇 on SO(2), recall that
the weight-vectors of 𝜏2𝑚+1 maybe enumerated as { 𝑓−2𝑚, 𝑓−2𝑚+2, . . . , 𝑓2𝑚−2, 𝑓2𝑚}, where 𝑇 (1)𝑐 acts on
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𝑓𝑘 via the character 𝑒𝑖𝛽 ↦→ 𝑒𝑖𝑘𝛽 . So our 𝑓𝜇 is 𝑓2𝑚 up to a scalar multiple. Let 𝔯(𝜃) =
(

cos(𝜃) − sin(𝜃)
sin(𝜃) cos(𝜃)

)
;

then the weight vectors { 𝑓−2𝑚, 𝑓−2𝑚+2, . . . , 𝑓2𝑚−2} may be normalized so that

𝔯(𝜃) · 𝑓2𝑚 = cos2𝑚(𝜃) 𝑓2𝑚 + cos2𝑚−2(𝜃) sin2(𝜃) 𝑓2𝑚−2 + · · · + sin2𝑚(𝜃) 𝑓−2𝑚. (4.7)

(Think of the model for 𝜏2𝑚+1 consisting of homogeneous polynomials of degree 2𝑚 in two variables.)
Using the analogue of (4.6) for the other weight vectors, we see that 𝑓𝑘 (𝐼) = 0 if 𝑘 ≠ 2𝑚. (Here, I is the
2 × 2 identity matrix.) Evaluating (4.7) on I, we get

𝑓𝜇 (𝔯(𝜃)) = cos2𝑚(𝜃), (4.8)

where we have normalized 𝑓𝜇 by 𝑓𝜇 (𝐼) = 1. Putting (4.5), (4.6) and (4.8) together, we can write

𝑓𝜇

((
𝑧 ∗
𝑤

)
𝔯(𝜃)

(
𝑒𝑖𝛽

𝑒−𝑖𝛽

))
= 𝑧−𝑏2+1 𝑧−𝑐1 · 𝑤−𝑏1−1�̄�−𝑐2 · cos2𝑚(𝜃) · 𝑒𝑖 (2𝑚)𝛽 . (4.9)

4.1.3. The cohomology class [J𝜇]0
The compact Lie group SO(2) is the real points of an algebraic group defined over Q, whose Q-points
we denote SO(2) (Q); this consists of all those 𝔯(𝜃) such that cos(𝜃), sin(𝜃) ∈ Q. We will scale the
cohomology class [J𝜇], such that the distinguished cohomological vector is rational – that is, takes
rational values on SO(2) (Q); we denote this class by [J𝜇]0. Observe that [J𝜇]0 is well defined only up
to homothety by Q×. By (4.9), we see that some Q×-multiple of 𝑓𝜇 is a distinguished cohomological
vector for [J𝜇]0.

4.1.4. The intertwining operator 𝑇st
Consider the induced representation

J𝜇 = IndGL2 (C)
𝐵2 (C)

(
𝑧−𝑏2+

1
2 𝑧−𝑐1−

1
2 ⊗ 𝑧−𝑏1−

1
2 𝑧−𝑐2+

1
2

)
as IndGL2 (C)

𝐵2 (C) (𝜒1(𝜇) ⊗ 𝜒2(𝜇)),

where 𝜒1(𝜇) (𝑧) = 𝑧−𝑏2+
1
2 𝑧−𝑐1−

1
2 and 𝜒2(𝜇) (𝑧) = 𝑧−𝑏1−

1
2 𝑧−𝑐2+

1
2 . The standard intertwining operator

from J𝜇 to its ‘companion’ induced representation

𝑇st : IndGL2 (C)
𝐵2 (C) (𝜒1 (𝜇) ⊗ 𝜒2 (𝜇)) −→ IndGL2 (C)

𝐵2 (C) (𝜒2(𝜇) ⊗ 𝜒1(𝜇))

is given by the integral

𝑇st ( 𝑓 ) (𝑔) =
∫
C

𝑓

((
0 1
−1 0

) (
1 𝑢
0 1

)
𝑔

)
𝑑𝑢, (4.10)

where 𝑑𝑢 is the Lebesgue measure on C; if 𝑢 = 𝑥 + 𝔦𝑦 then 𝑑𝑢 = 𝑑𝑥 𝑑𝑦.

Proposition 4.11. Suppose 𝑠 = −1 and 𝑠 = 0 are regular points for both 𝐿(𝑠, 𝜒1(𝜇)𝜒2(𝜇)−1) and
𝐿(1 − 𝑠, 𝜒1(𝜇)−1𝜒2(𝜇)). Then, the representation IndGL2 (C)

𝐵2 (C) (𝜒1(𝜇) ⊗ 𝜒2 (𝜇)) is irreducible, and the
standard intertwining operator 𝑇st is an isomorphism.

Proof. Irreducibility follows from [20, Chap. 2, Thm. 3]. The proof of 𝑇st being an isomorphism follows
the same argument as in the proof of [27, Prop. 7.54]. We will elaborate further when we deal with
GL𝑁 ; see Proposition 4.28 below. �

4.1.5. The highest weight vector of the lowest K-type on the ‘other side’
Since𝑇st is an isomorphism of GL2 (C)-modules, it maps the minimal SU(2)-type in Ind(𝜒1(𝜇) ⊗ 𝜒2 (𝜇))
isomorphically onto the minimal SU(2)-type in Ind(𝜒2 (𝜇) ⊗ 𝜒1(𝜇)), and within these SU(2)-types, it
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maps 𝑓𝜇, which is the highest weight vector for 𝑇 (1)𝑐 described above to a multiple of the highest weight
vector on the other side, which we denote 𝑓𝜇. We have the analogues of (4.5) and (4.6) for 𝑓𝜇:

𝑓𝜇

((
𝑧 ∗
𝑤

)
𝑔

)
= 𝑧−𝑏1−

1
2 𝑧−𝑐2+

1
2 · 𝑤−𝑏2+

1
2 �̄�−𝑐1−

1
2 ·

((( 𝑧
𝑤

(((1/2
C

𝑓𝜇 (𝑔), (4.12)

𝑓𝜇

((
𝑒𝑖𝛼

𝑒−𝑖𝛼

)
𝑔

(
𝑒𝑖𝛽

𝑒−𝑖𝛽

))
= 𝑒𝑖 (−2𝑚)𝛼𝑒𝑖 (2𝑚)𝛽 𝑓𝜇 (𝑔) (4.13)

for all 𝑔 ∈ GL2(C). But, (4.13) also says that 𝑓𝜇 (𝐼) = 0 (since 𝑚 ≥ 1). Let 𝑤0 =
( 0 1
−1 0

)
=

𝔯(−𝜋/2).Then, using (4.7), and evaluating at 𝑤0 we see (𝔯(𝜃) · 𝑓𝜇) (𝑤0) = cos2𝑚(𝜃) · 𝑓𝜇 (𝑤0). (The other
summands vanish on 𝑤0 using the analogue of (4.13).) Hence,

𝑓𝜇 (𝔯(𝜃 − 𝜋/2)) = 𝑓𝜇 (𝑤0𝔯(𝜃)) = cos2𝑚(𝜃) · 𝑓𝜇 (𝑤0).

Change 𝜃 ↦→ 𝜃 + 𝜋/2, and noting cos(𝜃 + 𝜋/2) = − sin(𝜃), we get the analogue of (4.8):

𝑓𝜇 (𝔯(𝜃)) = sin2𝑚(𝜃), (4.14)

where we have normalized 𝑓𝜇 by 𝑓𝜇 (𝑤0) = 1. From (4.12), (4.13) and (4.14), we have

𝑓𝜇

((
𝑧 ∗
𝑤

)
𝔯(𝜃)

(
𝑒𝑖𝛽

𝑒−𝑖𝛽

))
= 𝑧−𝑏1 𝑧−𝑐2+1 · 𝑤−𝑏2 �̄�−𝑐1−1 · sin2𝑚 (𝜃) · 𝑒𝑖 (2𝑚)𝛽 . (4.15)

4.1.6. The basic intertwining calculation for GL2
Proposition 4.16.

𝑇st ( 𝑓𝜇) ≈Q×
𝐿(0, 𝜒1𝜒

−1
2 )

𝐿(1, 𝜒1𝜒
−1
2 )

𝑓𝜇,

where, ≈Q× means equality up to a nonzero rational number.

Proof. It is clear that𝑇st ( 𝑓𝜇) is a scalar multiple of 𝑓𝜇 . To compute that scalar, we evaluate𝑇st ( 𝑓𝜇) at 𝑤0:

𝑇st ( 𝑓𝜇) (𝑤0) =
∫
C

𝑓𝜇

((
0 1
−1 0

) (
1 𝑢
0 1

) (
0 1
−1 0

))
𝑑𝑢 =

∫
C

𝑓𝜇

((
1 0
−𝑢 1

))
𝑑𝑢.

Change to polar coordinates: 𝑢 = 𝑟𝑒𝑖 𝜃 . Note that(
1 0
−𝑟𝑒𝑖 𝜃 1

)
=

(
𝑒−𝑖 𝜃/2 0

0 𝑒𝑖 𝜃/2

) (
1 0
−𝑟 1

) (
𝑒𝑖 𝜃/2 0

0 𝑒−𝑖 𝜃/2

)
.

Hence, applying (4.5) and (4.6), we get

𝑓𝜇

((
1 0
−𝑟𝑒𝑖 𝜃 1

))
= 𝑒−𝑖 (2𝑚) 𝜃/2 𝑓𝜇

((
1 0
−𝑟 1

))
𝑒𝑖 (2𝑚) 𝜃/2 = 𝑓𝜇

((
1 0
−𝑟 1

))
.

Next, we note (
1 0
−𝑟 1

)
=

(
Δ−1
𝑟 −𝑟Δ−1

𝑟

0 Δ𝑟

) (
Δ−1
𝑟 𝑟Δ−1

𝑟

−𝑟Δ−1
𝑟 Δ−1

𝑟

)
,

https://doi.org/10.1017/fms.2025.48 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.48


Forum of Mathematics, Sigma 43

where Δ𝑟 =
√

1 + 𝑟2. Note that
(

Δ−1
𝑟 𝑟Δ−1

𝑟

−𝑟Δ−1
𝑟 Δ−1

𝑟

)
= 𝔯(𝛼) with 𝛼 = tan−1 (−𝑟). From (4.5) and (4.8), we get

𝑓𝜇

((
1 0
−𝑟 1

))
=

1
Δ2𝑚+2
𝑟

.

The integral evaluates to

𝑇st ( 𝑓𝜇) (𝑤0) =
∫ 2𝜋

𝜃=0

∫ ∞

𝑟=0

𝑟 𝑑𝑟 𝑑𝜃

(
√

1 + 𝑟2)2𝑚+2
=

𝜋

𝑚
. (4.17)

Now, 𝜒1𝜒
−1
2 (𝑧) = 𝑧𝑚𝑧−𝑚, and by (3.3), we have 𝐿(𝑠, 𝜒1𝜒

−1
2 ) = 2(2𝜋)−(𝑠+𝑚)Γ(𝑠+𝑚). The hypothesis

in Proposition 4.11 about 𝑠 = −1 and 𝑠 = 0 being critical implies that 𝑚 ≥ 2.
Hence,

𝐿(0, 𝜒1𝜒
−1
2 )

𝐿(1, 𝜒1𝜒
−1
2 )

=
(2𝜋)−𝑚

(2𝜋)−1−𝑚
Γ(𝑚)

Γ(𝑚 + 1) =
2𝜋
𝑚

. (4.18)

The proof follows from (4.17) and (4.18). �

4.1.7. Arithmetic interpretation of the intertwining calculation
Denote the induced representation in the range of𝑇st as J̃𝜇 = Ind(𝜒2 (𝜇) ⊗ 𝜒1(𝜇)) Now, fix a cohomology
class [J̃𝜇]0:

𝐻1 (𝔤2, 𝔨2; J̃𝜇 ⊗M𝜇) = 𝐻1 (𝔤𝔩2(C), 𝑍2 (C)U(2); J̃𝜇 ⊗M𝜇) = C[J̃𝜇]0, (4.19)

characterised by the property that its distingusihed cohomological vector is rational; hence, up to
Q×-multiples, the vector 𝑓𝜇 is a cohomological vector for J̃𝜇 . Consider the map induced in cohomology
by the operator 𝑇st : J𝜇 → J̃𝜇; at the level of generators, it will map [J𝜇] =

∑
𝑖,𝛼 𝑋∗𝑖 ⊗ 𝜙𝑖,𝛼 ⊗ 𝑚𝛼

to
∑

𝑖,𝛼 𝑋∗𝑖 ⊗ 𝑇st (𝜙𝑖,𝛼) ⊗ 𝑚𝛼 . Then, in terms of the cohomology classes with rational distinguished
cohomological vectors, Proposition 4.16 may be stated as

Proposition 4.20.

𝑇st ([J𝜇]0) ≈Q×
𝐿(0, 𝜒1𝜒

−1
2 )

𝐿(1, 𝜒1𝜒
−1
2 )
[J̃𝜇]0

Remark 4.21. Since 𝜒1𝜒
−1
2 (𝑧) = 𝑧𝑚𝑧−𝑚, note that 𝐿(0, 𝜒1𝜒

−1
2 )/𝐿(1, 𝜒1𝜒

−1
2 ) ≈Q× 𝜋, and similarly,

𝐿(−1, 𝜒1𝜒
−1
2 )/𝐿(0, 𝜒1𝜒

−1
2 ) ≈Q× 𝜋. We may also state the proposition as

𝑇st ([J𝜇]0) ≈Q×
𝐿(−1, 𝜒1𝜒

−1
2 )

𝐿(0, 𝜒1𝜒
−1
2 )
[J̃𝜇]0,

which would be the precise form in which it will generalize to Proposition 4.32.

4.1.8. Rational classes via Delorme’s Lemma
Recall Delorme’s Lemma (see Borel–Wallach [5, Thm. III.3.3]), which in the current context can be
explicated as

𝐻1(𝔤2, 𝔨2; J𝜇 ⊗M𝜇) �
𝐻0(𝔤1, 𝔨1; 𝑧−𝑏2+1𝑧−𝑐1 ⊗M(𝑏2−1) (𝑐1) ) ⊗ 𝐻0 (𝔤1, 𝔨1; 𝑧−𝑏1−1𝑧−𝑐2 ⊗M(𝑏1+1) (𝑐2) ), (4.22)
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where 𝔤1 = 𝔤𝔩1 (C), 𝔨1 = 𝔰𝔲(1), for 𝑏, 𝑐 ∈ Z we abbreviate the character 𝑧 ↦→ 𝑧𝑏𝑧𝑐 simply as 𝑧𝑏𝑧𝑐 , and
M(𝑏) (𝑐) is the algebraic representation 𝑧𝑏𝑧𝑐 of the real group C×. Note that on the right-hand side, in
each factor, we are looking at the relative Lie algebra cohomology for GL1 (C) of 𝑧−𝑏𝑧−𝑐 ⊗M(𝑏) (𝑐) ,
which is nothing but the trivial character! For brevity, denote 𝐻0

𝑏,𝑐 = 𝐻0(𝔤1, 𝔨1; 𝑧−𝑏𝑧−𝑐 ⊗M(𝑏) (𝑐) ).
Parse the isomorphism in Delorme’s Lemma: the map 𝑓 ↦→ 𝑓 (12) for 𝑓 ∈ J𝜇 induces an isomorphism
coming from Frobenius reciprocity:

𝐻1 (𝔤2, 𝔨2; aInd(𝑧−𝑏2+1𝑧−𝑐1 ⊗ 𝑧−𝑏1−1𝑧−𝑐2) ⊗M𝜇) �
𝐻1(𝔟2, 𝔨𝐵2 ; (𝑧−𝑏2+1𝑧−𝑐1 ⊗ 𝑧−𝑏1−1𝑧−𝑐2) ⊗M𝜇),

where 𝔟2 (resp., 𝔨𝐵2 ) is the real Lie algebra of 𝐵2 (C) (resp., U(2) ∩ 𝐵2(C)). The proof of [5, Thm.
III.3.3] gives that

𝐻1(𝔟2, 𝔨𝐵; (𝑧−𝑏2+1𝑧−𝑐1 ⊗ 𝑧−𝑏1−1𝑧−𝑐2) ⊗M𝜇) �
𝐻0 (𝔱2, 𝔨𝑇2 ; (𝑧−𝑏2+1𝑧−𝑐1 ⊗ 𝑧−𝑏1−1𝑧−𝑐2) ⊗ 𝐻1(𝔲𝐵2 ,M𝜇)),

where 𝔱2, 𝔨𝑇2 and 𝔲𝐵2 are the real Lie algebras of the diagonal torus𝑇2 (C) in 𝐵2 (C), its maximal compact
U(2) ∩ 𝑇2 (C), and the unipotent radical of 𝐵2 (C), respectively. To apply Kostant’s theorem (2.24), we
need the Kostant representatives of length 1 for the Borel subgroup in the real reductive group GL2(C);
if 𝑤0 =

( 0 1
−1 0

)
, then therequired Kostant representatives are 𝑤𝑙 = (𝑤0, 1) and 𝑤𝑟 = (1, 𝑤0). By direct

calculation, we have

𝑤𝑙 · 𝜇 = (𝑤0, 1) · ((𝑏1, 𝑏2), (𝑐1, 𝑐2)) = ((𝑏2 − 1, 𝑏1 + 1) (𝑐1, 𝑐2)).

Hence, M𝑤𝑙 ·𝜇, as an algebraic irreducible representation for the diagonal torus in GL2(C), is
M(𝑏2−1) (𝑐1) ⊗M(𝑏1+1) (𝑐2) , giving us (4.22) that we rewrite as

𝛾1 : 𝐻1(𝔤2, 𝔨2; J𝜇 ⊗M𝜇)
≈−→ 𝐻0

(𝑏2−1,𝑐1) ⊗ 𝐻0
(𝑏1+1,𝑐2) . (4.23)

Fix a basis 𝜔 (𝑏,𝑐) for 𝐻0
(𝑏,𝑐) which is the rational class corresponding to the cohomology of the

trivial representation. We take for [J𝜇]0, the basis element 𝐻1(𝔤2, 𝔨2; J𝜇 ⊗M𝜇), such that 𝛾1 ([J𝜇]0) =
𝜔 (𝑏2−1,𝑐1) ⊗ 𝜔 (𝑏1+1,𝑐2) .

Now, we work with the cohomology class for the induced module J̃𝜇 in the codomain of 𝑇st. Here,
the integral in (4.10) tells us to consider Frobenius reciprocity via the map 𝑓 ↦→ 𝑓 (𝑤0), which induces
an isomorphism

𝐻1 (𝔤2, 𝔨2; aInd(𝑧−𝑏1 𝑧−𝑐2+1 ⊗ 𝑧−𝑏2 𝑧−𝑐1−1) ⊗M𝜇) �
𝐻1(�̄�2, 𝔨�̄�; (𝑧−𝑏1 𝑧−𝑐2+1 ⊗ 𝑧−𝑏2 𝑧−𝑐1−1) ⊗M𝜇),

where �̄� is the Borel subgroup of GL2(C) of lower triangular matrices that is opposite to 𝐵2 (C). In this
situation, we use the Kostant representative 𝑤𝑟 = (1, 𝑤0) to give ourselves the isomosphism

𝛾𝑤0 : 𝐻1(𝔤2, 𝔨2; J̃𝜇 ⊗M𝜇)
≈−→ 𝐻0

(𝑏1 ,𝑐2−1) ⊗ 𝐻0
(𝑏2 ,𝑐1+1) . (4.24)

We take for [J̃𝜇]0, the basis element 𝐻1(𝔤2, 𝔨2; J̃𝜇 ⊗M𝜇), such that 𝛾𝑤0 ([J𝜇]0) = 𝜔 (𝑏1 ,𝑐2−1) ⊗𝜔 (𝑏2 ,𝑐1+1) .
It helps to keep the following diagram in mind:
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𝐻1(𝔤2, 𝔨2; J𝜇 ⊗M𝜇)

𝑇 •st
��

𝛾1 �� 𝐻0
(𝑏2−1,𝑐1) ⊗ 𝐻0

(𝑏1+1,𝑐2)

𝐻1(𝔤2, 𝔨2; J̃𝜇 ⊗M𝜇) 𝛾𝑤0
�� 𝐻0
(𝑏1 ,𝑐2−1) ⊗ 𝐻0

(𝑏2 ,𝑐1+1)

The diagram is not commutative! Proposition 4.20 says that it is commutative up to nonzero rational
numbers and a particular ratio of archimedean L-values. The reader is referred to [27, Sect. 9.6].

4.2. The case of GL𝑁

Now, we generalize Proposition 4.20, or as restated in Remark 4.21, to the case of GL𝑁 , giving us the
main result of this subsection in Proposition 4.32.

4.2.1. The induced representations and the standard intertwining operator
Take strongly-pure weights 𝜇 and 𝜇′ as in Section 3. Fix an archimedean place v (which we often drop
simply to avoid tedious notation). Consider the induced representation

𝜎𝑣 = J𝜇 = IndGL𝑛 (C)
𝐵𝑛 (C)

(
𝑧𝛼1 𝑧𝛽1 ⊗ · · · ⊗ 𝑧𝛼𝑛 𝑧𝛽𝑛

)
, 𝛼𝑖 , 𝛽𝑖 ∈ (𝑛−1)

2 + Z;

see (2.8) and (2.9) for the cuspidal parameters 𝛼𝑖 and 𝛽𝑖 . Abbreviate this as

𝜎𝑣 = J𝜇 = 𝜓1 × · · · × 𝜓𝑛; 𝜓𝑖 (𝑧) = 𝑧𝛼𝑖 𝑧𝛽𝑖 .

Similarly, we have

𝜎′𝑣 = J𝜇′ = IndGL𝑛′ (C)
𝐵𝑛′ (C)

(
𝑧𝛼
′
1 𝑧𝛽

′
1 ⊗ · · · ⊗ 𝑧𝛼

′
𝑛′ 𝑧𝛽

′
𝑛′
)
, 𝛼′𝑗 , 𝛽

′
𝑗 ∈

(𝑛′−1)
2 + Z,

which we abbreviate as

𝜎′𝑣 = J𝜇′ = 𝜓 ′1 × · · · × 𝜓
′
𝑛′ ; 𝜓 ′𝑗 (𝑧) = 𝑧𝛼

′
𝑗 𝑧𝛽

′
𝑗 .

We are interested in the standard intertwining operator

𝑇st : aIndGL𝑁 (C)
𝑃(𝑛,𝑛′) (C)

(J𝜇 × J𝜇′ ) −→ aIndGL𝑁 (C)
𝑃(𝑛′,𝑛) (C)

(J𝜇′ (−𝑛) × J𝜇 (𝑛′)).

which, in terms of normalized induced representations looks like

𝑇st : IndGL𝑁 (C)
𝑃(𝑛,𝑛′) (C)

(J𝜇 (−𝑛′/2) × J𝜇′ (𝑛/2)) −→ IndGL𝑁 (C)
𝑃(𝑛′,𝑛) (C)

(J𝜇′ (𝑛/2) × J𝜇 (−𝑛′/2)). (4.25)

Write

J𝜇 (−𝑛′/2) = IndGL𝑛 (C)
𝐵𝑛 (C) (𝜒1 ⊗ · · · ⊗ 𝜒𝑛), 𝜒𝑖 = 𝜓𝑖 (−𝑛′/2), and

J𝜇′ (𝑛/2) = IndGL𝑛′ (C)
𝐵𝑛′ (C)

(𝜒′1 ⊗ · · · ⊗ 𝜒′𝑛′ ), 𝜒′𝑗 = 𝜓 ′𝑗 (𝑛/2).

Apply transitivity of normalized induction to the representation in the domain of (4.25) to get

IndGL𝑁 (C)
𝑃(𝑛,𝑛′) (C)

(
IndGL𝑛 (C)

𝐵𝑛 (C) (𝜒1 ⊗ · · · ⊗ 𝜒𝑛) × IndGL𝑛′ (C)
𝐵𝑛′ (C)

(𝜒′1 ⊗ · · · ⊗ 𝜒′𝑛′ )
)
=

IndGL𝑁 (C)
𝐵𝑁 (C) (𝜒1 ⊗ · · · ⊗ 𝜒𝑛 ⊗ 𝜒′1 ⊗ · · · ⊗ 𝜒′𝑛′ ) =: 𝜒1 × · · · × 𝜒𝑛 × 𝜒′1 × · · · × 𝜒′𝑛′ ,
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and, similarly, the induced representation in the target is: 𝜒′1 × · · · × 𝜒′𝑛′ × 𝜒1 × · · · × 𝜒𝑛. Hence, (4.25)
takes the shape

𝑇st : 𝜒1 × · · · × 𝜒𝑛 × 𝜒′1 × · · · × 𝜒′𝑛′ −→ 𝜒′1 × · · · × 𝜒′𝑛′ × 𝜒1 × · · · × 𝜒𝑛. (4.26)

For a function 𝑓 ∈ 𝜒1 × · · · × 𝜒𝑛 × 𝜒′1 × · · · × 𝜒′𝑛′ , we have the intertwining integral

𝑇st ( 𝑓 ) (𝑔) =
∫
𝑀𝑛×𝑛′ (C)

𝑓

(
𝑤0

(
1𝑛 𝑢

1𝑛′

)
𝑔

)
𝑑𝑢, (4.27)

where 𝑤0 is the element of the Weyl group of GL𝑁 given by the following permutation:

𝑤0 =

(
1 2 . . . 𝑛 − 1 𝑛 𝑛 + 1 𝑛 + 2 . . . 𝑁 − 1 𝑁

𝑛′ + 1 𝑛′ + 2 . . . 𝑁 − 1 𝑁 1 2 . . . 𝑛′ − 1 𝑛′

)
,

and the measure 𝑑𝑢 on 𝑀𝑛×𝑛′ (C) in the integral is taken as the product of the Lebesgue measures on
each coordinate of u.

Proposition 4.28. Assume that the archimedean local factors 𝐿(𝑠, J𝜇 × Jv𝜇′ ) and 𝐿(1 − 𝑠, Jv𝜇 × J𝜇′ ) are
finite at 𝑠 = −𝑁/2 and 𝑠 = 1 − 𝑁/2. Then

1. the representations 𝜒1 × · · · × 𝜒𝑛 × 𝜒′1 × · · · × 𝜒′𝑛′ and 𝜒′1 × · · · × 𝜒′𝑛′ × 𝜒1 × · · · × 𝜒𝑛 are irreducible;
and furthermore,

2. the standard intertwining integral 𝑇st in (4.27) converges and gives an isomorphism between these
two irreducible representations.

Proof. The proof follows from the Langlands–Shahidi machinery. For brevity, only for this proof, let
𝜎 = J𝜇 and 𝜎′ = J𝜇′ . Let

𝐼𝐺𝑃 (𝑠, 𝜎 ⊗ 𝜎′) = IndGL𝑁 (C)
𝑃(𝑛,𝑛′) (C)

((𝜎 ⊗ | |
𝑛′
𝑁 𝑠) ⊗ (𝜎′ ⊗ | |

−𝑛
𝑁 𝑠)).

The s-variable is introduced using the fundamental weight corresponding to the simple root that is
deleted for the maximal standard parabolic subgroup 𝑃(𝑛,𝑛′) whose Levi quotient is the block diagonal
subgroup GL𝑛 × GL𝑛′ . Similarly, we let

𝐼𝐺𝑄 (−𝑠, 𝜎 ⊗ 𝜎′) = IndGL𝑁 (C)
𝑃(𝑛′,𝑛) (C)

((𝜎′ ⊗ | |
−𝑛
𝑁 𝑠) ⊗ (𝜎 ⊗ | |

𝑛′
𝑁 𝑠)).

The standard intertwining operator 𝑇st (𝑠, 𝑤0) : 𝐼𝐺𝑃 (𝑠, 𝜎⊗𝜎
′) → 𝐼𝐺𝑄 (−𝑠, 𝜎⊗𝜎

′) is given by the integral
(4.27). Under the hypothesis of the proposition, it follows from Casselman–Shahidi [6, Prop. 5.3] that
the induced representations 𝐼𝐺𝑃 (−𝑁/2, 𝜎 ⊗𝜎

′) = 𝜒1 × · · · × 𝜒𝑛 × 𝜒′1 × · · · × 𝜒
′
𝑛′ and 𝐼𝐺𝑄 (𝑁/2, 𝜎 ⊗𝜎

′) =
𝜒′1 × · · · × 𝜒′𝑛′ × 𝜒1 × · · · × 𝜒𝑛 are irreducible. The operator 𝑇st = 𝑇st (−𝑁/2, 𝑤0) being an isomorphism
follows exactly as in the proof of [27, Prop. 7.54]; this part of the proof uses Shahidi’s results on local
constants [46]. �

4.2.2. Factorizing the intertwining operator
For 1 ≤ 𝑖 ≤ 𝑁 − 1, let s𝑖 = (𝑖, 𝑖 + 1) be the i-th simple reflection corresponding to the i-th simple root
𝛼𝑖 = 𝑒𝑖−𝑒𝑖+1. Its easy to see that a positive root 𝑒𝑖−𝑒 𝑗 (positivity is 𝑖 < 𝑗) is mapped to a negative root by
𝑤0 if and only if 1 ≤ 𝑖 ≤ 𝑛 and 𝑛 + 1 ≤ 𝑗 ≤ 𝑁, and hence 𝑙 (𝑤0) = 𝑛𝑛′. Furthermore, its easy to see that

𝑤0 = (s𝑛′ . . . s2s1) · · · (s𝑁−2 . . . s𝑛s𝑛−1) (s𝑁−1 . . . s𝑛+1s𝑛),

where the right-hand side is grouped into n parenthetical expressions each of which is a product of 𝑛′
simple reflections, hence giving a minimal expression of 𝑤0 in terms of 𝑙 (𝑤0) many simple reflections.
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This gives a factorization

𝑇st = 𝑇st (𝑤0) = (𝑇 (s𝑛′ ) ◦ · · · ◦ 𝑇 (s2) ◦ 𝑇 (s1)) ◦ · · · ◦ (𝑇 (s𝑁−1) ◦ · · · ◦ 𝑇 (s𝑛+1) ◦ 𝑇 (s𝑛)), (4.29)

which is well known in the Langlands–Shahidi method; see, for example, [47, Thm. 4.2.2] as applied to
our situation.
Example 4.30. To visualise such a factorisation, consider the simple but nontrivial example: take 𝑛 = 3
and 𝑛′ = 2. Then the right-hand side of (4.29) is the sequence of operators:
1. 𝑇 (s3) : 𝜒1 × 𝜒2 × 𝜒3 × 𝜒′1 × 𝜒′2 −→ 𝜒1 × 𝜒2 × 𝜒′1 × 𝜒3 × 𝜒′2
2. 𝑇 (s4) : 𝜒1 × 𝜒2 × 𝜒′1 × 𝜒3 × 𝜒′2 −→ 𝜒1 × 𝜒2 × 𝜒′1 × 𝜒′2 × 𝜒3
3. 𝑇 (s2) : 𝜒1 × 𝜒2 × 𝜒′1 × 𝜒′2 × 𝜒3 −→ 𝜒1 × 𝜒′1 × 𝜒2 × 𝜒′2 × 𝜒3
4. 𝑇 (s3) : 𝜒1 × 𝜒′1 × 𝜒2 × 𝜒′2 × 𝜒3 −→ 𝜒1 × 𝜒′1 × 𝜒′2 × 𝜒2 × 𝜒3
5. 𝑇 (s1) : 𝜒1 × 𝜒′1 × 𝜒′2 × 𝜒2 × 𝜒3 −→ 𝜒′1 × 𝜒1 × 𝜒′2 × 𝜒2 × 𝜒3
6. 𝑇 (s2) : 𝜒′1 × 𝜒1 × 𝜒′2 × 𝜒2 × 𝜒3 −→ 𝜒′1 × 𝜒′2 × 𝜒1 × 𝜒2 × 𝜒3.

The point is that at every intermediate stage, there are only two characters 𝜒𝑖 and 𝜒′𝑗 that are
getting switched. The corresponding integral is happening over the coordinate 𝑢𝑖 𝑗 in the variable
𝑢 ∈ 𝑀𝑛×𝑛′ (C) that appears in (4.27). The measure 𝑑𝑢, as mentioned above, is the product of the Lebesgue
measures 𝑑𝑢𝑖 𝑗 . Such an intermediate integral is the induction to GL𝑁 of a GL2-intertwining integral, and
we have seen that it corresponds to scaling by a factor 𝐿∞(0, 𝜒𝑖𝜒′−1

𝑗 )/𝐿∞(1, 𝜒𝑖𝜒′−1
𝑗 ) (up to a nonzero

rational). This implies that𝑇st will have a scaling factor of the product of all intermediate scaling factors,
towards which note the easy lemma:
Lemma 4.31.

𝑛∏
𝑖=1

𝑛′∏
𝑗=1

𝐿∞(0, 𝜒𝑖𝜒′−1
𝑗 )

𝐿∞(1, 𝜒𝑖𝜒′−1
𝑗 )

=
𝑛∏
𝑖=1

𝑛′∏
𝑗=1

𝐿∞(− 𝑁
2 , 𝜓𝑖𝜓

′−1
𝑗 )

𝐿∞(1 − 𝑁
2 , 𝜓𝑖𝜓

′−1
𝑗 )

=
𝐿∞(− 𝑁

2 , 𝜎∞ × 𝜎
′v
∞ )

𝐿∞(1 − 𝑁
2 , 𝜎∞ × 𝜎

′v
∞ )

.

4.2.3. The intertwining operator in cohomology
Let 𝒥 = 𝒥0 stand for the underlying (𝔤𝑁 , 𝔨𝑁 )-module of IndGL𝑁 (C)

𝐵𝑁 (C) (𝜒1 ⊗ · · · ⊗ 𝜒𝑛 ⊗ 𝜒′1 ⊗ · · · ⊗ 𝜒′𝑛′ ),
and similarly, �̃� = 𝒥𝑛𝑛′ that of IndGL𝑁 (C)

𝐵𝑁 (C) (𝜒
′
1 ⊗ · · · ⊗ 𝜒′𝑛′ ⊗ 𝜒1 ⊗ · · · ⊗ 𝜒𝑛). Rewrite the factorization

in (4.29) as

𝑇st = 𝑇𝑛𝑛′ ◦ · · · ◦ 𝑇2 ◦ 𝑇1, 𝑇 𝑘 : 𝒥𝑘−1 → 𝒥𝑘 for 1 ≤ 𝑘 ≤ 𝑛𝑛′.

with each 𝒥𝑘 being an irreducible principal series representation, and each 𝑇 𝑘 is the induction of a
GL2-intertwining operator as explained. Note that

IndGL𝑁 (C)
𝐵𝑁 (C) (𝜒1 ⊗ · · · ⊗ 𝜒𝑛 ⊗ 𝜒′1 ⊗ · · · ⊗ 𝜒′𝑛′ ) = aIndGL𝑁 (C)

𝐵𝑁 (C) (𝜉1 ⊗ · · · ⊗ 𝜉𝑛 ⊗ 𝜉 ′1 ⊗ · · · ⊗ 𝜉 ′𝑛′ ),

where 𝜉𝑖 = 𝜒𝑖

(
𝑁−2𝑖+1

2

)
= 𝜓𝑖

(
𝑛−2𝑖+1

2

)
and 𝜉 ′𝑗 = 𝜒′𝑗

(
𝑁−2 𝑗−2𝑛+1

2

)
= 𝜓 ′𝑗

(
𝑛′−2 𝑗+1

2

)
are all algebraic

characters of C×. Similarly, each 𝒥𝑘 is the algebraic parabolic induction of an algebraic character of
the diagonal torus. Delorme’s lemma identifies the one-dimensional cohomology group 𝐻𝑏C𝑁 (𝔤𝑁 , 𝔨𝑁 ;
𝒥𝑘 ⊗M𝜆) as a tensor product of the GL1 cohomology groups for the 𝜉𝑖’s and 𝜉 ′𝑗 ’s; as in (4.23), but
simplifying notations, we have

𝛾𝑘 : 𝐻𝑏C𝑁 (𝔤𝑁 , 𝔨𝑁 ;𝒥𝑘 ⊗M𝜆)
≈−→ (product of GL1 cohomology groups).

This product of GL1-cohomology groups may be identified with each other for 1 ≤ 𝑘 ≤ 𝑛𝑛′. Fixing
a rational basis 𝜔 (𝑏,𝑐) for each of the GL1-classes and so for their tensor product, we define a basis
element [𝒥𝑘 ]0 for 𝐻𝑏C𝑁 (𝔤𝑁 , 𝔨𝑁 ;𝒥𝑘 ⊗M𝜆) via 𝛾−1

𝑘 .
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We start with 𝑇1 : 𝒥0 → 𝒥1 and note that this is the induction from (𝑛 − 1, 2, 𝑛′ − 1)-parabolic
subgroup of GL𝑁 of the GL2-intertwining operator that switches 𝜒𝑛 and 𝜒′1. Proposition 4.20 applied
to 𝑇1 gives

(𝑇1)•([𝒥0]0) ≈Q×
𝐿(0, 𝜒𝑛𝜒′1

−1)
𝐿(1, 𝜒𝑛𝜒′1−1)

[𝒥1]0.

At the next step, from the factorisation in (4.29), we will get

(𝑇2)•([𝒥1]0) ≈Q×
𝐿(0, 𝜒𝑛𝜒′2

−1)
𝐿(1, 𝜒𝑛𝜒′2−1)

[𝒥2]0,

and so on. Using Lemma 4.31, Proposition 4.20 generalizes to the following:

Proposition 4.32.

𝑇•st ([𝒥]0) ≈Q×
𝐿∞(− 𝑁

2 , 𝜎∞ × 𝜎
′v
∞ )

𝐿∞(1 − 𝑁
2 , 𝜎∞ × 𝜎

′v
∞ )
[�̃�]0.

The reader is referred to Harder [25] where a hope is expressed in general, and verified in the context
therein, that the rational number implicit in ≈Q× has a simple shape. See (4.17) and (4.18) above in the
simplest possible case of 𝑛 = 𝑛′ = 1.

5. The main theorem on special values of L-functions for GL𝑛 × GL𝑛′

Before the main theorem on L-values (Theorem 5.16) can be stated and proved, two technical results on
the boundary cohomology are necessary; the first is what is known as a ‘Manin–Drinfeld’ principle and
the second is on rank-one Eisenstein cohomology.

5.1. A Manin–Drinfeld Principle

The main purpose of this subsection is to state and prove Theorem 5.5.

5.1.1. Kostant representatives
To begin, two important lemmas about Kostant representatives from [27, Sect. 5.3.2] are recorded
below. Recall that 𝑃 = Res𝐹/Q(𝑃0) and 𝑃0 = 𝑃(𝑛,𝑛′) is the maximal parabolic subgroup of type
(𝑛, 𝑛′) of 𝐺0 = GL𝑁 /𝐹. Let 𝑄0 = 𝑃(𝑛′,𝑛) be the associate parabolic, and 𝑄 = Res𝐹/Q(𝑄0). Let
𝚷𝑀𝑃0

= 𝚷𝐺0 − {𝛼𝑃0 }. Let 𝑤𝑃0 be the unique element of 𝑊0 = 𝑊𝐺0 such that 𝑤𝑃0 (𝚷𝑀𝑃0
) ⊂ 𝚷𝐺0 and

𝑤𝑃0 (𝛼𝑃0) < 0, it is the longest Kostant representative for 𝑊𝑃0 .

Lemma 5.1. With notations as above, one has

1. The map 𝑤 ↦→ 𝑤′ := 𝑤𝑃 𝑤 gives a bijection 𝑊𝑃 → 𝑊𝑄. If 𝑤 = (𝑤𝜏)𝜏:𝐹→𝐸 , then by definition,
𝑤𝑃𝑤 = (𝑤𝑃0𝑤

𝜏)𝜏:𝐹→𝐸 .
2. This bijection has the property that 𝑙 (𝑤𝜏) + 𝑙 (𝑤′𝜏) = dim (𝑈𝑃𝜏

0
).

3. w is balanced if and only if 𝑤′ is balanced.

Similarly, there is the following self-bijection of 𝑊𝑃:

Lemma 5.2. Let 𝑤𝐺 be the element of longest length in the Weyl group𝑊𝐺 of G, and similarly, let 𝑤𝑀𝑃

be the element of longest length in the Weyl group 𝑊𝑀𝑃 . Then

1. The map 𝑤 ↦→ 𝑤v := 𝑤𝑀𝑃 · 𝑤 · 𝑤𝐺 gives a bijection 𝑊𝑃 → 𝑊𝑃 .
2. This bijection has the property that 𝑙 (𝑤𝜏) + 𝑙 (𝑤v𝜏) = dim (𝑈𝑃𝜏

0
).

3. w is balanced if and only if 𝑤v is balanced.
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5.1.2. Induced representations in boundary cohomology
The conditions imposed by the combinatorial lemma (Lemma 3.16) have a consequence on the
occurrences of induced representations as Hecke summands in the boundary cohomology. Recall that
E is a large enough Galois extension of Q that takes a copy of F. Consider strongly-pure weights
𝜇 ∈ 𝑋+00 (𝑇𝑛 × 𝐸) and 𝜇′ ∈ 𝑋+00 (𝑇𝑛′ × 𝐸). Let 𝜎 𝑓 ∈ Coh!! (𝐺𝑛, 𝜇) and 𝜎′𝑓 ∈ Coh!! (𝐺𝑛′ , 𝜇

′) be strongly-
inner Hecke-summands. The effect of the related balanced representatives: 𝑤′, 𝑤v and 𝑤v ′ on certain
weights are recorded in the following:
Proposition 5.3. Assume that the weights 𝜇 and 𝜇′ satisfy the conditions of the combinatorial lemma
(Lemma 3.16). Hence, there is a balanced element 𝑤 ∈ 𝑊𝑃 such that 𝜆 := 𝑤−1 · (𝜇 + 𝜇′) is dominant.
Then (after recalling the notations in Section 2.4.1),
1. 𝑤′ · 𝜆 = (𝜇′ − 𝑛𝛅𝑛′ ) + (𝜇 + 𝑛′𝛅𝑛),
2. 𝑤v · 𝜆v = (𝜇v − 𝑛′𝛅𝑛) + (𝜇′v + 𝑛𝛅𝑛′ ), and
3. 𝑤v ′ · 𝜆v = 𝜇′v + 𝜇v.

For a proof of the above proposition, the reader is referred to [27, Sect. 5.3.4]. The appearance
of various induced modules in boundary cohomology in bottom and top degrees are recorded in the
following:
Proposition 5.4. Let the notations be as above.

1. The module aInd𝐺 (A 𝑓 )
𝑃 (A 𝑓 ) (𝜎 𝑓 × 𝜎′𝑓 ) appears in 𝐻q𝑏 (𝜕𝑃S𝐺 ,M̃𝜆,𝐸 ),

where q𝑏 = 𝑏𝐹𝑁 = 𝑏𝐹𝑛 + 𝑏𝐹𝑛′ +
1
2 dim(𝑈𝑃).

2. The module aInd𝐺 (A 𝑓 )
𝑄 (A 𝑓 ) (𝜎

′
𝑓 (𝑛) × 𝜎 𝑓 (−𝑛′)) appears in 𝐻q𝑏 (𝜕𝑄S𝐺 ,M̃𝜆,𝐸 ).

The contragredient of the algebraically-induced modules is

aInd𝐺 (A 𝑓 )
𝑃 (A 𝑓 ) (𝜎 𝑓 × 𝜎′𝑓 )

v = aInd𝐺 (A 𝑓 )
𝑃 (A 𝑓 ) (𝜎

v
𝑓 (𝑛
′) × 𝜎′v𝑓 (−𝑛)).

Furthermore, for the contragredients and cohomology in top-degree, we have

(3) aInd𝐺 (A 𝑓 )
𝑃 (A 𝑓 ) (𝜎

v
𝑓 (𝑛
′) × 𝜎′v𝑓 (−𝑛)) appears in 𝐻q𝑡 (𝜕𝑃S𝐺 ,M̃𝜆v ,𝐸 ),

where q𝑡 = 𝑡𝐹𝑁 − 1 = 𝑡𝐹𝑛 + 𝑡𝐹𝑛′ +
1
2 dim(𝑈𝑃).

(4) aInd𝐺 (A 𝑓 )
𝑄 (A 𝑓 ) (𝜎

′v
𝑓 × 𝜎

v
𝑓 ) appears in 𝐻q𝑡 (𝜕𝑄S𝐺 ,M̃𝜆v ,𝐸 ).

Proof. For (1), use the summand in Proposition 2.25 indexed by the balanced Kostant representative
𝑤 ∈ 𝑊𝑃 provided by Lemma 3.16. For (2), use 𝑤′ ∈ 𝑊𝑄 from Lemma 5.1, and then use (1) of
Proposition 5.3. For (3), use 𝑤v ∈ 𝑊𝑃 from Lemma 5.2, and then use (2) of Proposition 5.3. For (4),
use 𝑤v ′ ∈ 𝑊𝑄 from Lemma 5.1 and 5.2, and (3) of Proposition 5.3. The assertions of the cohomology
degrees is clear from Proposition 2.15 and 2.16. �

5.1.3. The Manin–Drinfeld principle
Continue with the notations 𝜇 ∈ 𝑋+00(𝑇𝑛 × 𝐸), 𝜇′ ∈ 𝑋+00(𝑇𝑛′ × 𝐸), 𝜎 𝑓 ∈ Coh!!(𝐺𝑛, 𝜇), and 𝜎′𝑓 ∈
Coh!!(𝐺𝑛′ , 𝜇

′). Assume that 𝜇 and 𝜇′ satisfy the conditions of the combinatorial lemma (Lemma 3.16),
and let 𝜆 = 𝑤−1 · (𝜇+𝜇′). Let 𝐾 𝑓 be an open-compact subgroup of𝐺 (A 𝑓 ) such that aInd𝐺 (A 𝑓 )

𝑃 (A 𝑓 ) (𝜎 𝑓 ×𝜎′𝑓 )
has nonzero 𝐾 𝑓 -fixed vectors; suppose k is the dimension of these 𝐾 𝑓 -fixed vectors. Let

𝐼S
𝑏 (𝜎 𝑓 , 𝜎

′
𝑓 )𝑃,𝑤 := aInd𝐺 (A 𝑓 )

𝑃 (A 𝑓 )

(
𝐻𝑏𝐹𝑛 +𝑏𝐹𝑛′ (S𝑀𝑃 ,M̃𝑤 ·𝜆) (𝜎 𝑓 × 𝜎′𝑓 )

)𝐾 𝑓

,

and similarly, define

𝐼S
𝑏 (𝜎

′
𝑓 (𝑛), 𝜎 𝑓 (−𝑛′))𝑄,𝑤′ := aInd𝐺 (A 𝑓 )

𝑄 (A 𝑓 )

(
𝐻𝑏𝐹𝑛 +𝑏𝐹𝑛′ (S𝑀𝑄 ,M̃𝑤′ ·𝜆) (𝜎′𝑓 (𝑛) × 𝜎 𝑓 (−𝑛′))

)𝐾 𝑓

.
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Now, go to ‘top-degree’ for the contragredient modules and define

𝐼S
𝑡 (𝜎v

𝑓 (𝑛
′), 𝜎′v𝑓 (−𝑛))𝑃,𝑤v := aInd𝐺 (A 𝑓 )

𝑃 (A 𝑓 )

(
𝐻𝑡𝐹𝑛 +𝑡𝐹𝑛′ (S𝑀𝑃 ,M̃𝑤v ·𝜆) (𝜎v

𝑓 (𝑛
′) × 𝜎′v𝑓 (−𝑛))

)𝐾 𝑓

,

and similarly, define

𝐼S
𝑡 (𝜎′v𝑓 , 𝜎

v
𝑓 )𝑄,𝑤v′ := aInd𝐺 (A 𝑓 )

𝑄 (A 𝑓 )

(
𝐻𝑡𝐹𝑛 +𝑡𝐹𝑛′ (S𝑀𝑄 ,M̃𝑤v′ ·𝜆) (𝜎′v𝑓 × 𝜎

v
𝑓 )

)𝐾 𝑓

.

Theorem 5.5. Let the notations be as above.

1. The sum

𝐼S
𝑏 (𝜎 𝑓 , 𝜎

′
𝑓 )𝑃,𝑤 ⊕ 𝐼S

𝑏 (𝜎
′
𝑓 (𝑛), 𝜎 𝑓 (−𝑛′))𝑄,𝑤′

is a 2k-dimensional E-vector space that is isotypic in 𝐻𝑞𝑏 (𝜕S𝐺
𝐾 𝑓

,M̃𝜆,𝐸 ). Note that if 𝑄 = 𝑃, then
𝑤′ ≠ 𝑤. Furthermore, there is a H𝐺,S-equivariant projection

ℜ𝑏
𝜎 𝑓 ,𝜎

′
𝑓

: 𝐻𝑞𝑏 (𝜕S𝐺
𝐾 𝑓

,M̃𝜆,𝐸 ) −→ 𝐼S
𝑏 (𝜎 𝑓 , 𝜎

′
𝑓 )𝑃,𝑤 ⊕ 𝐼S

𝑏 (𝜎
′
𝑓 (𝑛), 𝜎 𝑓 (−𝑛′))𝑄,𝑤′ .

2. Similarly, in ‘top-degree’, the sum

𝐼S
𝑡 (𝜎v

𝑓 (𝑛
′), 𝜎′v𝑓 (−𝑛))𝑃,𝑤v ⊕ 𝐼S

𝑡 (𝜎′v𝑓 , 𝜎
v
𝑓 )𝑄,𝑤v′

is a 2k-dimensional E-vector space that is isotypic in 𝐻𝑞𝑡 (𝜕S𝐺
𝐾 𝑓

,M̃𝜆v ,𝐸 ). Note that if 𝑄 = 𝑃, then
𝑤v ′ ≠ 𝑤v. Furthermore, there is a H𝐺,S-equivariant projection

ℜ𝑡
𝜎 𝑓 ,𝜎

′
𝑓

: 𝐻𝑞𝑡 (𝜕S𝐺
𝐾 𝑓

,M̃𝜆v ,𝐸 ) −→ 𝐼S
𝑡 (𝜎v

𝑓 (𝑛
′), 𝜎′v𝑓 (−𝑛))𝑃,𝑤v ⊕ 𝐼S

𝑡 (𝜎′v𝑓 , 𝜎
v
𝑓 )𝑄,𝑤v′ .

The above theorem is the exact analogue of [27, Thm. 5.12], and the proof is identical. To help the
reader, the two key-ideas are adumbrated as follows:

◦ There is a spectral sequence – built from the cohomology of various boundary strata 𝜕𝑅S𝐺 , as R
runs over 𝐺 (Q)-conjugacy classes of parabolic subgroups of G – that converges to the boundary
cohomology 𝐻•(𝜕S𝐺 ,−). This spectral sequence was alluded to in Section 2.6 and is discussed in
greater detail in [27, Sect. 4.1]. The basic idea here is that up to semi-simplification the cohomology
of the boundary is built from parabolically induced representations.

◦ Recall the strong multiplicity one theorem of Jacquet and Shalika for isobaric automorphic repre-
sentations [32, Thm. 4.4]. The two induced modules in 𝐼S

𝑏 (𝜎 𝑓 , 𝜎
′
𝑓 )𝑃,𝑤 and 𝐼S

𝑏 (𝜎
′
𝑓 (𝑛), 𝜎 𝑓 (−𝑛′))𝑄,𝑤′

are themselves, of course, H𝐺,S-equivalent, and more importantly, after applying Jacquet–Shalika,
they are not almost-everywhere equivalent to any other induced module anywhere else in boundary
cohomology; see [27, Sect. 5.3.3] for more details.

5.2. Eisenstein cohomology

All the statements in [27, Chap. 6] go through mutatis mutandis in the current situation. Therefore, the
discussion below is very brief and just enough details are provided for this article to be reasonably self-
contained, and to be able to state the main theorem on rank-one Eisenstein cohomology in Theorem 5.6
below.
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5.2.1. Poincaré duality and consequences
The Poincaré duality pairings on S𝐺

𝐾 𝑓
and 𝜕S𝐺

𝐾 𝑓
are compatible with the maps in the long exact sequence

in Section 2.1:

𝐻•(S𝐺
𝐾 𝑓

,M̃𝜆,𝐸 )

𝔯∗

��

× 𝐻d−•
𝑐 (S𝐺

𝐾 𝑓
,M̃𝜆v ,𝐸 ) −→ 𝐸

𝐻•(𝜕S𝐺
𝐾 𝑓

,M̃𝜆,𝐸 ) × 𝐻d−1−•(𝜕S𝐺
𝐾 𝑓

,M̃𝜆v ,𝐸 )

𝔡∗

��

−→ 𝐸

Here, dim(S𝐺
𝐾 𝑓
) = 𝑏𝐹𝑁 + 𝑡

𝐹
𝑁 =: d; and so dim(𝜕S𝐺

𝐾 𝑓
) = d − 1 = q𝑏 + q𝑡 . A consequence of the above

diagram is that Eisenstein cohomology, defined as

𝐻𝑞
Eis(𝜕S

𝐺
𝐾 𝑓

,M̃𝜆,𝐸 ) := Image
(
𝐻𝑞 (S𝐺

𝐾 𝑓
,M̃𝜆,𝐸 )

𝔯•−→ 𝐻𝑞 (𝜕S𝐺
𝐾 𝑓

,M̃𝜆,𝐸 )
)
,

is a maximal isotropic subspace of boundary cohomology; that is,

𝐻𝑞
Eis(𝜕S

𝐺
𝐾 𝑓

,M̃𝜆,𝐸 ) = 𝐻d−1−𝑞
Eis (𝜕S𝐺

𝐾 𝑓
,M̃𝜆v ,𝐸 )⊥.

5.2.2. Main result on rank-one Eisenstein cohomology
With notations as in Section 5.1.3, consider the following maps starting from global cohomology
𝐻𝑞𝑏 (S𝐺

𝐾 𝑓
,M̃𝜆,𝐸 ) and ending with an isotypic component in boundary cohomology:

𝐻q𝑏 (S𝐺
𝐾 𝑓

,M̃𝜆,𝐸 )

𝔯∗

��
𝐻q𝑏 (𝜕S𝐺

𝐾 𝑓
,M̃𝜆,𝐸 )

ℜ𝑏
𝜎𝑓 ,𝜎

′
𝑓

��
𝐼S
𝑏 (𝜎 𝑓 , 𝜎

′
𝑓 )𝑃,𝑤 ⊕ 𝐼S

𝑏 (𝜎
′
𝑓 (𝑛), 𝜎 𝑓 (−𝑛′))𝑄,𝑤′

Recall from Theorem 5.5 that 𝐼S
𝑏 (𝜎 𝑓 , 𝜎

′
𝑓 )𝑃,𝑤 ⊕ 𝐼S

𝑏 (𝜎
′
𝑓 (𝑛), 𝜎 𝑓 (−𝑛′))𝑄,𝑤′ is a E-vector space of di-

mension 2k. In the self-associate case, replace Q by P. The proof of the main result on Eisenstein
cohomology stated below also needs the analogue of the above maps for cohomology in degree 𝑞𝑡 for
the coefficient system M̃𝜆v ,𝐸 .

Theorem 5.6. For brevity, let

ℑ𝑏 (𝜎 𝑓 , 𝜎
′
𝑓 ) := ℜ𝑏

𝜎 𝑓 ,𝜎
′
𝑓
(𝐻q𝑏

Eis (𝜕S
𝐺
𝐾 𝑓

,M̃𝜆,𝐸 )), ℑ𝑡 (𝜎 𝑓 , 𝜎
′
𝑓 )

v := ℜ𝑡
𝜎 𝑓 ,𝜎

′
𝑓
(𝐻q𝑡

Eis(𝜕S
𝐺
𝐾 𝑓

,M̃𝜆v ,𝐸 )).

1. In the non-self-associate cases (𝑛 ≠ 𝑛′), we have
(a) ℑ𝑏 (𝜎 𝑓 , 𝜎

′
𝑓 ) is an E-subspace of dimension k.

(b) ℑ𝑡 (𝜎 𝑓 , 𝜎
′
𝑓 )

v is an E-subspace of dimension k.
2. In the self-associate case (𝑛 = 𝑛′), the same assertions hold by putting 𝑄 = 𝑃.

It helps to have a mental picture of when k = 1 (i.e., then ℑ𝑏 (𝜎 𝑓 , 𝜎
′
𝑓 ) is a line in the ambient two-

dimensional space 𝐼S
𝑏 (𝜎 𝑓 , 𝜎

′
𝑓 )𝑃,𝑤 ⊕ 𝐼S

𝑏 (𝜎
′
𝑓 (𝑛), 𝜎 𝑓 (−𝑛′))𝑄,𝑤′); as will be seen later, the ‘slope’ of this

line contains arithmetic information about L-values.
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A very brief sketch of proof. The proof works exactly as explained in [27, Sect. 6.2.2], and involves two
basic steps:

(i) The first step is to show that both ℑ𝑏 (𝜎 𝑓 , 𝜎
′
𝑓 ) and ℑ𝑡 (𝜎 𝑓 , 𝜎

′
𝑓 )

v have dimension at least k; this is
achieved by going to a transcendental level and appealing to Langlands’s constant term theorem and
producing enough cohomology classes in the image. The essential features are reviewed in Section
5.2.3 below, and for more details, the reader is referred to [27, Sect. 6.3.7].

(ii) The second step, after invoking properties of the Poincaré duality pairing reviewed above, is to
show that both ℑ𝑏 (𝜎 𝑓 , 𝜎

′
𝑓 ) and ℑ𝑡 (𝜎 𝑓 , 𝜎

′
𝑓 )

v have dimension exactly k. This step works exactly as
in [27, Sect. 6.2.2.2].

5.2.3. L-values and rank-one Eisenstein cohomology
The key ingredient in the main theorem on the rationality of these L-values is the role played by the
L-values in the above result on rank-one Eisenstein cohomology.

Induced representations
Let 𝜎 (resp., 𝜎′) be a cuspidal automorphic representation of 𝐺𝑛 (A) (resp., 𝐺𝑛′ (A)). The relation

with the previous ‘arithmetic’ notation is that given 𝜎 𝑓 ∈ Coh!! (𝐺𝑛, 𝜇) and given 𝜄 : 𝐸 → C, think
of 𝜄𝜎 𝑓 to be the finite part of a cuspidal automorphic representation 𝜄𝜎, etc. The 𝜄 is fixed and it is
suppressed until otherwise mentioned. Consider the induced representation 𝐼𝐺𝑃 (𝑠, 𝜎 ⊗ 𝜎

′) consisting of
all smooth functions 𝑓 : 𝐺 (A) → 𝑉𝜎 ⊗ 𝑉𝜎′ such that

𝑓 (𝑚𝑢𝑔) = |𝛿𝑃 | (𝑚)
1
2 |𝛿𝑃 | (𝑚)

𝑠
𝑁 (𝜎 ⊗ 𝜎′) (𝑚) 𝑓 (𝑔), (5.7)

for all 𝑚 ∈ 𝑀𝑃 (A), 𝑢 ∈ 𝑈𝑃 (A) and 𝑔 ∈ 𝐺 (A); where 𝑉𝜎 (resp., 𝑉𝜎′) is the subspace inside the space
of cusp forms on 𝐺𝑛 (A) (resp., 𝐺𝑛′ (A)) realizing the representation 𝜎 (resp., 𝜎′). In other words,
𝐼𝐺𝑃 (𝑠, 𝜎 ⊗ 𝜎′) = Ind𝐺 (A)

𝑃 (A) ((𝜎 ⊗ | |
𝑛′
𝑁 𝑠) ⊗ (𝜎′ ⊗ | | −𝑛𝑁 𝑠)), where Ind𝐺𝑃 denotes the normalized parabolic

induction. In terms of algebraic or un-normalized induction, we have

𝐼𝐺𝑃 (𝑠, 𝜎 ⊗ 𝜎′) = aInd𝐺 (A)
𝑃 (A) ((𝜎 ⊗ | |

𝑛′
𝑁 𝑠+ 𝑛′2 ) ⊗ (𝜎′ ⊗ | |

−𝑛
𝑁 𝑠− 𝑛2 )). (5.8)

Specifically, note the point of evaluation 𝑠0 = −𝑁/2:

aInd𝐺 (A)
𝑃 (A) (𝜎 ⊗ 𝜎′) = 𝐼𝐺𝑃 (𝑠, 𝜎 ⊗ 𝜎′) |𝑠=−𝑁 /2, aInd𝐺 (A)

𝑄 (A) (𝜎
′(𝑛) ⊗ 𝜎(−𝑛′)) = 𝐼𝐺𝑄 (𝑠, 𝜎

′ ⊗ 𝜎) |𝑠=𝑁 /2.

The finite parts of the induced representations appear in boundary cohomology.

Standard intertwining operators
There is an element 𝑤𝑃 ∈ 𝑊𝐺 , the Weyl group of G, which is uniquely determined by the property

𝑤𝑃 (𝚷𝐺 − {𝛂𝑃}) ⊂ 𝚷𝐺 and 𝑤𝑃 (𝛂𝑃) < 0. If we write 𝑤𝑃 = (𝑤𝜏
𝑃0
)𝜏:𝐹→𝐸 , then for each 𝜏, as a

permutation matrix in GL𝑁 , we have 𝑤𝜏
𝑃0

=
[

1𝑛
1𝑛′

]
.The parabolic subgroup Q, which is associate to

P, corresponds to 𝑤𝑃 (𝚷𝐺−{𝛂𝑃}). Since 𝑤𝜏
𝑃0
−1 diag(ℎ, ℎ′) 𝑤𝜏

𝑃0
= diag(ℎ′, ℎ) for all diag(ℎ, ℎ′) ∈ 𝑀𝑃𝜏

0
,

we get 𝑤𝑃 (𝜎 ⊗ 𝜎′) = 𝜎′ ⊗ 𝜎 as a representation of 𝑀𝑄 (A). The global standard intertwining operator

𝑇𝑃𝑄
st (𝑠, 𝜎 ⊗ 𝜎′) : 𝐼𝐺𝑃 (𝑠, 𝜎 ⊗ 𝜎′) −→ 𝐼𝐺𝑄 (−𝑠, 𝜎

′ ⊗ 𝜎)

is given by the integral

(𝑇𝑃𝑄
st (𝑠, 𝜎 ⊗ 𝜎′) 𝑓 ) (𝑔) =

∫
𝑈𝑄 (A)

𝑓 (𝑤−1
𝑃0

𝑢 𝑔) 𝑑𝑢. (5.9)
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See 5.2.3 for the choice of measure 𝑑𝑢. Abbreviate𝑇𝑃𝑄
st (𝑠, 𝜎⊗𝜎′) as𝑇st (𝑠, 𝜎⊗𝜎′). The global standard

intertwining operator factorizes as a product of local standard intertwining operators: 𝑇st (𝑠, 𝜎 ⊗ 𝜎′) =
⊗𝑣𝑇st (𝑠, 𝜎𝑣 ⊗𝜎′𝑣 ), where the local operator is given by a similar local integral. (At an archimedean place,
the effect of this operator in relative Lie algebra cohomology has already been described in Section 4.)

Eisenstein series
Let 𝑓 ∈ 𝐼𝐺𝑃 (𝑠, 𝜎 × 𝜎′), for 𝑔 ∈ 𝐺 (A) the value 𝑓 (𝑔) is a cusp form on 𝑀𝑃 (A). By the defining

equivariance property of f, the complex number 𝑓 (𝑔) (𝑚) determines and is determined by 𝑓 (𝑚𝑔) (1)
for any 𝑚 ∈ 𝑀𝑃 (A). Henceforth, 𝑓 ∈ 𝐼𝐺𝑃 (𝑠, 𝜎×𝜎

′) will be identified with the complex valued function
𝑔 ↦→ 𝑓 (𝑔) (1); that is, one has embedded

𝐼𝐺𝑃 (𝑠, 𝜎 × 𝜎
′) ↩→ C∞

(
𝑈𝑃 (A)𝑀𝑃 (Q)\𝐺 (A), 𝜔−1

∞

)
⊂ C∞

(
𝑃(Q)\𝐺 (A), 𝜔−1

∞

)
,

where 𝜔−1
∞ is a simplified notation for the central character of 𝜎 ⊗ 𝜎′ restricted to 𝑆(R)◦. If 𝜎 𝑓 ∈

Coh(𝐺𝑛, 𝜇), 𝜎′𝑓 ∈ Coh(𝐺𝑛′,𝜇
′) and 𝜄 : 𝐸 → C, then 𝜔∞ is the product of the central characters

𝜔M𝜄𝜇
𝜔M𝜄𝜇′ restricted to 𝑆(R)◦. Given 𝑓 ∈ 𝐼𝐺𝑃 (𝑠, 𝜎 × 𝜎′), thought of as a function on 𝑃(Q)\𝐺 (A),

define the corresponding Eisenstein series Eis𝑃 (𝑠, 𝑓 ) ∈ C∞
(
𝐺 (Q)\𝐺 (A), 𝜔−1

∞
)

by the usual averaging
over 𝑃(Q)\𝐺 (Q),

Eis𝑃 (𝑠, 𝑓 ) (𝑔) :=
∑

𝛾∈𝑃 (Q)\𝐺 (Q)
𝑓 (𝛾𝑔), (5.10)

which is convergent if�(𝑠) � 0 and has meromorphic continuation to the entire complex plane. This
provides an intertwining operator

Eis𝑃 (𝑠, 𝜎 × 𝜎′) : 𝐼𝐺𝑃 (𝑠, 𝜎 × 𝜎
′) −→ C∞

(
𝐺 (Q)\𝐺 (A), 𝜔−1

∞

)
;

denote Eis𝑃 (𝑠, 𝜎×𝜎′) ( 𝑓 ) simply as Eis𝑃 (𝑠, 𝑓 ).To construct a map in cohomology, one needs to evaluate
at 𝑠 = −𝑁/2, begging the question whether the Eisenstein series is holomorphic at 𝑠 = −𝑁/2. For this,
it is well known that one has to show that the constant term of the Eisenstein series is holomorphic at
𝑠 = −𝑁/2.

The constant term map
For the parabolic subgroup Q, the constant term map, denoted F𝑄 : C∞(𝐺 (Q)\𝐺 (A), 𝜔−1

∞ ) →
C∞(𝑀𝑄 (Q)𝑈𝑄 (A)\𝐺 (A), 𝜔−1

∞ ), is given by

F𝑄 (𝜙) (𝑔) =
∫

𝑈𝑄 (Q)\𝑈𝑄 (A)

𝜙(𝑢 𝑔) 𝑑𝑢. (5.11)

The choice of the global measure 𝑑𝑢

In the integrals defining the intertwining operator (5.9) and the constant term map (5.11), the choice
of measure 𝑑𝑢 on 𝑈𝑄 (A) needs to be fixed, where 𝑈𝑄 = Res𝐹/Q(𝑈𝑄0 ) is the unipotent radical of the
maximal parabolic subgroup Q; recall that 𝑄0 is the standard maximal parabolic subgroup of GL(𝑁)
corresponding to 𝑁 = 𝑛′ + 𝑛. To begin, take the global measure 𝐿𝑑𝑢 on𝑈𝑄 (A) = 𝑈𝑄0 (A𝐹 ) as a product
over the coordinates of 𝑈𝑄0 of the additive measure 𝑑𝑥 on A𝐹 , which in turn is a product

∏
𝑣 𝑑𝑥𝑣 of

local additive measures 𝑑𝑥𝑣 on 𝐹+𝑣 ; for a finite place v normalise 𝑑𝑥𝑣 by vol(O𝑣 ) = 1, where O𝑣 is the
ring of integers of 𝐹𝑣 , and for an archimedean v take 𝑑𝑥𝑣 as the Lebesgue measure on C. The notation
𝐿𝑑𝑢 is to suggest that this measure is well suited for the purposes of the analytic theory of L-functions.
For the constant term map (5.11) to correspond to the restriction map in cohomology, the global measure
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should be normalized by asking vol(𝑈𝑄0 (𝐹)\𝑈𝑄0 (A𝐹 )) = 1; see Borel [3, Sect. 6]. Hence, consider
the global measure on 𝑈𝑄 (A) = 𝑈𝑄0 (A𝐹 ):

𝑑 𝑢 :=
1

vol𝐿𝑑𝑢 (𝑈𝑄0 (𝐹)\𝑈𝑄0 (A𝐹 ))
𝐿𝑑𝑢.

Of course, vol𝐿𝑑𝑢 (𝑈𝑄0 (𝐹)\𝑈𝑄0 (A𝐹 )) = vol𝑑𝑥 (𝐹\A𝐹 )dim(𝑈𝑄0 ) = vol𝑑𝑥 (𝐹\A𝐹 )𝑛𝑛
′
. Recall some clas-

sical algebraic number theory (see Tate [50, Sect. 4.1]) for the volume of 𝐹\A𝐹 . For the measure 𝑑𝑥 on
A𝐹 , the volume of a fundamental domain for the action of F on A𝐹 is |𝛿𝐹/Q |1/2. If the set Hom(𝐹,C)
of complex embeddings of F is enumerated as, say, {𝜎1, . . . , 𝜎𝑑𝐹 }, and suppose {𝜔1, . . . , 𝜔𝑑𝐹 } is a
Q-basis of F, then the absolute discriminant of F is defined as 𝛿𝐹/Q = det[𝜎𝑖 (𝜔 𝑗 )]2. The square root of
the absolute value of the discriminant, |𝛿𝐹/Q |1/2, as an element ofR×/Q×, is independent of the enumer-
ation and the choice of basis. For the main theorem on L-values, the choice of measure can be changed
by a nonzero rational number, which will still give the same rationality results and the reciprocity laws
as in Theorem 5.16. Define the global measure on 𝑈𝑄 (A) = 𝑈𝑄0 (A𝐹 ) as

𝑑𝑢 := |𝛿𝐹/Q |−
𝑛𝑛′

2 𝐿𝑑𝑢. (5.12)

Theorem of Langlands on the constant term of an Eisenstein series
Theorem 5.13 (Langlands). Let 𝑓 ∈ 𝐼𝐺𝑃 (𝑠, 𝜎 × 𝜎

′).

1. In the non-self-associate cases (𝑛 ≠ 𝑛′), one hasF𝑄 ◦ Eis𝑃 (𝑠, 𝑓 ) = 𝑇st (𝑠, 𝜎 × 𝜎′) ( 𝑓 ).
2. In the self-associate cases (𝑛 = 𝑛′ and 𝑃 = 𝑄), one has F𝑃 ◦ Eis𝑃 (𝑠, 𝑓 ) = 𝑓 + 𝑇st (𝑠, 𝜎 × 𝜎′) ( 𝑓 ).

Suppose 𝑓 = ⊗𝑣 𝑓𝑣 is a pure tensor in 𝐼𝐺𝑃 (𝑠, 𝜎⊗𝜎
′), and for 𝑣 ∉ S, suppose 𝑓𝑣 = 𝑓 0

𝑣 is the normalized
spherical vector (normalized to take the value 1 on the identity), and similarly, 𝑓 0

𝑣 is such a vector in
the v-th component of 𝐼𝐺𝑄 (−𝑠, 𝜎

′ ⊗ 𝜎). Then from [47, Thm. 6.3.1], we have the fundamental analytic
identity

F𝑄 (Eis𝑃 (𝑠, 𝑓 )) = |𝛿𝐹/Q |−
𝑛𝑛′

2
𝐿S (𝑠, 𝜎 × 𝜎′v)

𝐿S (𝑠 + 1, 𝜎 × 𝜎′v)
⊗𝑣∉S 𝑓 0

𝑣 ⊗𝑣 ∈S 𝑇st (𝑠, 𝜎𝑣 ⊗ 𝜎′𝑣 ) 𝑓𝑣 . (5.14)

The proof of the main theorem on the arithmetic of special values of 𝐿(𝑠, 𝜎 × 𝜎′v) comes from seeing
the contribution of this identity in cohomology.

Holomorphy of the Eisenstein series at the point of evaluation
Given weights 𝜇 ∈ 𝑋+00(𝑇𝑛 × 𝐸) and 𝜇′ ∈ 𝑋+00 (𝑇𝑛′ × 𝐸) and strongly-inner Hecke-summands

𝜎 𝑓 ∈ Coh!! (𝐺𝑛, 𝜇) and 𝜎′𝑓 ∈ Coh!!(𝐺𝑛′ , 𝜇
′), recall then that 𝜄𝜎 and 𝜄𝜎′ are cuspidal automorphic

representations of 𝐺𝑛 (A) = GL𝑛 (A𝐹 ) and 𝐺𝑛′ (A) = GL𝑛′ (A𝐹 ) for any 𝜄 : 𝐸 → C. The pair (𝜇, 𝜇′) of
weights is said to be on the right of the unitary axis if the abelian width is bounded above by the point
of evaluation:

𝑎(𝜇, 𝜇′) ≤ −𝑁/2.

To explain the terminology, it is clear from the definition of the cuspidal parameters (2.8), (2.9), and the
archimedean representation (2.10) that 𝜄𝜎 = 𝜄𝜎𝑢 ⊗ || ||−w/2 for a unitary cuspidal representation 𝜄𝜎𝑢;
similarly, 𝜄𝜎′ = 𝜄𝜎′𝑢 ⊗ || ||−w′/2. Hence, we have

𝐿(𝑠, 𝜄𝜎 × 𝜄𝜎′v) = 𝐿(𝑠 − 𝑎(𝜇, 𝜇′), 𝜄𝜎𝑢 × 𝜄𝜎′v𝑢 ).
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Now, suppose (𝜇, 𝜇′) is on the right of the unitary axis. Then for the L-value in the denominator of the
right-hand side of (5.14) at the point of evaluation 𝑠 = − 𝑁

2 , we have

𝐿S (− 𝑁
2 + 1, 𝜄𝜎 × 𝜄𝜎′v) = 𝐿S (1 − 𝑁

2 − 𝑎(𝜇, 𝜇
′), 𝜄𝜎𝑢 × 𝜄𝜎′v𝑢 ) ≠ 0,

since 1 − 𝑁
2 − 𝑎(𝜇, 𝜇′) ≥ 1, by a nonvanishing result for Rankin–Selberg L-functions recalled in [27,

Thm. 7.1, (4)]. Of course, the nonvanishing of this L-value, the holomorphy of the Eisenstein series
Eis𝑃 (𝑠, 𝑓 ) or of its constant term are all intimately linked. We have the following well-known result
([39] and [28, Chap. IV §5]).

Theorem 5.15. Suppose we are given weights 𝜇 ∈ 𝑋+00 (𝑇𝑛 × 𝐸) and 𝜇′ ∈ 𝑋+00(𝑇𝑛′ × 𝐸), strongly-inner
Hecke-summands 𝜎 𝑓 ∈ Coh!! (𝐺𝑛, 𝜇) and 𝜎′𝑓 ∈ Coh!!(𝐺𝑛′ , 𝜇

′), and an 𝜄 : 𝐸 → C. Assume that (𝜇, 𝜇′)
is on the right of the unitary axis. Then Eis𝑃 (𝑠, 𝑓 ) is holomorphic at 𝑠 = −𝑁/2, unless we are in the
exceptional case 𝑛 = 𝑛′ and 𝜄𝜎′ = 𝜄𝜎 ⊗ | |−𝑛−1.

The poles on the right of the unitary axis are simple and contribute to the residual spectrum
[28], and then the assertion follows from [39]. The exceptional case exactly corresponds to when the
numerator of of the right-hand side of (5.14) at the point of evaluation is a pole at 1, that is, when
𝐿(− 𝑁

2 − 𝑎(𝜇, 𝜇
′), 𝜄𝜎𝑢 × 𝜄𝜎′v𝑢 ) is a pole at 1, which is possible only when 𝑛 = 𝑛′ and 𝜄𝜎′ = 𝜄𝜎 ⊗ || ||−𝑛−1.

To parse this further: If 𝜄𝜎′ = 𝜄𝜎 ⊗ || ||𝑟 for any integer r, then 𝜇′ = 𝜇 − 𝑟 . Then the cuspidal parameters
for 𝜇′ and 𝜇 are related thus: 𝛼′𝑣𝑖 = 𝛼𝑣

𝑖 + 𝑟, 𝛽′𝑣𝑖 = 𝛽𝑣𝑖 + 𝑟; hence, the cuspidal width ℓ(𝜇, 𝜇′) = 0.
For the main theorem on L-values, we will assume the conditions imposed by the combinatorial lemma
(Lemma 3.16), and in particular, we will have ℓ(𝜇, 𝜇′) ≥ 2 to guarantee at least two critical values.
Hence, the exceptional case will not be relevant to us.

5.3. The main theorem on L-values

5.3.1. Statement of the main theorem
Theorem 5.16. Let n and 𝑛′ be two positive integers. Let F be a totally imaginary field, and E a finite
Galois extension of Q that contains a copy of F. Consider strongly-pure weights 𝜇 ∈ 𝑋+00(𝑇𝑛 × 𝐸)
and 𝜇′ ∈ 𝑋+00 (𝑇𝑛′ × 𝐸). Let 𝜎 𝑓 ∈ Coh!!(𝐺𝑛, 𝜇) and 𝜎′𝑓 ∈ Coh!!(𝐺𝑛′ , 𝜇

′) be strongly-inner Hecke-
summands, and assume that E is large enough to contain all the Hecke-eigenvalues for 𝜎 𝑓 and 𝜎′𝑓 . Let
𝜄 : 𝐸 → C be an embedding. Recall then that 𝜄𝜎 and 𝜄𝜎′ are cuspidal automorphic representations of
𝐺𝑛 (A) = GL𝑛 (A𝐹 ) and 𝐺𝑛′ (A) = GL𝑛′ (A𝐹 ), respectively. Put 𝑁 = 𝑛 + 𝑛′.

Suppose that 𝑚 ∈ 𝑁
2 +Z is such that both m and 1+𝑚 are critical for the Rankin–Selberg L-function

𝐿(𝑠, 𝜄𝜎 × 𝜄𝜎′v).

1. If for some 𝜄, 𝐿(1 + 𝑚, 𝜄𝜎 × 𝜄𝜎′v) = 0, then 1 + 𝑚 − 𝑎(𝜇, 𝜇′) = 1
2 and

𝐿(1 + 𝑚, 𝜄𝜎 × 𝜄𝜎′v) = 𝐿( 1
2 ,

𝜄𝜎𝑢 × 𝜄𝜎′v𝑢 ) = 0

is the central critical value. Furthermore, 𝐿(1 + 𝑚, 𝜄𝜎 × 𝜄𝜎′v) = 0 for every 𝜄.
2. Assume F is in the CM-case. Suppose that 𝐿(1 + 𝑚, 𝜄𝜎 × 𝜄𝜎′v) ≠ 0. Then we have

|𝛿𝐹/Q |−
𝑛𝑛′

2
𝐿(𝑚, 𝜄𝜎 × 𝜄𝜎′v)

𝐿(1 + 𝑚, 𝜄𝜎 × 𝜄𝜎′v) ∈ 𝜄(𝐸).

Since 𝐿(𝑚, 𝜄𝜎 × 𝜄𝜎′v) = 𝐿(−𝑁/2, 𝜄𝜎(𝑁/2 + 𝑚) × 𝜄𝜎′v), the pair (𝜇 − 𝑁/2 − 𝑚, 𝜇′) of weights
satisfies Lemma 3.16 giving a balanced Kostant representative 𝑤 ∈ 𝑊𝑃 . Let 𝑤′ ∈ 𝑊𝑄 be determined
by Lemma 5.1. Furthermore, for any 𝛾 ∈ Gal(Q̄/Q), we have

𝛾

(
|𝛿𝐹/Q |−

𝑛𝑛′

2
𝐿(𝑚, 𝜄𝜎 × 𝜄𝜎′v)

𝐿(1 + 𝑚, 𝜄𝜎 × 𝜄𝜎′v)

)
= 𝜀 𝜄,𝑤 (𝛾) · 𝜀 𝜄,𝑤′ (𝛾) · |𝛿𝐹/Q |−

𝑛𝑛′

2
𝐿(𝑚, 𝛾◦ 𝜄𝜎 × 𝛾◦ 𝜄𝜎′v)

𝐿(1 + 𝑚, 𝛾◦ 𝜄𝜎 × 𝛾◦ 𝜄𝜎′v) .
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3. Assume F is in the TR-case. Then 𝑛𝑛′ is even. Suppose that 𝐿(1 + 𝑚, 𝜄𝜎 × 𝜄𝜎′v) ≠ 0. Then we have

𝐿(𝑚, 𝜄𝜎 × 𝜄𝜎′v)
𝐿(1 + 𝑚, 𝜄𝜎 × 𝜄𝜎′v) ∈ 𝜄(𝐸).

Furthermore, for any 𝛾 ∈ Gal(Q̄/Q), we have

𝛾

(
𝐿(𝑚, 𝜄𝜎 × 𝜄𝜎′v)

𝐿(1 + 𝑚, 𝜄𝜎 × 𝜄𝜎′v)

)
=

𝐿(𝑚, 𝛾◦ 𝜄𝜎 × 𝛾◦ 𝜄𝜎′v)
𝐿(1 + 𝑚, 𝛾◦ 𝜄𝜎 × 𝛾◦ 𝜄𝜎′v) .

As mentioned in the introduction, statement (1) is originally due to Mœglin [38, Sect. 5]; our proof
below is independent of [38]. More generally, the assertion on the vanishing of the central critical value
is a special case of Deligne’s conjecture [8, Conj. 2.7, (ii)] based on a suggestion of Benedict Gross that
the order of vanishing at a critical point is independent of the embedding 𝜄.

5.3.2. Proof of the main theorem
Finiteness of the relevant L-values

The paragraph after Theorem 5.15 says that if 𝐿(𝑠, 𝜄𝜎 ⊗ × 𝜄𝜎′v) has a pole at 𝑚 ∈ 𝑁
2 + Z, then the

cuspidal width ℓ(𝜇, 𝜇′) = 0; a situation which is ruled out by the hypothesis that requires two critical
points. Hence, all the L-values under consideration are finite – a fact that will be used without further
comment.

It suffices to prove Theorem 5.16 for the point of evaluation 𝑚 = −𝑁/2
If the theorem is known for the critical points 𝑠 = − 𝑁

2 and 1 − 𝑁
2 and for all possible 𝜇, 𝜇′, 𝜎 𝑓 , 𝜎′𝑓 ,

then one can deduce the theorem for any pair of successive critical points𝑚, 𝑚+1 for a given 𝜎 𝑓 and 𝜎′𝑓 .
This follows from using Tate-twists (Section 2.4.1) and the combinatorial lemma (Lemma 3.16). Take
any integer r and replace 𝜇 by 𝜇−𝑟𝛅𝑛 and 𝜎 𝑓 by 𝜎 𝑓 (𝑟). Note that 𝜄 (𝜎 𝑓 (𝑟)) = 𝜄𝜎 𝑓 ⊗ || ||𝑟 . The condition
that − 𝑁

2 and 1− 𝑁
2 are critical for 𝐿(𝑠, 𝜄𝜎 ⊗ || ||𝑟 × 𝜄𝜎′v) = 𝐿(𝑠 + 𝑟, 𝜄𝜎 ⊗× 𝜄𝜎′v), after the combinatorial

lemma, bounds the abelian width 𝑎(𝜇−𝑟𝛅𝑛, 𝜇′) by the cuspidal width ℓ(𝜇−𝑟𝛅𝑛, 𝜇′) as in (2) of Lemma
3.16. Now, the crucial point is that, whereas for the abelian width one has 𝑎(𝜇− 𝑟𝛅𝑛, 𝜇′) = 𝑎(𝜇, 𝜇′) − 𝑟 ,
but for the cuspidal width one has independence of r in as much as ℓ(𝜇 − 𝑟𝛅𝑛, 𝜇′) = ℓ(𝜇, 𝜇′). This
bounds the possible twisting integers r above and below as

−𝑁
2
+ 1 − ℓ(𝜇, 𝜇′)

2
− 𝑎(𝜇, 𝜇′) ≤ −𝑟 ≤ −𝑁

2
− 1 + ℓ(𝜇, 𝜇′)

2
− 𝑎(𝜇, 𝜇′).

As r ranges over this set, using the critical set described in Proposition 3.12, one sees that

𝐿(− 𝑁
2 ,

𝜄𝜎(𝑟) × 𝜄𝜎′v)
𝐿(1 − 𝑁

2 ,
𝜄𝜎(𝑟) × 𝜄𝜎′v)

=
𝐿(𝑟 − 𝑁

2 ,
𝜄𝜎 × 𝜄𝜎′v)

𝐿(𝑟 + 1 − 𝑁
2 ,

𝜄𝜎 × 𝜄𝜎′v)

runs over the set of all successive pairs of critical points; no more and no less! The number of possible
r is ℓ(𝜇, 𝜇′) − 1, which is exactly the number of pairs of successive critical points.

Being on the right versus on the left of the unitary axis
Suppose that (𝜇, 𝜇′) is on the right of the unitary axis: 𝑎(𝜇, 𝜇′) ≤ − 𝑁

2 . Then (1) is vacuously true
since 𝐿(1 − 𝑁

2 ,
𝜄𝜎 × 𝜄𝜎′v) = 𝐿(1 − 𝑁

2 − 𝑎(𝜇, 𝜇′), 𝜄𝜎𝑢 × 𝜄𝜎′v𝑢 ) ≠ 0 by a well-known nonvanishing
result for Rankin–Selberg L-functions as already mentioned before. Next, recall that the Eisenstein
series Eis𝑃 (𝑠, 𝑓 ) is holomorphic at 𝑠 = − 𝑁

2 , and at this point of evaluation, (2) and (3) will be
proved below. Granting this, suppose, on the other hand, that (𝜇, 𝜇′) is on the left of the unitary
axis; that is, 𝑎(𝜇, 𝜇′) > − 𝑁

2 . Then, 𝑎(𝜇′, 𝜇) < 𝑁
2 ; that is, (𝜇′, 𝜇) is on the right of the unitary axis

for the point of evaluation is 𝑁
2 , so we get the holomorphy of Eis𝑄 (𝑠, 𝑓 ) at 𝑠 = 𝑁

2 and whence
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statement (2) for 𝐿(𝑠, 𝜄𝜎′ × 𝜄𝜎v) and for 𝑠 = 𝑁
2 . And as above, (1) is in fact vacuously true because

𝐿(1 + 𝑁
2 ,

𝜄𝜎′ × 𝜄𝜎v) = 𝐿(1 + 𝑁
2 − 𝑎(𝜇

′, 𝜇), 𝜄𝜎′𝑢 × 𝜄𝜎v
𝑢) ≠ 0. Statement (2) for this situation says

|𝛿𝐹/Q |−
𝑛𝑛′

2
𝐿( 𝑁2 ,

𝜄𝜎′ × 𝜄𝜎v)
𝐿(1 + 𝑁

2 ,
𝜄𝜎′ × 𝜄𝜎v)

∈ 𝜄(𝐸),

where the L-value in the denominator is not zero. Suppose the L-value in the numerator is 0 (which
can happen in the special case 𝑁

2 − 𝑎(𝜇′, 𝜇) = 1
2 ). Then the Galois equivariance in (2) implies that

𝐿( 𝑁2 ,
𝜄𝜎′ × 𝜄𝜎v) = 0 for every 𝜄. Applying the functional equation ([27, (3), Thm. 7.1]) to the above

ratio of L-values, we get

|𝛿𝐹/Q |−
𝑛𝑛′

2 ·
𝜀( 𝑁2 ,

𝜄𝜎′ × 𝜄𝜎v)
𝜀(1 + 𝑁

2 ,
𝜄𝜎′ × 𝜄𝜎v)

·
𝐿(1 − 𝑁

2 ,
𝜄𝜎 × 𝜄𝜎′v)

𝐿(− 𝑁
2 ,

𝜄𝜎 × 𝜄𝜎′v)
∈ 𝜄(𝐸).

For brevity, let 𝜏 := 𝜄𝜎′ × 𝜄𝜎v. The global epsilon-factor is a product of local factors as 𝜀(𝑠, 𝜏) =∏
𝑣 𝜀(𝑠, 𝜏𝑣 , 𝜓𝑣 ), where we have fixed an additive character 𝜓 : 𝐹\A𝐹 → C×. (See, for example,

[47, Sect. 10.1].) At a non-archimedean place v, the local factor has the form 𝜀(𝑠, 𝜏𝑣 , 𝜓𝑣 ) =
𝑊 (𝜏𝑣 )𝑞 (1/2−𝑠) (𝑐 (𝜏𝑣 )+𝑐 (𝜓𝑣 ))𝑣 , where 𝑊 (𝜏𝑣 ) is the local root number, 𝑞𝑣 the cardinality of the residue
field of 𝐹𝑣 , and 𝑐(𝜏𝑣 ) and 𝑐(𝜓𝑣 ) are integers defined to be the conductoral exponents of the respective
data; it follows that 𝜀(𝑁/2, 𝜏𝑣 , 𝜓𝑣 )/𝜀(1 + 𝑁/2, 𝜏𝑣 , 𝜓𝑣 ) is an integral power of 𝑞𝑣 . At an archimedean
place, it follows from [35, (4.7)] that the local factor is a constant, and hence the ratio is 1. Whence,
𝜀( 𝑁2 ,

𝜄𝜎′ × 𝜄𝜎v)/𝜀(1 + 𝑁
2 ,

𝜄𝜎′ × 𝜄𝜎v) is a nonzero integer, from which it follows that

|𝛿𝐹/Q |−
𝑛𝑛′

2
𝐿(1 − 𝑁

2 ,
𝜄𝜎 × 𝜄𝜎′v)

𝐿(− 𝑁
2 ,

𝜄𝜎 × 𝜄𝜎′v)
∈ 𝜄(𝐸). (5.17)

From the functional equation, it is clear that 𝐿(1 − 𝑁
2 ,

𝜄𝜎 × 𝜄𝜎′v) = 0 ⇐⇒ 𝐿( 𝑁2 ,
𝜄𝜎′ × 𝜄𝜎v) = 0,

proving (1) when (𝜇, 𝜇′) is on the left of the unitary axis. If 𝐿(1 − 𝑁
2 ,

𝜄𝜎 × 𝜄𝜎′v) ≠ 0, then taking
reciprocal of the ratio on the left-hand side of (5.17), (2) will follow when (𝜇, 𝜇′) is on the left of the
unitary axis. (See also [27, Sect. 7.3.2.5] for a slightly different way to argue this point if (𝜇, 𝜇′) is on
the left of the unitary axis.) The discussion is the same for (3).

Proof of the rationality result
After the above reductions, it suffices to prove (2) and (3) of Theorem 5.16 when (𝜇, 𝜇′) is on the

right of the unitary axis and for 𝑚 = −𝑁/2. This involves Eisenstein cohomology. Assume henceforth
that (𝜇, 𝜇′) is on the right of the unitary axis. For now, F is any totally imaginary field (either CM
or TR). By Theorem 5.6, the subspace ℑ𝑏 (𝜎 𝑓 , 𝜎

′
𝑓 ), which is the image of global cohomology in the

2k-dimensional E-vector space 𝐼S
𝑏 (𝜎 𝑓 , 𝜎

′
𝑓 )𝑃,𝑤 ⊕ 𝐼S

𝑏 (𝜎
′
𝑓 (𝑛), 𝜎 𝑓 (−𝑛′))𝑄,𝑤′ , is a k-dimensional

E-subspace, and furthermore, from the proof of that theorem, we get an intertwining operator𝑇Eis (𝜎, 𝜎′)
defined over E such that in the non-self-associate case (𝑛 ≠ 𝑛′), we have

ℑ𝑏 (𝜎 𝑓 , 𝜎
′
𝑓 ) =

{
(𝜉, 𝑇Eis (𝜎, 𝜎′) (𝜉)) | 𝜉 ∈ 𝐼S

𝑏 (𝜎 𝑓 , 𝜎
′
𝑓 )𝑃,𝑤

}
,

and in the self-associate case, we will have

ℑ𝑏 (𝜎 𝑓 , 𝜎
′
𝑓 ) =

{
(𝜉, 𝜉 + 𝑇Eis (𝜎, 𝜎′) (𝜉)) | 𝜉 ∈ 𝐼S

𝑏 (𝜎 𝑓 , 𝜎
′
𝑓 )𝑃,𝑤

}
.
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The idea of the proof is to take 𝑇Eis (𝜎, 𝜎′) to a transcendental level, use the constant term theorem
which gives L-values, and then descend back to an arithmetic level, giving a rationality result for the
said L-values. Take an 𝜄 : 𝐸 → C, and consider 𝑇Eis (𝜎, 𝜎′) ⊗𝐸, 𝜄 C. We have

ℑ𝑏 ( 𝜄𝜎 𝑓 ,
𝜄𝜎′𝑓 ) =

{(
𝜉 , 𝑇st (− 𝑁

2 ,
𝜄𝜎 ⊗ 𝜄𝜎′)•𝜉

)
: 𝜉 ∈ 𝐼S

𝑏 (
𝜄𝜎 𝑓 ,

𝜄𝜎′𝑓 )𝑃, 𝜄𝑤

}
in the non-self-associate case, and with analogous modification for the self-associate case. Here,
𝑇st (− 𝑁

2 ,
𝜄𝜎 ⊗ 𝜄𝜎′)• is the map induced by the standard intertwining operator in relative Lie algebra

cohomology. For brevity, let 𝜎 = 𝜎 × 𝜎′. The global operator 𝑇st (− 𝑁
2 ,

𝜄𝜎)• factors into local standard
intertwining operators. The discussion in [27, Sect. 7.3.2.1] involving rationality properties of local
standard intertwining operators at finite places goes through verbatim in our situation. (See also my
paper [43] where this discussion is situated in a broader context.) We have for 𝑇Eis (𝜎, 𝜎′) ⊗𝐸, 𝜄 C the
following expression (the exact analogue of [27, (7.38)]):

|𝛿𝐹/Q |−
𝑛𝑛′

2
𝐿(− 𝑁

2 ,
𝜄𝜎 𝑓 × 𝜄𝜎′v𝑓 )

𝐿(1 − 𝑁
2 ,

𝜄𝜎 𝑓 × 𝜄𝜎′v𝑓 )
·
⊗
𝑣 ∈S∞

𝑇st (− 𝑁
2 ,

𝜄𝜎𝑣 )
•⊗

⊗
(
(
⊗
𝑣 ∈S 𝑓

𝑇ar
norm (𝜎𝑣 ) (1) ⊗

⊗
𝑣∉S

𝑇ar
loc (𝜎𝑣 ) (1)

)
⊗𝐸, 𝜄 C. (5.18)

The local operators 𝑇ar
norm (𝜎𝑣 ) (1) and 𝑇ar

loc(𝜎𝑣 ) (1) are exactly as in loc.cit.; the point of immediate
interest for us being that they are defined over E. For the archimedean component 𝑇st (− 𝑁

2 ,
𝜄𝜎𝑣 )•, we

use Proposition 4.32 to get for 𝑇Eis (𝜎, 𝜎′) ⊗𝐸, 𝜄 C the following expression involving values of the
completed L-function:

|𝛿𝐹/Q |−
𝑛𝑛′

2
𝐿(− 𝑁

2 ,
𝜄𝜎 × 𝜄𝜎′v)

𝐿(1 − 𝑁
2 ,

𝜄𝜎 × 𝜄𝜎′v)
·
(
(
⊗
𝑣 ∈S 𝑓

𝑇ar
norm (𝜎𝑣 ) (1) ⊗

⊗
𝑣∉S

𝑇ar
loc (𝜎𝑣 ) (1)

)
⊗𝐸, 𝜄 C. (5.19)

We conclude that the complex number |𝛿𝐹/Q |−
𝑛𝑛′

2 𝐿(− 𝑁
2 ,

𝜄𝜎 × 𝜄𝜎′v)/𝐿(1 − 𝑁
2 ,

𝜄𝜎 × 𝜄𝜎′v) is in 𝜄(𝐸).
When F is in case-TR, existence of a critical point implies 𝑛𝑛′ is even (Corollary 3.14), which forces

|𝛿𝐹/Q |−
𝑛𝑛′

2 ∈ Q×.

Proof of reciprocity
For Galois equivariance, apply 𝛾 ∈ Gal(Q̄/Q), to the objects and maps in the first paragraph of

Section 5.2.2, while keeping in mind the behaviour of cohomology groups as Hecke modules under
changing the base field E. Assume now that F is a totally imaginary field in the CM-case. The claim is
that Galois-action and Eisenstein operator 𝑇Eis (𝜎, 𝜎′) intertwine as

(1 ⊗ 𝛾) ◦
(
𝑇Eis (𝜎, 𝜎′) ⊗𝐸, 𝜄 Q̄

)
= 𝜀 𝜄,𝑤 (𝛾) · 𝜀 𝜄,𝑤′ (𝛾) · 𝑇Eis (𝜎, 𝜎′) ⊗𝐸,𝛾◦ 𝜄 Q̄. (5.20)

From this claim and (5.19), the reciprocity law will follow. To prove this claim, take 𝑛 ≠ 𝑛′ (the reader
can easily modify the argument for the self-associate case) and consider the following diagram

𝐼S
𝑏 (𝜎 𝑓 , 𝜎

′
𝑓 )𝑃,𝑤 ⊗𝐸, 𝜄 Q̄

𝑇Eis (𝜎,𝜎′) ⊗𝐸, 𝜄1Q̄ ��

1⊗𝛾
��

𝐼S
𝑏 (𝜎

′
𝑓 (𝑛), 𝜎 𝑓 (−𝑛′))𝑄,𝑤′ ⊗𝐸, 𝜄 Q̄

1⊗𝛾
��

𝐼S
𝑏 (𝜎 𝑓 , 𝜎

′
𝑓 )𝑃,𝑤 ⊗𝐸,𝛾◦ 𝜄 Q̄

𝑇Eis (𝜎,𝜎′) ⊗𝐸,𝛾◦𝜄1Q̄ �� 𝐼S
𝑏 (𝜎

′
𝑓 (𝑛), 𝜎 𝑓 (−𝑛′))𝑄,𝑤′ ⊗𝐸,𝛾◦ 𝜄 Q̄
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The left (resp., right) vertical arrow introduces the signature 𝜀 𝜄,𝑤 (𝛾) (resp., 𝜀 𝜄,𝑤′ (𝛾)), and the
diagram commutes up to the product of these two signatures. For the left vertical arrow, re-
call from 5.1.3 that the induced module 𝐼S

𝑏 (𝜎 𝑓 , 𝜎
′
𝑓 )𝑃,𝑤 appears in boundary cohomology as

aInd𝐺 (A 𝑓 )
𝑃 (A 𝑓 )

(
𝐻𝑏𝐹𝑛 +𝑏𝐹𝑛′ (S𝑀𝑃 ,M̃𝑤 ·𝜆,𝐸 ) (𝜎 𝑓 × 𝜎′𝑓 )

)𝐾 𝑓

. Hence, 𝐼S
𝑏 (𝜎 𝑓 , 𝜎

′
𝑓 )𝑃,𝑤 ⊗𝐸, 𝜄 Q̄ appears as a Hecke-

summand in aInd𝐺 (A 𝑓 )
𝑃 (A 𝑓 )

(
𝐻𝑏𝐹𝑛 +𝑏𝐹𝑛′ (S𝑀𝑃 ,M̃𝜄𝑤 · 𝜄𝜆,Q̄)

)
. Recall from (2.30) that 𝛾 maps the the highest

weight vector of the coefficient system M𝜄𝑤 · 𝜄𝜆,Q̄ to 𝜀 𝜄,𝑤 (𝛾) times the highest weight vector of the co-
efficient system M𝛾◦𝜄𝑤 ·𝛾◦𝜄𝜆,Q̄ explaining the homothety by 𝜀 𝜄,𝑤 (𝛾) in the left vertical arrow. Similarly,
the induced module 𝐼S

𝑏 (𝜎
′
𝑓 (𝑛), 𝜎 𝑓 (−𝑛′))𝑄,𝑤′ ⊗𝐸, 𝜄 Q̄ appears in aInd𝐺 (A 𝑓 )

𝑃 (A 𝑓 )

(
𝐻𝑏𝐹𝑛 +𝑏𝐹𝑛′ (S𝑀𝑃 ,M̃𝜄𝑤′ · 𝜄𝜆,Q̄)

)
for 𝑤′ related to w by Lemma 5.1. Hence, in the right vertical arrow, one gets a homothety by 𝜀 𝜄,𝑤′ (𝛾).
Hence the claim, and whence the reciprocity law.

If the totally imaginary field F is in case CM, then the proof of (2) is complete. In case of TR, the
rationality and the Galois-equivariance, as will be now shown, will simplify to give the corresponding
statements in (3). Assume now that F is TR, and that 𝐹1 is the maximal totally real subfield of F.

Existence of a critical point implies 𝑛𝑛′ is even by Corollary 3.14; hence, |𝛿𝐹/Q |−
𝑛𝑛′

2 ∈ Q×, and so we
may absorb it into 𝜄(𝐸) and ignore it from the Galois-equivariance. The simplified Galois equivariance
in (3) follows from the following:

Lemma 5.21. Suppose that F is TR. Then 𝜀 𝜄,𝑤 (𝛾) = 1 = 𝜀 𝜄,𝑤′ (𝛾).

Proof. Recall the notations from 2.3.5: Σ𝐹1 = {𝜈1, . . . , 𝜈𝑑1 }, 𝜚 : Σ𝐹 → Σ𝐹1 , 𝑘 = 2𝑘1, and 𝜚−1 (𝜈 𝑗 ) =
{𝜂 𝑗1, 𝜂 𝑗1, . . . , 𝜂 𝑗𝑘1𝜂 𝑗𝑘1 }. Since 𝜇 and 𝜇′ are strongly-pure weights that are the base-change from weight
over 𝐹1, the Kostant representative w (and then so also 𝑤′) has the property that all the constituents 𝑤𝜂 ,
as 𝜂 varies over 𝜚−1 (𝜈 𝑗 ), are copies of the same element of 𝔖𝑁 –the Weyl group of GL𝑁 ; in particular,
since w is balanced, 𝑙 (𝑤𝜂) + 𝑙 (𝑤 �̄�) = 𝑛𝑛′ and 𝑙 (𝑤𝜂) = 𝑙 (𝑤 �̄�) since 𝜂 and 𝜂 have the same restriction
to 𝐹1; hence, 𝑙 (𝑤𝜂) = 𝑛𝑛′/2. Recalling the notations from Section 2.7, consider the wedge product

𝑒∗Φ𝜄𝑤, [𝜈𝑗 ]
:= 𝑒∗Φ𝜄𝑤

𝜂𝑗1
∧ 𝑒∗Φ

𝜄𝑤
�̄� 𝑗1
∧ · · · ∧ 𝑒∗Φ𝜄𝑤

𝜂𝑗𝑘1
∧ 𝑒∗Φ

𝜄𝑤
�̄� 𝑗𝑘1

.

All the individual factors such as 𝑒∗Φ𝜄𝑤
𝜂𝑗𝑖

or 𝑒∗Φ𝜄𝑤
�̄� 𝑗𝑖

are identical and have degree 𝑛𝑛′/2. Hence, the
total degree of 𝑒∗Φ𝜄𝑤, [𝜈𝑗 ]

is 𝑛𝑛′/2 · 𝑘 = 𝑛𝑛′𝑘1. From (2.26), one gets

𝑒∗Φ𝜄𝑤
= 𝑒∗Φ𝜄𝑤, [𝜈1 ]

∧ · · · ∧ 𝑒∗Φ𝜄𝑤, [𝜈𝑑1 ]
.

Denote the action of 𝛾 onΣ𝐹1 , for the ordering fixed above, as 𝜋𝐹1 (𝛾), and let 𝜀𝐹1 (𝛾) denote its signature.
Then one has

(1 ⊗ 𝛾)𝑒∗Φ𝜄𝑤
= 𝜀𝐹1 (𝛾) (𝑛𝑛

′𝑘1)2𝑒∗Φ𝛾◦𝜄𝑤
;

from Definition 2.29, one has 𝜀 𝜄,𝑤 (𝛾) = 𝜀𝐹1 (𝛾) (𝑛𝑛
′𝑘1)2 = 1 since 𝑛𝑛′𝑘1 ≡ 0 (mod 2). Similarly,

𝜀 𝜄,𝑤′ (𝛾) = 1. �

This concludes the proof of Theorem 5.16.

5.4. Compatibility with Deligne’s Conjecture

5.4.1. Statement of Deligne’s Conjecture
In this subsection, Deligne’s celebrated conjecture on the special values of motivic L-functions is
formulated for the ratios of successive successive critical L-values for Rankin–Selberg L-functions. The
notations of [8] will be freely used; a motive M over Q with coefficients in a field E will be thought
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in terms of its Betti, de Rham and ℓ-adic realizations. Attached to a critical motive M are its periods
𝑐±(𝑀) ∈ (𝐸 ⊗C)× as in loc.cit., that are well defined in (𝐸 ⊗C)×/𝐸×. We begin with a relation between
the two periods over a totally imaginary base field F. Recall from the introduction that if F is in the
CM-case, then 𝐹1 is its maximal CM subfield which is totally imaginary quadratic over the totally real
subfield 𝐹1; suppose 𝐹1 = 𝐹0 (

√
𝐷) for a totally negative 𝐷 ∈ 𝐹0. Then define

Δ𝐹1 :=
√
𝑁𝐹0/Q(𝐷), Δ𝐹 := Δ [𝐹 :𝐹1 ]

𝐹1
.

If F is in the TR-case, then 𝐹1 = 𝐹0 is the maximal totally real subfield. Then define

Δ𝐹1 := 1, Δ𝐹 := Δ [𝐹 :𝐹1 ]
𝐹1

= 1.

The following result is stated in my paper with Deligne; see [9, Thm. 3.4.2]:

Proposition 5.22. Let 𝑀0 be a pure motive of rank n over a totally imaginary number field F with
coefficients in a number field E. Put 𝑀 = Res𝐹/Q(𝑀0), and suppose that M has no middle Hodge type.
Let 𝑐±(𝑀) be the periods defined in [8]. Then

𝑐+(𝑀)
𝑐−(𝑀) = (1 ⊗ Δ𝐹 )𝑛, in (𝐸 ⊗ C)×/𝐸×.

Under the identification 𝐸 ⊗ C =
∏

𝜄:𝐸→C C, the element 1 ⊗ Δ𝐹 is ±1 in each component of
(𝐸 ⊗ C)×/𝐸×, since its square is trivial. Based on Proposition 5.22, Deligne’s conjecture [8] for the
ratios of successive critical values of the completed L-function of M may be stated as the following:

Conjecture 5.23 (Deligne). Let 𝑀0 be a pure motive of rank n over a totally imaginary F with coefficients
in E. Put 𝑀 = Res𝐹/Q(𝑀0), and suppose that M has no middle Hodge type. For 𝜄 : 𝐸 → C, let 𝐿(𝑠, 𝜄, 𝑀)
denote the completed L-function attached to (𝑀, 𝜄). Put 𝐿(𝑠, 𝑀) = {𝐿(𝑠, 𝜄, 𝑀)} 𝜄:𝐸→C for the array of
L-functions taking values in 𝐸 ⊗C. Suppose m and 𝑚+1 are critical integers for 𝐿(𝑠, 𝑀), and assuming
that 𝐿(𝑚 + 1, 𝑀) ≠ 0, we have

𝐿(𝑚, 𝑀)
𝐿(𝑚 + 1, 𝑀) = (1 ⊗ 𝔦𝑑𝐹/2Δ𝐹 )𝑛, in (𝐸 ⊗ C)/𝐸×.

A word of explanation is in order since, in [8], Deligne formulated his conjecture for critical values
of 𝐿 𝑓 (𝑠, 𝑀) – the finite-part of the L-function attached to 𝑀. From Conjecture 2.8 and (5.1.8) of [8]
for M as above, one can deduce

𝐿 𝑓 (𝑚, 𝑀)
𝐿 𝑓 (𝑚 + 1, 𝑀) = (1 ⊗ (2𝛑𝔦)−𝑛 ·𝑑𝐹/2) 𝑐

±(𝑀)
𝑐∓(𝑀) , in 𝐸 ⊗ C.

Knowing the L-factor at infinity, one has 𝐿∞(𝑚, 𝑀)/𝐿∞(𝑚 + 1, 𝑀) = 1 ⊗ (2𝛑)𝑑𝐹/2; hence, for the
completed L-function, one can deduce

𝐿(𝑚, 𝑀)
𝐿(𝑚 + 1, 𝑀) = (1 ⊗ 𝔦𝑛 ·𝑑𝐹/2) 𝑐

±(𝑀)
𝑐∓(𝑀) . (5.24)

It is clear now that (5.24) and Proposition 5.22 give Conjecture 5.23.
There is conjectural correspondence between 𝜎 𝑓 ∈ Coh!! (Res𝐹/Q(GL𝑛/𝐹), 𝜇/𝐸) and a pure regular

motive 𝑀 (𝜎 𝑓 ) of rank n over F with coefficients in E (see [7] or [27, Chap. 7]). Given such a 𝜎 𝑓 and
also 𝜎′𝑓 ∈ Coh!!(Res𝐹/Q(GL𝑛′/𝐹), 𝜇′/𝐸), Conjecture 5.23 applied to 𝑀 = 𝑀 (𝜎 𝑓 ) ⊗𝑀 (𝜎′v𝑓 ) gives the
following conjecture or the Rankin–Selberg L-functions 𝐿(𝑠, 𝜄𝜎 × 𝜄𝜎′v):

Conjecture 5.25 (Deligne’s conjecture for Rankin–Selberg L-functions). Let the notations and
hypotheses be as in Theorem 5.16. Then
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(𝔦𝑑𝐹/2Δ𝐹 )𝑛𝑛
′ 𝐿(𝑚, 𝜄𝜎 × 𝜄𝜎′v)
𝐿(𝑚 + 1, 𝜄𝜎 × 𝜄𝜎′v) ∈ 𝜄(𝐸),

and furthermore, for every 𝛾 ∈ Gal(Q̄/Q), we have the reciprocity law:

𝛾

(
(𝔦𝑑𝐹/2Δ𝐹 )𝑛𝑛

′ 𝐿(𝑚, 𝜄𝜎 × 𝜄𝜎′v)
𝐿(𝑚 + 1, 𝜄𝜎 × 𝜄𝜎′v)

)
= (𝔦𝑑𝐹/2Δ𝐹 )𝑛𝑛

′ 𝐿(𝑚, 𝛾◦ 𝜄𝜎 × 𝛾◦ 𝜄𝜎′v)
𝐿(𝑚 + 1, 𝛾◦ 𝜄𝜎 × 𝛾◦ 𝜄𝜎′v) .

5.4.2. Theorem 5.16 implies Conjecture 5.25
If F is in the TR-case, then existence of a critical point implies 𝑛𝑛′ is even (Corollary 3.14), hence
(𝔦𝑑𝐹/2Δ𝐹 )𝑛𝑛

′
= 𝔦𝑑𝐹𝑛𝑛′/2 = ±1 that may be absorbed into 𝜄(𝐸) and ignored from the Galois-equivarance,

which is exactly the content of (3) of Theorem 5.16. Assume henceforth that F is in the CM-case. The
required compatibility follows from the equality of signatures in the following:
Proposition 5.26.

𝛾(|𝛿𝐹/Q |𝑛𝑛
′/2)

|𝛿𝐹/Q |𝑛𝑛′/2
· 𝜀 𝜄,𝑤 (𝛾) · 𝜀 𝜄,𝑤′ (𝛾) =

𝛾((𝔦𝑑𝐹 /2Δ𝐹 )𝑛𝑛
′ )

(𝔦𝑑𝐹/2Δ𝐹 )𝑛𝑛′
.

The proof uses the following lemma.
Lemma 5.27. Let F be a totally imaginary field in the CM-case and suppose 𝐹1 the maximal CM
subfield of F. Then, as elements of C×/Q×, we have

|𝛿𝐹/Q |1/2 = 𝔦𝑑𝐹/2 · Δ𝐹 ·
(
𝑁𝐹1/Q(𝛿𝐹/𝐹1)

)1/2
.

Proof of Lemma 5.27. Transitivity of discriminant for the tower of fields 𝐹/𝐹0/Q gives 𝛿𝐹/Q = 𝛿 [𝐹 :𝐹0 ]
𝐹0/Q ·

𝑁𝐹0/Q(𝛿𝐹/𝐹0). Since the degree [𝐹 : 𝐹0] = 2[𝐹 : 𝐹1] is even, one has

|𝛿𝐹/Q |1/2 = |𝑁𝐹0/Q(𝛿𝐹/𝐹0) |1/2 (mod Q×).

Next, one has 𝛿𝐹/𝐹0 = 𝛿 [𝐹 :𝐹1 ]
𝐹1/𝐹0

· 𝑁𝐹1/𝐹0 (𝛿𝐹/𝐹1), by using transitivity of discriminant for the tower of
fields 𝐹/𝐹1/𝐹0; using the 𝐹0-basis {1,

√
𝐷} for 𝐹1, one has 𝛿𝐹1/𝐹0 = 4𝐷; therefore,

𝑁𝐹0/Q(𝛿𝐹/𝐹0) = 𝑁𝐹0/Q(4𝐷) [𝐹 :𝐹1 ] · 𝑁𝐹0/Q(𝑁𝐹1/𝐹0 (𝛿𝐹/𝐹1))
= 𝑁𝐹0/Q(𝐷) [𝐹 :𝐹1 ] · 𝑁𝐹1/Q(𝛿𝐹/𝐹1) (mod Q×2).

Since 𝐹1/Q is a CM-extension, 𝑁𝐹1/Q(𝛿𝐹/𝐹1) > 0; hence,

|𝛿𝐹/Q |1/2 = |𝑁𝐹0/Q(𝛿𝐹/𝐹0) |1/2 = |𝑁𝐹0/Q(𝐷) | [𝐹 :𝐹1 ]/2 ·
(
𝑁𝐹1/Q(𝛿𝐹/𝐹1)

)1/2 (mod Q×).

Since 𝐷 � 0 in 𝐹0, we see that (−1) [𝐹0:Q]𝑁𝐹0/Q(𝐷) > 0. Hence,

|𝑁𝐹0/Q(𝐷) | [𝐹 :𝐹1 ]/2 = ((−1) [𝐹0:Q]𝑁𝐹0/Q(𝐷)) [𝐹 :𝐹1 ]/2 = (𝔦 [𝐹0:Q]Δ𝐹1) [𝐹 :𝐹1 ]

= 𝔦 [𝐹0:Q] [𝐹 :𝐹1 ]Δ𝐹 = 𝔦𝑑𝐹/2Δ𝐹 .

�

After the above lemma, the proof of Proposition 5.26 follows from the following:
Lemma 5.28.

𝜀 𝜄,𝑤 (𝛾) · 𝜀 𝜄,𝑤′ (𝛾) =
𝛾
(
𝑁𝐹1/Q(𝛿𝐹/𝐹1)𝑛𝑛

′/2)
𝑁𝐹1/Q(𝛿𝐹/𝐹1)𝑛𝑛

′/2 .
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Proof. Suppose F is a CM field. Then 𝐹 = 𝐹1; hence, the right-hand side is 1. We contend
that in this case, the left-hand side is also 1, or that 𝜀 𝜄,𝑤 (𝛾) = 𝜀 𝜄,𝑤′ (𝛾). One may suppose that
the ordering on Hom(𝐹, 𝐸) is fixed such that conjugate embeddings are paired: Hom(𝐹, 𝐸) =
{𝜏1, 𝜏1, 𝜏2, 𝜏2, . . . , 𝜏𝑟 , 𝜏𝑟 }. After composing with 𝜄 : 𝐸 → C, one gets an enumeration: Hom(𝐹,C) =
{𝜂1, 𝜂1, 𝜂2, 𝜂2, . . . , 𝜂𝑟 , 𝜂𝑟 }. For brevity and, hopefully, additional clarity, denote 𝑒∗Φ𝑤𝜂,�̄�

:= 𝑒∗Φ𝑤𝜂
∧ 𝑒∗Φ𝑤�̄�

,
and rewrite (2.26) as

𝑒∗Φ𝜄𝑤
:= 𝑒∗Φ

𝑤𝜂1 , �̄�1
∧ · · · ∧ 𝑒∗Φ𝑤𝜂𝑟 , �̄�𝑟

. (5.29)

The action of 𝛾 gives

(1 ⊗ 𝛾) (𝑒∗Φ𝜄𝑤
) := 𝑒∗Φ

𝑤𝛾◦𝜂1 ,𝛾◦�̄�1
∧ · · · ∧ 𝑒∗Φ

𝑤𝛾◦𝜂1 ,𝛾◦�̄�1
. (5.30)

The right-hand sides of (5.29) and (5.30) differ by the signature 𝜀 𝜄,𝑤 (𝛾) that one seeks to identify.
Each pair of conjugates embeddings {𝜂 𝑗 , 𝜂 𝑗 } corresponds to a place 𝑣 𝑗 of F; as before, 𝜂 𝑗 is called
the distinguished embedding – a base point in that pair of conjugate embeddings. The ordering on
Hom(𝐹,C) fixes an ordering {𝑣1, . . . , 𝑣𝑟 } on S∞(𝐹). Let 𝜋𝐹 (𝛾) denote the permutation of 𝛾 on S∞(𝐹),
and 𝜀𝐹 (𝛾) its signature. For each 1 ≤ 𝑗 ≤ 𝑟 , let 𝑙 𝑗 = 𝑙 (𝑤𝜂 𝑗 ) and 𝑙∗𝑗 = 𝑙 (𝑤 �̄� 𝑗 ); then 𝑙 𝑗 + 𝑙∗𝑗 = 𝑛𝑛′ since w
is balanced. The total degree of 𝑒∗Φ𝑤𝜂,�̄�

is 𝑛𝑛′; interchanging two successive factors of (5.29) introduces

the signature (−1) (𝑛𝑛′)2 = (−1)𝑛𝑛′ . Finally, let 𝐽𝛾 := { 𝑗 | 𝛾 ◦ 𝜂 𝑗 is not distinguished.}. Then one has

𝜀 𝜄,𝑤 (𝛾) = 𝜀𝐹 (𝛾)𝑛𝑛
′ ∏
𝑗∈𝐽𝛾
(−1)𝑙 𝑗 𝑙

∗
𝑗 ; (5.31)

since the term 𝜀𝐹 (𝛾)𝑛𝑛
′ arises by the permutation of the factors of (5.29) to get the factors of (5.30);

and then within each such factor indexed by 𝑗 ∈ 𝐽𝛾 , the constituent factors in 𝑒∗Φ
𝑤
𝜂𝑗
∧ 𝑒∗Φ

𝑤
�̄�𝑗

get
interchanged. Similarly,

𝜀 𝜄,𝑤′ (𝛾) = 𝜀𝐹 (𝛾)𝑛𝑛
′ ∏
𝑗∈𝐽𝛾

(−1)𝑙 (𝑤
′𝜂𝑗 )𝑙 (𝑤′�̄� 𝑗 ) . (5.32)

From Lemma 5.1, it follows that 𝑙 (𝑤′𝜂 𝑗 ) = 𝑛𝑛′ − 𝑙 (𝑤𝜂 𝑗 ) = 𝑙∗𝑗 and 𝑙 (𝑤′�̄� 𝑗 ) = 𝑛𝑛′ − 𝑙 (𝑤 �̄� 𝑗 ) = 𝑙 𝑗 ; hence,
(−1)𝑙 (𝑤

′𝜂𝑗 )𝑙 (𝑤′�̄� 𝑗 ) = (−1)𝑙 𝑗 𝑙
∗
𝑗 ; whence, 𝜀 𝜄,𝑤 (𝛾) = 𝜀 𝜄,𝑤′ (𝛾).

Now suppose F is a totally imaginary field in the CM-case and 𝐹1 its maximal CM subfield. In
preparation, fix orderings on Σ𝐹 , Σ𝐹1 and S∞(𝐹1) in a compatible way as follows:
1. fix an ordering {𝑤1, . . . , 𝑤𝑟1 } on S∞(𝐹1);
2. then fix the ordering {𝜈1, 𝜈2, . . . , 𝜈𝑟1 , �̄�1, �̄�2, . . . , �̄�𝑟1 }, where the pair of conjugate embeddings
{𝜈 𝑗 , �̄� 𝑗 } map to 𝑤 𝑗 , and recall that we call 𝜈 𝑗 as the distinguished embedding;

3. finally, to fix an ordering on Σ𝐹 , let Σ𝐹 (𝜈) denote the fiber over 𝜈 ∈ Σ𝐹1 under the canonical
restriction map Σ𝐹 → Σ𝐹1 ; if 𝜈 < 𝜈′ in Σ𝐹1 . Then each element in Σ𝐹 (𝜈) is less than every element
of Σ𝐹 (𝜈′), and within each fiber Σ𝐹 (𝜈), fix any ordering.
The Galois element 𝛾 induces permutations on Σ𝐹 , Σ𝐹1 and S∞(𝐹1) giving the commutative diagram:

Σ𝐹
𝜋𝐹 (𝛾) ��

��

Σ𝐹

��
Σ𝐹1

𝜋𝐹1 (𝛾) ��

��

Σ𝐹1

��
S∞(𝐹1)

𝜋1∞ (𝛾) �� S∞(𝐹1)
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Define �̂�𝐹 (𝛾) to be the permutation of Σ𝐹 that induces 𝜋𝐹1 (𝛾) on Σ𝐹1 , and

if 𝜋𝐹1 (𝛾) (𝜂) = 𝜂′, then �̂�𝐹 (𝛾) is an order preserving bijection Σ𝐹 (𝜈) → Σ𝐹 (𝜈′).

Define the permutation 𝜋′𝐹 (𝛾) of Σ𝐹 by

𝜋𝐹 (𝛾) = 𝜋′𝐹 (𝛾) ◦ �̂�𝐹 (𝛾). (5.33)

Observe that 𝜋′𝐹 (𝛾) induces the identity permutation on Σ𝐹1 , and denote 𝜋′Σ𝐹 (𝜈) (𝛾) for the permutation
that 𝜋′𝐹 (𝛾) induces on the fiber Σ𝐹 (𝜈) above 𝜈. Let 𝜀(∗) denote the signature of a permutation ∗. The
proof of Lemma 5.28 follows from the following two sub-lemmas.

Sublemma 5.34.

𝜀 𝜄,𝑤 (𝛾) · 𝜀 𝜄,𝑤′ (𝛾) = 𝜀(𝜋′𝐹 (𝛾))
𝑛𝑛′

Sublemma 5.35.

𝛾
(
𝑁𝐹1/Q(𝛿𝐹/𝐹1)1/2

)
𝑁𝐹1/Q(𝛿𝐹/𝐹1)1/2

= 𝜀(𝜋′𝐹 (𝛾))

Proof of Sublemma 5.34. Define 𝐽𝛾 = { 𝑗 : 𝜋𝐹 (𝛾) (𝜂 𝑗 ) is not distinguished}. Keeping in mind that
strongly-pure weights such as 𝜇 and 𝜇′ are the base-change of (strongly-)pure weights from 𝐹1, we
deduce that the constituents ( 𝜄𝑤𝜂)𝜂:𝐹→C of the Kostant representative 𝜄𝑤 are such that if 𝜂 |𝐹1 = 𝜂′|𝐹1 ,
then 𝜄𝑤𝜂 and 𝜄𝑤𝜂′ are the same element in 𝔖𝑁 – the Weyl group of GL𝑁 . For 1 ≤ 𝑗 ≤ 𝑟1, denote
𝑙 𝑗 = 𝑙 ( 𝜄𝑤𝜂 𝑗𝑖 ) and 𝑙∗𝑗 = 𝑙 ( 𝜄𝑤 �̄� 𝑗𝑖 ). One has 𝑙 𝑗 + 𝑙∗𝑗 = 𝑛𝑛′ since w is balanced. Also, denote 𝑙𝜈 = 𝑙 ( 𝜄𝑤𝜂) for
any 𝜂 ∈ Σ𝐹 (𝜈). We claim that

𝜀 𝜄,𝑤 (𝛾) = 𝜀(𝜋1∞(𝛾)) (𝑛𝑛
′𝑘)2 ·

∏
𝑗∈𝐽𝛾

(−1)𝑙 𝑗 𝑙
∗
𝑗 𝑘

2
·
∏

𝜈∈Σ𝐹1

𝜀(𝜋′Σ𝐹 (𝜈) (𝛾))
𝑙2𝜈 . (5.36)

Recall that the signature 𝜀 𝜄,𝑤 (𝛾) is determined by the action of 𝛾 on the wedge-product in (2.26):
𝑒∗Φ𝜄𝑤

= 𝑒∗Φ𝑤𝜂1
∧ · · · ∧ 𝑒∗Φ

𝑤
𝜂𝑑𝐹

. The proof of (5.36) boils down to becoming aware how the factors in this
wedge-product are permuted, and what signature is introduced in un-permuting them. The following
scheme depicts from bottom to top, the places of 𝐹1, embeddings of 𝐹1, embeddings of F, and the
lengths of the Kostant representatives they parametrize:

𝑙 (𝑤𝜂 𝑗1 ) = 𝑙 𝑗 . . . 𝑙 (𝑤𝜂 𝑗𝑘 ) = 𝑙 𝑗 𝑙 (𝑤 �̄� 𝑗1 ) = 𝑙∗𝑗 . . . 𝑙 (𝑤 �̄� 𝑗𝑘 ) = 𝑙∗𝑗

𝜂 𝑗1

���
���

���
��

. . . 𝜂 𝑗𝑘

���
���

���
��

𝜂 𝑗1

���
���

���
��

. . . 𝜂 𝑗𝑘

���
���

���
��

𝜈 𝑗

����
����

����
����

����
��� �̄� 𝑗

����
����

����
����

����
��

𝑤 𝑗

Group together the wedge-factors as follows:

𝑒∗Φ𝜄𝑤
= 𝑒∗Φ[𝑤1 ]

∧ · · · ∧ 𝑒∗Φ[𝑤𝑟1 ]
,
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where, for each 1 ≤ 𝑗 ≤ 𝑟1,

𝑒∗Φ[𝑤𝑗 ]
= 𝑒∗Φ[𝜈𝑗 ]

∧ 𝑒∗Φ[�̄� 𝑗 ]
,

and for each 𝜈 𝑗 ∈ Σ𝐹1 ,

𝑒∗Φ[𝜈𝑗 ]
= 𝑒∗Φ

𝑤
𝜂𝑗1
∧ · · · ∧ 𝑒∗Φ

𝑤
𝜂𝑗𝑘

, 𝑒∗Φ[�̄� 𝑗 ]
= 𝑒∗Φ

𝑤
�̄�𝑗1
∧ · · · ∧ 𝑒∗Φ

𝑤
�̄�𝑗𝑘

.

Recall that 𝑒∗Φ
𝑤
𝜂𝑗𝑖

has degree 𝑙 𝑗 and 𝑒∗Φ
𝑤
�̄�𝑗𝑖

has degree 𝑙∗𝑗 . Hence, 𝑒∗Φ[𝜈𝑗 ] has degree 𝑘𝑙 𝑗 , and 𝑒∗Φ[�̄� 𝑗 ]
has degree 𝑘𝑙∗𝑗 . Therefore, 𝑒∗Φ[𝑤𝑗 ]

has degree 𝑘𝑙 𝑗 + 𝑘𝑙∗𝑗 = 𝑘𝑛𝑛′. Now, the permutation 𝜋1∞(𝛾) on

𝑆∞(𝐹1) = {𝑤1, . . . , 𝑤𝑟1 } can be undone by the signature 𝜀(𝜋1∞(𝛾)) (𝑛𝑛
′𝑘)2 . Next, only for those 𝑗 ∈ 𝐽𝛾 ,

the two factors in 𝑒∗Φ[𝜈𝑗 ]
∧ 𝑒∗Φ[�̄� 𝑗 ] get interchanged, giving the signature (−1)𝑙 𝑗 𝑙

∗
𝑗 𝑘

2
. Finally, adjusting for

the action of 𝛾 on Σ𝐹1 (i.e., now working with 𝜋′𝐹 (𝛾), which only permutes internally within each fiber
Σ𝐹 (𝜈) over 𝜈 ∈ Σ𝐹1 ), one sees the signature 𝜀(𝜋′Σ𝐹 (𝜈) (𝛾))

𝑙2𝜈 for each such 𝜈. This proves the claim (5.36).
For any integer a, since 𝑎2 ≡ 𝑎 (mod 2), (5.36) simplifies to

𝜀 𝜄,𝑤 (𝛾) = 𝜀(𝜋1∞(𝛾))𝑛𝑛
′𝑘 ·

∏
𝑗∈𝐽𝛾

(−1)𝑙 𝑗 𝑙
∗
𝑗 𝑘 ·

∏
𝜈∈Σ𝐹1

𝜀(𝜋′Σ𝐹 (𝜈) (𝛾))
𝑙𝜈 . (5.37)

Similarly, using the relation of 𝑤′ with w, one has

𝜀 𝜄,𝑤′ (𝛾) = 𝜀(𝜋1∞(𝛾))𝑛𝑛
′𝑘 ·

∏
𝑗∈𝐽𝛾

(−1)𝑙
∗
𝑗 𝑙 𝑗 𝑘

2
·
∏

𝜈∈Σ𝐹1

𝜀(𝜋′Σ𝐹 (𝜈) (𝛾))
𝑙∗𝜈 . (5.38)

Multiply (5.37) and (5.38) to get

𝜀 𝜄,𝑤 (𝛾) · 𝜀 𝜄,𝑤′ (𝛾) =
∏

𝜈∈Σ𝐹1

𝜀(𝜋′Σ𝐹 (𝜈) (𝛾))
𝑙𝜈+𝑙∗𝜈 =

-./
∏

𝜈∈Σ𝐹1

𝜀(𝜋′Σ𝐹 (𝜈) (𝛾))
012
𝑛𝑛′

= 𝜀(𝜋′𝐹 (𝛾))
𝑛𝑛′ . �

Proof of Sublemma 5.35. For 𝑥 ∈ 𝐹×1 , one has 𝑁𝐹1/Q(𝑥) =
∏

𝜈∈Σ𝐹1
𝜈(𝑥) > 0. Let {𝜌1, . . . , 𝜌𝑘 } denote

the set of all embeddings of F into 𝐹1 over 𝐹1, for some algebraic closure 𝐹1 of 𝐹1; let {𝜔1, . . . , 𝜔𝑘 } be
an 𝐹1-basis for F; then 𝛿𝐹/𝐹1 = det[𝜌𝑖 (𝜔 𝑗 )]2. Hence,

𝑁𝐹1/Q(𝛿𝐹/𝐹1) =
∏

𝜈∈Σ𝐹1

𝜈(det[𝜌𝑖 (𝜔 𝑗 )]2) =
∏

𝜈∈Σ𝐹1

det[𝜌𝜈𝑖 (𝜔 𝑗 )]2,

where {𝜌𝜈1 , . . . , 𝜌
𝜈
𝑘 } is the set of all embeddings of F into C that restrict to 𝜈 : 𝐹1 → C. We may take

𝜌𝜈𝑖 to be �̃� ◦ 𝜌𝑖 for any extension �̃� : 𝐹1 → C of 𝜈. Whence,

𝑁𝐹1/Q(𝛿𝐹/𝐹1)1/2 = ± det

⎡⎢⎢⎢⎢⎢⎢⎢⎣
[𝜌𝜈1

𝑖 (𝜔 𝑗 )]
[𝜌𝜈2

𝑖 (𝜔 𝑗 )]
. . .

[𝜌𝜈𝑑1
𝑖 (𝜔 𝑗 )]

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (5.39)

where the appropriate sign ± is chosen to make the right-hand side positive. Each block [𝜌𝜈𝑖 (𝜔 𝑗 )] is a
𝑘 × 𝑘-block. Apply 𝛾 to (5.39), and the change in the sign of the determinant on the right is the requisite
sign 𝛾

(
𝑁𝐹1/Q(𝛿𝐹/𝐹1)1/2

)
/𝑁𝐹1/Q(𝛿𝐹/𝐹1)1/2. The blocks are permuted according to 𝜋𝐹1 (𝛾) which does

not change the sign. Hence, the signature is accounted for by assuming that the blocks remain where
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they are and looking at how each block’s rows are permuted internally; in other words, keeping (5.33)
in mind, the requisite signature is ∏

𝜈∈Σ𝐹1

𝜀(𝜋′Σ𝐹 (𝜈) (𝛾)) = 𝜀(𝜋′𝐹 (𝛾)). �

This concludes the proof of Lemma 5.28. �

This concludes the proof of Proposition 5.26, proving compatibility of our main theorem with
Deligne’s conjecture.

5.5. An example

If we take 𝑛 = 𝑛′ = 1, then the main result and techniques are all due to Harder [22]. However, the
signature 𝜀 𝜄,𝑤 (𝛾) · 𝜀 𝜄,𝑤′ (𝛾), that can be nontrivial in general, is missing in [22]. Furthermore, the subtle
distinction between when F is in the CM-case and when it is in the TR-case is not seen in [22] and
it becomes apparent only in the larger context of this article. This case 𝑛 = 𝑛′ = 1 is also extensively
discussed in [42], wherein examples are constructed to show the nontriviality of these signatures. As an
alternative, it is worth the effort to illustrate the content of the main theorem in the simplest nontrivial
example: when 𝑛 = 𝑛′ = 1 and F is an imaginary quadratic field, not so much by appealing to Harder
[22], or this article, but rather via recourse to modular forms of CM type. Here, 𝜎 and 𝜎′ are both
algebraic Hecke characters, and the main theorem concerns the ratios of successive critical values of
the L-function attached to the algebraic Hecke character: 𝜒 = 𝜎𝜎′−1. After relabelling, take 𝜎 = 𝜒 an
algebraic Hecke character, and for 𝜎′, take the trivial character. This GL(1)-example is instructive, and
was helpful to the author to see some finer details.

For an imaginary quadratic field 𝐹, let Hom(𝐹,C) = {𝜂, 𝜂}; the choice of 𝜂 is not canonical; it
induces an isomorphism 𝜂 : 𝐹∞ � C. Let 𝜒 : 𝐹×\A×𝐹 → C

× be an algebraic Hecke character; this
means that 𝜒 is a continuous homomorphism whose infinite component 𝜒∞ : 𝐹×∞ → C× is of the form
𝜒∞(𝑧) = 𝑧𝑝𝑧𝑞 , for integers p and q. Then 𝜒 ∈ Coh(GL1/𝐹, 𝜇) with 𝜇 = (𝜇𝜂 , 𝜇 �̄�) and 𝜇𝜂 = −𝑝 and
𝜇 �̄� = −𝑞. The weight 𝜇 is strongly-pure with purity weight w = −𝑝 − 𝑞. One also has

𝜒∞(𝑧) =
(
𝑧

𝑧

)ℓ/2
(𝑧𝑧)−w/2, ℓ = 𝑝 − 𝑞 ∈ Z.

As recalled in (3.3), the Γ-factors at infinity (up to nonzero constants and exponentials) on either side
of the functional equation are

𝐿∞(𝑠, 𝜒) ∼ Γ(𝑠 − w
2 +

|ℓ |
2 ), 𝐿∞(1 − 𝑠, 𝜒−1) ∼ Γ(1 − 𝑠 + w

2 +
|ℓ |
2 ).

Assume, without any loss of generality (if necessary, replacing 𝜒 by 𝜒−1), that ℓ ≥ 0, (i.e., 𝑝 ≥ 𝑞).
Then 𝐿∞(𝑠, 𝜒) ∼ Γ(𝑠 + 𝑝) and 𝐿∞(1 − 𝑠, 𝜒−1) ∼ Γ(1 − 𝑠 − 𝑞). The critical set for 𝐿(𝑠, 𝜒) is the set
of ℓ consecutive integers: {1 − 𝑝, 2 − 𝑝, . . . , −𝑞}. The critical set is nonempty if ℓ ≥ 1, and we have
ℓ many critical points and ℓ − 1 pairs of successive critical points. The cuspidal width ℓ(𝜇, 0) between
𝜇 and the weight 𝜇′ = 0 is ℓ(𝜇, 0) = ℓ. If we were to apply the main theorem to the pair 𝜒 and the
trivial Hecke character (which is cohomological with respect to 𝜇′ = 0), then the combinatorial lemma
(Lemma 3.16) imposes the condition ℓ ≥ 2, and Theorem 5.16 gives a rationality result for the ratios
𝐿(𝑚, 𝜒)/𝐿(𝑚 + 1, 𝜒) of all successive critical values. This theorem can also be seen independently by
appealing to the rationality results of Shimura for L-functions of modular forms.

Take 𝜋 = 𝜋(𝜒) = AIQ𝐹 (𝜒) to be the automorphic induction of 𝜒 from F to Q. Then 𝜋 is a cuspidal
automorphic representation of GL2(AQ). The representation 𝜋∞ at the infinite place is, by definition,
AIR
C
(𝜒∞), which in turn is defined by asking for its Langlands parameter to be the induced representation

Ind𝑊R𝑊C
(𝜒∞) = Ind𝑊R

C× (𝑧 ↦→
(
𝑧
�̄�

)ℓ/2
) ⊗ | |−w/2

R
. This is exactly the representation that has cohomology

https://doi.org/10.1017/fms.2025.48 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.48


66 A. Raghuram

with respect to the irreducible representation of GL(2) with highest weight 𝜆 = (𝑝, 𝑞). By the standard
dictionary between modular forms and automorphic representations (see, for example, Gelbart [13]),
there is a primitive modular form 𝑓𝜒 of weight 𝑘 = 𝑝 − 𝑞 + 1 such that 𝜋(𝜒) = 𝜋( 𝑓𝜒) ⊗ | |−w/2. One of
the properties of this dictionary gives us the following equality of L-functions:

𝐿(𝑠, 𝑓𝜒) = 𝐿(𝑠 − (𝑘−1)
2 , 𝜋( 𝑓𝜒)) = 𝐿(𝑠 − (𝑘−1)

2 + w
2 , 𝜋(𝜒)) = 𝐿(𝑠 − 𝑝, 𝜒).

The critical set for 𝐿(𝑠, 𝑓𝜒) is the string of integers {1, 2, . . . , 𝑘 − 1}. A word about the normalizations
of these L-functions: first of all, 𝐿(𝑠, 𝑓𝜒) is the Hecke L-function of the modular form 𝑓𝜒, which has a
functional equation with respect to 𝑠↔ 𝑘 − 𝑠. For a cuspidal automorphic representation 𝜋, as applied
to 𝜋(𝜒) or to 𝜋( 𝑓𝜒), the functional equation is with respect to 𝑠 ↔ 1 − 𝑠. The L-function 𝐿(𝑠, 𝜒) also
has a functional equation with respect to 𝑠 ↔ 1 − 𝑠. Furthermore, for any Dirichlet character 𝜔, by
which we mean a character 𝜔 : Q×\A×

Q
→ C× of finite-order, there is the equality

𝐿(𝑠, 𝑓𝜒, 𝜔) = 𝐿(𝑠 − 𝑝, 𝜒 ⊗ 𝜔𝐹 ),

where 𝜔𝐹 := 𝜔 ◦ 𝑁𝐹/Q is the base-change of 𝜔 from Q to F. In particular, if 𝜔 = 𝜔𝐹/Q is the quadratic
Dirichlet character of Q attached to F by class field theory, then

𝐿(𝑠, 𝑓𝜒, 𝜔𝐹/Q) = 𝐿(𝑠, 𝑓𝜒),

since the base-change of 𝜔𝐹/Q back to F is the trivial character. This is also seen at the level of
representations since 𝜋(𝜒) � 𝜋(𝜒) ⊗ 𝜔𝐹/Q.

From Shimura [49] applied to 𝑓𝜒, there exists two periods 𝑢±( 𝑓𝜒) ∈ C×, such that for any critical
integer 𝑟 ∈ {1, . . . , 𝑘 − 1}, and any primitive Dirichlet character 𝜓, one has

𝐿 𝑓 (𝑟, 𝑓𝜒, 𝜓) ≈ (2𝛑𝔦)𝑟𝑢±( 𝑓𝜒)𝔤(𝜓),

where 𝔤(𝜓) is the Gauß sum of 𝜓, and the choice of periods is dictated by the parities of r and 𝜓 via
𝜓(−1) = ±(−1)𝑟 ; and ≈ is a simplified notation to mean that the ratio of the left-hand side divided by
everything on the right-hand side is algebraic, and is Gal(Q̄/Q)-equivariant:

𝛾

(
𝐿 𝑓 (𝑟, 𝑓𝜒, 𝜓)

(2𝛑𝔦)𝑟𝑢±( 𝑓𝜒)𝔤(𝜓)

)
=

𝐿 𝑓 (𝑟, 𝛾 𝑓𝜒, 𝛾𝜓)
(2𝛑𝔦)𝑟𝑢±(𝛾 𝑓𝜒)𝔤(𝛾𝜓)

, ∀𝛾 ∈ Gal(Q̄/Q).

The finite part of the L-function 𝐿 𝑓 (𝑟, 𝑓𝜒, 𝜓) is completed using the archimedean Γ-factor
𝐿∞(𝑠, 𝑓𝜒, 𝜓) = 2(2𝛑)−𝑠Γ(𝑠). In terms of the completed L-function, the above relation takes the form

𝐿(𝑟, 𝑓𝜒, 𝜓) ≈ 𝔦𝑟𝑢±( 𝑓𝜒)𝔤(𝜓).

Take 𝑟 = 1 and use the above relation once for 𝜓 the trivial character and then for 𝜓 = 𝜔𝐹/Q to deduce

𝑢+( 𝑓𝜒) ≈ 𝑢−( 𝑓𝜒) 𝔤(𝜔𝐹/Q).

Next, apply Shimura’s result to 𝐿(𝑠, 𝑓𝜒) for 𝑠 = 𝑟 and 𝑠 = 𝑟 + 1, where 𝑟 ∈ {1, . . . , 𝑘 − 2} (possible
when 𝑘 ≥ 3, that is, ℓ ≥ 2), and divide one by the other to deduce

𝐿(𝑟, 𝑓𝜒)
𝐿(𝑟 + 1, 𝑓𝜒)

≈ 𝔦 𝔤(𝜔𝐹/Q),

while using 𝔦2 ∈ Q× and 𝔤(𝜔𝐹/Q)2 ∈ Q×. Since 𝐿(𝑠, 𝑓𝜒) = 𝐿(𝑠 − 𝑝, 𝜒), and putting 𝑟 − 𝑝 = 𝑚, one
gets for the ratio of two successive critical values of the completed L-function of 𝜒 the rationality result

𝔦 𝔤(𝜔𝐹/Q)
𝐿(𝑚, 𝜒)

𝐿(𝑚 + 1, 𝜒) ∈ Q̄,
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and furthermore,

𝛾

(
𝔦 𝔤(𝜔𝐹/Q)

𝐿(𝑚, 𝜒)
𝐿(𝑚 + 1, 𝜒)

)
= 𝔦 𝔤(𝜔𝐹/Q)

𝐿(𝑚, 𝛾𝜒)
𝐿(𝑚 + 1, 𝛾𝜒) , ∀𝛾 ∈ Gal(Q̄/Q).

One has used that 𝛾 𝑓𝜒 = 𝑓𝛾𝜒 which follows from the definition of 𝑓𝜒 (see [48, Sect. 5]). To see that
the above result is indeed an instance of Theorem 5.16, one needs the basic fact about quadratic Gauss
sums: 𝔦 𝔤(𝜔𝐹/Q) = |𝛿𝐹/Q |1/2 (mod Q×). It is shown in [41] that this example generalizes from GL(1)
over an imaginary quadratic extension to GL(𝑛) over a CM field.
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