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Abstract

We combine ideas from types for continuations, effect systems and monads in a very

simple setting by defining a version of classical propositional logic in which double-negation

elimination is combined with a modality. The modality corresponds to control effects, and it

includes a form of effect masking. Erasing the modality from formulas gives classical logic.

On the other hand, the logic is conservative over intuitionistic logic.

1 Introduction

Under the Curry–Howard (or formulas-as-types) correspondence, type systems for

functional languages correspond to certain logics. In particular, purely functional

languages give rise to an intuitionistic logic, whereas languages with first-class control

operators give classical logic, as the type of the control operators is double-negation

elimination (Griffin 1990) or some variant of it, like Peirce’s law.

Effect systems are extensions of type systems that are more fine-grained and ex-

pressive with regard to computational effects (Lucassen & Gifford 1988). Moreover,

for the special case of control effects, they extend the classical typing (Jouvelot &

Gifford 1988). The explicit tracking of effectful computations in an effect system

is reminiscent of the way effects are encapsulated in a monad in the approach of

“monads as notions of computations” (Moggi 1989; Wadler 1998). It has also been

noted that the monad type constructor T is a sort of modal operator on top of

intuitionistic logic (Benton et al. 1998).

Thus there is a wealth of connections between these logical accounts. However,

type and effect systems for realistic programming languages can become quite

complex. The aim of this note is to abstract away as much complication as

possible, and to present a simplified view, in the style of the classical double-negation

transforms as found in proof theory texts (Troelstra & Schwichtenberg 2000).

We consider a version of classical logic in which non-intuitionistic inferences are

tracked by a modality, inspired by effect systems. The modality can be eliminated

under certain conditions, just as effects that stay in some sense local can be

masked in an effect system. The intention is that the logic mediates between

intuitionistic and classical logic, rather as effect systems mediate between functional

and imperative programming. If we erase the modality, allowing classical inference
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Fig. 1. The modally classical logic � c.

to be untrammelled, we get classical logic (Section 3). But an entailment between

pure formulas (those not containing the modality) is intuitionistically valid even if

double-negation elimination and masking have been used in its derivation (Section 4).

2 A logic with a control effect modality

The inference rules for our modally classic logic are presented in Figure 1. The proof

terms consist of a functional language with a control operator. This system is built

up from an intuitionistic subset by adding rules for a modality �, a modal variant of

the classical axiom for double-negation elimination, and a form of effect masking.

We discuss these in turn.

The modality �A is reminiscent of containing effects in monads in Haskell.

These effects are propagated using rules from Benton, Bierman and de Paiva’s

CL logic (Benton et al. 1998), corresponding to the multiplication and unit of a

monad (Moggi 1989):

Γ,Γ′ ��c M : �A Γ, x : A,Γ′ ��c N : �B
(Let)

Γ,Γ′ ��c (let x = M in N) : �B

Γ ��c M : A
(� Unit)

Γ ��c (unit M) : �A
While these rules were inspired by monads rather than effect systems, they work

similarly (Wadler 1998). In an effect system, arrow types are annotated with effects.

For instance, A
e→ B is the type of functions from A to B with effect e. Rather

than having multiple arrows, we can decompose the effectful arrow into a pure

arrow → and the effect modality �. One of the most basic inference rules in an

effect system (Lucassen & Gifford 1988) joins together the effects that may happen in

an application: the operator, the operand, or the body of the function being applied

may have effects, all of which are unleashed when the application is evaluated. To

see how that is handled in the modal setting, suppose we want to make an inference

from the following two judgements, where the ‘?’ indicates that a modality may be

present:

Γ � M : ?(A → ?B) and Γ � N : ?A

https://doi.org/10.1017/S0956796808006734 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006734


Theoretical pearl 19

If there is a modality in any of the indicated positions, then there must also be a

modality in front of B in the conclusion Γ � . . .M . . . N . . . : ?B. It is not hard to

see that the rule (Let) combined with (→E) conforms to this condition, as (Let)

may be used to strip off instances of � in the premise to make (→E) applicable, but

requiring a � to appear in the conclusion.

Next, we consider the rule that is specific to our effects at hand. The double-

negation elimination rule crucially interacts with the �-modality:

Γ ��c M : (A → � ⊥) → � ⊥
(C� )

Γ ��c (C� M) : �A

This rule stems from a control effect system (Jouvelot & Gifford 1988; Thielecke

2003), simplified to fit the modal setting. To stay as close as possible to standard proof

theory presentations (Troelstra & Schwichtenberg 2000), we use double-negation

elimination, corresponding to a typed version of Felleisen’s C operator (Griffin 1990;

Felleisen & Hieb 1992), rather than Peirce’s law ((A → B) → A) → A, corresponding

to typed call/cc. These control operators are interdefinable under mild conditions.

The modality is inserted in those places where the effect system would specify a

control effect, with the combination of → and � emulating the effectful function type.

Intuitively, the first occurrence of � in the premise of the rule is required because the

seized continuation jumps when applied to an argument of type A, while the second

occurrence is needed because the function using the continuation may apply it and

cause a jump. The occurrence of � in the conclusion of the rule is needed because

at this point the continuation is seized by the control operator.

For the masking of the modality, we will need a notion of pure formulas P ,

analogous to types that do not contain any free region identifiers in an effect

system (Lucassen & Gifford 1988). The rule for masking control effects is then a

form of �-elimination:

x1 : P1, . . . , xn : Pn ��c M : �P
(� Mask)

x1 : P1, . . . , xn : Pn ��c (mask M) : P

Masking of effects can be understood generically as keeping effects local, so that

they are not observable from the outside via P or any of the P1, . . . , Pn. Logically,

we could read � as a sort of non-standard modality for intuitionists who are not

entirely convinced by classical inference. When double-negation elimination is used

in rule (C� ), the conclusion is tagged with the modality to flag this intuitionistic

doubt, which is then spread by the rule (Let). With this interpretation, the masking

rule says that in some restricted cases the doubt should be dispelled even if classical

inference was used locally. The main result will be that the masking rule is in fact

acceptable, due to a translation to intuitionistic logic (Proposition 4.4).

More formally, we will use the following definitions:

Definition 2.1

Formulas are defined by the grammar

A,B ::= A → B | ⊥ | α | �A
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where we assume infinitely many atomic formulas α. We use Γ to range over contexts

consisting of sequences of the form x1 : A1, . . . , xn : An. Let a pure formula be one

that does not contain any occurrences of the modality �, that is,

P ::= P → P | ⊥ | α

Let Π range over contexts containing only pure formulas. We will use three kinds

of inference, ��c, �i and �c:

• We write ��c for inference with the rules from Figure 1.

• We write �i for the usual intuitionistic inference with → introduction and

elimination, axiom and falsity, given by the subset of rules (→E), (→I),

(Var) and (⊥E) from Figure 1. Intuitionistic logic consists of derivable pure

judgements of the form Π �i M : P .

• We write �c for classical inference, given by the rules for �i above, together

with the double-negation elimination rule (unconstrained by a modality):

Γ �c M : (A → ⊥) → ⊥
(C)

Γ �c (C M) : A

Although weakening of contexts is not present as a rule, it is obviously admissible

in all these systems.

Lemma 2.2

If Γ � M : A, then also Γ, x : B � M : A, where � can be any of �i, �c or ��c.

Example 2.3

To see how the modality works in derivations, we can derive P ��c P for some pure

formula P by using double-negation elimination, and then masking the resulting

modality:

(Var)
x : P , k : P → � ⊥ ��c k : P → � ⊥

(Var)
x : P , k : P → � ⊥ ��c x : P

(→E)
x : P , k : P → � ⊥ ��c (k x) : � ⊥

(→I)
x : P ��c (λk.k x) : (P → � ⊥) → � ⊥

(C� )
x : P ��c (C� (λk.k x)) : �P

(� Mask)
x : P ��c mask (C� (λk.k x)) : P

Computationally, this derivation amounts to seizing the current continuation and

then immediately invoking it. As the continuation does not escape, the control effect

can be masked. In this case, it is easy to see that we could have avoided the classical

rule C� altogether, deriving the intuitionistic

x : P �i x : P

Section 4 shows that such an intuitionistic derivation always exists if the effect can

be masked, despite the fact that ��c contains classical logic �c in a sense as shown

in Section 3.
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3 Classical logic and the modality

We will show that classical inferences in �c can always be represented in ��c, although

the formulas in the latter may need to contain instances of the modality. To translate

from classical logic to the modally classical one, we systematically add the modality

to all arrows.

Definition 3.1

We define a translation (·)+ that introduces � as follows:

(A → B)+ = A+ → �(B+)

α+ = α

⊥+ = ⊥

The translation is extended to contexts pointwise. We use the same notation (·)+ for

the corresponding translation on terms:

(MN)+ = let m = M+ in let n = N+ in (mn)

(λx.M)+ = unit (λx.(M+))

x+ = unit x

(AM)+ = let m = M+ in (Am)

(CM)+ = let m = M+ in (C� m)

Lemma 3.2

If Γ �c M : A, then Γ+ ��c M
+ : �A+.

Proof

The proof proceeds by induction over the derivation of Γ �c M : A, using the rule

(Let) to strip off � where necessary. Consider the rule C. By the induction hypothesis,

we have

Γ+ ��c M
+ : �((A+ → � ⊥) → � ⊥)

We infer the required Γ+ ��c let m = M+ in (C� m) : �A+ using (Let) and this

inference:

(Var)
Γ+, m : (A+ → � ⊥) → � ⊥ ��c m : (A+ → � ⊥) → � ⊥

(C� )
Γ+, m : (A+ → � ⊥) → � ⊥ ��c C� m : �A+

Next, we consider the rule

Γ �c M : A → B Γ �c N : A
(→ E)

Γ �c MN : B

By the induction hypothesis, we have Γ+ ��c M
+ : �(A+ → �B+) and Γ+ ��c N

+ :

�A+. By weakening (Lemma 2.2), the latter implies Γ+, m : A+ →�B+ ��c N
+ : �A+.

Furthermore, from two instances of (Var), we infer using (→ E) that

Γ+, m : A+ → �B+, n : A+ ��c mn : �B+

By applying (Let) to that and Γ+, m : A+ → �B+ ��c N
+ : �A+, we have

Γ+, m : A+ → �B+ ��c let n = N+ in mn : �B+
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Finally, by applying (Let) again, we have

Γ+ ��c let m = M+ in let n = N+ in (mn) : �B+

as required. For the rule (⊥E), we again use (Let), whereas for (→I) and (Var) we

use (� Unit) to insert the modality. �

If we erase the modality �, then ��c gives us just the usual presentation of classical

logic with the rule for double-negation elimination.

Definition 3.3

We define a translation to formulas not containing � as follows:

(�A)◦ = A◦

(A → B)◦ = (A◦) → (B◦)

α◦ = α

⊥◦ = ⊥

For contexts, Γ◦ is defined pointwise. Here is how we translate terms:

(MN)◦ = (M◦) (N◦)

(λx.M)◦ = λx.(M◦)

x◦ = x

(AM)◦ = A (M◦)

(let x = M in N)◦ = (λx.(N◦)) (M◦)

(unit M)◦ = M◦

(C� N)◦ = C (M◦)

(mask M)◦ = M◦

Lemma 3.4

If Γ ��c M : A, then Γ◦ �c M
◦ : A◦.

Proof

The proof proceeds by induction over the derivation of Γ ��c M : A, constructing a

derivation Γ◦ �c M
◦ : A◦ by cases on each derivation step. The intuitionistic rules are

mapped to themselves; C� is taken to C, while instances of (� Mask) and (� Unit)

are omitted from the derivation in �c. An instance of the rule (Let) is taken to the

following derivation steps:

Γ◦, x : A◦ �c N
◦ : B◦

(→I)
Γ◦ �c (λx.N)◦ : A◦ → B◦ Γ◦ �c M

◦ : A◦

(→E)
Γ◦ �c (λx.N◦)M◦ : B◦

This idiom is familiar as the encoding of let-bindings in terms of lambda abstraction

and application. �

Proposition 3.5

We have Γ �c M : A for some term M if and only if Γ+ ��c N : �A+ for some term

N.
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Proof

The ‘only if’ direction is Lemma 3.2 with N = M+. For the converse, suppose

Γ+ ��c N : �A+. By Lemma 3.4, this implies (Γ+)
◦ �c N◦ : (�A+)

◦
. As (B+)

◦
= B

for any classical formula B, we have Γ �c N
◦ : A. �

Proposition 3.5 means that ��c accommodates classical logic as the image of (·)+,

the subset in which → and � are always combined, as in A → �B. However, ��c

is more finegrained in that it can distinguish between A → �B and A → B, just as

an effect system differentiates between functions that may or may not have effects.

The ability to make this distinction enables ��c to contain intuitionistic logic as well,

without classical inference leaking into intuitionistic ones uncontrollably.

4 CPS transform and conservativity

To relate ��c to intuitionistic logic, we define a double-negation transform. Unlike

the standard transforms, it uses the modality � to decide where to insert double

negations.

Definition 4.1

Let α0 be some designated atomic formula not used elsewhere in the translation of

judgements. We define a transformation (·) from ��c to intuitionistic logic as follows:

A → B = A → B

�A = (A → α0) → α0

⊥ = ⊥
α = α

The transformation is extended to contexts pointwise. The corresponding translation

on terms is as follows:

MN = M N

λx.M = λx.M

x = x

AM = AM

let x = M in N = λk.(M (λx.Nk))

unit M = λk.(kM)

C� M = λk.M (λx.λh.(k x)) (λy.A y)

mask M = M (λx.x)

In continuation terms, α0 is the answer type of our transform. The significance of

choosing α0 to be fresh is that we can therefore substitute other formulas for it

without affecting the surrounding formula. To do so, the following lemma will be

needed, where the substitution of α by B in A is written as A[B/α].

Lemma 4.2

If Γ �i M : A, then also Γ[B/α] �i M : A[B/α].
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We can now show that (·) is a translation from our modally classical logic to

intuitionistic logic, in the sense that judgements are preserved.

Lemma 4.3

If Γ ��c M : A, then Γ �i M : A.

Proof

The proof proceeds by induction over the derivation of Γ ��c M : A. The most

important case is the rule

Π ��c M : �P
(� Mask)

Π ��c mask M : P

for masking. The idea is the same as the insertion of a control delimiter in a CPS

transform whenever a control effect is masked (Thielecke 2003). By the induction

hypothesis, we have

Π �i M : (P → α0) → α0

Hence by Lemma 4.2, we also have

Π[P/α0] �i M : ((P → α0) → α0)[P/α0]

Now, pure formulas are left invariant by the translation and in particular do not

contain α0. Thus Π �i M : (P → P ) → P . From this and Π �i (λx.x) : P → P , we

infer Π �i M (λx.x) : P , as required.

Of the remaining cases, the most interesting is the modal double-negation

elimination (C� ), as it is analogous to typechecking the call-by-value CPS transform

of a control operator, using Lemma 2.2 to propagate the current continuation. So

to check this case, let B abbreviate the following formula from the translation of

the premise of rule (C� ):

B = (A → � ⊥) → � ⊥
= (A → ((⊥ → α0) → α0)) → ((⊥ → α0) → α0)

We need to show that Γ �i M : B implies Γ �i C� M : (A → α0) → α0. To do so, we

first note that

Γ, k : A → α0 �i λx.λh.(k x) : A → (⊥ → α0) → α0

As we have Γ, A → α0 �i B by Lemma 2.2, we infer from that by (→E),

Γ, k : A → α0 �i M (λx.λh.(k x)) : (⊥ → α0) → α0

Now, we also have by (⊥E) and (→I),

Γ, k : A → α0 �i (λy.A y) : ⊥ → α0

and so by (→E),

Γ, k : A → α0 �i M (λx.λh.(k x)) (λy.A y) : α0

and finally by (→I),

Γ �i λk.M (λx.λh.(k x)) (λy.A y) : (A → α0) → α0
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as required. In continuation-passing terms, k : A → α0 is the current continuation

that is seized by the control operator, while h : ⊥ → α0 is a continuation that is

ignored. �

As is typical for double-negation translations, Lemma 4.3 tells us that we can avoid

classical rules at the expense of additional arrows in formulas, just as we can avoid

control operators in functional programming by rewriting the code to use explicit

continuation passing instead.

Our main result is that the logic ��c is conservative (Troelstra & Schwichtenberg

2000) over intuitionistic logic.

Proposition 4.4

If Π ��c M : P , then Π �i M : P .

Proof

The result follows from Lemma 4.3, since for pure P , we have P = P . �

The conservativity tells us that in judgements only involving pure formulas, we can

always avoid the extra rules of ��c by rewriting the derivation into an intuitionistic

one for the same judgement.

5 Conclusions

The logic ��c is intended as an extremely distilled form of control effect sys-

tem, including a variant of effect masking. Real effect systems are much more

sophisticated, including effect and region polymorphism; on the other hand, they

may also seem ad hoc and complicated, and effect masking is often explained in

terms of implementation-specific techniques, such as stack allocation. By contrast,

Proposition 4.4 aims to look at effect annotations in a more traditional logical

setting, as a conservative extension.

This conservativity of effects at the level of types complements Felleisen’s notion

of expressiveness Felleisen (1991), where it is characteristic of effects that they are

not conservative extensions in terms of observational equivalence, which is taken

as evidence of an increase in expressive power. As a direction for further research,

one could aim to reconcile the conservativity and the non-conservativity: it appears

that the breaking of contextual equivalences is due to those effects that cannot be

masked. More specifically, recall that in Example 2.3, we masked a term whose

control effects were not externally visible:

x : P ��c mask (C� (λk.k x)) : P

It is interesting to note that using the equational axioms for the C operator Felleisen

& Hieb (1992), one can infer C (λk.k x) = x, and clearly the pure term x witnesses

the entailment x : P �i x : P . This situation suggests that terms with masked effects

could be re-written into equivalent ones without effects, so that they could not in fact

break any equivalences that hold only in the absence of effects. However, proving

such a result on terms appears much more technically involved than the simplified
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account at the level of types given here. Equational reasoning based on answer type

parametricity, as used for the equivalence of two CPS transforms (Thielecke 2004),

may be a promising technique. It is also possible that analogous conservativity over

intuitionistic logic holds for other effects, such as state with assignment, although

in that situation we would no longer have the Curry–Howard correspondence to

classical logic that is specific to control effects.
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