Using occupancy-based camera-trap surveys to assess
the Critically Endangered primate Macaca nigra
across its range in North Sulawesi, Indonesia
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Abstract Primates are one of the most threatened groups of
mammals. Understanding their patterns of population oc-
currence and abundance, especially in response to threats,
is critical for informing conservation action. The crested
black macaque Macaca nigra is the only Critically En-
dangered species of Sulawesi’s seven endemic macaques.
Little is known about its distribution or its response to
deforestation and hunting. We conducted a camera-trap
survey across the entire species range using an occupancy-
based analytical approach to (1) establish the first range-
wide baseline of occurrence, (2) investigate how environ-
mental and anthropogenic factors influence occurrence,
(3) identify priority conservation subpopulations, and
(4) test the efficacy of the sampling and analytical protocol
for temporal monitoring of M. nigra using occupancy as
the state variable. From 9,753 camera-trap days, M. nigra
was detected on 473 days at 77 of the 111 camera locations.
Species occupancy was 0.66 and highest inside protected
areas and closed canopy forest. We identified eight distinct
subpopulations, based on distribution and forest fragment
size. To inform future monitoring, we used a power analysis
to determine if our effort would allow us to detect inter-
annual occupancy declines of 10%, and found that 9o
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camera locations surveyed for 3 months (8,100 camera days)
across three consecutive seasons is the effort required to de-
tect such change with 80% certainty. Our study underscores
the importance of well-managed protected areas and intact
forests for the long-term survival of the crested black ma-
caque, and tests the effectiveness of camera traps to monitor
primates at the landscape scale.

Keywords Camera trap, presence-absence, Macaca nigra,
occupancy, power analysis, primates, detectability, cost-
benefit, modelling
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Introduction

lobally, an estimated 60% of primate species are at
risk of extinction (i.e. categorized as threatened on the
IUCN Red List), with 75% of all primate species being in a
state of decline (Estrada et al., 2017). The threats to primate
species are broad and wide-ranging, with many acting in syn-
ergy to hasten population declines, but hunting for trade and
habitat loss from logging and agricultural expansion are the
primary drivers (Cowlishaw & Dunbar, 2000; Estrada et al.,
2017). To understand the effects of threats on primate popu-
lations, bespoke monitoring programmes are critical.
Monitoring of primate populations provides forewarn-
ing of declines and, by recognizing causal factors, a good
monitoring programme can identify mitigating solutions.
However, monitoring primates using abundance metrics
can be resource intensive and time consuming at large
spatial scales (Walsh & White, 1999; Cavada et al.,, 2017),
especially if the focal species are hunted and therefore wary
of humans, or live in remote and inaccessible locations
(Fashing & Cords, 2000). To address this, several recent
studies have recommended using occupancy as the state
variable, rather than abundance, as a more cost-effective
option (Sanje mangaby Cercocebus sanjei, Rovero et al,
2014; indri Indri indri, Keane et al., 2012; Alaotra reed lemur
Hapalemur alaotrensis, Guillera-Arroita et al., 2010).
Occupancy modelling corrects for detectability issues by
using presence/absence (detection/non-detection) data to
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estimate the proportion of sites occupied by the species of
interest (Mackenzie et al., 2002), and as such is considerably
less labour intensive and less costly to implement than
count-based metrics (Royle & Nichols, 2003; Joseph et al.,
2006). To this end, camera traps produce data that are suited
to occupancy analysis and therefore present a viable survey
method, especially for elusive primates living in landscapes
with difficult terrain. Here, we use an occupancy based
camera-trap approach to conduct a baseline assessment
for the crested black macaque Macaca nigra, a hard-to-
detect and mostly terrestrial species of forest-dwelling
primate endemic to the northernmost peninsula of the
Indonesian island of Sulawesi.

The crested black macaque exemplifies the plight of
many forest-dwelling primates. Resource extraction and
land requirements for agriculture in Sulawesi have resulted
in the loss of most of its lowland forest habitat (Margono
et al,, 2014), creating a fragmented habitat mosaic that is
probably restricting gene flow between subpopulations
(Evans et al., 2003). Added to this are retaliatory killings
in response to foraging in crops, and hunting for bush-
meat consumption, which in turn makes the species shy
and secretive in large parts of its range.

Numerous presence-only studies have explored the dis-
tribution and status of M. nigra (Mackinnon & Mackinnon,
1980; Sugardjito et al., 1989; Lee, 1997; Rosenbaum et al.,
1998; Melfi et al., 2007; Palacios et al., 2011; Kyes et al., 2013)
and have estimated the population size to be 4,000-6,000
individuals (Riley, 2010). Sharp declines of up to 80% over
40 years in M. nigra populations have indicated the serious-
ness of the threats facing the species (Supriatna & Andayani,
2008). Macaca nigra is now categorized as Critically En-
dangered on the IUCN Red List (Supriatna & Andayani,
2008) and is one of the top 25 most threatened primates
(Schwitzer et al., 2017). Although previous work has high-
lighted the vulnerability of M. nigra, the limited survey efforts
yielded incomplete knowledge on distribution, status and re-
sponses to anthropogenic threats at a regional scale. In this
study, we use camera-trap data to (1) investigate the influence
of environmental and anthropogenic factors on M. nigra
occupancy across its native range (2) provide an empirical
baseline of its status, using occupancy as the state variable
of interest, and (3) evaluate the efficacy of our protocol to
monitor primates at the landscape scale.

Study area

Macaca nigra is native to North Sulawesi province, where its
range extends from the northern tip and some of the small
surrounding islands (Lembeh, Manadotua and Talise) to
the Onggak-Dumoga River and the south-east landscape
of Bogani Nani Wartabone (Johnson et al., 2019). Within
this area, we used knowledge of the habitat preferences of

Macaca nigra

M. nigra (O’Brien & Kinnaird, 1997; Rosenbaum et al,
1998; Palacios et al, 2011) and recent landcover maps
(KLHK, 2015) to determine the extent of potential habitat
that would be ecologically capable of supporting a macaque
population and use this to define our study area (Fig. 1).
These included sites characterized by forest cover and/or
scrub habitats. North Sulawesi has altitudes of 0-1,995 m
and has a wet season during October-May and a dry season
during June-September.

Methods

Data collection: camera trapping

We first divided the potential habitat into sampling units
(termed sites) of 2 x 2 km (n = 796 sites). This size was cho-
sen as it is close to the largest recorded M. nigra home range
of 4.06 km* (O’Brien Kinnaird, 1997), but larger than the
purported average of 2.16 km* (Riley, 2010). A sample of 115
of these sites was then selected to be surveyed using camera
traps (64 Reconyx HCsoo, Holmen, USA; 50 Cuddeback
Black Flash, DePere, USA; one Bushnell Natureview HD
Live View, Overland Park, USA). This was done in two
phases. Firstly, during January 2016-October 2017, we sur-
veyed 67 sites. This included all 28 sites across the Tang-
koko Nature Reserve, and 39 sites selected with random
systematic sampling within the larger region of the southern
Bogani Nani Wartabone National Park landscape (Fig. 1).
Secondly, during March-July 2018, we randomly selected 48
sites from across patches of potentially suitable habitat be-
tween these protected areas. Although implemented in dif-
ferent years because of the number of cameras available, we
conducted the actual survey phases within a relatively short
period of time, minimizing the risk of violating the assump-
tion that the population was closed.

Because of logistical constraints, camera traps were not
uniformly deployed within each site. Rather, we deployed
cameras in the part of the site most accessible, provided it
was > 50 m from the site’s border. Our grid-based approach
ensured sufficient spacing between camera traps. We posi-
tioned cameras along wildlife trails, attaching them to tree
trunks at a height of . 50 cm, with the sensor aimed parallel
to the ground facing the monitoring area. On average each
camera was deployed for a minimum of 3 months. Four
locations, however, produced no data as the cameras were
either stolen or malfunctioned; we therefore present data
collected from 111 camera traps.

Data collection: covariates

Occupancy of sites by M. nigra was expected to vary across
North Sulawesi according to habitat and anthropogenic
factors (Rosenbaum et al., 1998). We therefore derived a
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spatial dataset of covariates that could potentially explain
any heterogeneity in M. nigra occupancy. These were pres-
ence of forest cover (Yes/No), elevation, slope, normalized
difference vegetation index (NDVI), distance to roads and
settlements, protected area (Yes/No), level of anthropogenic
disturbance in the landscape (measured by the Human
Footprint Index; Venter et al., 2016), and distance from
the edge of continuous forest (Table 1). All covariates were
extracted for the exact camera location, except for NDVI,
slope and elevation. As a measure of landscape rough-
ness, and therefore accessibility, we calculated the mean of
slope and elevation across each site. We calculated NDVI
using red and near infrared spectral bands in Landsat 8
imagery (Hansen et al, 2013), averaged across each site.
All spatial datasets for covariates were calculated and de-
rived in ArcGIS 10.2 (Esri, Redlands, USA).

Data analyses: occupancy modelling

We discretized our sampling data, following Rovero &
Spitale (2016), into 24 consecutive 5-day sampling occasions
(of 1, 5 and 10 days, a 5-day duration best facilitated model
convergence). For each site and each occasion, a 1 indicated
detection (a photograph) and o indicated non-detection (no
photograph) of M. nigra.

To assess the influence of ecological and anthropogenic
factors on occupancy, we fitted single-season occupancy
models to the data using the package unmarked (Fiske &
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Chandler, 2011) in R 3.5.1 (R Development Core Team,
2010). Single-season occupancy models estimate both the
probability that a site is occupied (y) and the probability
that the species is detected if it is present (p) using a max-
imum likelihood approach (Mackenzie et al., 2002). All nu-
merical covariates were first standardized into z-scores and
assessed for collinearity using Pearson’s rank correlation.
As no covariates were found to exhibit collinearity > 0.6,
no covariates were excluded in any of the candidate models
(Supplementary Table 1).

We next examined the effect of covariates (Table 1) on
our parameter of interest, y. However, we expected that a
number of covariates that influence occupancy of M. nigra
may also affect the abundance of M. nigra and therefore
detectability (Royle & Nichols, 2003). Additionally, there
are other factors that could also influence the detectabil-
ity. We therefore began our model selection process by ex-
plicitly accounting for p. Following recommendations of
MacKenzie et al. (2006), we identified a suitable covariate
structure for p whilst holding the covariate structure for
vy constant. Covariate structure for p was assessed using
the Akaike information criterion corrected for small sample
sizes (AICc). We then fixed the covariate structure for p with
the covariate structure that had the lowest AICc (Burnham
& Anderson, 2002) and proceeded to assess the role of our
covariates on , ranking the competing models according to
their AICc values. If multiple models were within 2 AAICc
points, they were considered equally supported (Burnham
& Anderson, 2002) and estimates were instead derived by
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TasLE 1 Definition and predicted effect of covariates used to model variation in detectability and occupancy of Macaca nigra across sites.

Covariate Definition Type Expected effect (rationale)
Forest Whether camera was located within closed canopy Categorical Positive (as M. nigra is predominantly forest-
forest or bush/scrub habitat (source: KLHK, 2015) dwelling, occupancy/detectability will be higher in
forest than in bush/scrub)
NDVI Normalized Difference Vegetation Index, averaged Continuous Positive (high NDVI values should be associated
across grid cell (Hansen et al., 2013) with greater food availability)
Protected Whether camera was located within a protected Categorical Positive (protected areas should have lower levels of

Area area boundary (KLHK, 2015)

Roads Euclidean distance (km) from camera location to
nearest paved road

Village Euclidean distance (km) from camera location to
nearest settlement/village

Edge Euclidean distance (km) from camera location to
the forest edge (negative for cameras in non-
forested habitat)

Elevation Mean elevation (m) across entire site (calculated
from digital elevation model; NASA/METI/AIST/
Japan Spacesystems, 2009)

Slope Mean slope angle (degrees) across entire site

Human Expressed as a standardized index for (1) built

Footprint environments, (2) crop land, (3) pasture land,

Index (4) population density, (5) night-time lights,
(6) railways, (7) roads (Venter et al., 2016)
Camera Make of camera trap
Model

disturbance, with less hunting & forests more intact)

Continuous Positive (as distance from the nearest road increases,
a site typically becomes less accessible & therefore
less likely to be subject to disturbance)

Continuous Positive (sites in close proximity to a village may
be more frequently visited by people & hunting
pressure may be higher)

Continuous Positive (as distance from the forest edge increases,
the site becomes more difficult to access, & ex-
ploitation & disturbance may therefore be lower)

Continuous Positive (increasing elevation & steeper slope angles
contribute to landscape roughness; rougher land-
scapes will be harder for people to access &
disturbance will be lower)

Continuous Positive (see elevation)

Continuous Negative (higher values indicate higher intensity of
human influence)

Categorical Unknown p (as different cameras could potentially
vary in how well they detect animals, this is a
potential source of heterogeneity in detectability)

averaging coefficients from across these multiple models
using the MuMIn package (Barton, 2012) in R. We used a
parametric bootstrap to check the adequacy of our model
fit using the y* approach on the most saturated model
(Burnham & Anderson, 2002).

Once the best (or averaged) occupancy model was identi-
fied, we used the corresponding occupancy probability to es-
timate the proportion of the 796 sites likely to be occupied by
M. nigra. We then mapped predicted occupancy probability of
M. nigra across its native range using the approach suggested
by Rovero & Spitale (2016). This approach involved fitting our
best model to a data frame containing a grid of covariate
values at the scale of 1x 1 km across the range of M. nigra.
Maps of estimated occupancy were created in ArcMap 10.2
(Esri, Redlands, USA).

Finally, we used predicted occupancy to identify regions
that may be important to the species based on the presence
of characteristics associated with a high occupancy probabil-
ity. We classified these as spatially distinct areas with > 50 km®
of continuous forest cover and predicted occupancy > o.7.
We defined spatially distinct as being separated by > 100 m
of habitat not capable of supporting the species. Although
separation of forest patches as we define it here does not ne-
cessarily preclude movement of M. nigra individuals between

populations, it enables easy demarcation of distinct forest
blocks that may be exposed to different threats.

Data analyses: optimal study design and power analysis

We evaluated the optimal effort for an occupancy-based
camera-trap monitoring protocol for M. nigra by first
estimating the number of sites (s) and occasions (K, 5-day
sampling periods) required to achieve a desired level of pre-
cision for the y and p estimators. These were calculated
using estimates from the best model and the corresponding
asymptotic variance of the occupancy indicator (Equation 1;
Mackenzie & Royle, 2005):

TS =sx K
_Kxyf o (1—-p")
 var({) [(1 w pPr—Kxpx( —p)“] W

where TS is total effort, s is the number of sites, K is the
number of occasions, y the probability of occupancy, p
the probability of detection provided the site is occupied,
and p* the probability that the species is detected at least
once after K occasions. As the number of occasions can be
increased free of additional cost in a camera-trap survey
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TasLE 2 Model selection results for covariate effects in determining occupancy probability of M. nigra across its native range in
North Sulawesi. The top ranked models are shown as those with AAIC ¢ < 3 followed by the null and average model. All models depicted

(AAICc < 2) were included in the averaged model.

Model' NPar*  AICC AAICc! WP+ SE Cumulative W7y + SE/p® + SE
y(Forest, PA) p(PA, Forest, HFI) 7 1666.5  0.00 0.28 0.28 0.663 + 0.076
y(Forest) p(PA, Forest, HFI) 6 1666.6 0.09 0.27 0.54 0.662 £ 0.062
y(Forest + NDVI) p(PA + Forest + HFI) 7 1668.0 1.54 0.13 0.67 0.661 + 0.073
y(Forest + Edge) p(PA + Forest + HFI) 7 1668.2 1.70 0.12 0.79 0.662 + 0.072
y(Forest, PA, NDVI) p(PA, Forest, HFT) 8 16683  1.75 0.12 0.91 0.661 * 0.085
Null model p(.)y(.) 1695.8 30.4 0.655 = 0.046 0.296 £ 0.013
Average model 0.662 £ 0.081 0.280 £ 0.025

'PA, protected area; HFI, Human Footprint Index.

*Number of parameters.

*Akaike information criterion corrected for small sample size.
“Relative difference in AICc values compared to top-ranked model.
*AICc model weight.

®Estimate of occupancy * SE.

’Cumulative AICc model weight.

®Estimate of detection probability + SE.

(at least until a camera needs to be serviced, in this case after
c. 3 months, or K =18) we defined the optimum monitoring
effort for M. nigra as one that achieves the target standard
error of 0.05 in our estimates whilst minimizing s. We did
this by resolving the Equation for s and assuming a duration
of 3 months for the surveys.

As smaller absolute declines in occupancy become more
detectable as the number of seasons of monitoring increases
(Beaudrot et al., 2018), we calculated the number of seasons
needed to detect a 10% annual occupancy decline if the op-
timal monitoring effort (calculated by Equation 1) is chosen
as the long-term monitoring protocol (survey effort = s x K).
To do this, we simulated data for an annual 10% decline
across a time series. We used the estimates from our best
model to determine the initial input parameters for occu-
pancy and detection and set colonization to zero, so as to
simulate a decline. We then took the generated data and
fitted it to a dynamic occupancy model without covariates
(Mackenzie et al., 2003). These were then assessed to deter-
mine the number of seasons required to detect an annual
decline of 10% with 80% confidence. Our methods follow
those detailed by Beaudrot et al. (2018) and all simulations
and analyses were done in R, using code available on Github
(Ahumada, 2017).

Results

Detection and occupancy

From 9,749 camera-trap days, M. nigra was detected on 473
separate days in 71 of 111 sites, yielding a naive occupancy
estimate of 0.64. These 71 camera locations confirmed
the presence of the species in 12 spatially distinct forest

TasLE 3 Summary of conditional model averaged parameters based
on the best-supported models identified in Table 2. Estimates of
the B coefficient are reported for standardized covariates (scaled
to mean = o and unit variance of 2). See Table 2 for the models
with covariates for both y and p.

Parameter’ Estimate + SE z value P(>|z|)
p(PA: inside) 0.518 +0.130 3.99 < 0.001*
p(Forest: inside) 0.357£0.188 1.90 0.057
p(HFI) —0.177 £0.068 2.60 0.009*
y(Forest: inside) 1.149%0.528 2.18 0.030*
y(PA: inside) 0.677 £0.452 1.50 0.134
y(NDVI) 0.200 +0.232 0.86 0.390
y(Edge) 0.192 +0.295 0.65 0.516
'PA, protected area; HFI, Human Footprint Index.

*Significant.

fragments, distributed across North Sulawesi, indicating a
greater distribution than previously known.

Investigating covariate influence on detection probabil-
ity, whilst holding occupancy constant, revealed p as a posi-
tive function of being inside both a protected area and for-
est, and a negative function of the Human Footprint Index
(Supplementary Table 2, Supplementary Fig. 1). This model
gave a detection probability of 0.28 + SE 0.025 and was sub-
sequently used to explore which combination of covariates
best explained M. nigra occupancy.

From the different combinations of covariates, the most
parsimonious occupancy model also included protected
area and forest (Table 2). M. nigra occupancy was higher
in forests (B coefficient 1.14 % SE 0.5) and inside protected
areas (0.69* SE 0.13). However, five models were ranked
<2 AAICc units and thus considered equally supported
(Table 3, Fig. 2). We therefore estimated detectability and
occupancy by averaging across these models, resulting in
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p=0.66 and y=0.28 (Table 2). By taking this estimate
for occupancy and extrapolating it to all sites across the
landscape (n=796 or 3148 km?®), we estimated the area
of occupancy of M. nigra to be 2,001 km®. Finally, our
goodness-of-fit test (y*=1869, P=o0.65) indicated no
evidence for a lack of fit for the most saturated model,
suggesting that the more parsimonious models provide an
adequate description of the data. According to our criteria
of predicted occupancy > 0.7 and continuous forest cover
> 50 km?, we identified eight distinct regions that probably
contain important subpopulations (Fig. 3, Supplementary
Table 3, Supplementary Fig. 2).

Optimal study design and power analysis

Considering the estimates from our averaged model and
assuming constant probabilities, an optimal survey design
would have 123 camera-trap sites, each with 8 repeats (1.5
months when each repeat constitutes a duration of 5 days)
to achieve a target standard error of 0.05 (Fig. 4a). However,
for camera traps further repeats are easily gained, without
incurring further cost, by simply delaying the retrieval of the
cameras. Therefore, it is possible to reduce the number of sites

Index (NDVI).

needed by increasing the number of repeats, without addition-
al cost, and thereby reducing overall survey costs. Under this
option, if the number of repeats is increased to 18 (9o days,
or c. 3 months), the number of camera-trap sites could be
reduced to 9o (Fig. 4b). As the cheapest means of surveying
M. nigra with suitable precision, this is the protocol that we
advocate. Simulating the power provided by this protocol, if
applied across multiple seasons, 3 years would be sufficient
to detect a 10% decline in occupancy with 80% certainty.

Discussion

Our study demonstrates an extension in the known range
of M. nigra compared to previous data. We show that
camera-trap data coupled with occupancy analysis can
provide a robust baseline assessment of a predominantly
ground-dwelling forest primate of conservation concern.
We estimated an occupancy of 0.66 (2,101 km®) for M.
nigra, which represents the first baseline for future re-
gional monitoring of the species. Estimated occupancy
was only slightly higher than the naive occupancy (0.64),
which is probably an artefact of a long survey duration,
which resulted in a high cumulative detection probability,
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(Supplementary Fig. 2,

thereby reducing its influence on occupancy. Detection
probability, however, varied across sites, and was higher in
closed canopy forests and in areas with a lower Human
Footprint Index. We attribute this to a preference by M.
nigra for forests and a sensitivity to human disturbance,
which cause a reduced abundance of the species in non-
forested and disturbed habitats, with less abundant species
typically being less detectable (Royle & Nichols, 2003).
However, this could also be a consequence of M. nigra
being more elusive and cautious in more distur-bed areas.
Although occupancy was significantly higher in closed
canopy forest than in bush/scrub habitats, we were not
able to test for effects of forest type (pristine vs degraded/
logged) because of the limited resolution of available satel-
lite imagery. We used NDVI as a remotely sensed proxy for
vegetation structure and green biomass (Myneni et al., 1995)
but, although retained in the best models, it was not signifi-
cant. This is probably the result of the overriding import-
ance of forest presence over the quality of that forest in
determining occupancy. The dependence of M. nigra on
forest is nevertheless apparent, highlighting the species’
susceptibility to forest conversion to other land uses.
Along with a preference for forest cover, estimated occu-
pancy was higher within protected areas, which is probably
a result of both the continuous extent of optimal habitat
and lower anthropogenic disturbance. Deforestation ob-
served within protected areas during 2001-2017 was much
lower than outside (26.4% outside protected area vs 6.2%

Supplementary Table 3).

loss within protected area; Hansen et al., 2013), a factor
that probably implies reduced hunting and disturbance.
However, protected areas currently cover only 20% of the
area estimated to be occupied by the species. Considering
that M. nigra, like many other primates (Estrada et al.,
2017), is vulnerable to anthropogenic activities, the species
remains at risk across 80% of its range.

Our modelling approach predicted eight spatially dis-
tinct regions that are likely to support important sub-
populations of M. nigra (Fig. 3, Supplementary Table 3,
Supplementary Fig. 2). Five of these landscapes repre-
sent the first scientific record of the species’ presence
(Supplementary Table 3). In combination with evidence
of range expansion (Johnson et al.,, 2019), this finding is of
conservation relevance and contradicts speculations that
Tangkoko contains the last viable population (Supriatna &
Andayani, 2008; Palacios et al, 2011; Kyes et al, 2013;
Engelhardt et al,, 2017). Although Tangkoko does appear to
hold an important and viable population (Engelhardt et al.,
2017) it comprises just 3% of the total area occupied by the
species (Supplementary Table 3). Therefore, although we
acknowledge that population density and viability of sub-
populations will vary across the species’ range, the signifi-
cance of these additional areas for the species cannot be
ignored.

Our discovery of previously undocumented popula-
tions, in addition to the increased range size of 220 km?
recently reported (Johnson et al., 2019), results in an
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averaged model (p = 0.28 and y = 0.66) and on the asymptotic
properties of the maximum likelihood estimates. The curves
correspond to different standard errors in the occupancy
estimate.

area of occupancy of 2,101 km* and an extent of occur-
rence of 7,810 km®. The Critically Endangered status of
M. nigra was a result of suspected severe population de-
clines. As we only provide a baseline, using new survey
methodology, we can neither support nor refute this.
However, with a greater range than previously thought,
our findings may influence the threatened status of the
species and therefore have implications for any future
review of the species’ Red List status. With this in mind,
we caution that the species remains highly threatened,
particularly outside protected areas, and emphasize the
need for standardized monitoring that follows the proto-
col we recommend. This will identify trends in the popu-
lation and lead to a clearer picture of the species’ status.
In the meantime, we stress the need for increased conser-
vation management in the landscapes identified as im-
portant (Supplementary Table 3).

Macaca nigra

In addition to contributing valuable information on the
distribution and status of the species, our study facilitates
the design of a targeted monitoring protocol, which we
define as 9o sites surveyed with camera traps for 9o days
(18 x 5-day occasions) per season. Testing the power of this de-
sign under simulation, we found it would be possible to detect
an annual change in occupancy of 10% (a decline we consider
sufficiently severe to initiate a conservation intervention), with
80% certainty if implemented over 3 seasons. By demonstrat-
ing the robustness of our suggested protocol in meeting the
objectives of such a monitoring programme, researchers can
be confident in investing resources in its long-term imple-
mentation (Yoccoz et al., 2001; Legg & Nagy, 2006).

Meaningful monitoring studies, especially at large spa-
tial scales, are considerable investments of limited conser-
vation resources. Procurement of the cameras required for
a study such as this constitutes a high cost, which must be
justified given the availability of other presence/absence
survey methods such as line transect surveys. We were
able to use data collected during this study to conduct a
basic feasibility comparison between the two methods
and found that the cost efficiency of camera traps was far
greater than that of a more labour intensive transect
method, even after considering the cost of cameras (Sup-
plementary Table 4). As such, although initial costs are
high, camera traps may provide a cheaper alternative for
monitoring certain species.

In conclusion, our study provides a robust baseline for
M. nigra occupancy and, through simulation, indicates
how the monitoring of a generally elusive and Critically
Endangered primate through camera trapping could be
feasible at a landscape level. We emphasize the necessity
of such a monitoring approach for understanding popula-
tion responses to ecological and anthropogenic factors and
hence informing conservation efforts. The baseline we
report forms the basis on which temporal trends in
M. nigra occupancy could be detected, and the study
design we suggest provides a robust means of detecting
potential declines within a suitable timeframe. In demon-
strating the potential of camera-trap data analysed in an
occupancy framework to monitor M. nigra, we add to a
growing body of literature that promotes occupancy as a fea-
sible alternative to abundance-based metrics for monitoring
wild primates (Guillera-Arroita et al., 2010; Keane et al,
2012; Gerber et al., 2014; Rovero et al., 2015).
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