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Abstract

A pro-Lie group is a projective limit of finite dimensional Lie groups. It is proved that a surjective
continuous group homomorphism between connected pro-Lie groups is open. In fact this remains true
for almost connected pro-Lie groups where a topological group is called almost connected if the factor
group modulo the identity component is compact. As consequences we get a Closed Graph Theorem and
the validity of the Second Isomorphism Theorem for pro-Lie groups in the almost connected context.

2000 Mathematics subject classification: primary 22A05, 22E65; secondary 46A30.

1. Introduction

The identity morphism / : Rd —>• IR from the discrete group of real numbers to the
group of real numbers with its natural topology illustrates that a surjective morphism
between locally compact metric groups (indeed Lie groups) may fail to be open.
It is accepted parlance to apply the title Open Mapping Theorem to any statement
that asserts that a surjective morphism of topological groups is automatically open
provided that certain additional hypotheses are satisfied. Open surjective morphisms
are equivalent to quotient morphisms. So whenever an Open Mapping Theorem
applies to a surjective morphisni of topological groups we know that it is (equivalent to)
a quotient morphism: a very important piece of information. There is a considerable
body of literature, notably in functional analysis, on Open Mapping Theorems and
their corollaries. The best known examples in topological group theory are as follows.

© 2007 Australian Mathematical Society 1446-7887/07 $A2.00 + 0.00

55

https://doi.org/10.1017/S1446788700036387 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036387


56 Karl H. Hofmann and Sidney A. Morris [2]

THEOREM A. (The Open Mapping Theorem for Locally Compact Groups) A sur-
jective morphism of locally compact groups is open if the domain group is a countable
union of compact sets. (See [3, page 42, Theorem 5.29].)

A topological space is called a Polish space if it is completely metrizable and has
a countable basis for its topology.

THEOREM B. (The Open Mapping Theorem for Polish Groups) A surjective mor-
phism between Polish groups is open. (See, for instance, [12].)

In functional analysis, the following theorem is exemplary and found in almost all
text books on functional analysis; it is not subsumed under Theorem B because it does
not require separability.

THEOREM C. (The Open Mapping Theorem in Functional Analysis) A surjective
linear map between first countable complete topological vector spaces (Frechet spaces)
is open.

All of these theorems rest on the fact that the underlying space of the range group
has the property that whenever it is written as the union of a countable family of closed
subspaces, one family member has to have a nonempy interior. This is true for all
Baire spaces. Every locally compact and every locally completely metrizable space is
a Baire space. (See, for instance, [2, Chapter IX, Section 5, number 3, Theorem 1].)

A surjective morphism f:G -» H of connected real Lie groups is open by
Theorem B if G is separable. This covers all finite dimensional connected Lie groups,
a case that is also covered by Theorem A. Recall from the standard source for the
foundation of Lie groups [1, Chapter m, Section 1, Number 1, Definition 1], that
Lie groups may perfectly well be defined on infinite dimensional manifolds modelled
on completely normable topological vector spaces. In order to make the point that
Open Mapping Theorems are problematic even in the Lie group context, we mention
that the Open Mapping Theorem between separable Lie groups breaks down if G
fails to be separable and hence finite dimensional (see, for instance, [5, Example
following Proposition 5.52], where the example id: Rj —> IR is embedded into an
infinite dimensional connected abelian Lie group).

However, all Lie groups we consider in this paper are assumed to be finite dimen-
sional real Lie groups and all topological groups are assumed to be Hausdorff.

Recall that a filter on a topological group G is called a Cauchy filter if for every
identity neighborhood U there is a set F in the filter such that F~x F c [/. The
group G is called complete if every Cauchy filter converges.

PROPOSITION 1.1. For a topological group G the following statements are equiva-
lent.
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(i) There is a projective system {/}*: Gk —*• Gj\j < k, (j, k) € J x J] of finite
dimensional Lie groups such that G = limyGy Gj.

(ii) G is isomorphic as a topological group to a closed subgroup of a product
Wjzj Gj of finite dimensional Lie groups.

(iii) G is complete and each identity neighborhood of G contains a normal sub-
group N such that G/N is a finite dimensional Lie group.

(See [6], or [9, Chapter 3]. The proof of the implication 'anything else implies (iii)' is
nontrivial.)

DEFINITION 1.2. A topological group satisfying the equivalent conditions of Propo-
sition 1.1 is called a pro-Lie group. If every identity neighborhood in G contains a
normal subgroup N such that G/N is a Lie group then G is called a proto-Lie group.

Accordingly, every pro-Lie group is a proto-Lie group and a proto-Lie group
is a pro-Lie group if and only if it is complete. To see this, note that for every
proto-Lie group G, the set ^(G) of closed normal subgroups of G such that G/N
is a Lie group is a filter basis such that there is a natural embedding morphism
yG: G —> Gj</(G) = limjve,yK(G) G/N with dense image, and G^(G) is a pro-Lie group
and is the completion of G ([9, Theorem 4.1]). We shall also write the completion
of G as G, notably when we consider G as a dense subgroup of its completion. Every
closed subgroup of a pro-Lie group is a pro-Lie group ([6, Theorem 4.8]). A Lie group
is a proto-Lie group if and only if it is finite dimensional. If J is any set, the power RJ

is a pro-Lie group. If J is infinite, then this group fails to be locally compact, and if J
is uncountable, RJ fails to be metric. All locally compact abelian groups are pro-Lie
groups. A topological group G is called almost connected, if the factor group G/Go,
where Go is the identity component of G, is compact. All almost connected locally
compact groups are pro-Lie groups ([15,16], see also [13, page 175]). There is a
pro-Lie group topology on the free abelian group Z(N) on countably many generators,
making it into a nondiscrete pro-Lie group F ([7,10] and [9, Chapter 5]). The identity
morphism (2(N))d ->• F from the discrete free abelian group on a countable set of
generators to F shows that there exists a surjective morphism between countable
pro-Lie groups that is not open.

It is therefore hopeless to expect any Open Mapping Theorem for pro-Lie groups
to arise from Baire category arguments directly, because a countable homogeneous
Baire space is necessarily discrete. In this paper we shall prove the following theorem.

THEOREM D. (The Open Mapping Theorem for Pro-Lie Groups) A surjective mor-
phism from an almost connected pro-Lie group onto a pro-Lie group is open.

Theorem A will enter the proof at a suitable point, but in no way can Theorem D be
considered as a 'generalisation' of any of the Theorems A, B or C. In the next section
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we assemble some background information that we shall use in the proof proper. In
subsequent sections we present the proof of Theorem D and in a final section we draw
some consequences from it.

2. Background information

Mathematicians involved in considerations of limits of topological groups or topo-
logical spaces know the concept of cofinality; the essence is that a projective system
that is coflnal in another produces the same limit. Readers familiar with category
theory will know that cofinality may be studied on a surprisingly general level. The
following version suffices for us.

Let

9 = [fjk: G k -* Gj\ (j,k) € 7 x 7 , j < k ]

be a projective system of topological groups, let V be a directed set and let 8: V —> 7
be an order preserving cofinal function, that is, for each j e J there is an a e T such
that j < 9 (a). Fora e V we set Ha = Ge(a), and if a < p we define <pap: Hp -> Ha

by <pap = fe(a)9(py Then

&e = {<Pap • H? -> Ha\ (a, ^) € T x I \ a < ?}

is straightforwardly seen to be a projective system of topological groups, which is said
to be cofinal in &. Let (f>a: H = lim^r Hp -> Ha be the limit maps. Notice that an
order preserving surjective function 6: V —> J is always cofinal.

LEMMA 2.1. (The Cofinality Lemma) If H = limaer Ha is the projective limit of
a projective system &e that is cofinal in a projective system & then H is the limit
of £? with appropriate limit maps <pj\ H ->• Gj satisfying (j)e(a) = <Pa- (See [9,
Lemma 1.21].)

Unfortunately, quotients of pro-Lie groups may fail to be pro-Lie groups, due to
their potential loss of completeness. Nevertheless, quotients of pro-Lie groups remain
proto-Lie groups, as we record now.

THEOREM 2.2. (The Quotient Theorem for Pro-Lie Groups) A quotient group of a
proto-Lie group is a proto-Lie group and thus is isomorphic as a topological group
to a dense subgroup of a pro-Lie group. If the quotient group is complete, then it is a
pro-Lie group. (See [9, Theorem 4.1].)
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Pro-Lie groups have a very effective, in general 'infinite dimensional', Lie the-
ory. In all that follows we must refer to it. A full account is given in [9], but the
basics have been introduced in [4,6-8]. The gist is as follows: for any topological
group G there is a functorially attached topological space £(G) = Hom(K, G) of
all morphisms X: K -*• G endowed with the topology of uniform convergence on
compact subsets of R and with a scalar multiplication defined by (s • X)(r) — X(rs)
for X 6 £(G), r, s e R. The morphisms X e £(G) are called one parameter sub-
groups. A topological Lie algebra is a Lie algebra on a topological vector space with a
continuous Lie bracket multiplication. For two elements g and h in a group, we write
comm(g, h) = ghg~lh~l. One shows that for any pro-Lie group G, the space £(G)
supports a topological Lie algebra structure with an addition and bracket satisfying

/i i y2

[X, Y] o D = l i m c o m m l - X , - Y ) ,
n-*oo \n n )

where we denote by • : R -*• R the function given by \3(t) — t2. We define the
exponential Junction of G by exp X = X(l)

While passing to a quotient of a pro-Lie group may lead as outside the category
of pro-Lie groups, quotient morphisms are preserved by the all-important Lie algebra
functor (see [8], [9, Chapter 2]). This is expressed more explicitly as follows.

THEOREM 2.3. (i) Let f:G -*• H be a quotient morphism of topological
groups and assume that G is a pro-Lie group. Then the completion H of H has the
same one parameter subgroups as H, that is, J5f(H) = Jz?(//). In particular, _£?(//)
is the Lie algebra of a pro-Lie group, namely H, and there is a commutative diagram
showing that H and H 'have the same exponential function ':

expH expy

H ——• 77.
incl

Moreover, -Sf ( / ) : -^(G) —> ^f(H) is a quotient morphism of topological Lie alge-
bras. In particular, the functor -£f is exact if

N —^ G —^ H

is an exact sequence ofmorphisms of pro-Lie groups with a morphism e that is open
onto its image, then

_S?(AO -^U Jzf(G)

is an exact sequence of topological Lie algebras.
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(ii) The subgroup (exp j£?(G)) generated by the image of the exponential function
is dense in the identity component Go of G.

(See [9, Theorem 4.20 and Corollary 4.22(i)]J

Theorem 2.3 has various fairly immediate consequences.

COROLLARY 2.4. (i) If N is a closed normal subgroup of a pro-Lie group G,
then the quotient morphism q : G -> G/N induces a map Jz? (q): Ji?(G) -> J2?(G/N)
which is a quotient morphism with kernel Jif(N). Accordingly there is a natural
isomorphism X + 3?(N) i-»- _§?(/)(X) : _§?(G)/i?(JV) -* 3?(G/N).

(ii) Let G be a pro-Lie group. Then [Jf(N) \ N e J/(G)} converges to zero and
is cofinal in the filter J1'(Jzf(G)) of all ideals i such that J2?(G)/i is finite dimensional.
Furthermore, Ji?(G) is the projective limit \imNe^'(C)-^'(G)/^f(N) of a projective
system of bonding morphisms and limit maps, all of which are quotient morphisms,
and there is a commutative diagram

G > G^(G) - limW6i/K(G) G/N .
Ya

(See [9, Corollary 4.21].)

For the proof of our Open Mapping Theorem it will be important to know that
Jzf(f) can be identified to be a quotient morphism even in cases where there is no
prior knowledge that / is an open morphism, as in the following corollary in which,
for a subset 5 of a group we write (5) for the subgroup generated by 5, and where for
a topological group G the symbol Go denotes the connected component of the identity
ofG.

COROLLARY 2.5. (i) For a pro-Lie group G, the subgroup (expG Jzf (G)) is

dense in Go, that is, Go = (expc

(ii) A morphism f': G —> H of pro-Lie groups induces a surjective (hence quo-
tient) morphism %'(/): ££(G) —*• _£?'(//) if f is surjective and G is almost connected.

(See [9, Corollary 4.22(i,ii)].)

While passing to a quotient group from a pro-Lie group is fraught with difficulties,
there are sensible sufficient conditions for a quotient group of a pro-Lie group to be a
pro-Lie group.

THEOREM 2.6. Assume that G is a pro-Lie group and K is a closed normal sub-
group. Then G/K is a pro-Lie group ifG and K are both almost connected. (See [9,
Theorem 4.28(i)].)
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In the reverse direction, if G is a topological group and N is a complete normal
subgroup such that G/N is complete, then G is complete (see for instance [14,
page 225, Theorem 12.3] ). Thus from this general remark we have the following
proposition.

PROPOSITION 2.7. Aproto-Lie group G is a pro-Lie group if it contains a complete
normal subgroup N such that G/N is a pro-Lie group.

In particular, ifG fails to be a pro-Lie group then all normal subgroups N e ^ ( G )
are incomplete.

In the remainder of this preparatory section we provide some pieces of information
that are not directly accessible in [9] and therefore we include proofs.

LEMMA 2.8. Let G be a group with a completion G and let N be a closed normal
subgroup of G. We assume G c G and let N be the closure of N in G. Then
G C\ N = N and the completion map of G/N factors through the inclusion map
gN M> g7f : G/N -> G/7f.

PROOF. We let p: G -> G/N and P: G -> G/JV be the quotient maps and
i: G -* G the embedding. Define r): G/N -+ G/77 by r)(gN) = g~N. To verify
that T) factors as asserted, let H be the completion of G/N and / : G/N —>• H the
completion map. Then / o p: G —>• H extends to a unique morphism y: G —> H
and, since N = kerp c / o p c kery, we have N c kery. So y factors
uniquely in the form y = F o P with a unique morphism F: G/N —> H. Then
For]op = FoPoi = yoi — fop and since p is an epimorphism, / = F o r\.
This completes the proof that r\ factors as claimed. In particular, r\ is injective and so

= (Gn~N)/N and thus GnJ/ = N. •

The following is a portion of Theorem 1.29 of [9] and belongs to the general theory
of projective limits of topological groups.

LEMMA 2.9. Let ^Y be a filter basis of closed normal subgroups of a topological
group G and set G^ = limyvg^ G/N. Let vN: Gjy —> G/N denote the limit map
andqN: G —*• G/N the quotient morphism. Write N — kervw.

(i) There is a morphism y = yG>^: G -> G^, given by y(g) = (gN)N€^,
whose kernel is (~) ^V and whose image is dense.

(ii) vN o y = qN: G -> G/N for all N € J/.
(iii) vN: G^ -*• G/N is a quotient map, that is, it induces an isomorphism

> G/N. Moreover, N = 7
(iv) Gjy = limW€i/r Gjy/N and the filter basis [N : N 6 jV\ converges to 1

in Gjr.
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PROOF. (i) From the definition of the limit it follows that (gN)Ne^- e G^.
The function y is therefore well-defined; it is a morphism of groups and since
qN = (g H> gN) : G ->• G/N is continuous for each N it follows that y is
continuous. It is clear that g e ker y if and only if g e N for all N e J/. Thus
kery = f]^. Now we must show that imy is dense in G^y. For this purpose
let g = {gNN)Nzjy 6 GJY and let Ujr be an identity neighborhood in Gj/. By [9,
Theorem 1.27(i)], we find an identity neighborhood U in G and an M e oY such that
v-\UM/M) c U^. Now y(gM) = (gMN)Ne^ and

g) = vM ((8M18NN)N€^,) = g~ugMM = M,

the identity of G/M. Thus y{gM) e gM c gf/^.
(ii) This is straightforward from the definitions.

(iii) From (ii) it follows that vN is surjective; hence vN induces a bijective morphism
v'N: G^/N ->• G/N^ given by v ^ ( ( g M M ) M 6 ^ ^ = g^A'. Now the morphism
% o y : G -> G^y/N, where Tv: G>- -> G^/N is the quotient morphism, has
kernel {g e G|(gM)ji/e^- € JV} = {g € G|giV = N) — N and thus induces a
morphism of topological groups yN: G/N —> G^/N mapping gN to (gM)Me^-N.
One verifies at once that v'N and yN are inverses of each other. Hence v'N is an
isomorphism of topological groups and consequently vN is a quotient morphism.
Since ker vN is closed and contains y(N) we have y(N) c ker vw.
An elements = (gA/M)lMe^ 6 G>- is in y(A^) if and only if there is a net (gj)j€j that
is finally in V̂ and such that x = lim^(gjM)Me^. If a (gMM)Mejf e N £ G^,
gN e N is given then for a fixed P & JY the net (gMP)Me^v in G/F is finally constant,
since gR e gPP for /? c P e JV. Also for M c. N we have gM 6 gNN e N. Thus
7 = Jf, (gM)Me^ yields such a net (g;) ;ey.

(iv) This follows from [9, Theorem 1.27]. •

We apply these facts directly to the situation of a proto-Lie group G.

PROPOSITION 2.10. Let G be a proto-Lie group and JY{G) the filter of closed
normal co-Lie subgroups, converging to 1. The limit G^r^C) is the completion G ofG,
and we consider G as a dense subgroup ofG. For N e J/(G), let N be the closure
ofN.

(i) N is the kernel of the limit morphism G —>• G/N and induces an iso-
morphism €N : G/N —• G/N which is inverted by gN H> gN. Accordingly,
G = l inve^c) G/N. _ ^ _

(ii) For each N € <sV(G) one has G = G~N and N = G n~N. The Second
Isomorphism Theorem holds and (/>• G/(GriN) -> GW'/~Nwhere 4>(g(GriN)) = gJ/
is an isomorphism of topological groups.
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(iii) The quotient morphism G/No -> G/N induces an isomorphism

lim G/770-> lim G/N = G.

(iv) For N 6 J V ( G ) we have No = G C\ No = N fl No, and the completion
morphism of G/No factors through the natural morphism G/No -*• G/No. So

lim G/No -*• lim

is a dense embedding.
(v) / / i f (G) = S?(G), then A^ = ~No and G/7Vo = G/N~o.

For each N e JY(G), set n = Sf(N); then dimg/n < oo and {n : N e
is cofinal in idg, the filter basis ofcofinite dimensional ideals of the pro-Lie algebra

0 = se(5).
(vi) In the circumstances o/(v), if G is almost connected then G/No is a locally

compact almost connected group.

PROOF. (i) is a direct consequence of Lemma 2.9.
(ii) By (i), the morphism gN. K> gN : G/N -> G/N is an isomorphism.

Thus, firstly, it is surjective, whence G = GN, and secondly, it is injective, whence
G DN = N; thirdly, it is an isomorphism of topological groups, and agrees with <f>.
Therefore </> is an isomorphism.

(iii) is a consequence of Lemma 2.9.
(iv) By Lemma 2.8, No = G n No and the completion morphism of G/No factors

through G/No -*• G/No. Hence the morphism

Km G/No -+ lim G/No
N&vH (C) € ( O )

is a dense embedding.
(v) Assume that G and G have the same exponential function. Let N 6

and let qN: G -> G/N denote the quotient map. We set n = J?(N). Since G/N is a
Lie group and Jz? preserves kernels,

n = Sf(kerqN) = kerJ?(qN) for J? (qM): jgf(G) -* if (G/N),

the quotient g/n is finite dimensional. At this point we use the crucial hypothesis
g = -£?(G) = y(G) and note that expcn = exp^n C G. Now 77 is a closed
subgroup of the pro-Lie group G and is therefore a pro-Lie group by the Closed
Subgroup Theorem [9, Theorem 3.35]. Hence (expg-n) = 77O c 77 C G. Also we
observe that (expc n) c No ^ AV From these pieces of information we derive

7^ = 7^0, and, accordingly, G/7Vo = G/N0.
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Also,

G = lim G/N = lim G/Jf

shows that {~N : N e JY(G)} is cofinal in JV(G) and thus {n : N e JY(G)\,

n = _£?(A0 = S£(G n~N) = _£?(G) ni?(A0 = Jf(17), is cofinal in idg.
(vi) Recall from [9, Theorem 9.44] that an almost connected pro-Lie group with

finite dimensional Lie algebra is locally compact metric. Thus if G is almost con-
nected, then the morphism g t->- gN0 : G —*• G/No has a dense image. Hence G/No

is almost connected by Lemma 3.2 below and thus is locally compact. •

It is very useful to have certain purely algebraic information on pro-Lie groups.
Recall that a divisible group is one in which the equation x" = g has a solution for
every group element g and every natural number n.

PROPOSITION 2.11. Let G be a connected pro-Lie group. Then

(i) every g e G that is contained in a compact subgroup (which is the case if g
has finite order) is contained in a divisible subgroup;

(ii) the group G is algebraically generated by the union of all divisible subgroups;
(iii) G has no normal subgroups of finite index.

PROOF. (i) By [9, Theorem 12.77], every compact subgroup of L is contained
in a connected compact subgroup. Compact connected groups are divisible (see, for
example, [5, Theorem 9.35]).

(ii) By [9, Theorem 12.65], G is the product of a compact subgroup and the
subgroup (expc g) that is algebraically generated by all one-parameter subgroups.
This, together with (i), shows that G is algebraically generated by divisible subgroups,

(iii) In every group G, the subgroup D{G) algebraically generated by all divisible
subgroups is a characteristic subgroup such that for any homomorphisms / ' : G -> H
we have f(D(G)) c £>(//). Thus if G is a connected pro-Lie group then by (ii)
we have G = D{G) and so for any homomorphism / : G -» / / the image f(G)
is contained in D(H). If N is any normal subgroup of G, closed or not, then
G/N = D(G/N). If G/N is finite then D(G/N) = [N] and so N = G. •

PROPOSITION 2.12. Let C be a closed central totally disconnected subgroup of a
connected pro-Lie group L. Then

(i) <S^(C) has a basis of subgroups B so that C/ B is a direct product of a finite
abelian group and a finitely generated free abelian group;

(ii) in particular, if C ^ {1} then there is a prime number p and a closed sub-
group BofC such that C/B = 1(p);

(iii) ifL contains a subgroup G such that L = CG and C(~\G = {1} then C = {1}.
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PROOF. (i) Let N e Jf(L). Then ~CN/N is a closed central subgroup of
the Lie group L/N. By [9, Theorem 1.34(i)], C is canonically isomorphic to
limW£i/f(z.) CN/N where CN/N is discrete since C is prodiscrete. Also, if L is
connected then CN/N is a closed central subgroup of the connected Lie group L/N.
Hence it is a finitely generated abelian group and so CN/N is also finitely generated
abelian, that is, it is isomorphic to a direct product of finitely many cyclic groups.
By [9, Theorem 1.34(iv)], we know that C/(C flJV) = CN/N as topological groups,
and so there is a closed subgroup BN = C D N of C such that C/BN is finitely
generated discrete, and limWe^(L) BN = lim/ve^a) N = 1.

(ii) Any direct product of cyclic groups has a quotient of prime order. Thus (ii) is
a consequence of (i).

(iii) We suppose that C ^ {1} and derive a contradiction. From (ii) we get an open-
closed subgroup B of C such that C/B = Z(p). Since L is algebraically the direct
product C • G and B is contained in C, the factor group L/B is algebraically the direct
product (C/B) • (GB/B). Hence, algebaically, L/GB = (L/B)/(GB/B) = C/B.
Thus the connected pro-Lie group L has a normal subgroup GB of index p. This is
impossible by Proposition 2.11 (iii). D

3. Completing proto-Lie groups

If G 2 G is the completion of a proto-Lie group G, one might surmise that we
must have J?(G) = jSf (G). However this equality fails rather grotesquely, as we
shall show presently by exhibiting appropriate examples. Therefore we introduce a
convenient terminology.

DEFINITION 3.1. A proto-Lie group P has a stable Lie algebra if S£(P) = 3f(P)
for its completion P.

Another seemingly reasonable conjecture would be that every bijective morphism
J.G-+H from a connected proto-Lie group G to a pro-Lie group H must be an
isomorphism. Unfortunately, this conjecture is also false.

These things we learn, among other things, from the following examples, which
we find useful to keep in mind. Since their discussion involves real vector spaces and
their vector space dimensions, we preface it with the following remarks which are less
obvious than their proofs.

REMARK 1. (a) Let W be a real vector space of infinite dimension X, that is,
dimR W = K. Then dimR W* = 2s and dimR W** = 22\
(b) The additive group of any vector subspace of a weakly complete vector space is

a proto-Lie group.
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PROOF, (a) Pick a basis B of W; then card B — K. Now the algebraic dual W* is
given by W* = Hom(W, R) = Hom(R(B), R) = RB. Thus dimR W* = 2K. (Indeed
if £ = R ® £ Q for a Q-vector space £ Q then dimR £ = dimQ £Q and if Q(X) is
any infinite dimensional vector space then dimQ Q m = card(X) = card Q(X). Now
K <8> QB is isomorphic to a vector subspace of RB and so

2cardB = card QB = dimQ QB = dimR R ® QB < dimR KB < card RB = (2K»)cardB

2^0 card 8 /jcaidB

since fi is infinite.) Therefore dimW** = 22". Furthermore, if W is a real vector
space of infinite dimension 2K then W = KB for a set B of cardinality X because
dimR KK = dimQ Qx = 2*.
(b) Let V be a weakly complete vector space and E any vector subspace. Let UE be

a neighborhood of 0 in £ and Uv a neighborhood of 0 in V such that UE — E f\Uv.
Then there is a closed vector subspace W contained in Uv such that dim V/ W < oo.
Now £ D W c £ n f/v = f/E and £ / ( £ n W) = (£ + W)/W c V/W. Since
(£ + W)/ W is a vector subspace of a finite dimensional vector space, £ / ( £ D W) is
a finite dimensional vector space. It follows that £ is a proto-Lie group. •

The following examples are now straightforward from the preceding remarks.

EXAMPLE 1. There is a connected proto-Lie group G whose Lie algebra Jz?(G) is
algebraically isomorphic to K*°, while J^f(G) = K22"0.

PROOF, let V be the vector space KN and let 0v '• V -> V** be the natural morphism
into its algebraic bidual, given by (6v(v), co) — (co, v) for v e V, co e V*. Let G
be the additive group of V** with the weak-* topology. Then G is a pro-Lie group
and jg?(G) =_V**. Thus 3f(G) = R22*°. Now let G = 9V(®LN) with the subgroup
topology of G. Then G is a proto-Lie group with Jz?(G) algebraically isomorphic
to K*°. . •

EXAMPLE 2. Let co: H -^ G\ be a group homomorphism between connected
pro-Lie groups such that the graph

G = {(h, co(h)) :h g H) <z~G = H x G,

is a proper dense subgroup. Then / = prH | c : G -> H is a bijective but nonopen
morphism which extends to a surjective open morphism F = prw : G -> / / of
pro-Lie groups.

Specifically, let DC denote either (a) R, or (b) the discrete field Z(p) = 1/pT for
some prime /?, and consider H = KN with its product topology, which in case (a) is a
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pro-Lie group agreeing with Jz?(H) (up to a natural isomorphism) and in case (b) is a
compact totally disconnected vector space over the field of p elements. Let G\ = K
and let co: H -*• G\ be a discontinuous K-linear form. Such a linear map certainly
exists, since the topological dual KN is isomorphic to Km = R(H°\ while the algebraic
dual (KN)* is isomorphic to K2-2 °. Now the graph G of co in H x G\ is a K-hyperplane,
being the image of KN x {0} under the linear automorphism (x, y) \-> (x, y + co(x))
of K.N x K. Since co is discontinuous, G is dense, since hyperplanes in a topological
vector space are either closed or dense.

Case (a): G = J2f(G), as the additive group of a vector subspace of a weakly
complete vector space, is a connected proto-Lie group which is not a pro-Lie group.
G does not have a stable Lie algebra. H = J?(H) is a connected pro-Lie group. The
morphism / : G ->• # is bijective and not open.
Case (b): G is a precompact protofinite (hence proto-Lie) group but is not almost
connected, while H is an abelian compact totally disconnected, hence almost con-
nected, group. By default, both Jz?(G) and Jzf(H) are singleton and so G has a stable
Lie algebra and _£?(/) is an isomorphism. The morphism / : G —>• H is continuous,
bijective and not open.

It is worth noting in passing that the construction in Example 2 yields an interesting
example in the world of finite dimensional Lie groups: we may take H = G\ = R
and find a bijective Q-linear map co: R —>• E. that is not a multiplication by a real
number. This can even be done in such a fashion that the graph G of co is a connected
subgroup of K2. (For the existence of such an / see [11].) Here G is a connected
abelian topological group which is arcwise totally disconnected, causing -S?(G) to be
zero; its completion is R2, but it is certainly not a proto-Lie group because it has no
small subgroups and is not a Lie group. We have i?(G) = (R2, Sf(H) = R.

Nevertheless, if G is a proto-Lie group with a stable Lie algebra, in contrast with
Example 2(a), then for each subgroup H of G one has

Sf(H)=Sf(GnH) and (expif(H)) c G.

In particular, the subgroup (exp^-^f (G)> of G having the full Lie algebra

• & ((expc>) = S?(G) = Sf(G)

is contained in G. (For information on analytic subgroups of pro-Lie groups, see [9,
Chapter 9].)

LEMMA 3.2. Let f:G—> H be a morphism of topological groups and assume,
firstly, that G is almost connected and, secondly, that / ( G ) is dense in H. Then H is
almost connected.
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PROOF. Since / (G o ) is connected and contains the identity, /(Go) ^ Ho and
therefore the morphism (j>: G/Go -> H/Ho given by </>(gG0) = f(g)H0 is well-
defined. By assumption, G/Go is compact. So the continuous image </>(G/Go) is
compact and thus, since H/Ho is Hausdorff, is closed in H/HQ. Since / (G) is dense
in H, it follows that <p(G/G0) is dense in H/Ho. Therefore H/Ho = 4>(G/G0) and
so H/Ho is compact. D

Thus if G is an almost connected proto-Lie group then G is an almost connected pro-
Lie group. If / : G —> H is a morphism of a topological group G with a completion
G 5 G into a complete topological group fl then there is a unique extension of /
to a morphism F : G —> // , whose kernel we shall consistently denote by C The
following Lemma is one crucial ingredient in the proof of the Open Mapping Theorem.

LEMMA 3.3. Let G be a proto-Lie group with a stable Lie algebra and assume that
f:G—>Hisa bijective morphism onto a complete group and that G is connected.
Then G is a pro-Lie group.

PROOF. Let F: G —> G the unique extension of / with kernel C = ker / . Since G
has a stable Lie algebra, Sf{C) = j£?(ker F) = ker .if (F) = ker _£?(/) = {0}, and
thus C is totally disconnected normal in the connected group G and is, therefore,
central. If y: G —> G is the embedding morphism, then<p: G ^ G, <p = y o f~l o F
is an idempotent morphism of groups since / " ' o F o y = idc. Note that im<p = G
and ker</> = ker F = C. Thus G = CG with C fl G = {1} is a bijective continuous
homomorphic image of the direct product C x G under the morphism (c, g) h-> eg.
Now Proposition 1.12(iii) applies and shows that C = {1}. Thus F is injective, that
is, <f> is bijective and thus G = G. D

Note that G is certainly connected if G is connected, which we usually assume. A
proof of the openness of / will be one of our targets.

4. The Proof of the Open Mapping Theorem

We now propose to prove the following main result.

THEOREM 4.1 (Open Mapping Theorem for Pro-Lie Groups). Let f: G ->• H be
a surjective morphism from an almost connected pro-Lie group onto a pro-Lie group.
Then f is open.
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Towards a proof, we consider the canonical decomposition diagram for / :

H

with q being the quotient morphism and / ' the induced bijective morphism defined
by f'(gkerf) = f(g).

By Lemma 3.2, the quotient G /ke r / is almost connected since G is almost
connected. By Theorem 2.2, G /ke r / is a proto-Lie group. By Theorem 2.3
the embedding of G / k e r / into its completion G/ker / induces an isomorphism
S£(GIker / ) -> .if (G/ker / ) , so G /ke r / has a stable Lie algebra.

If we can show that the bijective morphism / ' : G/ ker f -*• H from an almost con-
nected proto-Lie group with stable Lie algebra onto a pro-Lie group is an isomorphism,
we thereby prove that / is open.

Thus we need the following Lemma.

LEMMA 4.2. Iff: G -*• H is a bijective morphism from an almost connectedproto-
Lie group with stable Lie algebra onto a pro-Lie group then f is an isomorphism.

Example 2(b) comes dangerously close to being a counterexample to Lemma 4.2,
but in that example G is not almost connected, though both G and H are since they
are compact and totally disconnected.

Before we prove Lemma 4.2, let us reduce the task by showing that if Lemma 4.2
is true for a connected group G (and consequently a connected H), then it is true as
stated above for almost connected groups.

Thus let / : G -> H be as in Lemma 4.2. Let P = /~ ' ( / / 0 ) . Then Go c P.
Thus P is an almost connected proto-Lie group and f\P : P —> Ho is bijective since /
is bijective. We claim that P is connected and therefore equals Go. If not, then P
has an open normal proper subgroup Q of finite index since G/GQ is profinite as G
is almost connected. But then, / being surjective, f(Q) is a normal subgroup of
finite index in Ho. By Proposition 2.11(iii), this implies f(Q) = Ho and, since / is
injective, Q — P which contradicts the assumption that Q was a proper subgroup.

Now we assume that Lemma 4.2 is true if G and H are connected. Then
/ICo : Go -> Ho is an isomorphism of topological groups, so Go = Ho is a pro-
Lie group. Then, since G/Go is compact, by Proposition 2.7, G is a pro-Lie group.

Therefore, / : G —*• H is a bijective morphism between almost connected groups,
such that / | Go : Go -»• Ho is an isomorphism. If U is an open neighborhood of the
identity in G, we find a normal subgroup N € ^V(,G) such that M = NHG0 e
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It is no loss of generality to assume that UN = U (see, for example, [9, Theorem
1.27(i)].) The factor group G/M is now a locally compact almost connected and hence
cr-compact group. Since f\c0 '• GQ —> Ho is an isomorphism, Ho/f(M) is isomorphic
to Go/M and is therefore a Lie group, whence H/f(M) is locally compact. Thus
the induced map fM: G/M —> H/f(M) is open by Theorem A, the classical Open
Mapping Theorem for Locally Compact Groups. Hence fM(U/M) = f(U)/f(M)
is open in H/f(M) and so f(U) is open in H. Thus / is open and therefore an
isomorphism.

After this reduction, we concentrate on the following assertion.
Let f': G —> H be a bijective morphism from a connected pwto-Lie group with

stable Lie algebra onto a pro-Lie group, then f is an isomorphism.
From Lemma 3.3 we know that G is a pro-Lie group. Thus we have to prove the

following.

LEMMA 4.3. If f: G —> H is a bijective morphism between connected pro-Lie
groups and assume that G has a stable Lie algebra. Then f is an isomorphism.

A proof of this lemma will prove the Open Mapping Theorem for Pro-Lie Groups
(Theorem D of the Introduction).

Thus for a proof of Lemma 4.3 we need to establish that a bijective morphism
between two connected pro-Lie groups is an isomorphism.

LEMMA 4.4. Let G be a connected pwto-Lie group and f: G -> Ha bijective
morphism onto a pro-Lie group. Then the following statements are true.

(i) For all N e J/{H) the normal subgroup M =f f~\N) is in J^{G) and
cj)N : G/M -*• H/N given by <pN{gM) = f(g)N is an isomorphism of Lie groups.

/ - ' (.JK(H)) = {f~l(N) : N e J"{H))

is a faithful copy of the filter basis ^V(H) inside ^V(G).

(ii) If we set M* = / " ' (jTMj) for MSLJY{G) then

rdef
= /(M*) = /(M) €

and M h-> M* : ^V(G) -> JV(G) is a well defined order retraction of JV(G)
onto f-\jV(H)) such that M c M* = M** and that <pM: G/M* - • H/N given
by 4>M(gM*) = f(g)N is an isomorphism of Lie groups. Accordingly, there is an
isomorphism

<t>: lim G/M* -> H,
MV(G)

where <p((gMM*)Me^(G))) = \imMe^(G) fig/*), as limit of a Cauchy sequence in H
and where 0-'(A) = (f-i(h)M)Me^(Cy
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PROOF. (i) Consider an N e jV{H). Let V be an open neighborhood of the
identity in H containing N and such than VN = V and V/N contains no subgroups
other that the singleton one. Since / is continuous, U = /~'(V) is a neighborhood
of the identity in G. Set M = f~\N). Then UM = U and UM/M contains
no subgroup other than the singleton one. Since \\mjV(G) = 1 in G there is a
P e <JY{G) such that P c. U. Then PM/M is a subgroup of G/M contained in
U/M and thus agrees with M/M, that is, PM = M, and s o P C M . Therefore
we have a surjective morphism of topological groups <j>NP: G/P -*• H/N given by
<t>Np(gP) = f(g)N.
By the definition of ^V(G) we know that G/P is a Lie group; it is almost connected
by Lemma 3.2 since G is almost connected. Thus G/P is a locally compact group
which is the union of a countable collection of compact subsets. Also, H/N is a
Lie group since N e Jf(H). Hence it is locally compact. Thus the Open Mapping
Theorem for Locally Compact Groups (see Theorem A) applies and shows that <\>NP

is open. Since M/P = ker<t>NP, we know that G/M = (G/P)/(M/P) = H/N is a
Lie group. Therefore M e JV(G). Thus

and 4>N: G/M -> H/N given by (j>N(gM) = f(g)N is an isomorphism. This
completes the proof of (i).

(ii) For M e JV{G) set M* = / " ' (f(M)\ Then /(AT) = f(M) and we define

N = f(M). Then M* is a closed normal subgroup in G by the continuity of / , and
M c M* = M**. So G/M* = (G/M)/(M*/M) is a quotient of a Lie group and
is, therefore, a Lie group. Thus we have M* 6 Jf(G) and so there is a bijective
morphism fM: G/M* ->• H/N from a Lie group G/M* to a proto-Lie group H/N.
Since G is connected, so is H. Hence Theorem 2.6 applies to show that H/No is a
pro-Lie group. By Theorem 2.3, we have ££(H/N) = h/n, where n = 5f(N), and
^ ( / ) ( m ) c i f (/)(m*) = n.
Hence h/n is a homomorphic image of g/m and thus is finite dimensional. Thus H/No

is a finite dimensional pro-Lie group and so is locally compact by Proposition 2.7. As
a quotient of a locally compact group, H/N = (H/No)/(N/No) is locally compact
as well. Then the bijective morphism from a locally compact almost connected group
G/M* to a locally compact group H/N is open by the Open Mapping Theorem for
Locally Compact Groups (Theorem A), and therefore is an isomorphism. This means
that H/N = G/M* is a Lie group and thus A' e JY(H).

For M e <sY(G), the natural isomorphism (\>M: G/M* ->• H/f(M*), induces an
isomorphism <p which is the composition of

lim G/M* -+ lim H/f(M*) = lim H/N.
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For ( g t f A f ) « ^ ( C ) e l imM e^ ( C) G/M* the net (/(g*/))Me%/K(C) in H is a Cauchy net

and thus has a limit </>((gA/M*)A/e^(o). giving an isomorphism

4>: lim G/M* -> / /
A/e.#(G)

whose inverse is given by 0" 1 (h) = ( / " ' (A)Af)M&/K C). This proves (ii). •

LEMMA 4.5. Let G be a connected proto-Lie group with stable Lie algebra and
f': G —>• H a bijective morphism onto a pro-Lie group. Then -£?( / ) : 0 ->• rj vv/iere
g = -2?(G) and h = _£? (/ /) , is an isomorphism of pro-Lie algebras.

PROOF. We are assuming now that _£? (G) = -£?(G). Since G is almost con-
nected, G is almost connected by Lemma 3.2. Because / / is complete, the morphism
f:G->H extends to a morphism F: G -> / / . As / is bijective, F is surjective.
Then Corollary 2.5(ii) applies to show that Jif(F): -S?(G) —> h is a quotient mor-
phism. If g = i f (G) , then this implies that i f ( /) = JS?(F)|B is surjective and hence
is a quotient morphism. Since / is bijective, ker .$?(/) = {0}. It follows that i f (/)
is an isomorphism. •

Now let M e ^K(G) and m = 5?(M). Then {m : M e JV(G)\ is cofinal
in id0 by Proposition 2.10(vi). For M e <JY(G) we let m* = i f (A/*). Then
[m* : M e JV{G)} = {n : N e JT{H)) by Lemma 4.4. Since jgf(/) is an
isomorphism by Lemma 4.5, {if(/)(m) = i f ( / (M)) : M e JV(G)\ is cofinal
in idh, as is the set {n : Â  e ^V(H)}, where n = if(A^). We conclude that
{m* : M e JV(G)} is cofinal in id G.

We now assume that G is a connected pro-Lie group and recall from Theorem 2.3(ii)
that A/o = (expc m) and (M*)o = (expG m*). We conclude that {(A/*)o : M e JY] is
cofinal in [Mo '• M € JV\.

The next Lemma is the crucial final step.

LEMMA 4.6. Assume that f.G-^Hisa bijective morphism between connected
pro-Lie groups. Then f is open, that is, f is an isomorphism.

PROOF. In the following we write /~ ' (^)o as a hardly ambiguous abbreviation
for (/-'(AO)o- We know that {(M*)o: M e JV{G)} = {/"'(AOo : W e ^V(H)} is
cofinal in [Po : P e ^V(G)} and so

(4.1) Y • G - • ^Um G/f-\N), given by y(g) =

is an isomorphism. Now /(/~'(W)o) is connected and contained in f(f~l(N)) = N
and thus f(f-l(N)0) c No. For n = if(Af) and m = ^?(/)-1(n), because
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of / o expG = expw and by Theorem 2.3(ii), we have No = (expw n) and expG m c
/-'(AOo, whence expwn c /(/-'(AOo). Therefore No c /(/- '(AOo). Hence
No = /(/- '(AOo) for all N e J/(H).

Since / is bijective, for every N e ^(H) we have

Thus we have, for every TV e J/(H~), a bijective morphism

aN : G/ /"1 (AOo -* H/No given by aN (gf1 (N)Q) = f(g)N0.

Since f"](N) e ^V(G) by Lemma4.4, the factor group G/f~1(N)0 is locally compact
by Proposition 2.10(vii), as is the factor group H/No. Since the group G is connected,
G//~' (AOo is ^-compact. The Open Mapping Theorem (Theorem A) applies and
shows that aN is an isomorphism for each N e ^V{H). This gives us a morphism

a: lim G/f-\N)0-> lim H/NQ,

which is represented in the following diagram

1 (AOo

"N\ \a

H/NQ < lime€^(W) H/Qo

for the respective limit morphisms (A, V.
Since y: G -> limjv6^(W) G/f~\N)0 given by y(g) = (gf~l(N)0)Ne^(H) is an

isomorphism by (4.1), and by Proposition 2.10(iii), y^(W): / / -> limArei/K(W) / / /No

where ^o(H) = [No '• N e ^Y{H)} is an isomorphism, we may write

° a ° y '• & -*•H-

Since / is bijective, a is bijective. In order to prove that / is open, it now suffices to
show that a is an open morphism.

Each neighborhood of the identity in limC£^(W) G/f~\Q)0 contains a neighbour-

hood of the identity of the form W = ^(V) for a suitable N e ^(H) and
some open neighborhood V of the identity in G/f~l(N)a. Then by the openness
of aN the set U = aN(V) is an open neighborhood of the identity in H/No. We
claim that a(W) = v^x(U). By the continuity of vN, this claim will show that
a{W) is open, and this will show the openness of a. For a proof of the claim,
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we note that the surjectivity of iiN and the commutativity of the diagram implies
U = aN(V) = aN(txN(W)) = vN(a{W)), whence a(W) c v^(U). For the proof
of the converse inclusion, let x e v^l(U). Then vN(x) e U and since a^ is bijective,
there is a v e V such that aN(v) = vN(x). By the definition of W, there is a w e W
such that ixN(w) = v. Then vN(a{w)) — aN(fiN(w)) = u = vN(x). Therefore
x~xa(w) e kerv^ for N € ^V(H). But

and, since a is surjective, there is a w' e W such that a(w') = x~xa{w). Hence
x = a{ww'~x) € a(W). Thus the claim a(W) = v~'(^) is established and this
proves that or is open. •

In the process we have reproved that the limit of an inverse system of isomorphisms
is an isomorphism.

Lemma 4.6 proves that any bijective morphism / ' : G —> H between connected
pro-Lie groups is an isomorphism. Thus Lemma 4.3, and thereby the Open Mapping
Theorem for Pro-Lie Groups (Theorem D), is proved.

5. Consequences of the Open Mapping Theorem

We remarked that a quotient of a pro-Lie group need not be a pro-Lie group. In
Theorem 2.6 we saw circumstances in which the quotient of an almost connected
pro-Lie group is a pro-Lie group. The following is another instance where a quotient
is well behaved:

COROLLARY 5.1. Let G be an almost connected pro-Lie group and N a normal
subgroup which is the kernel of a morphism from G onto a pro-Lie group. Then G/N
is a pro-Lie group.

PROOF. The preceding theorem applies to a morphism / : G -> H from G onto a
pro-Lie group H with N = ke r / . The induced bijective morphism / ' : G/N -> H is
an isomorphism and therefore G/N is a pro-Lie group since H is a pro-Lie group. •

With an Open Mapping Theorem there is normally associated what is called a
Closed Graph Theorem.

COROLLARY 5.2 (Closed Graph Theorem for Pro-Lie Groups). Assume that G and
H are pro-Lie groups, and that f': G -*• H is a morphism of groups (algebraically).
Then f is continuous if the graph graph(/) = {(x, f(x)) : x e G} c G x H is
closed in G x H and is almost connected.
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PROOF. We define y.G^- graph(/) by y(x) = (x, /(*)) and decompose / as
follows:

graph(/) r " > H.

We see that / is continuous if y is continuous. The continuity of y is equivalent
to the openness of y~x = prG |graph(/)- By (ii), graph(/) is a closed subgroup of the
pro-Lie group G x H. By the Closed Subgroup Theorem of pro-Lie groups (see
[9, Theorem 3.35]), closed subgroups of pro-Lie groups are pro-Lie groups. Now
the Open Mapping Theorem for Pro-Lie Groups applies to the continuous morphism
prc |graph(/) : graph (/) - • G and shows that it is open. •

Of course the graph of any continuous function from a topological space to a
Hausdorff space is closed.

If H is a closed subgroup and N a closed normal subgroup of a topological group G,
then there is a natural bijective continuous morphism fi: H/{H n N) -» G/N given
by fi{h(H n N)) = hN. Whenever p is an isomorphism of topological groups
one refers to this statement as the Second Isomorphism Theorem of Group Theory.
Unfortunately, in general, the Second Isomorphism Theorem is not guaranteed for
topological groups without additional hypotheses. For pro-Lie groups, due to the
Open Mapping Theorem, the situation is much better. So let us assume that H and N
are both almost connected. Then the semidirect product NxitH for t(h)(n) = hnh~x

is almost connected and we have a surjective morphism JX: Ny\tH -> NH given
by f(n, h) = nh with kernel {(/r1, h) : h e H 0 N] = H n N. If now NH is
assumed to be a pro-Lie group, which is certainly the case if G is a pro-Lie group and
HN is closed in G, by the Closed Subgroup Theorem ([9, Theorem 3.35]), then the
Open Mapping Theorem for pro-Lie Groups shows that /LA is open, giving us an exact
sequence

1 ZJ /~\ AT hi->(h~ ,h) __

(Mayer-Vietoris). The quotient map q: HN ->• HN/N is open and there is a
commutative diagram

N H pr» if

4 ~^ I'
NH • HN/N,

i

where f(h) — hN. It follows that / is open. (This also follows from a direct
application of the Quotient Theorem to HN/N and the Open Mapping Theorem to /
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plus the remark that continuous homomorphic images of almost connected groups are
almost connected.) Since ker f = H n N, the bijective morphism

/3: H/(HnN)-> HN/N

induced by / is an isomorphism. Thus, recalling that a complete subgroup of a
topological group is closed, we have the following result:

COROLLARY 5.3 (The Second Isomorphism Theorem for Pro-Lie groups). Assume
that H and N are almost connected subgroups of a topological group, and that N
is normal. Assume further that that the group H, the group N, and their product
N H = HN are pro-Lie groups. Then the natural morphism

H/(HDN)~* HN/N

N)H> hN

is an isomorphism of topological groups.

In [9, Theorem 12.88] the following consequence of the Open Mapping Theorem
for Pro-Lie Groups is established:

COROLLARY 5.4 (An Alternative Open Mapping Theorem for Pro-Lie Groups). Let
f.G^Hbea surjective morphism between pro-Lie groups and assume that

(i) G/ ker / is a pro-Lie group and
(ii) H is connected and

(iii) i f ( / ) : SC{G) -*• Sf(H) is surjective.

Then f is open.
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