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REMARKS ON THE TOPOLOGY OF SPATIAL POLYGON SPACES

YASUHIKO KAMIYAMA

Let Mn be the "polygon space" introduced by Kirwan and Klyachko. In this
paper, we give new results on the topology of Mn for odd n. We determine
nq(Mn) (q ̂  n — 3). Then we describe Mn in the oriented cobordism ring Cl§n-6 •
We also give new and elementary proofs of the result on the ring structure of
H'(Mn/Sn\ Q), where Sn denotes the symmetric group acting naturally on Mn.

1. INTRODUCTION

Let Mn be the variety of spatial polygons P — (0,1,0.2,-•• ,an) with the side
vectors â  € R 3 of length |aj | = 1 (1 ^ i ^ n) . The polygons are considered up to
motion in R 3 . The sum of the side vectors is zero:

(1.1) ai+a2 + ... + an = 0.

It is known that Mn admits a Kahler structure such that the complex dimension of
Mn is n — 3. For odd n, Mn is free from all singular points, while for even n, Mn has
singular points.

For odd n, H,(Mn\ Z) was determined by Kirwan and Klyachko [6, 8] (see The-
orem 2.5). Then some results on the ring structure on H*(Mn/Sn\Q,) were proved by
Brion and Kirwan [2, 7] (see Theorem 2.6), where <Sn denotes the symmetric group
acting naturally on Mn. We remark that the results in [2, 6, 7, 8] are proved by using
theorems in symplectic geometry. Unfortunately, their methods cannot apply to Mn

for even n, because of the singular points of Mn. Thus in [5], -£/*(Mn;Q) (n: even)
is determined by another method.

Now let us assume n to be odd. The purpose of this paper is to prove new results
on the topology on Mn. We study the following:

(a) We obtain new information on 7r,(Mn).
(b) We describe Mn in the oriented cobordism ring
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First we give a detailed account of (a). Recall that H*(Mn; Z) was determined by
Kirwan and Klyachko [6, 8]. But we have little information on 7r.(Mn), since theorems
in symplectic geometry, which are used in [6, 8], are effective for homology but not
effective for homotopy. Thus the purpose of (a) is to determine Trg(Mn) (q ^ n — 3).
In the course of the proof of TTq(Mn) (q $J n — 3), we can give new and elementary
proofs of results in [2, 6, 7, 8] (see Theorems 2.5 and 2.6) without using theorems in
symplectic geometry.

Next we give a detailed account of (b). It is clear that M3 = {l-point}. Since
we are assuming n to be odd, the first non-trivial example of Mn is the case n = 5.
And in [8], Klyachko proved that as a projective surface, M5 is the Del Pezzo surface
of degree 5 (obtained from CP2 by blowing up four points in general position).

The purpose of (b) is to generalise this result from the viewpoint of cobordism.
We give an orientation to Mn, which is denned from its Kahler structure. Then we
describe Mn in the oriented cobordism ring £l2n-6 • (Note that Klyachko's result shows
that M5 = - 3 C P 2 in ft£°.)

As a corollary, we prove that Mn is not a Spin-manifold for odd n (n ^ 3).

Now we state our main results. For (a), we prove the following:

THEOREM A. Ttq{Mn) (q ^ n — 3) is given as follows.

(i) 7T,(Mn) S ^ ( ( S 2 ) " " 1 ) for q = 1 or 3 ^ q < n - 3.

(ii) 7r2(Mn)^7

Next for (b), we prove the following theorem. For odd n, we set n = 2m + 1.

THEOREM B . If we give an orientation to M2m+i, which is defined from its Kahler

structure, then Mim+\ is oriented cobordant to ( - l ) m + 1 ( ]CP2 m~2, where
\m-l J

denotes the binomial coefficient./2m - 1\
\m-l)

From Theorem B, we prove the following:

COROLLARY C . M2m+i is not a Spin-manifold for m ^ 2.

This paper is organised as follows. In Section 2, we prepare some notation. Then
we state the results on the structure of H,(Mn; Z) which are proved in [6, 8], and the
ring structure on H*(Mn/Sn;Q) which are proved in [2, 7]. In Section 3, we prove
Theorem A. The essential part of the proof is to construct a Morse function explicitly,
which seems to be interesting itself. In Section 4, we prove Theorem B and Corollary C.
For the proof of Theorem B, we construct an oriented manifold with boundary which
gives the required cobordism explicitly, which also seems to be interesting itself. In
Section 5, we give new and elementary proofs of results in [2, 6, 7, 8] (see Theorems
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2.5 and 2.6).

2. PRELIMINARIES

Recall that Mn is defined from the space of spatial polygons by the action of the
motion in R 3 . We set

(2.1) Bn = { P = ( a i , o 2 > . . . l o n ) e ( 5 2 ) " ; a 1 + a 2 + . . . + a n =

Then by the definition of Mn, we have

(2.2) Mn = Bn/SO(3).

Let P = (ai, a2 , . . . , an) € Mn. By the 5O(3)-action, we can always assume that

an = e, where we set e = 0 € R 3 . More precisely, we define Cn by

w
(2.3) Cn = {p= (au a2,... , an_i) € (52)""1; ox + a2 + ... + an_! + e = o} .

Regard S1 as the subgroup of 50(3) consisting of elements which fix e. Then S1

naturally acts on Cn. It is clear that

(2.4) Mn = CJS\

We use (2.4) for the proofs of Theorems A and B. On the other hand, we use (2.2) in

Section 5.

Finally we recall some results from [2, 6, 7, 8].

THEOREM 2 . 5 . [6, 8] For odd n, H,(Mn; Z) is a free Z-module and P(Mn,t),
the Poincare polynomial of Mn, is given by

Recall that the symmetric group Sn naturally acts on Mn, and we can define the
orbit space Mn/Sn • Then we have the following:

THEOREM 2 . 6 . [2, 7] For * $C n — 3, we have the ring isomorphism

where deg/0 = 2 and degp = 4.
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3. P R O O F OF THEOREM A

We adopt the definition Mn - Cn/S
l (see (2.4)). Note that Theorem A follows

from Proposition 3.1 together with the homotopy long exact sequence of the principal

bundle S1 -> Cn -> Mn. Let in : Cn «-> (S 2 )"" 1 be the inclusion (see (2.3)).

PROPOSITION 3 . 1 . ( i n ) , : nq(Cn) -> nq((5
2)"~M is an isomorphism for q <

n — 3 and an epimorphism for q = n — 2.

In the rest of this section, we prove this proposition by constructing a Morse func-
tion explicitly. We define the function /„ : (52) —> R by

(3.2) /„((*!,... , an_i) = |ai + .. . + an_i + e|2 .

Note that /^"1(0) = Cn. We need to know the critical points of /„ and the index at
these points. To do this, we need to consider only the points (ai , . . . ,an_i) € (S2)
such that / n ( a i , . . . ,an_i) > 0, since fnl(fy = Cn. Now we can prove the following
Propositions 3.3 and 3.5 in the same way as in [4]. Since the calculations are easy, we
omit the details.

PROPOSITION 3 . 3 . (oi, . . . ,an_i) 6 (S2) is a critical point of fn if and
only if cn = ±on_i (1 ̂  i ^ n - 2).

We set

(3.4) 5 = { ( e i , . . . ,en_2);ei = ±l ( l ^ i ^ n - 2 ) } .

For every (ei,. •. ,en-2) 6 S, we can designate a critical submanifold of the form

,an-l) 5 an- l € 52} ,

which we denote by N(ei,... ,en-2)- Let v(N(ei,... ,en_2)) be the normal bundle

ofN(elt...,en-2) in ( S 2 ) " " 1 .
For every N(ei,... ,en-2), we try to determine the index of

H(fn)\v(N{el,...,en-7)),

the Hessian H(fn) restricted to the normal bundle
v(N(ei,... ,en_2)) • We say a critical submanifold N(ei,... ,£n-2) of /„ is of type
(k,l) if +1 appears fc-times and —1 appears Z-times in (ei,... , e n _ 2 ) , such that
k + I — n — 2. Then we have the following:
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PROPOSITION 3 . 5 . Let N(ei,... ,en-2) be a critical submanifold of type
(k, 1). Then the index of H{fn) | v(N(eu... , en_2)) is given by

j 2k k>l

Now we complete the proof of Proposition 3.1. Let i>~ (N(ei,... ,en_2)) be the

negative normal bundle, that is, the subbundle of v(N(e\, •.. ,en-2)) on which H(fn)

is negative definite. Let D(i/~(N(ei,... ,£n_2))) be the disc bundle associated to

u~(N(ei,... ,en_2)). Then the Morse theory generalised by Bott [1] tells us that

(52) is homotopically equivalent to a CW complex which is obtained from Cn by

attaching cells of the form Div~(N(e\,... ,£n-2)))'-

( S 2 ) " - 1 ~ Cn U | J D ( „ " ( N ( e u ..., En_
(ei,... ,en-2)eS

As a cell, D(i/~ (N(ei,... ,£,,-2))) has a dimension

f 2k + 2 k>l
(3.6) iK [21 k<l,

by Proposition 3.5. This implies that for every ( e i , . . . , e n -2) S S,

d\mD(i/~(N{ei,... , £ n - 2 ) ) ) ^ n - 1. Hence we see that ( S 2 ) " is homotopically

equivalent to a CW complex obtained from Cn by attaching cells of dimensions greater

than or equal to n - 1. Hence Proposition 3.1 follows.

4. P R O O F S OF T H E O R E M B AND COROLLARY C

P R O O F OF T H E O R E M B: Theorem B is proved by constructing a manifold with
boundary which gives the required cobordism explicitly. We adopt the definition Mn =
Cn/S1 (see (2.4)). For a real number r > 1, we set

(4.1) Cn,r = J P = (oi, o 2 , . . • , on_i) € ( S 2 ) " " 1 ;a1 + a2 + ... + an_j + r e =

Thus Cn,i = Cn. Then set

(4.2) Vn = \JCn,r.
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It is clear that dVn, the boundary of Vn, is exactly Cn. S1 acts naturally on Vn and
this action is semifree, that is, the set of fixed points consists of { (a i , . . . , an_i) 6 T>n ;
ai = ± e (1 ^ i ^ n — 1)} , and except the fixed points, S1 acts freely.

We remove a small open disc around every fixed point in Vn, and denote this space
by Vn. Finally set

(4.3) Wn = Vn/S\

We set n = 2m + 1. If we forget the orientation, then dW2m+1 consists of
, ((2m\ (2m\ ( 2m \ \ „ , , ,

one M2m+i aDd ( ( ) + ( ) + . . . + ( 1 J - t imes C P 2 m - 2 . (Since t h e fixed

p o i n t set of the 5 1 a c t i o n on T>n consists of ( ( ) + ( ) + . . . + ( )]-

points, this number appears. About CP2m~2, see below.)

We need to be careful about how these C P 2 m ~ 2 are oriented. For a fixed
point ( a i i . . . , a n _ i ) e Vn, we designate (E\, ... , e n - i ) fe = ±1) so that ai —
Eie (1 ^ i < n - 1). Thus every fixed point is labeled by (e i , . . . , e n - i ) {£i = ±1)-

/ \ /Vl~y2~*~
We give an orientation to S2 so that ( J >-> j y | is a positive local

I Icoordinate. Then I I »-> I y j is a negative local coordinate. For a

fixed point ( a i , . . . , a n_i) S Vn, which is labeled by (e i , . . . , e n - i ) , we define a local

coordinate in (S 2 )" around ( a i , . . . , an_i) € Vn by

I f Ft \ f I — m i l \ / Fn \ I I — inn N

(4.4)

where hi £ R2 such that \bi\ < 1 (1 ^ i ^ n - 1). This coordinate is positive if and
only if - 1 appears an even number of times in {e\,. • • , e n _ i ) . In order to construct a
local coordinate in Vn around ( a l r . . . , an-i) € T>n, we put the restriction

(4.5) bi + ... + bn.i = 0

on (4.4). (Recall that d + . . . + an_i + re = 0.)

Thus if we forget the orientation, the boundary of an open disc around ( a i , . . . , an_i)

G Vn is given by {(blt... , 62m-i) G (R2)2™"1; |6i|2 + . . . + |62m-i|2 = l } , which is

homeomorphic to S 4 m ~ 3 . It is elementary to prove that S1 acts on this S 4 m ~ 3 in the

usual way, that is, by complex multiplication. Thus dWn consists of Mn and CP2m~2.

https://doi.org/10.1017/S0004972700032342 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700032342


[7] Spatial polygon spaces 379

Now we take the orientation into account. Take a CP2m~2, which is labeled by
( e i , . . . , £ n _ i ) . This C P 2 m ~ 2 has a positive orientation if and only if —1 appears an
even number of times in {e\,... ,en-i) • Then in fifm-4> w e have

,2m-2

where 6 = ± 1 , which is determined if we determine whether the orientation on
induced from that of W^m+i coincides with the orientation on M2m+i induced from
that of the Kahler structure on M2m+i •

LEMMA 4 . 7 . 8 = 1 in (4.6).

P R O O F : We use the following Theorem. D

THEOREM 4 . 8 . [6, 8] The Hodge numbers of M2m+i are given by

{ /2m\ (2m>

v o y ^
0 otherwise.

Now by Hodge's signature theorem (see for example [3, pp.126]), we have

(4.9) r ( M 2 m + 1 ) = ^ (-l)qhp'q(M2m+i)
P.9

m\ ( 2m \ _
I ) "' \min(p, 2m-2-p)J P~Q

where r(M2m+i) denotes the signature. Hence we must have S = 1 in (4.6). This
completes the proof of Lemma 4.7, and hence also that of Theorem B. D

P R O O F OF COROLLARY C: Assume that M2m+i is a Spin-manifold. Then
^(.A^m+i), the ^4-genus of M2m+i, is an integer. By Theorem B together with the

well-known fact that A{CP2m~2) = (_ 1 ) m + 1
2 -4(m-i ) (2m~ 2 J (see for example [9,

pp.163]), we have

It is elementary to prove that this is less than 1 for m ^ 2. This is a contradiction.
This completes the proof of Corollary C. D

REMARK 4.11. A theorem of Oshanin [10] tells us that for a Spin-manifold Msk+i of
dimension 8k + 4, r (M 8 f c + 4 ) is divisible by 16. But we cannot deduce Corollary C
from this theorem applied to (4.9) when m is even, that is, when dimRM2m+i = 4 (8).
In fact, when m = 62, r(Mi2s) is divisible by 16.
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5. PROOFS OF THEOREMS 2.5 AND 2.6

PROOF OF THEOREM 2.5: We adopt the definition Mn - Cn/S1 (see (2.4)). Con-
sider the Serre spectral sequence of the fibration Cn —> Mn —» CP°°. By Proposition
3.1, an argument based on dimension shows that E^1 = E%£ (s +1 ^ n - 3). Thus
we can determine Hq(Mn; Z) (q < n — 3). Then by the Poincare duality with the uni-
versal coefficient theorem, we can determine Hq(Mn;Z) (q ^ n - 2). Thus we have
determined i?«(Mn;Z). In particular, this is torsion-free. This completes the proof of
Theorem 2.5. D

Next we go to the proof of Theorem 2.6. We assume the truth of the following
Proposition 5.1 for the moment.

PROPOSITION 5 . 1 . (i) For * $C n — 3, we have the ring isomorphism:

where deg cti — 2 (1 ^ i ^ n), degp = 4, and ~ denotes the relations a} = rp (1 ^ i ^ n)
for some r £ Q. (r does not depend on i.) Thus every element in H* (Mn; Q) (* ^ n — 3)
are sums of elements of the form a^ ai2 ... aikp> with i\ < i-i < ... < ik and j'< ^ 0.

(ii) Under the isomorphism in (i), the Sn-action on H*{Mn; Q) corresponds to the
following action on Q[a j , . . . , an,p]/ ~ :

(a) 5 n acts on { a i , . . . , a n } by permutation.
(b) Sn acts trivially on p.

PROOF OF THEOREM 2.6: Since <Sn is a finite group, we have

H*(Mn/Sn; Q) Si H*(Mn; Q)5",

where the right hand side denotes the fixed point set under the <Sn-action on H* (Mn; Q).
Set )3 = Qi + ... + a n . Then Proposition 5.1 (i) tells us that /? and p are algebraically
independent in dimensions less than or equal to n — 3. Hence we have the result from
Proposition 5.1. This completes the proof of Theorem 2.6. D

In the rest of this section, we prove Proposition 5.1. To do so, we first prove the
following Proposition 5.2. We adopt the definition Mn = Bn/SO(3) (see (2.2)). Let
j n : Bn <-4 (S2)" be the inclusion (see (2.1)).

PROPOSITION 5 . 2 . ( j n ) , : Hq(Bn; Z) -> Hq((S
2)n; Z) is an isomorphism for

q ^ n — 3.

PROOF: Let An be the complement of Bn in (S2)" (see (2.1)). Thus

(5.3) An= { p = ( a i , . . . ,a n )€ (S2)" ; Ol + ... + an ?
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Instead of / „ : (S2)" -* R as in Section 3, we consider the function gn : An -» R
defined by

(5.4) gn{au ... ,an) = -\ai + ... + an\
2 .

Then by the same argument as in the proofs of Propositions 3.3 and 3.5, we see that

An has the homotopy type of an (n + l)-dimensional CW complex.

Now by the Poincare-Lefschetz duality Hq((S
2)n, Bn; Z) = H2n-q(An; Z), we have

Hq((S
2)n,Bn\ Z) = 0 (q ̂  n - 2). Hence Proposition 5.2 follows. D

We construct ot\,... ,an 6 H2(Mn; Q) . Recall that we have a principal bundle

(5.5) SO(3)^Bn^Mn,

where irn denotes the projection. Since i7*(SO(3); Q) = H*[S3;Q), we have the
following Gysin sequence:

(5.6)

. . . — > H"(Mn; Q ) ̂  H"+4(Mn; Q ) ̂  H " + 4 ( B n ; Q ) — > H"+\Mn; Q ) — > . . . ,

where p € H4(Mn; Q) denotes the first Pontryagin class of (5.5):

(5.7) P = Pi(Bn).

By Proposition 5.2, we have

(5.8) (jny:H2(Bn;Q)*H2((S2)";Q)-

Let a € H2 (S2; Q) be the canonical generator, and set <Tj = l x . . . x l x c r x l x

. . . x 1 € H2((S2)"; Q V where the z-th element is a. We define xi e H2(Bn; Q) to

be the element which corresponds to at under the isomorphism (5.8).

Since (nn)* : H2(Mn;Q) —> H2(Bn;Q) is an isomorphism by the Gysin sequence,
we set

(5.9) a< = ((7rn)')"1(xi) (1 < t ̂  n).

First we study the 5n-action on aj (1 ^ t ̂  n) and p. It is clear that Sn acts on
{ a i , . . . , a n } by permutation. On the other hand, the <Sn-action on Mn lifts to the
action on Bn (see (5.5)), that is, every g € Sn defines a bundle map of (5.5). Hence
Sn acts trivially on p = p\{Bn).

Next we study the ring structure on H*(Mn;Q). We need to prove only the
assertion on a2 (1 ̂  i ̂  n ) , since the other assertions are clear from Proposition 5.2
together with the Gysin sequence (5.6). As for a2, since n^a2 = 0 by Proposition 5.2,
we can set a2 = rp for some r 6 Q by the Gysin sequence. Consider the 5n-action on
«i (1 ̂  * ̂  n) and p. By Proposition 5.1 (ii) we see that a2 = rp (1 ̂  i ̂  n). Hence
the assertion on a2 follows. This completes the proof of Proposition 5.1, and hence
also that of Theorem 2.6. D
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