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ON QUASI-MONOTONE SEQUENCES
AND THEIR APPLICATIONS

HUsEYIN Bor

In this paper using §-quasi-monotone sequences a theorem on |W, Pn I R summabil-
ity factors of infinite series, which generalises a theorem of Mazhar [7] on |C, 1|,
summability factors of infinite series, is proved. Also we apply the theorem to
Fourier series.

1. INTRODUCTION

A sequence (c¢5) of positive numbers is said to be quasi-monotone if nAc, > —ac,
for some a > 0 and it is said to be §-quasi-monotone, if ¢, — 0, ¢, > 0 ultimately
and Ac, > —68,, where (§,) is a sequence of positive numbers (see {1]).

Let ) a, be a given infinite series with partial sums (s,.). By u, and t, we
denote the nth (C, 1) means of the sequences (s,) and (na,), respectively. The series
3" an is said to be summable |C, 1., k > 1, if (see [4])

o0

(1.1) Z n* 1 up — un_y|* < co.

n=1

But since t, = n(u, — un—1) (see [6]), condition (1.1) can also be written as
(1.2) i Lt <0

. - It .

n=1
Let (pn) be a sequence of positive numbers such that
n
(1.3) P,,:Zp,,—)()oa,sn—»oo, (P—i=P—i=0,i>1)~
v=0

The sequence-to-sequence transformation

1 n
(1.4) Wn = 5= Zp,,s,,
™ v=0
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defines the sequence (wn) of the (N, p,) means of the sequence (s,) generated by
the sequence of coefficients (p,) (see [5]). The series Y a, is said to be summable
|W, p,.|k, k > 1,if (see [2])

(1.5) Z (Pn/Pn)k_l [wn — wn—1|k < oo.

n=1
In the special case when p, =1 for all values of n (respectively k = 1), then |—]\7, pﬂl i
summability is the same as |C, 1|, (respectively |W, p,,l) summability. If we write

(1.6) Xn =EPV/PV7

v=0

then (X,) is a positive increasing sequence tending to infinity with n.

2

Mazhar (7] has proved the following theorem for |C, 1|, summability factors by
using §-quasi-monotone sequences.

THEOREM A. Let A, — 0 as n — co. Suppose that there exists a sequence
of numbers (An) which it is §-quasi-monotone with  né,logn < co, 3 A,logn is
convergent and |AM,| < |A,] for all n. If
(2.1) > = [ta]* = O(logm) as m — oo,

n=1

then the series ) anAn is summable |C, 1], k> 1.

3.

The aim of this paper is to generalise Theorem A for |W, pnl , summability. Now
we shall prove the following theorem.

THEOREM 1. Let A, — 0 as n — oo and let (p,.) be a sequence of positive
numbers such that

(3.1) P, = O(np,) as n — oo.

Suppose that there exists a sequence of numbers (A,) which is §-quasi-monotone with
S nXnbn < 0, Y AnX, is convergent and |A),| < |A,| for all n. If

(3.2) :L; %: |tn]® = O(Xm) as m — oo,

then the series Y an), is summable |W, p,,]k, k>1.

REMARK. It should be noted that if we take p, = 1 for all values fo n (in this case
X, ~logn) in Theorem 1, then we get Theorem A.
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4.
We need the following lemmas for the proof of Theorem 1.

LEMMA. Under the conditions of Theorem 1, we have that
(4.1) |An| Xn = O(1) as n — oo.

PROOF: Since A\, = 0 as n — oo.

v=n

IAnI Xn = Xn

< Xa f: |AX|

<D X, AX] €)Xy |4, < 0.
v=0 v=0
Hence |An] Xn = O(1) as n — oo. 1|

LEMMA 2. If (A,) is §-quasi-monotone with Y nX,b, < oo and ) ApX, is
convergent, then

(4.2) mXmAm = O(1) as m — oo,
(4.3) ZnX,, |AA,| < o0.
n=1

The proof of Lemma 2 is similar to the proof of Theorems 1 and 2 of Boas [1, case
4 = 1] and hence is omitted.

5.

PROOF OF THEOREM 1: Let (T,) be the sequence of (W , pn) means of the series
3" anAn. Then, by definition, we have

n v n

1 1
. n=— 45 v r= 7 P,-P,_ v Ay
(5.1) T, Pn‘;p ga,.z\ Pﬂ;( P,_1)a,A
Then, for n > 1, we get
Pn = Pn = Pv—lAv
5.2 Tp —Ta 1= P, 1a,)y = -
( ) ! P,P,_, ; 1 PnPn—l ; v ve
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Applying Abel’s transformation to the right hand side of (5.2), we have

n—1

v— 1A pnAn =
Th —Thy = —— P Pn— ‘;A( ;ra,-{- P, 2 va,,
(n+1)pntadn
= ,t,,A
nP, P P,._ vz_:” v T F.P., P,. L &
n—1

1
+—P7'Pn—_zp/\u+1t —=Tn1+Tn2+Tn,s+ Tna, say.

v=1

To complete the proof of Theorem 1, by Minkowski’s inequality, it is sufficient to show
that

(5.3) > (Pa/pn) 7 |Ta, ' < o0, forr=1,2,3,4.
n=1

First, we have

f} (Pn/pa)* " {Tn,1|* = O(1) f: Palza Ital®
n=1 ! = Pn

m-—1 n m
Dv DPn
=0(1) Y Al Y B [t +0) Pl 3 - Il
n=1 v=1 v n=1" "

= 0(1)"'2—: |AAn| Xn 4 O(1) PAm| X = 0(1)m2_: |4n] Xn + O(1) |Am| X = O(1)

as m — 00, by virtue of the hypotheses and Lemma 1.

Now applying Holder’s inequality, as in Ty,,;, we have that

m+1

S (Pa/pa)* T T o)
n=2

m+1 n—1 k-1
_O(l)z P Pn— {valt I |2 } { Epv}

n=2 v=1
m-+1

=0(1) Z ol¥7 Aol po Itol® L
v=1

n=v+1 PnPn—l
=1y | Pv
=0(1) 3_ sl B Itsl* = 0(1)
v=1 v

as m — 0.
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Again, using the fact that P, = O(vp,), by (3.1), we get

m+1 m+1

n—1 k
P,/pn k- n - = 1 Pn v ol |tv
3 (Pafpn)* Tl =00 3 = { 3 Ptk
m+1 » n-1 k
= 0(1) Z P,.P,f_l {Z vy |4, Itvl}

n=2 v=1
m+1 ; ol k-1
L E) Ve PR MY PR 3P
n—1 v=1 "_1 v=1
k P e p
. -1 n
= 0(1)';(le°|) v |Ay| po lto] 2. PP
= 0(1)2_): |4.] -j’% lto|*
=0(1) Z A(v|4,) i lt *+ 0<1)m|.4m|2 P |
m—1
=0(1) Y 1A |[4.])| X, + O(1)m | Am| Xom
v=1
m—1 -1
=0(1) Y v X, |A4| +0(1) Z |Ast1] X + O(1)m | A | X
v=1 v=1

= 0(1) as m — oo,

by virtue of the hypotheses and Lemma 2.
Finally, using the fact that P, = O(vp,), by (3.1), as in T,,,; we have that

m+1 x * m+1 p n-—-1 P k
S (Pufpn) T Tmal < S #— {Z = Pl |t,]}
n=2 " n-1

= v=1
m+1 n-l *
-ow3: 52 {5 et
m+1 n-1 x E -
_O(l)nz_:zPPn_ {;IA»+1I Pvltvl }X{P_ ;P'a}
k-1 ek _Pn
- o(l)vz_:llz\ml Ponalp il 2, PP

= O(I)Z |Av+1| I‘ * =0(1)

v=1
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as m — oo. Therefore, we get

Z(P,./p,,)k_l |Tn,-|* =0(1) as m > 00, forr=1,2,3,4.

n=1
This completes the proof of Theorem 1. 1]

6.

Let f(t) be a periodic function with period 2r and integrable (L) over (-, ).
Let

£(2) 2 3 Aa(e), #0) = 3{F(a+0+ ==} snd da() = ¢ [ dw)i.

n=0

It is well known that if ¢,(t) € BV(0, w), tn(z) = O(1), where t,(z) is the nth
(C, 1) mean of the sequence (nA,(z)) (see [3]). Hence, using this fact, we get the
following result for Fourier series.

THEOREM 2. If ¢1(t) € BV(0, 7) and the sequences (p,), (An) and (X,) satisfy
the conditions of Theorem 1, then the series Y An(z)An is summable |N, pnlk k2 1.
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