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ABSTRACT. An adaptive-grid finite-volume glacier model is described. The
model is an implicit one-dimensional flowline model. The discretized implicit finite-
volume equations are solved by an iterative predictor—corrector method. The grid
adapts as the terminus moves in response to changes in surface mass balance. Only the
terminus grid point and the penultimate grid point are adapted as the glacier-terminus
position changes in order to minimize computation. Several modelling experiments are
carried out to demonstrate the performance of the model. Comparisons are made with
a fixed-grid finite-volume model and a fixed-grid finite-difference model. Comparisons
are made on two levels, The differences in methods, finite-volume method versus finite-
difference method, arise from differences in accuracy and programming efliciency. The
differences in grids, adaptive-grid versus fixed-grid, arise from differences in the
numerical smoothness of the motion of the moving terminus. This affects questions of

stability and accuracy.

1. INTRODUCTION

Simple flowline continuity models have been used by
various researchers to simulate glacier—climate interac-
tions. Most of the models have been constructed using
finite-differences (e.g. Budd and Jenssen, 1975; Bindsch-
adler, 1982; Kruss, 1984; Oerlemans, 1986; Greuell,
1992). The finite-difference method (FDM) involves
direct replacement of derivatives by divided difference
quotients (Richtmyer and Morton, 1967; Smith, 1985).
The notion of the FDM is simple and easy to apply.
Beside the FDM, the finite-element method (FEM) is
sometimes used (e.g. Fastook, 1987). The FEM is a
variational formulation in which approximating functions
are systematically derived by representing the given
domain as a collection of small sub-domains (Baker,
1983; Morton, 1986; Reddy, 1986). The FEM tends to be
mathematically more formal. The computational impl-
ementation of the FEM is much more complex than that
of the FDM and this has hindered its general usage in
glacier modelling.

A glacier terminus, which is free to fluctuate, is an
essential feature of the models. Tt advances or retreats in
response to external forcing, which is usually climate
related. The problem of tracing the moving terminus is
complex, since there is no relationship which contains the
velocity or the position of the moving terminus explicitly.
Such problems where an explicit relationship does not
occur are termed implicit boundary problems (Sackett, 1971).

A full consideration of the moving terminus has been
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given in Budd and Jenssen (1975), Bindschadler (1982)
and Kruss (1984). The numerical computations are
carried out on fixed grids. Hindmarsh and others (1987)
applied the adaptive-grid system of Murray and Landis
(1959) to track the margin motion in an ice-sheet model.
In Figure 1, several grid systems are compared. The use of
variable grid systems is rarc in glaciology but it is
common in other branches of applied science involving
dynamic boundaries. Variable-grid systems improve the
smoothness of the motion of the moving boundary
compared to fixed-grid systems. Smooth boundary motion
enhances the accuracy and stability of the numerical
model.

An alternative solution technique, the finite-volume
method (FVM), may be used to solve the same type of
problem for which the FDM and the FEM are suited.
The FVM is used widely and highly successfully in
computing solutions to conservation laws for thermal-
and fluid-dynamics analysis. Although the FVM has been
successfully applied in glacier modelling (e.g. Johannes-
son and others, 1989; Jéhannesson, 1991), the method is
not widely appreciated in glaciology. The mathematical
concept of the FVM is to exploit the divergence form of
the conservation equation by integrating it over a linite
volume and using Gauss’s theorem to convert the result
into surface integrals which are then discretized (Pat-
ankar, 1980; Morton and Siili, 1991). An excellent review
of the FVM and the FDM has been given by Vinokur
(1989). It illustrates the differences and the similarities of
the two methods. The models of Huybrechts and others
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Fig. 1. Comparison of selected grid systems. The grids are
Jfixed at the lefthand side and ave retreating at its righthand
side. (a) Fixed-grid system. (b) Grid system of Murray
and Landis (1959). (¢) Grid system of Crank and Gupta
(1972). (d) Grid system of Miller and others (1978).
Ax and & are the standard and the non-standard grid
spacing, respectively. The superscript refers to the time-step
level. At is the time-step size. The lower grid refers o
lime step n and the upper grid refers to the next time step
(n+1).

(1989) and Bindschadler and Rasmussen (1983) used a
staggered grid in space, in which the ice flux is computed
at the inter-grid midpoint. The scheme may be described
as a FVM in a loose sense.

The FVM has an inherent advantage over both the
FDM and the FEM in that it naturally conserves the
properties concerned (Baker, 1983; Vinokur, 1989). The
FVM is therefore a more practical approach for obtaining
enhanced accuracy in conservation-law problems. The
aim of the paper is to demonstrate the application ol the
FVM on an adapting grid to a simple {lowline glacier
problem with a fluctuating terminus.

https://doi.org/10.3189/5026030550001329X Published online by Cambridge University Press

Lam and Dowdeswell: Model of glacier-terminus fluctuations

2. FINITE-VOLUME METHOD

The fundamental equation of the simple flowline glacier
model has been described in detail by Nye (1960, 1963).
The equation along a flowline « is given by
as o ’
—p 0Q _ Wb,

<z <It),
T 0 ==

t=0 (1)
where S is the cross-sectional area of the glacier measured
perpendicular to the flowline, @ is the volumetric flux, W,
is the effective width at the surface, b is the surface mass
balance and [(t) is the glacier length at time . Here,

5= f(H), (2)
Q = (us+ug)S, (3)
W, = f(H) (4)

where u, and 1 are the mean cross-sectional ice velocities
due to sliding over bedrock and internal deformation
respectively, and H is the glacier-ice thickness.

For the calculaton of wy and wuy, the following
equations are used (Paterson, 1994):

3
U = fj % s {5)
Uqg = fﬂET:}Hl (6)
dh
T= *P.GHD? s (7)
N = pgH. (8)

Here, fi =9.5x10 "m’s 'N?
SIN3
meters, respectively. These values are the same as those
used in Stroeven and others (1989). Since the effect of
basal-water pressure is neglected in this study, NV is simply
the overburden ice weight, 7 is the ice-flow driving stress,
p = 870kgm * is the glacier-ice density, g = 9.81 ms * is

and fo = 6.0x 10" m°®
are the sliding and the deformation flow para-

the acceleration due to gravity and h is the glacier-surface
elevation.

The fundamental equation for a finite-volume analysis
is given by integrating Equation (1) over a finite-volume
[@, 8] where o < z < B:

0 3 o) o}
- / Sdz + f dQ = / W.bdz (9)
C a o &

and may be written simply as

(‘JWL.?

5 T [Q(B) — Q)] = an (10)

where

3
V,_‘_j:‘/ Sdz ik

and
8
a.,_l“j:] W.bdzx . (12)

V.4 is the cell volume bounded between & = a and
x = 3. a, 4 is the surface mass balance for the cell.
Consider a grid of (m + 1) grid points for the whole
glacier length [0,1]. The grid divides the glacier into a set
of contiguous cells. For a typical glacier with a fixed head
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Fig. 2. Finite-volume cell definition. (a) Head-boundary
cell. (b) Interior cell. (¢) Terminus-houndary cell.

at 2 = 0 and a moving terminus at x = [, the cells may he
differentiated into (Fig. 2):

(a) Head boundary cell [.r... .1:,4 :

(h) Interior cells [.1', 1'..1',-+,5} whete?n = 2085 vy, i =15

(¢) Terminus boundary cell [ Tyt s T = f]

The head boundary cell is defined different to the
terminus boundary cell because grid point &y is not
movable and the ice thickness is fixed at the grid point xg
such that Hy = 0. IT it is defined in a similar way to the
terminus boundary cell, the head boundary cell would
not be able to respond to changes in volume. Thus, the
head boundary cell is defined as an extended cell
[‘(‘n‘ 11} so that it can respond to changes in volume
through changes in the ice thickness at grid point .
Since the cells are contiguous, the telescoping property
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defines global conservation of mass for the whole glacier
length [0, [].
cell definition.

Equation (10) is applied according to the

3. SOLUTION TECHNIQUE

The Crank-Nicholson method is used to solve Equation
(10). It is an implicit method. Although explicit methods
are computationally simple, they may result in an
oscillatory solution if the eritical time step for stability is
exceeded (Smith, 1985). Implicit methods are uncond-
itionally stable for linear equations and may become
unstable for non-linear equations, il the critical time step
for stability is exceeded. Since Equation (10) is a non-
lincar equation, hoth explicit and implicit methods are
only conditionally stable. Nevertheless, the critical time
step for stability for the implicit method is larger than
that for the explicit method (Smith, 1985) and therefore

Justifies its usage.

Using the Crank Nicholson method, Equation (10) is
approximated by

1—’21’_7;#‘413 [(Q,W.H‘r;) (Q”“ )]

=l3( ::‘,'+r1,. f) (13)

where subscripts refer to the position and superscripts
refer to the time. Equation (13) is an implicit (’r[ualiun

. ; i .

with unknown values V"1, a"t1, ( 5 Pand Q"1 at time
o3 n 3

step (n 4 1) and known values ’::, at g Q% dll(l Q" a

time step n.
To solve Equation (13) for VIZh, an {terative
predictor-corrector scheme is NJ(I Ih(' predictor—

corrector algorithm is given by

V”Tl Vv

o3 o no_ M . oh
T+ I:Qi' Qn} = Cngs (14)

Valax n

a3 - 0,3 é[(Q"”+Q”)—( iy ';:)]
- (;;3‘+n” i) (15)

Predictor

Corrector

There are actually three separate processes occurring in
the predictor—corrector scheme. For the head boundary
cell and the interior cells. the three steps are:

P- Predictor step. Use known values V' ;. Q. Q') and
n . . .
.. eiven at the time step n to predict the value
Vel at the next time step (n+1).

E- Elevation step. Use the intermediate value 'l/!:”jl to

calculate §"*! and hence H"*! at the grid point from
the inverse of Equation (11) and Equation (2),
respectively. H"™' at o and 3 are interpolated from
adjacent known grid-point values. Q""" at a and 3
are then calculated with the newly calculated At
and associated values at a and [, respectively. @' is

calculated from relevant values and parameters.

obtained from the
Vu+|

C- Corrector step. Use the values

clevation step to correct the value

Iterating the corrector k times would be written as
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Table 1. A comparison of equilibrium glacier length for the three models, 1VM adaptive, FVM fixed and FDM fixed.
L he witial equilibrium glacier profile is generated by the VM adaptive model and is used in subsequent advancing and

retrealing

experiments for all models. In the advancing experiments, the mass balance is perturbed positively. In the

retrealing experiments, the mass balance is perturbed negatively. A% = (L — leq) /leq % 100%

T heoretical FVM adaptive FVM fixed FDM fixed
J"ll 'I"‘I A% {("I A% ,l't| A%
km km km km
Initial 10.0000 9.9996 ~() -
Advancing  10.5000 10.4996 ~() 10.4996 ~() 10.4455 0.5
Retreating 9.5000 9.5004 ~() 9.5004 ~() 9.5582 +0.6
P(EC)". The corrector step is repeated until the value Q::,—Il is then interpolated [rom adjacent known
successive values for llf“il are sufliciently close. The values. The predictor and the corrector steps remain the
iteration is terminated when 1.0 x 1076 V"S5 > [ i same.
_1_‘—:44—].” g i
o, 3

For the terminus-houndary cell, a slight modification
to the predictor corrector scheme is required to accom-
modate the moving terminus. Owing to the definition of
the grid, the volume of the terminus-boundary cell may
be written as a function of the terminus position:

(16)

Ban = iy

At the elevation step in the predictor—corrector scheme,

""" is calculated from the inverse of Equation (16). The

4. ADAPTIVE GRID

In the interests of computational cconomy, it is undesir-
able to use a very different grid from one time step to
another which would involve interpolating a large
number of values from the old grid to the new one.
Hence, the grid system of Miller and others (1978) (Fig.
Id) is more practical to use than the grid system of
Murray and Landis (1959) (Fig. 1b). The application of
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fag. 3. Transient responses of glacier length to a step increase in the surface mass balance. The y axis shows the change in glacier
length with respect to the initial equilibrium glacier length of 10.0 km. ‘The theoretical final equilibrium glacier length is 10.3 k.

https://doi.org/10.3189/5026030550001329X Published online by Cambridge University Press

89


https://doi.org/10.3189/S026030550001329X

Lam and Dowdeswell: Model of glacier-terminus fluctuations

https://doto(r)gﬂ 0.
90

E 4 55 i i 1 a ] e ol [l R [ :
S8 54
g2 51 T i
52 I
0.43 4 r
.Eg" KobeF) Y
282 0414 >
§8<= 040 L
4 a L
U§ 0.39 ! .
120 140 160 180 200 220
Time (year)
..§ 2 55 i o L | | - (S
5“5'8 54 -
> i 53——-—“—' i
52- 2
043 r
L2 E 041 -
- EL I ¥
08 ' b |
& 0.39 +—~_b—err—r—r—"—"T"——T T "
120 140 160 180 200 220
Time (year)
b 7 55 X L e | L L M L1 " 1 1 = L 1 L& 1
Q
£38 3 Il
2 o 53 o
52- E
0.43- -—
E‘gﬂ 0.42— L
= i L
92 % 0414 4
CLE d
58 gl e |
R L I S———————————
120 140 160 180 200 220
Time (year)

Fig. 4. Correlation between the glacier length and the node number for a step increase in the surface mass balance. Results
are given for (a) the FVM adaptive-grid model, (b) the FVM fixed-grid model and (¢) the FDM fixed-grid model.
This is taken from each run for the lime when the change in glacier length varies from 0.39 to 043 km with respect to the
initial equilibrium-glacier length of 10.0 km. This occurs at time between 120 and 220 years.

the grid system of Miller and others (1978) is demon-
strated here.

In the grid system of Miller and others (1978), only
the grid points in the neighbourhood of the moving
terminus are adapted while keeping the rest of the grid
points representing the glacier unchanged. The grid is
kept at a standard grid spacing Az apart from the grid
points in the neighbourhood of the moving terminus. The
grid points are adapted by calculating the new position of
the moving terminus and placing the penultimate grid
point (m —1) half-way between the moving terminus
grid point m and the last fixed grid point (m — 2), with a
distance of &€ = %(:1:.,,, — Ty—n) between each point. The
control volume V,,,_s,, defined by
Ly

Sdx,

Em-2

Ty =1 (17)

I/m—'l.m =

is k(‘?t constant during the adjustment of the penultimate
189/5026030550001329X Published online by Cambridge University Press

grid point (m — 1). The term control volume refers to cell
associated with grid adaption. It is used to distinguish it
from the term finite-volume which refers exclusively to
the FVM.

When £ < %A.’n, the total number of grid points is
decreased by one by giving up the penultimate grid point
(m — 1). The last fixed-grid point (m — 2) is positioned
hall-way hetween the grid point (m —3) and the
terminus grid point m with a distance § = %(.‘r.,,, = im—a)
between ecach point. The control volume Vi, 3., 18
conserved throughout the change.

When € > Az, the total number of grid points is
increased by one by inserting a grid point between the
penultimate grid point (m —1) and the terminus grid
point m. First, the penultimate grid point (m —1) is
positioned at a distance Az from the last fixed-grid point
(m — 2). The control volume V,,_a, is conserved during
the adjustment. Then, a grid point is inserted half-way
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Fig. 5. Transient responses of glacier length to a step decrease in the surface mass balance. The y axis shows the change in glacier
length with respect to the initial equilibrium-glacier length of 10.0 k. The theoretical final equilibrium-glacier length 15 9.5 km.

between the penultimate grid point (m—1) and the
terminus grid point m with a distance £ = %(.z',,, — Zm—1)
from each point. The control volume V,,,_ ,, 1s conserved
during the change.

In practice, the criteria for grid adaption can lead to
oscillations. After adding a grid point, the terminus may
retreat a little in response to the modified glacier

remove a grid point in the next time step. Similarly, after
removing a grid point, the terminus may advance a little
in response to the modified glacier geometry near the
terminus and causes the model to add a grid point in the
next time step. Therefore. it is better to have a buffer such
that grid points are removed when & < k3 Aux and added
when &€ > Az where k< 1. After many experiments,

geometry ncar the terminus and causes the model to k= 0.9 is taken in this study.

Table 2. CPU times of the three models for the advancing and retreating experiments. The times are recorded for each 100
year run. The mean is the average CPU time for a 100 year run. Ratio I is the CPU-load ratio with respect lo the two
different models, FVAM vs FDM. Ratio 2 is the CPU-load ratio with respect to the tweo grid systems, adaptive grid vs fixed

ard

Time CPU time
Advancing Retreating
FVM FV FDM FI'M FVM FDM
adaplive Sixed Jived adaptive Sixed Sixed
year 8 5 § $ 5 S
0-100 1067 820 300 1017 579 239
100-200 1079 668 211 964 611 189
200-300 647 332 203 568 292 185
300-400 615 305 1154 564 282 154
400-500 614 303 131 569 275 125
Mean 804 486 200 736 408 178
Ratio 1 — 2.43 1.00 - 2.29 1.00
Ratio 2 1.65 1.00 — 1.80 1.00 —
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5. MASS-CONSERVATION EXPERIMENTS

A simple glacier configuration is used to illustrate the
performance of the FVM model with an adaptive-grid
system of Miller and others (1978) (Fig. 1d). A glacier in
a rectangular channel on bedrock of constant slope is
examined in this study. The head is fixed but the terminus
is [ree to move I response to changes in surface mass
halance. The following formulation is employed to
describe the surface mass balance b:

b=c + ecr (18)

where ¢; and ¢ are constant parameters.

Starting with an arbitrary glacier profile on a grid
with a constant grid spacing Az = 200m, the I'VM
adaptive-grid model is run until the glacier reaches an
equilibrium state. Since the glacier width at the surface is
constant throughout the whole length of the glacier [0, 1].
the equilibrium glacier length lo, is simply given by

by = =g, (19)
Ca
If ¢; = 3myear ' (water equivalent) and ¢» = —0.0006

year ' then the equilibrium glacier length [, is 10 km.
The theoretical equilibrium length is compared with the
computed equilibrium length from the model. This serves
as a primary check on model performance.

Further experiments are conducted to look at the
transient response ol the glacier at equilibrium to a step
change in the surface mass balance. The equilibrium
glacier profile from the initial experiment is used as the
initial profile for these experiments. Time-step size
At = I month is used in all runs. A larger time step
may smother the terminus oscillation and therefore may
not be able to demonstrate the differences between the
models well enough. The surface mass balance b given by
Equation (18) is perturbed such that ¢ + Ac; — ¢
where Ae; = £0.15. From Equation (19), the positively
and negatively perturbed equilibrium lengths [, are
10.5 km and 9.5 km., respectively.

Two fixed-grid models, a FVM fixed-grid model and a
FDM fixed-grid model, are included for comparison
purposes. T'hey use a fixed-grid system (Iig. la) similar to
that used in Bindschadler (1982). In theory, grid points
are added when £ > Ax and are removed when £ = 0.
However, in the same way as happens with the adaptive
grid, these criteria for grid addition and removal can lead
to oscillation. Furthermore, since £ cannot be negative, it
may have problems when £ < 0. Thus, grid points are
removed when & < 0.05Az o avoid the possibility of
£ < 0. As for the adaptive grid, a buffer is allowed, such
that grid points are added when £ > 1.10A2 and are
removed when £ < 0.05Ax,

The FDM model is adapted from Huybrechts and
others (1989). It is formulated on a staggered grid in
which the ice flux computed at the inter-grid midpoint. It
is further modified for the Crank-Nicholson method and
solved by a similar predictor—corrector scheme as that of
the FVM model.

Comparisons are made on two levels. The differences
in methods, FVM versus FDM, arise from dillerences in
accuracy and programming efliciency. The differences in
grids, adaptive grid versus fixed grid, arise from
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differences in the smoothness in the motion of the moving
terminus. This affects stability and accuracy.

6. RESULTS AND DISCUSSION

A comparison of the equilibrium glacier length between
the theory and the three models is shown in Table 1. It
shows a good agreement between the theory and the three
models. Although the results of the FDM model may seem
poor relative to the two FVM models, the discrepancies
are insignificant if’ considering the whole length of the
glacier. Nevertheless, the results suggest that the FVM
models are more accurate than the FDM model.
Furthermore, the results of the two FVM models suggest
that the grid systems have negligible effect on the steady-
state solution.

The transient responses of the three models to a step
increase in the surface mass balance are shown in Figure
3. The curves for the two FVM models are very similar.
Again, this suggests that the grid systems have negligible
effect on the models. The curve for the FDM model
initially follows closely the curves for the FVM models. Tt
deviates away from them after ~100 year. It is caused by
the accumulated numerical differences between the FDM
model and the TVM models.

A closer examination of Figure 3 shows that all three
curves show oscillations of varying degrees. These are
shown better in Figure 4 together with the correlation
between the node number. It should be noted that the
two grid systems have the same buffer to prevent
oscillation. The buffer seems to be adequate in arresting
oscillation for the FVM adaptive-grid model. The model
suflers [rom a minor discontinuity when a grid point is
added. It causes the terminus to retreat a little before
reverting back to advancing. However, the buffer for both
lixed-grid models seems to be inadequate, They suller
[rom oscillation caused by grid changes. The FDM fixed-
grid model suffers from a much prolonged oscillation
compared with the FVM fixed-grid model. This suggests
that the application of FVM on a lixed grid has beneficial
effect in minimizing the oscillation. The oscillation may
be minimized by increasing the buffer. However, at best,
the models would suffer from a minor discontinuity as
observed in the FVM adaptive-grid model.

The transient responses of the three models to a step
decrease in surface mass balance are shown in Figure 5.
The overall picture is similar to that of Figure 3. All three
models have a smooth terminus motion. The models seem
to be more stable in retreating mode than in advancing
mode. This is because, for advancing mode when a grid
point is added, ice thickness at the new interface is small
and the flux computed is not sufficient to maintain the
terminus advances. It may be due to the assumed profile
near the terminus which gives a smaller ice thickness than
it should to maintain continuous terminus advances.

CPU times are recorded for each 100 year run (Fig. 2).
The FDM model consistently has lower CPU times. This
is because the FDM model is simpler than the FVM
models. At each time step, the FDM model performs
fewer calculations than the FVM models. It is expected
that the CPU ume for the FVM adaptive-grid model
would be higher than that for the FVM fixed-grid model.
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because of the extra calculations involved in grid
adaption.

7. CONCLUSION

This study has demonstrated the application of the FVM
and the adaptive-grid system to glacier modelling. It
shows that the FVM 1s more accurate than the FDM. The
adaptive-grid minimizes the problem of fictitious glacier
fluctuation caused by model numerics and gives a much
smoother terminus motion,

For the same grid spacing Az and time-step size Af,
the CPU load for using the FVM as compared to the
FDM is ~2.4 times as much (Table 2). However, since
the FVM has a higher order ol accuracy than the FDM,
this straight [orward comparison is therefore not fair and
should not be taken at face value. With the same pre-set
accuracy target, the FVM allows larger Az and larger
At, thus reducing the CPU ume required. This would
make the CPU time for the FVM and the FDM more
comparable.

The CPU load for using the adaptive grid as
compared to the fixed grid is ~1.8 times as much (Table
2). Although the grid systems do not aflect the steady-
state solution, however, they have different effects on the
transient response. An adaptive-grid can minimize
spurious glacier [luctuation and gives a much smoother
terminus motion. This should be taken in for considera-
ton in glacier modelling in which transient responses are

important.
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