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ON RADICALS OF SUBMODULES OF FINITELY 
GENERATED MODULES 

BY 

ROY L. McCASLAND AND MARION E. MOORE 

ABSTRACT. The concept of the M-radical of a submodule B of an 
fl-module A is discussed (R is a commutative ring with identity and A is a 
unitary fl-module). The M-radical of B is defined as the intersection of all 
prime submodules of A containing B. The main result of the paper is that 
if V(fi:A) denotes the ideal radical of (£:A), then M-rad B = 
V(B :A) A, provided that A is a finitely generated multiplication module. 
Additionally, it is shown that if A is an arbitrary module, V(Z? .A) A C (C) 
Ç M-rad B, where C = {ra\a E A and r"a E B, for some n E Z + }. 

Since the radical of an ideal plays an important role in the study of rings, one would 
naturally seek a counterpart in the module setting. Indeed, such a concept has been 
discussed [4] e.g., where the radical of a submodule B of an /^-module A is defined as 
the radical of the annihilator ideal of A / 5 , that is, the radical of a submodule is still 
an ideal. However, some information seems to be lost here. For example, if one merely 
takes the Z-module A to be Z © Z(Z = integers), then for every non-zero cyclic 
submodule B of A, ann A/B = 0. Hence the radical (as defined in [4]) of every non-zero 
cyclic submodule of A is also zero. 

In what follows all rings are commutative with identity and all modules are unitary. 
I <\R means that / is an ideal of R. 

We define the M-radical of a submodule B of an ^-module A to be the intersection 
of all prime submodules of A containing B. A submodule T of A is a prime submodule 
provided that T =£ A and for r E R, a E A\T such that ra E T, it follows that 
rA C T. Equivalently, T is a prime submodule of A whenever ID Ç T, (with I <l R, 
and D a submodule of A) implies that / C (T: A) or D C T [3]. 

The problem now becomes that of characterizing (internally) the M-radical of B 
(denoted rad#). We solve the problem completely for submodules of finitely generated 
multiplication modules. A is a multiplication module provided for each submodule B 
of A, B = IA for some I <\ R. In fact, if (B : A) denotes the annihilator ideal of A/B 
and the (ring) radical of an ideal / is denoted by V?, then the main result of the paper 
can be stated as follows: 

Let B be a submodule of a finitely generated multiplication module A (over a ring 
R). Then rad B = V(B:A) A. 
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We observe that this result fails for the example above, for if B is any non-zero cyclic 
submodule of A = Z © Z, then V(P:A) A = 0. Clearly this is not rad B since B C 
rad B. However, it is always the case that V(P \A) A C rad P, and we record this fact 
in the following lemma. 

LEMMA 1. Let B be a submodule of an R-module A. Then V(B : A) A C rad B. 

PROOF. If rad B — A the result is immediate. Otherwise, if P is any prime submodule 
of A which contains B, we have (B : A ) Ç (P : A ). To show that (P : A ) is a prime ideal, 
suppose that rs e (P : A), so that rsA C P. Either sA Ç P or sa e A\P for some a e 
A. In the latter case since P is a prime submodule and r(sa) e P, we must have rA Q 
P. Thus r e (P:A) or s e (P:A) and (P:A) is prime. Hence V(5 :A) Ç (P:A) and 
thus V(P :A) A Ç (P\A)A C P. Since P is an arbitrary prime submodule containing 
B, we have V(P:A) A C rad 5. 

Bass proved that if A is a finitely generated module over a commutative ring P, and 
if / < P such that /A = A, then (1 - i)A = 0 for some / E / [1, Lemma 4.6]. By a 
parallel argument one can actually prove the following result. 

RESULT 2. If A is a finitely generated R-module, P is a prime ideal of R containing 
ann A, and I < R such that IA C PA, then I C P. 

We remark that if A is a finitely generated P-module and P is a prime ideal of R 
containing ann A, it now follows that (PA : A) = P. 

LEMMA 3. If A is a finitely generated multiplication R-module and P is a prime ideal 
of R containing ann A, then PA is a prime submodule of A. 

PROOF. Note that PA^ A and suppose that / < R and B is a submodule of A such 
that IB Ç PA. If B = KA, K < R, then IB = I(KA) Ç PA. Result 2 implies that 
IK Ç P, hence / Ç P = (PA : A) or tf Ç P, then £ = #A Ç PA and the proof is 
complete. 

THEOREM 4. L^ A be a finitely generated multiplication R-module and let B be a 
submodule of A. Then rad B = V(BTA) A. 

PROOF. By Lemma 1, V(P :A) A C rad P. Since A is a multiplication module, rad 
B = (rad B : A) A. It suffices then to show that (rad B : A) Ç V(P:A) . Let P be any 
prime ideal such that (B : A) G P. Since P is a prime ideal containing ann A = (0 : A), 
then PA is a prime submodule of A containing B = (P : A)A. Hence (radP : A) A = rad 
P Ç PA, so that (rad B:A) C P. Consequently, (rad B : A) Ç V(P:A) . 

COROLLARY 5. 7 /2 w A primary submodule of the finitely generated multiplication 
R-module A, £/ze/i rad Q is a prime submodule of A. 

(Here we have used the concept of primary submodule as defined in [2]). 

PROOF. By theorems 8.2.9 and 8.3.2 of [2], V ( g : A ) is a prime ideal containing 
ann A. Therefore rad Q = VQ:A A is a prime submodule of A by Lemma 3. 
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Finally, we remark that in case that A fails to satisfy the hypothesis of Theorem 4, 
we can produce a somewhat sharper bound for rad B, which in general is distinct from 
\/(B:A)A. This bound is obtained by first noting that C = {ra\a E A and rna E B, 
for some n E Z + } Ç B, [3]. It is then not difficult to show that V(B:A)A Ç (C) 
(= the submodule generated by C). 

Consequently, we must have in the arbitrary setting, V(Z? :A)A C (C) C rad B. Of 
course, in case that A is a finitely generated multiplication /^-module, these three 
submodules coincide (Theorem 4). 
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