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Abstract

For a normalized analytic function f (z) = z +
∑∞

n=2 anzn in the unit disk D := {z ∈ C : |z| < 1}, the estimate
of the integral means

L1(r, f ) :=
r2

2π

∫ π

−π

dθ
| f (reiθ)|2

is an important quantity for certain problems in fluid dynamics, especially when the functions f (z) are
nonvanishing in the punctured unit disk D\{0}. Let ∆(r, f ) denote the area of the image of the subdisk
Dr := {z ∈ C : |z| < r} under f , where 0 < r ≤ 1. In this paper, we solve two extremal problems of finding
the maximum value of L1(r, f ) and ∆(r, z/ f ) as a function of r when f belongs to the class of m-fold
symmetric starlike functions of complex order defined by a subordination relation. One of the particular
cases of the latter problem includes the solution to a conjecture of Yamashita, which was settled recently
by Obradović et al. [‘A proof of Yamashita’s conjecture on area integral’, Comput. Methods Funct.
Theory 13 (2013), 479–492].
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1. Introduction

Let H denote the family of analytic functions in the unit disk D := {z ∈ C : |z| < 1}
and A denote the subfamily of H consisting of the functions f (z) normalized by
f (0) = 0 = f ′(0) − 1. Any function f (z) belonging to the class A has the following
representation:

f (z) = z +

∞∑
n=2

anzn for z ∈ D. (1.1)
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A function f (z) is said to be univalent in a domain Ω ⊆ C if it is one-to-one in Ω.
Denote by S the class of all univalent functions in the class A. A function f ∈ H is
said to be m-fold symmetric (m = 1, 2, 3, . . .) if

f (e2πi/mz) = e2πi/m f (z).

The study of m-fold symmetric functions was initiated by the work of Golusin [5],
Noshiro [13] and Robertson [19]. If f ∈ A is an m-fold symmetric function, then f (z)
has the following representation:

f (z) = z +

∞∑
k=1

akm+1zkm+1. (1.2)

For two functions f , g ∈ H , we say that f is subordinate to g, written as f ≺ g
or f (z) ≺ g(z), if there exists an analytic function w : D→ D with w(0) = 0 such that
f (z) = g(w(z)) for z ∈ D. Furthermore, if g is univalent in D, then f ≺ g if and only if
f (0) = g(0) and f (D) ⊆ g(D) (see [4]).

For A,B ∈ Cwith |B| ≤ 1 and A , B, let S∗(A,B) denote the class of functions f ∈ A
which satisfy the subordination relation

z f ′(z)
f (z)

≺
1 + Az
1 + Bz

for z ∈ D.

Without loss of generality, we can assume that B is real. Also, it is easy to see that
S∗(A, B) = S∗(−A,−B) and hence we assume that −1 ≤ B ≤ 0. For −1 ≤ B < A ≤ 1,
the class S∗(A, B) was introduced and investigated by Janowski [7].

In this paper, we pay attention to the class S∗m(A, B) of m-fold symmetric functions
of the form (1.2) which satisfy

z f ′(z)
f (z)

≺
1 + Azm

1 + Bzm , z ∈ D, (1.3)

where A ∈ C, −1 ≤ B ≤ 0 with A , B. We note that functions in the class S∗m(A, B)
need not be univalent. For suitable choice of the parameters m, A and B, we can
obtain different subclasses studied by various authors. For instance, we list some of
the subclasses for certain parameters:

(1) for 0 ≤ α < 1, the class S∗m(α) := S∗m(1 − 2α,−1) denotes the family of m-fold
symmetric starlike functions of order α and S∗(α) := S∗1(α) is the class of starlike
functions of order α which was introduced by Robertson [19]. Further, S∗ :=
S∗(0) is the class of starlike functions which was introduced by Nevanlinna [12];

(2) for γ ∈ C\{0}, the class S∗(γ) := S∗1(2γ − 1,−1) is the class of starlike functions
of complex order which was introduced by Nasr and Aouf [11];

(3) the class S∗1(1, 0) was introduced by Singh [23];
(4) for 0 < α ≤ 1, the class S(α) := S∗1(α,−α) was introduced by Padmanabhan [16];
(5) for α ≥ 1

2 , the class S∗1(1, 1/α − 1) was introduced by Singh and Singh [24];
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(6) for a + b ≥ 1, b ≤ a ≤ 1 + b, the class S∗1((b2 − a2 + a)/b, (1 − a)/b) was
introduced by Silverman [22];

(7) for −1 ≤ B < A ≤ 1, the class S∗m(A, B) denotes the family of m-fold symmetric
starlike functions which was introduced by Anh [1].

Moreover, for A = eiα(eiα − 2β cos α), B = −1 and m = 1 with β < 1, the class
S∗m(A, B) reduces to the class of α-spiral-like functions of order β which is denoted
by Sα(β) (see [8]). Further, functions in the class Sα(β) are univalent for β ∈ [0, 1)
and α ∈ (−π/2, π/2) (see [8]). In particular, functions in the class Sα(0) are called
α-spiral-like. The class Sα(0) was introduced by Špaček [25].

For A ∈ C, −1 ≤ B ≤ 0 with A , B, we define

kA,B(z) =

{
zeAz for B = 0,
z(1 + Bz)A/B−1 for B , 0 (1.4)

and
k(m)

A,B(z) = (kA,B(zm))1/m. (1.5)

It is easy to see that for every m ∈ N, the function k(m)
A,B(z) belongs to the class S∗m(A, B).

For f ∈ H the functional, called integral means,

M(r, f , λ1, λ2) :=
1

2π

∫ π

−π

| f (reiθ)|λ1 | f ′(reiθ)|λ2 dθ (z = reiθ ∈ D),

where λ1, λ2 ∈ R, was introduced and investigated by Gromova and Vasil’ev [6]. The
integral means

I1(r, f ) := M(r, f ,−2, 0) =
1

2π

∫ π

−π

dθ
| f (reiθ)|2

and

L1(r, f ) := r2I1(r, f )

have many important applications in fluid dynamics (see [26, 27]). In 2014,
Ponnusamy and Wirths [18] proved that for f ∈ S∗(α),

L1(r, f ) ≤
Γ(5 − 4α)
Γ2(3 − 2α)

(1.6)

and the inequality (1.6) is sharp. This has settled the open problem of Gromova and
Vasil’ev [6]. In the same paper the authors discussed a similar problem for the class of
α-spiral-like functions of order β and also for the class S∗(A, B) with −1 ≤ B < A ≤ 1.
Also, in 2014, Obradović et al. [15] considered a similar problem for some subclasses
of the class A. Except for these few recent results, the estimates of L1(r, f ) for many
geometric subclasses of the class S are not known.

For g ∈ H , we denote the area of the multi-sheeted image of |z| < r under w = g(z)
by ∆(r, g), where 0 < r ≤ 1. Thus, for g(z) =

∑∞
n=0 bnzn,

∆(r, g) =

"
|z|<r
|g′(z)|2 dx dy = π

∞∑
n=1

n|bn|
2r2n (z = x + iy). (1.7)
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Computation of the area (1.7) for an analytic function g is known as the area problem.
We call g a Dirichlet-finite function whenever ∆(1,g), the area covered by the mapping
z 7→ g(z) for z ∈ D, is finite. For example, all polynomials and more generally all
functions f ∈ A for which f ′(z) is bounded on the unit disk D are Dirichlet-finite
functions. In 1990, Yamashita [28] conjectured that

max
f∈C

∆

(
r,

z
f (z)

)
= πr2,

where C denotes the class of convex univalent functions in the unit disk D of the form
(1.1). The maximum is attained only by rotations of the function f0(z) = z/(1 − z). In
2013, Yamashita’s conjecture was settled in a more general setting for functions in the
class S∗(α) by Obradović et al. [14]. In 2014, Ponnusamy and Wirths [18], Obradović
et al. [15] and Sahoo and Sharma [21] discussed the maximum area problem for
functions of type z/ f (z) when f belongs to certain subclasses of the class S. Moreover,
recently, Ponnusamy et al. [17] solved the same problem for the class S∗(A, B), where
−1 ≤ B < A ≤ 1.

Our first aim of this paper is to estimate L1(r, f ) for functions in the class S∗m(A, B),
where A ∈ C, −1 ≤ B ≤ 0 with A , B. Our second aim is to investigate Yamashita’s
conjecture (or the maximum area problem for functions of type z/ f (z)) for the class
S∗m(A, B), where A ∈ C, −1 ≤ B ≤ 0 with A , B.

Before we state our main results, we recall that for a, b, c ∈ C with c , 0, −1, −2,
−3, . . . the function

F(a, b; c; z) := 2F1(a, b; c; z) = 1 +

∞∑
n=1

(a)n(b)n

(c)n

zn

n!

is called the Gaussian hypergeometric function, which is analytic in the unit disk D.
Here (a)0 = 1 for a , 0 and (a)n denotes the Pochhammer symbol (a)n = a(a + 1)
· · · (a + n − 1) for n ∈ N. Clearly, the shifted function zF(a, b; c; z) belongs to the class
A. The asymptotic behaviour of F(a, b; c; z) near z = 1 gives that

F(a, b; c; 1) =
Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

<∞ for Re c > Re(a + b).

Similarly, the function 0F1(a; z) is defined by

0F1(a; z) = 1 +

∞∑
n=1

1
(a)n

zn

n!
,

which is analytic throughout the finite complex plane.

2. Main results
Theorem 2.1. Let f ∈ S∗m(A, B) for some A ∈ C, −1 ≤ B ≤ 0 with A , B. Then, for
0 < r ≤ 1,

L1(r, f ) ≤


F(δ, δ; 1; B2r2m) for B , 0,

0F1

(
1;
|A|2r2m

m2

)
for B = 0,

(2.1)

where δ = 1/m(A/B − 1). The inequality (2.1) is sharp.
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Proof. Let f ∈ S∗m(A, B) and p(z) = z/ f (z). Then p(z) is analytic in the unit disk D
with p(0) = 1 and p(z) , 0 in D. In view of (1.3),

z f ′(z)
f (z)

= 1 −
zp′(z)
p(z)

≺
1 + Azm

1 + Bzm , z ∈ D

or, equivalently,
zp′(z)
p(z)

≺
(B − A)zm

1 + Bzm =: φ(z), z ∈ D. (2.2)

Since φ(z) is convex in D and φ(0) = 0, it follows that (see for example [10,
Corollary 3.1d.1, page 76])

z
f (z)

= p(z) ≺ exp
(∫ z

0

φ(t)
t

dt
)

= q(m)
A,B(z),

where

q(m)
A,B(z) =

{
(1 + Bzm)(1/m)(A/B−1) = F(1, δ; 1; Bzm) for B , 0,
e−(A/m)zm

for B = 0,

with δ = (1/m)(A/B − 1). If we write the series representation of q(m)
A,B(z) by

q(m)
A,B(z) = 1 +

∞∑
k=1

ckmzkm,

then the Littlewood subordination theorem (see [4, 9]) yields

L1(r, f ) =
1

2π

∫ π

−π

r2

| f (reiθ)|2
dθ =

1
2π

∫ π

−π

∣∣∣∣∣ z
f (z)

∣∣∣∣∣2 dθ

≤
1

2π

∫ π

−π

|q(m)
A,B(z)|2 dθ

=

∞∑
k=0

|ckm|
2r2km where c0m = 1. (2.3)

Now, for B , 0,
∞∑

k=0

|ckm|
2r2km =

∞∑
k=0

∣∣∣∣∣ (δ)k

k!

∣∣∣∣∣2(Brm)2k =

∞∑
k=0

(δ)k(δ)k

(1)k

(Brm)2k

k!

= F(δ, δ; 1; B2r2m). (2.4)

Also, for B = 0,
∞∑

k=0

|ckm|
2r2km =

∞∑
k=0

1
(k!)2

∣∣∣∣∣Arm

m

∣∣∣∣∣2k
= 0F1

(
1;
|A|2r2m

m2

)
. (2.5)

Finally, the desired conclusion follows from (2.3) to (2.5). Equality occurs for both
cases in (2.1) for the function k(m)

A,B(z) defined by (1.5). �
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Remark 2.2. We observe that for B = −1 and r = 1, the series

F(δ, δ; 1; B2r2m) =

∞∑
k=0

∣∣∣∣∣ (δ)k

k!

∣∣∣∣∣2(Brm)2k

converges if

1 > Re(δ + δ) =
2
m

Re
(A

B
− 1

)
that is, if Re(A + 1) > −

m
2
.

Remark 2.3. For −1 ≤ B < A ≤ 1, by substituting m = 1 in Theorem 2.1, we obtain
the result proved by Ponnusamy and Wirths [18, Theorem 1]. Again, if we substitute
m = 1, A = eiα(eiα − 2β cosα) and B = −1 with β < 1, α ∈ (−π/2, π/2) in Theorem 2.1,
we obtain the result proved by Ponnusamy and Wirths [18, Theorem 2].

Lemma 2.4. Let f ∈ S∗m(A, B) for some A ∈ C, −1 ≤ B ≤ 0 with A , B. If

z
f (z)

= 1 +

∞∑
k=1

bkmzkm for z ∈ D, (2.6)

then
∞∑

k=1

((km)2 − |B − A − kmB|2)|bkm|
2 ≤ |A − B|2.

Proof. For f ∈ S∗m(A, B), set p(z) = z/ f (z). In view of the relation (2.2), it immediately
follows that there exists an analytic function w : D→ D such that

zp′(z)
p(z)

=
(B − A)zmw(z)
1 + Bzmw(z)

, z ∈ D,

which is equivalent to

p′(z) = w(z)zm−1((B − A)p(z) − Bzp′(z)). (2.7)

From (2.6) and (2.7),
∞∑

k=1

kmbkmzkm−1 = w(z)zm−1
[
(B − A) +

∞∑
k=1

(B − A − kmB)bkmzkm
]

or, equivalently,
n∑

k=1

kmbkmzkm−1 +

∞∑
k=n+1

ckmzkm−1

= w(z)zm−1
[
(B − A) +

n−1∑
k=1

(B − A − kmB)bkmzkm
]

for certain coefficients ckm. By Clunie’s method [2] (see also [3, 20]),
n∑

k=1

(km)2|bkm|
2r2(km−1) −

n−1∑
k=1

|B − A − kmB|2|bkm|
2r2((k+1)m−1)

≤ |A − B|2r2(m−1). (2.8)

The required result follows if we take r→ 1− and allow n→∞. �

https://doi.org/10.1017/S1446788715000154 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788715000154


[7] Integral means and Dirichlet integral 321

Lemma 2.5. Let f ∈ S∗m(A, 0) for some A ∈ C\{0}. If

z
f (z)

= 1 +

∞∑
k=1

bkmzkm for z ∈ D

and

q(m)
A,0(z) = e−(A/m)zm

= 1 +

∞∑
k=1

ckmzkm for z ∈ D,

then, for each N ∈ N and for |z| < r, r ∈ (0, 1],
N∑

k=1

(km)|bkm|
2r2km ≤

N∑
k=1

(km)|ckm|
2r2km. (2.9)

Proof. By considering the inequality (2.8) for B = 0 and then multiplying by r2 on
both sides of it, we obtain

n−1∑
k=1

{(km)2 − |A|2r2m}|bkm|
2r2km + (nm)2|bnm|

2r2nm ≤ |A|2r2m. (2.10)

Since the function q(m)
A,0(z) satisfies the following differential equation:

d
dz

(q(m)
A,0(z)) = −Azm−1q(m)

A,0(z) for z ∈ D,

it is clear that the equality in (2.10) is attained for bkm = ckm.
We consider the inequalities (2.10) for n = 1, 2, . . . , N and multiply the

corresponding nth inequality by a factor λ(m)
n,N . These factors are chosen in such a way

that the addition of the left-hand side of the modified inequalities gives the left-hand
side of (2.9). Therefore, the factors λ(m)

n,N can be obtained from the following system of
linear equations:

km = (km)2λ(m)
k,N +

N∑
n=k+1

λ(m)
n,N{(km)2 − |A|2r2m}, k = 1, 2, . . . ,N. (2.11)

Since the matrix representation of the system of Equations (2.11) is an upper triangular
matrix with positive integers as diagonal elements, the solution of the system (2.11) is
uniquely determined. Hence, by Cramer’s rule, the solution of the system (2.11) can
be written as

λ(m)
n,N =

((n − 1)!)2m2(n−1)

(N!)2m2N Det(An,N),

where An,N is an (N − n + 1) × (N − n + 1) matrix given by

An,N =



nm n2m2 − |A|2r2m · · · n2m2 − |A|2r2m

(n + 1)m (n + 1)2m2 · · · (n + 1)2m2 − |A|2r2m

...
...

...
...

Nm 0 · · · N2m2


.
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Determinants of these matrices can be obtained by expanding according to Laplace’s
rule with respect to the last row, wherein the first element is Nm, the last element
is N2m2 and the remaining entries are zeros. This expansion and a mathematical
induction give the following recurrence formula for k ≤ N − 1:

λ(m)
k,N = λ(m)

k,N−1 −
1

Nm

(
1 −
|A|2r2m

k2m2

) N−1∏
l=k+1

|A|2r2m

l2m2 ,

which can be written as

λ(m)
k,N = λ(m)

k,N−1 −
1

Nm
(1 − a(k))

N−1∏
l=k+1

a(l), (2.12)

where a(k) = |A|2r2m/(km)2. We note that 1 − a(k) may be positive as well as negative
for k ∈ N. Now we shall prove that the multipliers λ(m)

k,N are positive for all N ∈ N, 1 ≤
k ≤ N. Indeed, this proves our required result, since, as we noted at the beginning of
the proof, equality is attained for bkm = ckm.

Case (i). Suppose that 1 − a(k) ≤ 0. Then, from (2.12), we see that for fixed
k ∈ N,N ≥ k, the sequence {λ(m)

k,N} is an increasing sequence. Thus,

λ(m)
k,N ≥ λ

(m)
k,N−1 ≥ · · · ≥ λ

(m)
k,k =

1
km

> 0

and hence the multipliers λ(m)
k,N are positive.

Case (ii). Suppose that 1 − a(k) > 0. Then, for fixed k ∈ N,N ≥ k, the sequence {λ(m)
k,N}

is a strictly decreasing sequence with

λ(m)
k := lim

N→∞
λ(m)

k,N =
1

km
− (1 − a(k))

∞∑
n=k+1

1
nm

n−1∏
l=k+1

a(l)

= (1 − a(k))−1
( ∞∑

n=0

1
km

(a(k))n −

∞∑
n=k+1

1
nm

n−1∏
l=k+1

a(l)
)
.

To prove that λ(m)
k,N > 0 for all N ∈ N, 1 ≤ k ≤ N, it suffices to prove that λ(m)

k ≥ 0 for
k ∈ N. Since a(k) > a(l) for l ≥ k + 1, each term in the first summation is greater than
the corresponding term in the second summation. Hence, λ(m)

k > 0, which completes
the proof. �

Lemma 2.6. Let f ∈ S∗m(A, B) for some A ∈ C, −1 ≤ B < 0 with A , B. If

z
f (z)

= 1 +

∞∑
k=1

bkmzkm for z ∈ D

and

q(m)
A,B(z) = (1 + Bzm)(1/m)(1−A/B) = 1 +

∞∑
k=1

ckmzkm for z ∈ D,
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then, for each N ∈ N and |z| < r, r ∈ (0, 1],
N∑

k=1

(km)|bkm|
2r2km ≤

N∑
k=1

(km)|ckm|
2r2km. (2.13)

Proof. By considering the inequality (2.8) for B , 0 and then multiplying by r2 on
both sides of it, we can rewrite the inequality (2.8) as

n−1∑
k=1

{(km)2 − |km − φ|2B2r2m}|bkm|
2r2km + (nm)2|bnm|

2r2nm ≤ B2|φ|2r2m, (2.14)

where φ := 1 − A/B. Since the function q(m)
A,B(z) satisfies the following differential

equation:
d
dz

(q(m)
A,B(z)) = zm−1

[
(B − A)q(m)

A,B(z) − Bz
d
dz

(q(m)
A,B(z))

]
for z ∈ D,

it is clear that the equality in (2.14) is attained for bkm = ckm.
We consider the inequalities (2.14) for n = 1, 2, . . . , N and multiply the

corresponding nth inequality by a factor λ(m)
n,N . These factors are chosen in such a way

that the addition of the left-hand side of the modified inequalities gives the left-hand
side of (2.13). Therefore, the factors λ(m)

n,N can be obtained from the following system
of linear equations:

km = (km)2λ(m)
k,N +

N∑
n=k+1

λ(m)
n,N{(km)2 − |km − φ|2B2r2m}, k = 1, 2, . . . ,N. (2.15)

Since the matrix representation of the system of equations (2.15) is an upper triangular
matrix with positive integers as diagonal elements, the solution of the system (2.15) is
uniquely determined. Hence, by Cramer’s rule, the solution of the system (2.15) can
be written as

λ(m)
n,N =

((n − 1)!)2m2(n−1)

(N!)2m2N Det(An,N),

where An,N is an (N − n + 1) × (N − n + 1) matrix given by

An,N =


nm n2m2 − |nm − φ|2B2r2m · · · n2m2 − |nm − φ|2B2r2m

(n + 1)m (n + 1)2m2 · · · (n + 1)2m2 − |(n + 1)m − φ|2B2r2m

...
...

...
...

Nm 0 · · · N2m2


.

Determinants of these matrices can be obtained by expanding according to Laplace’s
rule with respect to the last row, wherein the first element is Nm, the last element
is N2m2 and the remaining entries are zeros. This expansion and a mathematical
induction give the following recurrence formula for k ≤ N − 1:

λ(m)
k,N = λ(m)

k,N−1 −
1

Nm

(
1 −

∣∣∣∣∣1 − φ

km

∣∣∣∣∣2B2r2m
) N−1∏

l=k+1

∣∣∣∣∣1 − φ

lm

∣∣∣∣∣2B2r2m
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or, equivalently,

λ(m)
k,N = λ(m)

k,N−1 −
1

Nm
(1 − a(k))

N−1∏
l=k+1

a(l), (2.16)

where

a(k) =

∣∣∣∣∣1 − φ

km

∣∣∣∣∣2B2r2m.

Here we note that 1 − a(k) may be positive as well as negative for k ∈ N. Now we
shall prove that the multipliers λ(m)

k,N are positive for all N ∈ N, 1 ≤ k ≤ N. Indeed, this
proves our required result, since, as we noted at the beginning of the proof, equality is
attained for bkm = ckm.

Case (i). Suppose that 1 − a(k) ≤ 0. Then, from (2.16), we see that for fixed
k ∈ N,N ≥ k, the sequence {λ(m)

k,N} is an increasing sequence. Thus,

λ(m)
k,N ≥ λ

(m)
k,N−1 ≥ · · · ≥ λ

(m)
k,k =

1
km

> 0

and hence the multipliers λ(m)
k,N are positive.

Case (ii). Suppose that 1 − a(k) > 0. Then, for fixed k ∈ N,N ≥ k, the sequence {λ(m)
k,N}

is a strictly decreasing sequence with

λ(m)
k := lim

N→∞
λ(m)

k,N =
1

km
− (1 − a(k))

∞∑
n=k+1

1
nm

n−1∏
l=k+1

a(l). (2.17)

To prove that λ(m)
k,N > 0 for all N ∈ N, 1 ≤ k ≤ N, it suffices to prove that λ(m)

k ≥ 0 for
k ∈ N. Now one can verify that

1
n(1 − a(n))

>
1

(n + 1)(1 − a(n + 1))
(2.18)

and
1

n(1 − a(n))
=

1
n

+
a(n)

n(1 − a(n))
(2.19)

are valid for every n ∈ N. By repeated application of (2.18) and (2.19) for n =

k, k + 1, . . . , P,

1
km(1 − a(k))

>

P∑
n=k+1

1
nm

n−1∏
l=k+1

a(l) +

∏P
l=k+1 a(l)

m(P + 1)(1 − a(P + 1))
for k ≤ P.

By taking P→∞,
1

km(1 − a(k))
≥

∞∑
n=k+1

1
nm

n−1∏
l=k+1

a(l).

Therefore, from (2.17), it follows that λ(m)
k ≥ 0. This completes the proof of the

lemma. �

The following result settles Yamashita’s conjecture for functions in the class
S∗m(A, B).
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Theorem 2.7. Let f ∈ S∗m(A, B) for some A ∈ C, −1 ≤ B ≤ 0 with A , B. Then, for
0 < r ≤ 1,

max
f∈S∗m(A,B)

∆

(
r,

z
f (z)

)
= E(m)

A,B(r),

where

E(m)
A,B(r) =


π

m
|A − B|2r2mF(δ + 1, δ + 1; 2; B2r2m) for B , 0,

π

m
|A|2r2m

0F1(2; |Arm/m|2) for B = 0,
(2.20)

with δ = (1/m)(A/B − 1). The maximum is attained by the rotation of the function
k(m)

A,B(z) defined by (1.5).

Proof. Let f ∈ S∗m(A, B). If we set

z
f (z)

= 1 +

∞∑
n=1

bnmznm and
z

k(m)
A,B(z)

= 1 +

∞∑
n=1

cnmznm for z ∈ D,

then, from Lemmas 2.5 and 2.6, it follows that for each N ∈ N,
N∑

n=1

(nm)|bnm|
2r2nm ≤

N∑
n=1

(nm)|cnm|
2r2nm, r ∈ (0, 1]. (2.21)

In view of (1.7) and (2.21),

∆

(
r,

z
f (z)

)
= π

∞∑
n=1

(nm)|bnm|
2r2nm

≤ π

∞∑
n=1

(nm)|cnm|
2r2nm = ∆

(
r,

z

k(m)
A,B(z)

)
.

To complete the proof, we have to show that

π

∞∑
n=1

(nm)|cnm|
2r2nm = E(m)

A,B(r), (2.22)

where E(m)
A,B(r) is defined by (2.20). Now, for B , 0, a formal computation gives

π

∞∑
n=1

(nm)|cnm|
2r2nm = π

∞∑
n=1

(nm)
∣∣∣∣∣ (δ)n

n!

∣∣∣∣∣2(Brm)2n

= π

∞∑
n=1

(nm)
(δ)n(δ)n

(1)n(1)n
(Brm)2n

= πm|δ|2B2r2m
∞∑

n=0

(δ + 1)n(δ + 1)n

(2)n(1)n
(Brm)2n

=
π

m
|A − B|2r2mF(δ + 1, δ + 1; 2; B2r2m)

= E(m)
A,B(r). (2.23)
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Table 1. Approximate values of E(m)
A,B(1).

m A Approximate values of E(m)
A,0(1) B Approximate values of E(m)

A,B(1)

1 1 + i/2 6.949 42 −2/3 15.826 4
1 3 + i/4 591.462 −3/4 451.334
2 1 + 2i 13.898 8 −1/10 14.110 8
2 5 + 3i 960.441 9 −3/4 482.049

Also, for B = 0,

π

∞∑
n=1

(nm)|cnm|
2r2nm = π

∞∑
n=1

(nm)
1

(n!)2

∣∣∣∣∣Arm

m

∣∣∣∣∣2n

= πm
∣∣∣∣∣Arm

m

∣∣∣∣∣2 ∞∑
n=0

1
(2)n(1)n

∣∣∣∣∣Arm

m

∣∣∣∣∣2n

=
π

m
|A|2r2m

0F1(2; |Arm/m|2)

= E(m)
A,0(r). (2.24)

Finally, the desired conclusion follows from (2.22) to (2.24). This completes the
proof. �

Remark 2.8. When B = −1 and r = 1, the series

F(δ + 1, δ + 1; 2; B2r2m) =

∞∑
n=0

(δ + 1)n(δ + 1)n

(2)n(1)n
(Brm)2n

converges (finitely) if 2 > Re(δ + 1 + δ + 1), that is, if Re(A + 1) > 0.

Before we proceed further, it is worth mentioning certain basic properties of the
functional E(m)

A,B(r) given by (2.20). Since the series expansion of E(m)
A,B(r) (in either

case) has positive coefficients, E(m)
A,B(r) is a nondecreasing and convex function of the

real variable r. Thus, E(m)
A,B(r) ≤ E(m)

A,B(1). In order to see the bounds for the Dirichlet-
finite function, we write

E(m)
A,B(1) =


π

m
|A − B|2

∞∑
n=0

(δ + 1)n(δ + 1)n

(2)n(1)n
B2n for B , 0,

π

m
|A|2

∞∑
n=0

1
(2)n(1)n

∣∣∣∣∣ A
m

∣∣∣∣∣2n
for B = 0.

For certain values of the parameters m, A and B, the numerical values of E(m)
A,B(1)

and the images of the unit disk under the extremal functions q(m)
A,B(z) = z/k(m)

A,B(z) are
described in Table 1 and Figures 1–8, respectively.

If we choose A = 1 − 2β and B = −1 in Theorem 2.7, then we obtain the following
result.
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Figure 1. Image of the unit disk under q(m)
A,B(z) with m = 1, A = 1 + i/2, B = −2/3.
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Figure 2. Image of the unit disk under q(m)
A,B(z) with m = 1, A = 3 + i/4, B = −3/4.
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Figure 3. Image of the unit disk under q(m)
A,B(z) with m = 1, A = 1 + i/2, B = 0.
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Figure 4. Image of the unit disk under q(m)
A,B(z) with m = 1, A = 3 + i/4, B = 0.
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Figure 5. Image of the unit disk under q(m)
A,B(z) with m = 2, A = 1 + 2i, B = −1/10.
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Figure 6. Image of the unit disk under q(m)
A,B(z) with m = 2, A = 5 + 3i, B = −3/4.
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Figure 7. Image of the unit disk under q(m)
A,B(z) with m = 2, A = 1 + 2i, B = 0.
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Figure 8. Image of the unit disk under q(m)
A,B(z) with m = 2, A = 5 + 3i, B = 0.
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Corollary 2.9. Let f ∈ S∗m(β) for some 0 ≤ β < 1. Then, for 0 < r ≤ 1,

max
f∈S∗m(β)

∆

(
r,

z
f (z)

)
=

4π
m

(1 − β)2r2mF
( 2
m

(β − 1) + 1,
2
m

(β − 1) + 1; 2; r2m
)
.

The maximum is attained for the function k(m)
β (z) = z(1 − zm)(2/m)(β−1).

In particular, if we choose m = 1 in Corollary 2.9, then we obtain the result of
Obradović et al. [14, Theorem 3]. For the choice A = 1 − 2γ and B = −1, where
γ ∈ C\{0}, Theorem 2.7 reduces to the following maximal area problem for the class
of m-fold starlike functions of complex order.

Corollary 2.10. Let f ∈ S∗m(γ) := S∗m(1 − 2γ, −1) for some γ ∈ C\{0}. Then, for
0 < r ≤ 1,

max
f∈S∗m(1−2γ,−1)

∆

(
r,

z
f (z)

)
=

4π
m
|γ|2r2mF

(
−

2γ
m

+ 1,−
2γ
m

+ 1; 2; r2m
)
.

The maximum is attained for the function k(m)
γ (z) = z(1 − zm)−2γ/m.

If we put m = 1 in Corollary 2.10, then it reduces to the maximal area problem for
the class S∗(γ) := S∗1(1 − 2γ,−1) of starlike functions of complex order which was
introduced by Nasr and Aouf [11]. If we choose A = eiα(eiα − 2β cosα), B = −1 and
m = 1 with β < 1 in Theorem 2.7, then we obtain the result of Ponnusamy and Wirths
[18, Theorem 3] which solves Yamashita’s conjecture for functions in the class Sα(β).
If we choose A = (1 − 2β)α, B = −α and m = 1 in Theorem 2.7, then we obtain the
following result.

Corollary 2.11 [21, Theorem 1.3]. Let f ∈ S∗((1 − 2β)α,−α) for some 0 < α ≤ 1 and
0 ≤ β < 1. Then, for 0 < r ≤ 1,

max
f∈S∗((1−2β)α,−α)

∆

(
r,

z
f (z)

)
= 4πα2(β − 1)2r2F(2β − 1, 2β − 1; 2;α2r2).

The maximum is attained for the function k(1−2β)α,−α(z) defined by (1.4).

If we choose β = 0 in Corollary 2.11, then we obtain the result of Sahoo and Sharma
[21, Theorem 3.1]. This solves Yamashita’s conjecture for functions in the class S(α)
which was introduced by Padmanabhan [16]. More generally, if we choose m = 1
in Theorem 2.7, then it reduces to the following maximal area problem for the class
S∗(A, B).

Corollary 2.12 [17, Theorems 2.1 and 2.3]. Let f ∈ S∗1(A, B, 1) = S∗(A, B) for some
−1 ≤ B ≤ 0, A , B and A ∈ C. Then, for 0 < r ≤ 1,

max
f∈S∗(A,B)

∆

(
r,

z
f (z)

)
= EA,B(r),
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where

EA,B(r) =

π|A − B|2r2F
(A

B
,

A
B

; 2; B2r2
)

for B , 0,

π|A|2r2
0F1(2; |A|2r2) for B = 0.

The maximum is attained by the rotation of the function kA,B(z) defined by (1.4).

Finally, if we choose A = (b2 − a2 + a)/b, B = (1 − a)/b with a + b ≥ 1, a ∈
[b, 1 + b] in Corollary 2.12, then we obtain the result of Ponnusamy et al. [17,
Corollary 2.7]. This solves the maximal area problem for functions in the class
S∗((b2 − a2 + a)/b, (1 − a)/b) which was introduced by Silverman [22].
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