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Abstract
This paper is devoted to a study of pseudocomplements in groupoids. A characterization of an
intraregular groupoid is obtained in terms of prime ideals. It is proved that the set of dense
elements of an intraregular groupoid S with 0 is the intersection of all the maximal filters of S
and that the set of normal elements of an intraregular groupoid closed for pseudocomplements
forms a Boolean algebra under natural operations. It is shown that the pseudocomplement of an
ideal of an intraregular groupoid with 0 is the intersection of all the minimal prime ideas not
containing it.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 20 L 99, 20 M 99; secondary
06 A 40.

Key words and phrases: Groupoid, intraregular, semigroup, pseudocomplement, normal
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1. Introduction

A theory of pseudocomplements for semilattices has been developed by Frink
(1962). The purpose of this paper is to develop a theory of pseudocomplements for
groupoids. The first section contains some basic results about prime ideals and
filters. The second section deals with intraregular groupoids. We obtain a character-
ization of an intraregular groupoid using prime ideals. The third section is devoted
to a study of pseudocomplements. The concluding section is concerned with the
pseudocomplement and the cutcomplement of an ideal. We prove that the set of
all dense elements of an intraregular groupoid S with 0 is the intersection of all
the maximal filters of S and that the set of normal elements of an intraregular
groupoid closed for pseudocomplements forms a Boolean algebra under natural
operations.

Some of the results here are analogous to results in Venkatanarasimhan (1970,
1971, 1974a, b). For standard concepts and notations used in this paper, the
reader may refer to Birkhoff (1948) and Clifford and Preston (1961). We shall
denote the lattice-join and lattice-meet by the symbols v and A respectively.
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2. Prime ideals and filters

Throughout this section S will denote a groupoid. By an ideal of S we mean a
non-empty subset A of S such that SA^A and AS^ A. An ideal A of S said to be
prime if abeA implies that aeA or be A. An ideal A of S is called a semiprime
ideal if cPeA implies that aeA. A non-empty subset A of S is called a filter if
a,beA holds if and only if abeA. The smallest ideal (filter) containing an element
a of S is called the principal ideal (principal filter) generated by a and is denoted
by J(a) (K(a)). A proper filter which is not contained in any other proper filter is
called a maximal filter. It is easily seen that the set-union of any upper directed
family of filters is a filter and that the intersection of a family of filters, whenever
it is non-empty, is a filter.

THEOREM 1. A subset A of S is a prime ideal (minimal prime ideal) if and only if
S—A is a proper filter (maximal filter).

PROOF. The first part of the theorem is given in Frink and Smith (1972, p. 315).
We shall prove the second part.

Suppose A is a minimal prime ideal of S. Then by the first part S—A is a proper
filter of S. Let X be any proper filter of S containing S- A. Then clearly A 2 S- X
and by the first part S-Xisa. prime ideal. Hence S—A = X. It follows that S—A
is a maximal filter. Conversely suppose S—A is a maximal filter of S. Then by the
first part A is a prime ideal. Let B be any prime ideal of S contained in A. Then
S-A^S-B and by the first part S-B is a proper filter. Hence S-A = S-B
and so A = B. Thus A is a minimal prime ideal.

THEOREM 2. If A is an ideal (filter) of S and beS—A, among all ideals (filters)
containing A and not containing b, there exists a maximal one.

PROOF. It is easily seen that the family of all ideals containing A and not
containing b is partially ordered by set-inclusion and that the set-union of any
totally ordered subfamily is an ideal and is the least upper bound of the subfamily.
Hence the first part follows by Zorn's lemma. The proof of the second part is
similar.

COROLLARY 1. IfS has 1 (0) any proper ideal (proper filter) of S is contained in a
maximal ideal (maximal filter).

As a consequence of Corollary 1 above and Theorem 1 we have the following

COROLLARY 2. If S has 0, any prime ideal of S contains a minimal prime ideal.

The following theorem is easily proved.
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THEOREM 3. If a prime ideal of S contains the intersection of a finite number of
ideals, it contains at least one of them.

For any two filters A, B of S we shall denote the smallest filter containing A u B
by AvB.

The following theorem is similar to Theorem 2 of Frink and Smith (1972).

THEOREM 4. If a, be S, K(a) v K(b) = K(ab).

THEOREM 5. If A, B are filters ofS, AwB=\J {K(ab): aeA,beB}.

PROOF. Let X = \J{K(ab): aeA,beB}. First we shall prove that X is a filter.
Let x,yeX. Then xBK{axb^), yek(a2b^ for some a^a^eA and b^b^eB. Clearly

xy e K(Ol bj v Kia, b£ = K(aJ v K(bJ v

= K(Ol) v K(aJ v tf(60 v

by Theorem 4.
Now ^02 6/4 and b^eB. It follows that xyeX. Suppose xyeX. Then

xyeA^a'fc') for some a'eA and 2>'e.B and so x.j 'G^a'i ')- Hence x j e l . It
follows that X is a filter. Let a6/1 and feeB. Then a e % ) for all yeB and
fe e#(.x*) for all x e A. Hence a,beX. Thus 4̂ u J?c x if y is any filter containing
AvB, aeA and beB, then clearly K(ab)^Y and so J c y . It follows that
X=AvB.

COROLLARY. If A is a filter ofS and xeS, AvK(x) = \JaeAK(ax).

3. Intraregular groupoids

A groupoid S is said to be intraregular if J(a)nJ{b) =J(ab) for all a,beS.
Clearly in an intraregular groupoid with 0, ab = 0 if and only if ba = 0.

THEOREM 6. Let A be an ideal of an intraregular groupoid S and beS—A. Then
there is a prime ideal containing A and not containing b.

PROOf. By Theorem 2, there is an ideal M which is maximal among all the ideals
of Scontaining A and not containing b. We claim thatM is prime. Let x,yeS—M.
Then be(MuJ(x))n(MuJ(J)) = Mv(J(xjnJfy)) = MuJ(xy). Consequently
xyeS—M, proving that M is prime.
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THEOREM 7. The following statements about a groupoid S are equivalent:
(1) 5 is intraregular.
(2) Every ideal of S is the intersection of all the prime ideals containing it.
(3) Every principal ideal ofS is the intersection of all the prime ideals containing it.

PROOF. Suppose S is intraregular. Let A be any ideal of S and B the intersection
of all the prime ideals containing A. Clearly A^B. Suppose A^B. Let beB—A.
By Theorem 6, there is a prime ideal M containing A and not containing b. This
is a contradiction to the choice of B. Hence A = B. Thus (1) implies (2).

Clearly (2) implies (3).
Suppose (3) holds and a,beS. Let x$J(ab). Then by (3) it follows that x$A

for some prime ideal A containing ab. Clearly J{a)<^A or J(b)^A. Hence x$J(a)
or x$J(b) and consequently x$J(a)nJ(b). Thus J(a)nJ(b)^J(ab). The reverse
inclusion is obvious. Hence (1).

COROLLARY 1. Every ideal of an intraregular groupoid is semiprime.

As a consequence of Theorem 7 and Corollary 2 under Theorem 2 we have the
following

COROLLARY 2. In an intraregular groupoid with 0 the intersection of all the minimal
prime ideals is J(0).

LEMMA 1. If S is an intraregular groupoid with 0, K(x) = S implies that x = 0.

PROOF. Suppose x^O. Then x$J(0). Hence by Theorem 6, there is a prime
ideal A containing J(0) and not containing x. By Theorem 1, S—A is a proper
filter. Clearly K(x)^S-A and OfS-A. It follows that K

LEMMA 2. If S is an intraregular groupoid with 0 and M is a maximal filter of S,
xeS—M implies that ax = 0 for some aeM.

PROOF. AS M is a maximal filter, 0 e 5 = MvK(x). By the corollary under
Theorem 5, OeK(ax) for some aeM. Clearly K(ax) = 5" and so by Lemma 1,
ax = 0.

4. Pseudocomplements in groupoids

Let S be a groupoid with 0 and aeS. Then by the pseudocomplement of a we
mean an element a* of S such that aa* = a* a = 0 and ab = ba = 0 implies that
a*b = ba* = b. Clearly the pseudocomplement of an element, whenever it exists,
is unique. If every element of S has a pseudocomplement, then S IS Sild tO DC
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closed for pseudocomplements. An element a of 5 is said to be normal (dense) if
a** = a (a* = 0). It is easily seen that an element a of S is normal if and only if
a = b* for some beS.

THEOREM 8. A prime ideal A of an intraregular groupoid S closed for pseudo-
complements is minimal prime if and only if

(*) A contains precisely one of x,x* for every xeS.

PROOF. Suppose A is minimal prime. Since xx* = 0eA, xeA or x* eA. Suppose
xeA. Then (S—A)vK(x) = S since S—A is a maximal filter by Theorem 1.
By Lemma 2, ax = 0 for some aeS—A. Now ax* = a. It follows that x*eS—A.

Conversely suppose (*) holds and xeA. Then x*eS—A. Hence

0 = xx*e(S-A)vK(x).

Thus S-A is & maximal filter and consequently A is a minimal prime ideal.

COROLLARY. A filter of an intraregular groupoid S closed for pseudocomplements
is maximal if and only if it contains precisely one ofx,x* for every xeS.

LEMMA 3. If S is an intraregular groupoid closed for pseudocomplements,
a,beS,J(a) = J(b) implies that a* = b*.

PROOF. Let/(a) = J(b). Then J(ab*) = J(a) nJ(b*) = J(b)nJ(b*) = J(bb*) = J(0).
Hence ab* = 0 and so a*b* = b*. Similarly a* b* = a*. Thus a* = b*.

THEOREM 9. Let S be a groupoid closed for pseudocomplements. Then
(i) a*a* = a*,forallaeS;
(ii) aa** = a** a = a for all aeS;
(iii) S has the identity element 1 and 0* = 1 ;
(iv) l* = 0.

IfSis intraregular, then
(v) a*** = a*forallaeS;
(vi) ab = a implies that a*b* = b*a* = b* for a,beS;
(vii) (ab)* = (a**b**)*for all a,beS;
(viii) (aa)* = a* for all a e S;

(ix) (ab)* = (ba)* for all a,beS;
(x) (a(bc))* = ((ab) c)* for all a,b,ce S.

If further S is an intraregular semigroup,
(xi) (ab)** = a**b**for all a,beS;
(xii) (a*b*)** = a*b* for all a,beS;
(xiii) a*b* = b*a*foralla,beS.
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PROOF (i) ab = ba = 0 implies that a*b = b. Taking b = a* we get (i).
(ii) Since a* a = aa* = 0, by the definition of a** it follows that

aa** = a** a = a.

(iii) 0a = aO = 0 for all aeS. Hence 0*a = a0* = a. Hence (iii).
(iv) is obvious.
(v) Let A be any prime ideal of S. Then a e S—A implies that a**eS—A which

implies that a***sA. Hence all the prime ideals of S contain aa*** and so
aa*** = 0. Consequently a* a*** = a***. Now the result follows by (ii).

(vi) Suppose ab = a. Then

J(ab*) = J(b* a) = J(a) nJ(b*) = J(ab) nJ(b*)

= J(a) nJ(b) nJ(b*) = /(0).

Hence ab* = b*a = 0 so that a*b* = b*a* = b*.
(vii) Let A be any minimal prime ideal of S. Then (a**b**)*eA if and only

if a**b**eS-A if and only if a**,b**eS-A if and only if a*,b*eA if and
only if a,beS-A (by Theorem 8) if and only if abeS-A if and only if (ab)*eA.
Hence (a**b**)(ab)*,(ab)(a**b**)*eA. By Corollary 2 under Theorem 7 it
follows that (a**b**)(ab)* = (ab)(a**b**)* = 0. Consequently

(ab)* = (a**b**)*(ab)* = (a**b**)*.

Since J(aa)=J(a), J(ab)=J{ba) and J(a(bc)) = J((ab) c), (viii), (ix) and (x)
follow by Lemma 3.

(xi) As in (vii), (ab)*(a**b**) = 0. Suppose (ab)*c = 0 for some ceS and let
A be any minimal prime ideal of S. Then ceS—A implies that (ab)*eA and
hence abeS—A (by Theorem 8). This further implies that a,beS—A and hence
a*,b*eA. Consequently a*c,b*ceA. By Corollary 2 under Theorem 7 it follows
that a* c = b* c = 0. Hence a** c = b** c = c, so that

(a**b**)c = a**(6**c) = a**c = c.
This proves (xi).

(xii) is obtained by replacing a by a*, b by b* in (xi) and using (v).
(xiii) is an immediate consequence of (ix) and (xii).

The following theorem is easily proved.

THEOREM 10. In (v) of Theorem 9, intraregularity of S can be replaced by associ-
ativity, in (vi) and (vii) intraregularity can be replaced by associativity and commu-
tativity and in (x) and (xi) intraregularity can be replaced by commutativity. Further
if Sis a commutative semigroup closed for pseudocomplements the set N of normal
elements of S forms a Boolean algebra which is a sub-pseudocomplemented sub-
semigroup ofS.
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THEOREM 11. The set D of all dense elements of an intraregular groupoid S with
0 forms a filter ofS and is the intersection of all the maximal filters ofS.

PROOF. Let A be the intersection of all the maximal filters of S. If x e S—A, then
xeS-M for some maximal filter M of S. By Lemma 2, ax = 0 for some aeM.
Consequently xeS—D. On the other hand, if y e S~ D, then yz = 0 for some z=fr 0.
By Lemma 1 and Corollary 1 under Theorem 2 it follows that zeMx for some
maximal filter Mv Clearly y e S -M t and so yeS—A. Hence the theorem.

THEOREM 12. The set N of normal elements of an intraregular groupoid S closed
for pseudocomplements forms a Boolean algebra under the unary operation * and
the binary operation A defined by a/\b = (ab)**.

PROOF. Let a,b,ceN. Then by (viii) and (ix) of Theorem 9 it follows that
at\a = a and ai\b = bsa. Also

(a A (b AC)) = (a(bc)**)** = (a**(bc)**)** = (a(bc))** = ((ab)c)**

= ((ab)** c**)** = ((ab)**c)** = ((aA&)Ac)

using (vii) and (x) of Theorem 9. Clearly if a A b* = 0 then ab* = 0 and hence
ab** = a. It follows that ab = a and hence ahb = a. Suppose ai\b = a and let
/4 be any minimal prime ideal of S. Then if b*$A then be A and hence abeA.
Therefore aAbeA which implies that ae.4. Hence ab*eA and so aAi*G^4.
Thus all the minimal prime ideals of S contain a A b* and so by Corollary 2 under
Theorem 7 a/\b* = 0. Now the theorem follows by a well-known characterization
of Boolean algebra due to Frink (1941).

Whether or not N is a subgroupoid of S in Theorem 12 is an open problem.
However, we have the following

THEOREM 13. Let S be an intraregular groupoid closed for pseudocomplements.
Then the following statements are equivalent:

(1) (ab)** = a**b**for all a,beS;
(2) a*(b* c*) - (a* b*) c* for all a,b,ce S;
(3) a*b* = (a*b*)** for all a,beS.

PROOF. Suppose (1) holds. By (x) of Theorem 9 it follows that

(a*(b*c*))** = ((a*b*)c*)**\
that is,

a***(6*c*)** = (a*b*)**c***
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by (1). Using (1) again we have

Now (2) follows by (v) of Theorem 9.
Suppose (2) holds. Then a*(a*b*) = (a*a*)b* = a* b* by (i) of Theorem 9.

Hence by (v) and (vi) of Theorem 9 a*(a*b*)** = (a*b*)**. Similarly
b*(b*a*)** = (b*a*)**; that is, b*(a*b*)** = (a* b*)** by (ix) of Theorem 9.
Hence by (2) (a*b*)(a*b*)** = a*(b*(a* b*)**) = a*(a*b*)** = (a* b*)**. Also
by (ii) of Theorem 9 (a*b*)(a*b*)** = a* b*. Hence (3).

Replacing a by a*, b by b* in (3) and using (vii) of Theorem 9 we get (1). Thus
(3) implies (1).

5. Pseudocomplement of an ideal

If S is a groupoid with 0 the set of all ideals of S forms a pseudocomplemented
completely distributive complete lattice under set-inclusion as ordering; the join
and meet coincide with set-union and set-intersection. A normal (dense) element
of this lattice is called a normal ideal (dense ideal). The cutcomplement Ac of an
ideal (filter) A of a groupoid S is defined by Ac - r\aeA^(.a)(r\a£A

J(a))- An
ideal of S which is an intersection of principal ideals is called a comprincipal
ideal.

THEOREM 14. A prime ideal of a groupoid S with 0 is either dense or normal.

PROOF. Let A be a prime ideal of S. Then A^. A* or A^. A** by Theorem 3,
It follows that A* = J(0) or A = A**.

The following theorem is easily proved.

THEOREM 15. IfA is an ideal ofa groupoid S with 0, A* = {xeS: AnJ(x) -J(0)}.
If S is intraregular, A* = {xeS: ax = 0 for all aeA} and J(a)* = {xeS: ax = 0}.

THEOREM 16. In an intraregular groupoid closed for pseudocomplements,
J(x)* = J(x*)for every x.

PROOF. NOW J(x)nJ(x*) = J(xx*) =7(0) and so /(**)£/(*)*. Also yeJ(x)*
implies that xy = 0 (by Theorem 15) which implies that x*y = y and hence
yeJ(x*). Thus /(*)*<=/(**). It follows that /(*)* =

THEOREM 17. A prime ideal A of an intraregular groupoid S with 0 is minimal
prime if and only if

(*) A contains precisely one of J(x),J(x)* for every xeS.
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PROOF. Suppose A is minimal prime. By Theorem 3, A contains at least one of
J(x),J(x)*. Suppose A^J(x). Then (S-A)vK(x) = S since S-A is a maximal
filter by Theorem 1. By Lemma 2,ax = 0 for some aeS—A. Hence by Theorem 15,
aeJ(x)* and so •/(*)*$ A.

Conversely suppose (*) holds and xeA. Then J(x)*^A. Let yeJ(x)*—A.
Then 0 = xye(S—A)vK(x). It follows that S—A is a maximal filter and conse-
quently A is a minimal prime ideal.

COROLLARY. If M is a minimal prime ideal of an intraregular groupoid, xeM
implies that /(*)**£ M.

As an immediate consequence of (vi) of Theorem 9 we have the following

THEOREM 18. If A, B are ideals of a groupoid S with 0; A^B implies that A*^B*.

THEOREM 19. If A is an ideal of an intraregular groupoid with 0, A* =

PROOF. Let xe (\aeAJ(d)*. Then xej(a)* for every aeA. Hence by Theorem 15
xeA*. Thus ClaeA^i0)*—^*- The reverse inclusion follows by Theorem 18.

COROLLARY. In an intraregular groupoid closed for pseudocomplements, every
normal ideal is comprincipal.

THEOREM 20. The pseudocomplement of an ideal A of an intraregular groupoid S
with 0 is the intersection of all the minimal prime ideals of S not containing A.

PROOF. Let B be the intersection of all the minimal prime ideals not containing A.
Clearly A*^B. Suppose A*±B. Let beB-A*. Then by Theorem 15, ab^0 for
some aeA. By Lemma 1, K(ab) is a proper filter of 51. Hence by Corollary 1 under
Theorem 2, K(ab)^M for some maximal filter M of S. Now abeM and so
a,beM. Hence A,B^S—M. Also S—M is a minimal prime ideal by Theorem 1.
Thus we get a contradiction to the choice of B. Hence the theorem.

COROLLARY. The pseudocomplement of an ideal A of an intraregular groupoid S
with 0 is the intersection of all the prime ideals not containing A.

THEOREM 21. Let S be an intraregular groupoid with 0. Then any normal ideal ofS
is the intersection of all the minimal prime ideals containing it and a principal ideal
of S is normal if it is the intersection of all the minimal prime ideals containing it.

PROOF. The first part is an immediate corollary of Theorem 20. Let J(a) be a
principal ideal of S such that J(a) = Oiei^ where {Mt: iel} is the family of all
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the minimal prime ideals containing J(a). Then aeMt for all iel and so by the
corollary under Theorem 17, J(a)**^Mi for all iel. Hence

It follows that J(a) is normal.

THEOREM 22. The cutcomplement of an ideal {filter) A of a groupoid S is the
intersection of all the filters (ideals) intersecting A.

PROOF. Let A be an ideal of S and Ax the intersection of all the filters of S
intersecting A. Clearly A-^AC. Also if B is any filter intersecting A and xeAnB,
then xeA, B and so Ac^K(x)^B. Hence the first part. The second part is proved
on similar lines.

As an immediate consequence of Theorems 7 and 22 we have the following

THEOREM 23. If A is a filter of an intraregular groupoid S, then Ac is the intersection
of all the prime ideals intersecting A.

THEOREM 24. If A is an ideal of an intraregular groupoid S, then Acc is the inter-
section of all the principal ideals containing A.

PROOF. It is enough to show that xeAc if and only if J(x)~3.A. Suppose
Then x$K(a) for some a eA. Now S-K(a) is a prime ideal by Theorem 1 and
J(x)^S -K(a). Clearly J(x)nK(a) -= <p and so a$J{x). Thus J(x)£A. On the
other hand, if J(x)^A and aeA—J(x), then J(x)nK(a) = <p. Hence xK(a) and
so x$Ac.

THEOREM 25. If A is an ideal of an intraregular groupoid closed for pseudo-
complements, A*c = A*.

PROOF. By Theorem 24 and the corollary under Theorem 19 it follows that
A^A^A**. Hence by Theorem 18, A*^A*C^A*. It follows that A*C = A*.
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