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REGULARITY OF LOCALLY CONVEX SURFACES

FRIEDMAR SCHULZ

Interior estimates are derived for the C'^-Holder norm of the radius vector X 6
C1' l(ft) of a locally convex surface S in terms of the first fundamental form Is ,
the Gauss curvature K and the integral J \H\dcr. Here H is the mean curvature of
£ . The coefficients g,j of Is are assumed to belong to the Holder class CJ'**(n)
for some fi, 0 < fi < 1. A boundary condition is discussed which ensures an
estimate for J \H\ da.

1. INTRODUCTION AND STATEMENT OF THE RESULTS

Let fi be a domain in the u = (u1, u2)-plane. Consider a differential geometric,
locally convex surface E, which is given by a radius vector X of class C1'* ($7, R3) such
that the unit normal

exists.

ASSUMPTION (A). Suppose that the coefficients gij of the first fundamental form

JE = DtX • DjX dvtdu'

= gijduldu3

belong to the Holder class C2''i(n) for some fi, 0 < /x < 1, such that

and g, K ^ —.

Here g = det J s = \DXX A £>2*|2

and A = — = —
det / E g
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is the Gauss curvature of £ , which, by the theorema egregium, depends only on the
coefficients of / j ; and their first and second derivatives.

77E = DijX • v dtfdv?

= hijduldv,i

is the second fundamental form, which is defined almost everywhere.

ASSUMPTION(B). Suppose that

L/£
where H = —-—,

is the mean curvature, and
do =

is the area element of S.
The main result of this note then reads as the following:

THEOREM 1. The radius vector X belongs to the Holder class C^^(fl). For
each subset fi', which is compactly contained in fi, there is an estimate of the form

(1)

wiiere the constant C only depends on fi, a, c, M, and dist(fi', 9fi).

The regularity part of Theorem 1 follows from the regularity theory for elliptic
Monge-Ampere equations [27] via the Darboux equation (5) (see for example, Nirenberg
[18]). The Cf^-estimates follow from [24, 26], if E is a graph or a closed surface. These
results can also be derived from the prescribed Gauss curvature equation

(2) det

(compare Sabitov [20] for the regularity and [22, 23] for the a priori estimates for
graphs and closed surfaces). The prescribed Gauss curvature equation (2) is particularly
useful when the regularity requirements regarding /E are weakened to the extent that
the Gauss curvature K is only pinched between two positive numbers (see Heinz [6],
Nikolaev and Shefel' [16, 17]).

The regularity statement can be considered a variation of regularity theorems of
Alexandrow [1] and Pogorelov [19]. That it is sharp follows from Sabitov and Shefel'
[21], who investigated the connections between the regularity of a surface and its metric.
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The case of closed surfaces is of particular interest because of Weyl's embedding
problem (see Weyl [29], Lewy [14], Nirenberg [18], Heinz [5, 22, 23]).

The purpose of the present note however is to provide the stated local C2'11-
estimates for the radius vector X of a locally convex surface, thus improving those
of Heinz [7], which require additional regularity assumptions regarding both the radius
vector X{u) and the coefficients gij of the first fundamental form. The approach, which
is due to Heinz [7], consists of introducing conjugate isothermal parameters, that is, of
constructing a conformal map x = x(u) with respect to the second fundamental form
of E .

The present estimates rest on sharp estimates for the Jacobian of the Darboux
system (8), which is satisfied by the inverse mapping u = u{x). These estimates were
derived in [25], generalising classical theorems of Lewy [12, 13] (see also Efimow [4])
and Heinz [7, 8].

The a priori constant in (1) does depend on the integral J \H\ dcr, because suitable
Riemannian metrics on the unit disc with positive Gauss—Kronecker curvature can be
embedded in Euclidean 3-space such that J \H\ da is arbitrarily large (see Theorem 3
of Heinz [9]).

If E is a closed convex surface, then the integral J \H\ da can be estimated because
of Minkowski's integral formula

(3) / Hda = - f Ku-Xda,

which holds for orientable closed surfaces (Minkowski [15], Herglotz [10], Efimow [4],
Heinz [7]). A careful investigation of the proof of (3), (which we take from Klingenberg
[11], p.106, instead of proving (3) like in [7]) shows that an a priori estimate for / \H\ da

can also be derived if E is attached to the unit sphere S2 of order 1:

PROPOSITION 2 . Suppose that X e C1-1 (B) nCfoc(B), B = {\u\ < l } , is the

radius vector of a locally convex surface, which satisfies the boundary condition

(4) |X
|X| = 1, =0/or |«| = l.

Here n is the outward pointing normal to dB = S1. Then there is an estimate of the
form

f
where |<fy| ̂  a, K ^ «.
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2. T H E DARBOUX EQUATION AND THE REGULARITY PROOF

Let

p = p(u) -X-Xo, X0=t/(u0),

for some UQ G ft. The Gauss equations

ii + Digii - Dtgij),

then imply that

(5)

(5) is the Darboux equation, which is elliptic in a neighbourhood Af of u0 £ fi, because
S is then a convex graph over a plane perpendicular to V{V,Q) . The regularity theory for
elliptic Monge-Ampere equations, in particular Theorem 1 of [27], yields the regularity
P e Cf^(Af). To translate this into the regularity X £ tf^(Af, R3), consider the
three 3 x 3-systems

Xo • D^X - Dijp,

DkX • D^X = -{Djgik + Digjk - Dkgij)

(which can easily be derived from the Gauss equations). By (5), the determinant of the
coefficient matrix is

X0D1XD2X = Jg~ —DipDjp £ 0,

and the statement X G C2>M(ft, Rs) of Theorem 1 follows from Cramer's rule. D

3. CONJUGATE ISOTHERMAL PARAMETERS AND THE DARBOUX SYSTEM

LEMMA 3 . Let â - be functions of class CJ(n) such that

A = det[ati] > 0.
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Let BR = BR(UO) C fl. Then there exists a homeomorphism u = u(x) from B —
{\x\ < 1} onto BR of class C^(B) with «(0) = u0, which satisfies the system

(6) Da (\/A£>a«*) = Da (Aaak) Du1 A Du2.

Furthermore Du1 A Du2 = 271u
1D2w

2 - D2u
lDiU2 ^ 0.

- •

Du1 A Du2

This lemma is contained in Lemma 2 of [26], which in turn is an improved version
of Lemma 2 of Heinz [5]. The proof is by mapping the disc BR(UO) conformally with
respect to the metric

ds2 = aijdrfdu'
onto the unit disc B = {\x\ ^ 1}.

PROPOSITION 4 . Suppose that E is a locally convex surface with radius vector
X £ C2^{n, R3) for some fi, 0 < ft < 1, and let ~BR = B~R(u0) C ft. Then there exist
conjugate isothermal parameters x = (x1, s 2 ) , that is, there exists a homeomorphism
u - u(x) from ~B = {\x\ < 1} onto ~BR of class CJ^(B) with u(0) = u0, and

Du1 A Du2 = Dju1^"2 - i W A u 2 > 0

such that the following conformality relations hold:

DuiDuJ

Furthermore u satisfies the Darboux system

(8) AKU* = Da [yKDau
k^ + y/KT^Du1 • Du' =0 {k = 1, 2).

PROOF: Assume first that X e C3(fi, R3) so that 7 / s £ C^fl, R3) and consider
the differential form

ds2 = 4=//=

Lemma 3 yields the existence of the parameters x — (x1, z2) which satisfy the confor-
mality relations (7). According to (6),

Da(yiCDau
k} = Dc^Kh^Du1 A Du2,

that is, Da(yKDav}) = L fel - D2 fell Du1 A Pti2,

https://doi.org/10.1017/S0004972700028653 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700028653


492 F. Schulz [6]

By invoking the Codazzi-Mainardi equations

Djhik - Dihjk = Tl
jkhit - Tihhit

and

which follow from Dkgij - T^gij + Tl
jkgu,

one computes

Dl [ 5 f ] " D* [vf] = 7J{Ti2

and

The statement remains true if X £ C2''*(J7, Rs). This is seen by essentially
repeating the approximation argument in the proof of Lemma 2 of [26]: Let {X^}^.1
be C3 (fi, Rs)-mappings which approximate the radius vector X and its first and second
derivatives uniformly in BR. The regularity theory for linear equations (see [25]) yields
local C1'''-estimates for the approximating mappings {u^}^=1, because K = h/g £
C/1(f2), and since the conformality relations for u^ imply that

dx£C [ Du1 A Du2dxf Du1

JB

= C du
JJBR

= CR2.

Hence there exists a limit mapping u — u[x), which is univalent because the
inverses x^n) = x^n\u) are equicontinuous in BR by the Courant-Lebesgue lemma.
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This is true because the conformality relations for i/n) also imply that

du < C I Dx1 A Dx2du
JBR

dx
JB

Q

In order to conclude that u = u(x) is a diffeomorphism from B onto BR , consider
the integrability conditions for the inverses x^ = x^(u), the elliptic system

which has Holder continuous coefficients. Then there are C^'^-estimates for
{(x) }SLi, and the limit mapping x — x(u) is therefore of class
C\^(BR) D C°(ER), which is the inverse of u = u(x). This in turn implies the
nonvanishing of Du1 A Du2 and the relations (7) are therefore satisfied. D

4 . A PRIORI ESTIMATES FOR LOCALLY CONVEX SURFACES

LEMMA 5 . Let E be alocally convex surface with radius vector X e C2>M(fi, R3)
for some fi, 0 < /x < 1. Suppose that

\9ij\ <«.

Then the mapping u — u(x), x G B, from Proposition 4, satisfies the estimate

(9) / \Duf dx ^ C(a, c) f \H\ da.
JB JS

PROOF: The mean curvature H of S can be estimated by the conformality rela-
tions (7):

\H\ =

-JK Du% • Du'

Du1 t\Du2\

1 [K g \Du
2V g 2a \Dux A Du2\

\Du\
ul ADu2|'
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Therefore

\Du\2 dx < lac [ \H\ du
»o)

|JI| da.

D

/
Js

PROOF OF THEOREM 1 (of the a prior* estimates): Let BR = BR(U0) C 0 .
Consider the homeomorphism u = u(x) from B onto BR from Proposition 4. Now u
is of class Clo'e

M(.B) and its Dirichlet integral is estimated by (9). Furthermore

(11)

Suppose now, without loss of generality, that BR{UO) — B = {\u\ < 1} (otherwise
consider the mapping ^u(x) — uo )• The Main Theorem of [25] can then be applied to
the system (11) to give the following estimates in any disc Bp — {\x\ < p}, 0 < p < 1:

(12) N U M ( B , ) ^ <?(•••>?)>

(13) D i i 1 A D u 2 ^ c ( . . . , / ) ) > 0 .

By taking p = 1/2, and then also taking into account that we assumed that BR(UQ) =

B, the relations (10) yield the bounds

from which, in fi',

l&tfl<c(...

Furthermore the functions /ij;-(w(sc)) satisfy Holder estimates of the form

in each Bp — {|x| < p}. In order to translate this into estimates for /ijj(u), note that

the estimate (9) for the Dirichlet integral of u implies, by the Courant Lebesgue lemma,

that there exists a p = p(a, c, /z, R), 0 < p < 1, such that x € Bp if u G BR/2{U0).

Since

xk = / Dxk{ua + T{U - u0)) • (u - uo)dr,
Jo
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the estimates (12,13) yield a dilation inequality of the form

\x\^ C(...,R) \u-uo\

if u G -6*1/2(1*0 )> and therefore

IM«) - M«o)| < C{..., R) |u - «o|" ,

which implies the Holder estimates

J4 priori estimates for the second derivatives of the radius vector X follow from the
Gauss equations as required. U

5. PROOF OF PROPOSITION 2

If X eCs(B), then

This formula is easily shown to hold in Fermi coordinates (see [11], pp.104, 106). By
dotting with X and integrating over Bp, 0 < p < 1, it follows that

2 / KvXd<T=-f xfgKgijh
iidu+]- f y/gK hijDj\X\2 mds

JVf, JBP 2 JgBp

= - 2 / Hda + l f y/jKh^DjlXfriids.
JVp 2 JaBf,

This relation holds true if X 6 C2(B). By letting p —> 1 and incorporating the
boundary condition (4), it follows that

/ KuXda= - I Hda.

Finally, K > 0 implies the required estimate

f \H\d<r^C(a,K)\X\

^ C(a, a).

D
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