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LOCAL BOUNDARY BEHAVIOR OF BOUNDED 
HOLOMORPHIC FUNCTIONS 

ALEXANDER NAGEL AND WALTER RUDIN 

1. Introduction and statement of results. Let D CC Cn be a bounded 
domain with smooth boundary dD, and let F be a bounded holomorphic function 
on D. A generalization of the classical theorem of Fatou says that the set E of 
points on dD at which F fails to have non tangential limits satisfies the condi­
tion <r(E) = 0, where a denotes surface area measure. We show in the present 
paper that this result remains true when a is replaced by 1-dimensional 
Lebesgue measure on certain smooth curves y in dD. The condition that y 
must satisfy is that its tangents avoid certain directions. 

We now describe the setting of our theorems in more detail. 

1.1. The domains under consideration. To say that a bounded open set 
D C Cn has CA:-boundary means that there is an open set W D dD and a 
k times continuously differentiate function p: W —» R (i.e., p G Ck) such that 

D r\W = {w £ W : piw) < 0} 

and such that the vector 

is different from 0 at every f G dD. 
If p G C2 and if there is a constant (3 > 0 such that the inequality 

Z T - ^ T - (w)zfZk ^ 0|s|2 

fjLi dWjdwk 

holds for all z G Cn and w £ W, then Z) is said to be strictly pseudoconvex. 
(As usual, \z\2 = (z, s)1/2, where (z, w) = £ z/^- for s G Cra, w G Cw.) 

1.2. Tangent spaces. If Z> has ^-boundary and f G dZ>, the tangent space 
to dD at f is 

(2) 7> = {w G Cw: Re <w, #(f)> = 0}. 

Its maximal complex subspace is 

(3) P f = ( ^ C»: <te», iV(?)> = 0}. 

The directional condition mentioned in the opening paragraph is that 
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for no f Ç 7 should the tangent to 7 lie in P f . T o pu t this into different form, let 

<p: [0, 1] -> 3D 

be a O-paramet r iza t ion of a curve 7 in d£>, with cp'(t) 9e 0 for 0 ^ £ ^ 1. 
Then <£>'(/) is tangent to 7 a t <^(/), and hence (2) shows t ha t 

(4) R e ( ^ ( / ) , 7 V ( ^ ( / ) ) > = 0 ( O r g ^ l ) . 

According to (3), the tangent to 7 a t <p(t) belongs to P^t) if and only if (4) is 

replaced by the stronger condition 

(5) (v'(.t),N(v(t))) = 0. 

1.3. Nontangential and admissible limits. If D has (^-boundary and Ç £ dD, 

the uni t outward normal a t f is the vector 

v(f) = iv(r)/|iv(f)|. 
Following Stein [10] and Cirka [2] we let ôç(w) be the minimum of the distances 

from w to dD and from w to the affine tangent plane f + 7^. For a > 0, we 

define 

(6) r a ( f ) = [w £ D: \w - ? I < (1 + a)5 r (w) } 

and we let J^/a(f) be the set of a\\ w £ D such t h a t 

|<w - r,Kf)>l < (1 + «)«r(«0 

cmd |w — f|2 < aôf(z^). 
Since |Re (f — u>, K f ) ) | is the distance from w to f + 7^, we see tha t , for 

a sufficiently small neighborhood V of f, F Pi r a ( f ) lies in the cone 

X a ( f ) = {w G C»: |w - fl < (1 + a ) Re <f - w/, „(f)>}, 

and t h a t 1" Pi r a ( f ) D F Pi K$(Ç) for some (3 < a. T h u s r a ( f ) is a nontangen­
tial approach region to f, a n d j / a ( f ) is a so-called admissible approach region to 
f which contains 

r a ( f ) P {w: |w - f| < a / 1 + a} 

bu t which also contains sequences t ha t approach f tangential ly. (See [10, 
Chapte r I I ] ) . 

A function f : D —> C is said to have a nontangential limit (resp. admissible 
limit) a t f £ dD if, for all a > 0, l i m / ( w ) exists a s w - ^ J * within r a ( f ) (resp. 
within j / a ( f ) ) . 

W e let Er(f) be the set of all f Ç d7} a t which f fails to have a nontangent ia l 
limit, and we write E^(f) for the set where / fa i l s to have an admissible limit. 
Obviously, ET(f) C £ „ ( / ) . 

1.4. The Fatou theorem of Korânyi and Stein. This is the theorem (proved by 
Korânyi for the ball [6] and by Stein in general [10]) t ha t we referred to in the 
opening paragraph: 
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T H E O R E M . If D has C2-boundary and if f Ç Hœ(D) then a(E^(f)) = 0. 

Hence also <j(E?U)) = 0. 

(As usual, Hœ(D) is the space of all bounded holomorphic func t ions / : D —> 

C, with sup-norm | | / | | œ . ) 

1.5. Statement of results. If 7 is a curve in 3D, parametrized by <p as in 
§ 1.2, we can define a measure /x on dD by setting 

(7) ffdn = fj(<p(t))dt 

for every c o n t i n u o u s / : dD —> C. Then /x is supported by 7, and jit depends of 
course on the particular parametrizat ion <p tha t is chosen. But the collection of 
sets of /i-measure 0 depends only on 7 itself, and in this sense we may speak of 
a proper ty holding almost everywhere on 7. 

We recall t ha t 7 is said to belong to the class A i + a if 7 has a C^-parametriza-
tion (p whose derivative <p' satisfies a uniform Lipschitz condition of order a; 
here 0 < a < 1. 

T H E O R E M 1. Suppose D has C1-boundary, 7 is a curve in 3D, 7 G A i + a for 
some a > 0, and 

(8) (<p'(t),N(<p(t)))9*0 

for every t £ [0, 1]. Then n(Er(F)) = 0 / o r e^ery F £ Hœ(D). 

In other words, if the tangent to 7 belongs nowhere to P$ (see § 1.2) then 
every F G Hœ(D) has non tangential limits almost everywhere on 7. 

Here is what happens when (8) is violated: 

T H E O R E M 2. Suppose D is strictly pseudoconvex, with C2-boundary, and suppose 
(p : [0, 1] —> dD parametrizes a C1-curve 7. / / 

(9) (<p'(t),N(<p(t))) = 0 

for every t G [0, 1], then there exists an F Ç Hœ(D) which has no limit along any 
curve in D that ends ony. In particular, 7 C Er(F). 

In our next theorem, we specialize D to be the unit ball 

B2 = K C 2 : |zl < 1} . 

T H E O R E M 3. There exists an F Ç Hœ(B2) that has no admissible limit at any 
point of the circle 

(10) 7 = {(eie, 0) : 0 g 6> g 2TT}. 

Thus y C E^(F). 

Note tha t the curve (10) satisfies (8). Theorem 3 shows therefore t ha t the 
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conclusion of Theorem 1 cannot be strengthened to give ix(E^(F)) = 0 for 
every F G Hœ(D). 

Our proof of Theorem 1 uses a one-variable theorem which extends the 
classical Fatou theorem in yet another way: 

THEOREM 4. Let the segment (0, 1) C R ^ one edge of an open rectangle Q 
in the upper half ofC. Suppose 

(a) / : Q -^ Cis a bounded C1-function, and 
(b) df/dz G LP(Q) for some p > 1. 

Thenlimf(x + iy) exists for almost all x G (0, 1), as y —> 0. 

Here, and later, Lv refers to Lebesgue measure on C. Note that (b) represents 
a considerable weakening of the classical hypothesis t h a t / G Hœ(Q), i.e. that 
df/dz = 0. 

2. Proof of Theorem 4. For 1 ^ k ^ GO , we shall write Cc
k for the class of 

all / : C —> C that are k times continuously differentiable and have compact 
support. 

2.1. LEMMA. TO every p, 1 < p < oo, corresponds a constant Ap < oo S/JC/Z 
/Aa/ //?<? inequality 

\M. 
\ dy \p 

\df\ 
1 dz 1 

holds for all f G Ce1. 

This follows from the Lp-boundedness (for 1 < p < 00 ) of the Riesz trans­
forms on R2. A proof is given on p. 60 of [11]. 

2.2. LEMMA. Suppose $1 is abounded open set in C, 1 < p < 00 , and g G Lp(iï). 
If G G C1 (il) and if 

(11) G(s) = ~ f ^ # A d f 

for almost all z G tt,thendG/dy G Lp(12). 

Proof. Regard g as a member of LP(C) which is 0 off 12. Put k(z) = 1/TTZ. 

Then & is locally L1, and the convolution H = g * k, defined by 

(12) H(z) = J g{Ç)k(z - Ç)d&v (f = £ + ^ ) 

exists for almost all s G C, as a Lebesgue integral. Moreover, comparison of 
(11) and (12) shows that the ^-function G coincides with H a.e. in 12. 

Choose x G Cc
œ so that x = 1 on fl. Choose ^ G Cc°°, \p è 0, so t h a t J c ^ = 1. 

For 1 ^ / < 00 , define i^(z) = t^tz). 
There is a disc D C C, of radius r, that contains the supports of x and of 
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\g\ * ypt for all t £ [1, oo ). It is easily seen that 

(13) J | * ( z - f ) | d ^ ^ 2 r 

for all z 6 C. 
Define i?^ = H * \pt. Since H = g * k, we have 

(14) fff = (g**t)*k. 

Since ||i/^||i = 1 for all /, Holder's inequality and (13) lead from (14) to 

(15) {/. I 1/P 

if,(s)|p<fcdyj ^2r | |g | | J , ( l g * < o o ) . 

Since g * \pt £ Ce00» Theorem 1.2.2 of [5] can be applied to (14) and shows 
that 

(16) dHt/dz = g*tt. 

Hence 

(17) —dë~ = Ht"dï + x'te**J 

so that (15) gives the estimate 

(18) 
d(xHt) 

dz 
^M\\g\\v 

in which M is a real number that depends only on x and r. It now follows from 
Lemma 2.1 that 

(19) 
d(xHt) 

dy 
ÛApM\\g\\p ( l g K o o ) . 

To every compact K C. 2 corresponds a t{K) such that K — supp f, C 2 
for all t > /(.K). Since G = H a.e. in 0, we have 

(20) H,(z) = J G(z- M . G W u (z 6 X) 

\it> t{K). Since G Ç C 1 ^) and x = 1 in Î2, it follows that 

By (19) and (21), Fatou's lemma shows that dG/dy Ç Lp(12). 

Remark. Lemma 2.2 would become false if, instead of (11), we merely 
assumed that dG/dz = g £ LP(Q). To see this, take G holomorphic in 12, so 
that dG/dz = 0, but of sufficiently rapid growth near some boundary point to 
have dG/dy g Z*(Q). 
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2.3. Proof of Theorem 4. T o fix the notat ion, assume tha t Q = (0 ,1) X (0,h). 

Since / is bounded, there is a sequence yn \ 0 such t h a t the functions x —> 

f(x + iyn) converge weak* in L°°(0, 1), to some ç Ç L œ (0 , 1). Extend / to 

(0, 1) X [0, h) by s e t t i n g / ( x , 0) = <p(x). 

Choose a small e > 0 and define 

Ce = [€, 1 - e] X (0, h - € ] , Qe.n = [e, 1 - e] X [yw, A - e]. 

For z interior to Qe and for n sufficiently large, the fact t h a t / is C1 on the com­

pact set Qt<n shows (Theorem 1.2.1 in [5]) t h a t 

The above-mentioned weak*-convergence, combined with the fact t ha t 

df/df € Ll(Q), shows tha t we can let n —» oo , to obtain 

2inJâQf Ç — z 2iri J QtdÇ f —z 

= tf (2) +G(z). 

Since H is the Cauchy integral of a bounded function, it is classical (see, for 
instance, Lemma 2.G in Chap. V of [12]) t h a t lim H(x + iy) exists, as y —» 0, 
for almost all x in (e, 1 — e). 

Since G = f - H, G 6 C 1 ^ ) . By Lemma 2.2, dG/dv £ Lp((?«). Set t ing 

*"e ' dG 
dy 

it follows tha t M(x) < oo a.e. in (e, 1 - e). If 0 < y0 < y\ < h — e, Holder 's 
inequali ty gives 

\G(x + iyi) - G(x + iyQ)\ ^ M(x)u*\yi - yo\l~1/p-

Hence lim G(x + iy) exists, as y —+ 0, for almost all x in (e, 1 — e). T h e 
arbitrariness of e shows tha t the proof is complete. 

3. Proof of T h e o r e m 1. Referring to §1.1, we may of course assume tha t 
the gradient of p is bounded in W. 

W e are given ç : [0, 1] —» dD, <p £ C1, <p' £ Aa for some a (E (0, 1). Since (<S) 
is assumed to hold, we may assume, wi thout loss of generali ty, t ha t there is a 
constant rj > 0 such tha t 

(22) Im (<p'(x), N(<p(x))) ^v>0 (0 ^ x ^ 1). 

T h e proof proceeds in several steps. W e extend <p to a m a p <ï> of a rectangle 
Q into £>, in such a way tha t each point <p(x) £ 7 is an end point of a nontan-
gential curve \px lying in $((?)• We then show tha t F o $ and Ç satisfy the 
hypotheses of Theorem 4, and t ha t F therefore has limits along almost all of 
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the curves \px. The desired conclusion follows then from Cirka's recent exten­

sion of LindelôTs theorem to n variables. 

Step 1. The map $. Extend ç>' to be a (C^-valued) function on R, with 
compact support , of class Aa. Let u(x, y) be the Poisson integral of ç , for 
3 / ^ 0 , and define 

(23) $(x + iy) = <p(x) + iyu(x, y) (0 ^ x ^ 1, y ^ 0) . 

Since (d$/dy)(x) = iu(x,0) = i<pf(x), we have, by (22), 

^ ( P o * ) _ (x) = 2 R e E - ^ 7 ( * ( x ) ) ^ ' ( x ) 

= - 2 1m (<p'(x),N(<p(x))) S -

lî h > 0 is small enough, it follows tha t $ maps the rectangle Q = (0, 1) X 
(0, h) into W C\ D, and tha t (d/dy)(p o <ï>) (x + ry) ^ —77, hence 

(24) p ( $ ( x + iy)) g -773/ (x + iy Ç Q). 

S tandard estimates of the Poisson integral show tha t \y(du/dx)\, \y(du/dy)\, 
and \u(x, y) — cp'' (x)\ are dominated by Cya, where C depends on a and on the 
Lipschitz constant of ç . Hence differentiation of (23) yields 

(25) 
dz 

(x + iy) ^ Ciya ( 0 ^ ^ 1 j > 0 ) . 

Step 2. The curves \px. For 0 ^ x ^ 1 , 3 / ^ 0 , define 

(26) 4,x(y) = *(x + iy). 

We claim tha t \px(y) tends nontangentially to \px(0) = <p(x) £ 7 when y 
Sett ing f = <£>(x), w = \//x(y), (23) shows tha t 

i 0 . 

(27) ç — w = — iyu(x, y). 

T h u s \Ç — w\ S cy and, by (22) 

Re (f - w, iV(f)) = ylm (u(x, y), N(<p(x)) ) ^ ^ ^ (2c)-1i?|f - w\ 

as soon as y is small enough. Thus \f/x(y) lies in some cone Ka(Ç) (see § 1.3) 
for all sufficiently small y. 

Step 3. Now let F (E iT° (D) . Def ine / : Q - » C b y / ( z ) = F ( $ ( s ) ) . Fix s Ç Ç, 
for the moment . Then w = $(2) is the center of a ball in D whose radius is a t 
least \p(w)\/C2, where C2 is an upper bound for the gradient of p in W. T h e 
one-variable Schwarz lemma, applied to restrictions of F to complex lines 
through w, shows therefore t ha t 

(28) |£(«o ^cM^niFii^dWFw^-y1, 
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by (24), since w = $(x + iy)- We now conclude from (25), (28), and the 
formula 

that \(df/dz)(x + iy)\ ^ C^ya~\ so t h a t / Ç Z/(Ç) for some p > 1. [Observe 
that (29) depends on the fact that T7 is holomorphic] The other hypotheses of 
Theorem 4 are obviously satisfied. 

It follows that lim/(x + iy) exists, as y \ 0, for every x in a set E C (0, 1) 
whose complement has measure 0. In other words, F has a limit along the 
nontangential curve \px that ends at <p(x)} for every x £ E. Since F G Hœ(D), 
Cirka's Lindelôf theorem (Theorem 1 in [2]) asserts that F has a nontangential 
limit at <p(x) Ç 7, for every x d E. 

This completes the proof of Theorem 1. 

Remark. The technique of mapping the rectangle Q into D by a map $ that 
satisfies d$/dz = 0 on the real axis has been used by Henkin and Tumanov 
to study peak sets for the algebra A(D). (These will be defined in the section 
that follows.) 

4. Proof of Theorem 2. 

4.1 Definitions. Let D C C C " be a domain. Let A (D) denote the algebra of 
all continuous complex functions on D that are holomorphic in D. A function 
G £ A(D) is said to peak on the set K C dD if G(w) = 1 for every w Ç K 
but |G(w)| < 1 f° r all other w G 5 . If i£ is such that some G ^ A (D) peaks on 
K, then K is a £m£ se£ for A(D). 

4.2. LEMMA. If D dd Cn is a domain and if K C dD is a peak set for A (D), 
then there exists an F G Hœ(D) which has no limit along any curve in D that ends 
at a point of K. 

Proof. Let G G A (D) peak on K. Then Re (1 - G(w)) > 0 if w £ D\K. 
Hence there is a well defined branch of log (1 — G(w)), holomorphic on D 
and continuous on D\K. Moreover, 

Re [log (1 - G(w))] = log |1 - G(w)\ -> -00 

as w —» K, and 

|Im [log (1 - G(w))]\ = |arg (1 - G(w))\ g TT/2. 

Setting F(w) = exp [i log (1 — G(w))], F has the desired properties. 

4.3. COROLLARY. Let D C C Cw have Cl-boundary. If K C dD is a peak set 
for A (D), if y (parametrized by ç>) satisfies the hypotheses of Theorem 1, and if /i 
is the measure on 7 defined by (7), then ^{K C\ 7) = 0 . 
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Proof. By Lemma 4.2, some F £ Hœ(D) has no limit along any curve in D 
that ends on K. Thus K C ET(F). By Theorem 1, n(ET(F)) = 0. 

Remark. This corollary has been proved for C2-curves by Henkin and 
Tumanov (in an as yet unpublished paper) by different methods. A third 
proof, for C2-curves in the boundary of the unit ball in Cn, appears in [8]. 

4.4. Proof of Theorem 2. The hypotheses of Theorem 2 show, by a theorem 
of Davie and 0ksendal [3], that the range of <p is a peak set for A(D). Thus 
Theorem 2 follows from Lemma 4.2. 

Remark. If D C C Cn is strictly pseudoconvex with C2-boundary, and if M 
is a real C^-submanifold of 3D whose tangent space lies in Pf for every f £ M, 
it follows from [9] that every compact K C M is a peak set for A(D).(The 
same result was obtained earlier, under stronger regularity assumptions, in 
[1 ; 4 and 7].) We understand that Nils 0vrelid has proved that the boundary 
of every C2-strictly pseudo-convex domain contains such manifolds of real di­
mension n — 1. In conjunction with Lemma 4.2, this implies that there exists 
an F Ç Hœ(D) such that the set ET(F) (where F has no nontangential limit) 
contains a manifold of real dimension n — 1. 

5. Proof of Theorem 3. We change notation slightly, and let 

B = {(z, w) 6 C2 : \z\2 + \w\2 < 1}. 

Put nk = (k\)2 and define 

oo 

(30) F(z, w) = w2 £ («* - «*-i)z™. 
fc=l 

We will show that F Ç Hœ(B) and that P does W0£ have an admissible limit at 
any point (eid, 0), although P(z, 0) = 0 for all s with |s| < 1. 

Put gk(z) = ( ^ — nk-i)z
nk. Then |g/0(s)| ^ ]T |;s|m, where m ranges over the 

integers that satisfy nk-\ < m S nk. Hence X)ï l^(s) | S (1 — H) - 1 - Since 
M 2 < 1 - |s|2 in P, we have |P6s, w)\ < 2. Thus P £ Hœ(B). 

Put r7. = 1 — (l/nk) for & ^ 2. Since (rk)
nk increases to the limit 1/e as 

k —» oo, and since nk/nk-\ = k2, we obtain the following estimates for z = 
rke

ie: 

\gk{z)\ = (1 - *-2)«*(rfc)
n* > nk/3 

for large &, 

A;—1 k—l 

5 = 1 5 = 1 

and 
CO OO CO OO 

Z k.OOl ^ E «.(r,)"* < Z «.(r-i)"' < E «se-s2. 
s=fc+l fc+1 fc+1 fc+1 
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The ratio test shows that the last sum is the tail end of a convergent series, 
hence it tends to 0 as k —> GO . It follows that there is a k0 such that 

(3D Z) gs(rke
lB) >V± = - _ L _ - (o g e ^ 2TT) 

4 4(1 - r/c) 

for all k ^ èo. 
Now fix c, 0 < c < 1. For * ^ &0 it follows from (30) and (31) that 

(32) \F(rke
ie, cy/\ - rk

2)\ ^ c2/4 (0 ^ 0 g 2TT). 

But note also that (rke
id, c\/l — rk

2) tends to (eie, 0) within an admissible 
approach region. In fact, setting f = (eîfl, 0), a little computation shows that 
the points in question lie in se a(X) if « > 4/(1 — c2). (See§ 1.3.) Since F(reie, 0) = 
0 for 0 < r < 1, (32) shows that F does not have an admissible limit at 
(eie,0). 

We thank Steven Wainger for helpful discussions concerning Theorem 4. 
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