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AN EXACT SEQUENCE ASSOCIATED WITH A
GENERALIZED CROSSED PRODUCT

YOICHI MIYASHITA

§ 0. Introduction

The purpose of this paper is to generalize the seven terms exact
sequence given by Chase, Harrison and Rosenberg [8]. Our work was
motivated by Kanzaki [16] and, of course, [8], [9]. The main theorem
holds for any generalized crossed product, which is a more general one
than that in Kanzaki [16]. In §1, we define a group P(4A/B) for any
ring extension A/B, and prove some preliminary exact sequences. In
§2, we fix a group homomorphism J from a group G to the group of
all invertible two-sided B-submodules of A. We put 4/B = @ J,/B (direct
sum), which is canonically a generalized crossed product of B with G.
And we define an abelian group C(4/B) for 4/B. The two groups C(4/B)
and P(A/B) are our main objects. C(4/B) may be considered as a
generalization of the group of all central separable algebras split by a
fixed Galois extension. The main theorem is Th. 2.12, which is a gener-
alization of the seven terms exact sequence theorem in [8]. However
it is proved that the exact sequence in Th. 2.12 is almost reduced to the
one which is obtained from the homomorphism G — Aut (K) induced by
J, where K is the center of B. This fact is proved in Th. 2.15. In §3,
we fix a group homomorphism %: G — Aut (A/B). From u we obtain a
free crossed product @ Au,/B, where w,u, = u,, %0 = cl@)u,(e e 4).
Therefore the results in §2 is applicable for this case. In §4 we prove
the Morita invariance of the exact sequence in Th. 2.12. In §5, we
treat a kind of duality, which is based on a result obtained in [19]. In
§6 we study the splitting of P(A/B) in particular cases.
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§1. The definition of P(A/B), and related exact sequences.

As to notations and terminologies used in this paper we follow [19],
unless otherwise expressed.

Let G,G’ be groups, and f a homomorphism from G to the group
of all automorphisms of G’. Then G operates on G’, by f. Then we
call ¢’ a G-group. We denote by G’¢ the subgroup {9’ G'|g(g) =9’
for all g e G}.

Let A D B be rings with common identity, and let L, K be the centers
of A and B, respectively. We denote by &(A/B) the group of all
invertible two-sided B-submodules of A (cf. [19]), where a two-sided
B-submodule X of A is invertible in A if and only if XY = YX = B for
some B-B-submodule Y of A. We denote by Aut (A/B) the group of all
B-automorphisms of a ring A, which operates on the left. Then it is
evident that &(4/B) is canonically a left Aut (A/B)-group. On the other
hand we have

PrOPOSITION 1.1. Aut (A/B) is a &(A/B)-group.

Proof. Let X be in ®A/B). Then A = XA =XQ ;A = AX' =
A Q@ X! canonically (ef. [19; Prop. 1.11), and hence X ® A& z X! —
A, 2®@a® a2 — xax’ is an isomorphism. Therefore, for any ¢ in Aut (4/B),
the mapping X(@): 2R aQRQ 2’ - 2R o(a) 2’ (xe X, 2’ ¢ X~ from A to A
is well defined. Then it is easily seen that X(¢) is a B-automorphism
of A, and this defines a &(A/B)-group Aut (4/B).

Here we continue the study of X(¢) for the sequel. Since XX ' =
B>1,1 is written as 1= > ;a,0ja;eX,a;eX"). Then >, «(a)o(a})
>ua(a)c(@) =1 for o,z in Aut (A/B). Since Y ;a,® ¢, +— 1 under the
isomorphism X ® X' — B, we know that >, ba,®a, =>,a,®ab for
all b in B, and so b3, c(a)a(a) = > t(a;)a(a)b. Thus > z(a)e(a)) €
U(V 4(B)) (the group of all invertible elements of V ,(B)), and (C; z(a;)a(a))!
= >, 0(a)c(@). Put u=>;a;,.-06(a}). Then, for any a in A,u -o(@)u™* =
i1 0 o(@da(@a(a)a; = 3, ;5 a;-0(@jan)a; = X(o) (3, a0i00,07) = X(a)(a).
Hence X(o) differs from ¢ by the inner automorphism induced by u.
Therefore X(o) = o is equivalent to that « is in the center L of A. To
be easily seen, u-o(x) = x for all 2 in X, (and similarly o¢(@)u™* = 2/
for all 2’ in X~!). Conversely, since the left annihilator of X in A is
zero, this characterizes #, and hence u is independent of the choice of
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a;a;, and is denoted by wu(X,1,0), in the sequel. As >, z(a)o(a) =
(3o a;-v7e(@))), > (a)e(a;) is also independent of the choice of a;,al,
and is_denoted by u(X,z,o0).

LEMMA 1.2. Let Pz and zP's be Morita modules, A and A’ are
over rings of B and B’, respectively. Let f, be a left B, right B’-
isomorphism P — P', and f: AQ zP -Z=> P’ ® A’ is a B-B’-isomorphism
such that fAQp) = foulp) @1 for all pe P. Assume that 27 '(f(a® p)a’)
=" (f(xa @ p)x’) for all z,acA,x’cA’. Then, if we define (a ® p)xx’
= f"Y(f(e ® p)x), then ,AQ zP, is a Morita module. (cf. [19])

Proof. Put End (LA ® zP)/B’ = A”/B’. Then, by [19; Lemma 3.1],
PR zA” - AR zP,pRa” — (1 ®p)a’ is an isomorphism. On the other
hand f"1: PP® 3 A’ — AQ 3P, f,(p) D e’ — (1 ®p)xa’(p € P). By hypothesis,
the image of A’ in the endomorphism ring is contained in A”. And,
since Py is a generator, the above two isomorphisms imply that the
image of A’ is equal to A”.

Next we define a group P(A/B). P(A/B) consists of all isomorphic
classes of left B, right B-homomorphism ¢ from a Morita module Py
to a Morita module ,N, such that the homomorphism A ® zP — N,
a®@p+— a-¢o(p) is an isomorphism (cf. [19; §3]). An isomorphism from
p:P— N to ¢: PP— N’ is a pair (f,g) of isomorphisms such that the
diagram

PN

fl ,lg

PN

is commutative, where f is a left B, right B-isomorphism, and ¢ is a
left A, right A-isomorphism. The isomorphism class of ¢ is denoted by
[p]. The product of p: P> N and¢:Q - Uis ¢®@¥: P® zQ - N® ,U,
where (¢ ® V) (@ ® @) = ¢(») ® ¥(q). We define [p] [¥] = [p® ]. Then
this is well-defined, and associative. The inclusion map B — A is evi-
dently the identity element. Let P* = Hom, (3P, zB) (cf. [19]), N* =
Hom, (4N, 4A), and ¢*: P* — N* the homomorphism such that ¢*(p*) =
(@-9(p) — a-p*) (p* e P*,ac A, pe P) (cf. [19; Lemma 3.11). Then it is
obvious that [¢*] is the inverse element of [¢] in P(A/B). Thus we have
proved
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THEOREM 1.8. P(A/B) is a group.

Remark. Similarly P(A/B) can be defined for any ring homo-
morphism B — A.

THEOREM 1.4. There is an exact sequence
1-UW) N UK)—UL) — &A/B) — P(A/B) — Pic (4) ,

where U(*) is the group of itnvertible elements of a ring *, and Pic(4)
is the group of isomorphic classes of two-sided A-Morita modules.

Proof. The mapping U(L) N U(K) — U(L) is the canonical one, and
the mapping U(L) —» &(A/B) is ¢+~ Be. Then 1 — U(L) N UK) — U(L)
— ®&(A/B) is evidently exact. For X in &(A/B), we correspond the
canonical inclusion map iy: X — A. If iy is isomorphic to ¢z, then there
is a commutative diagram

B2, 4

ix

and hence there is an element d in U(L) such that Bd = X. Hence
U(L) - &(A/B) — P(A/B) is exact. For ¢: P— M in P(A/B), we corre-
spond [M] (the isomorphic class of M). If M -=> A as A-A-modules,
then we may assume that M = A and P is a B-B-submodule of A
(cf. [19; Lemma 3.1 (4)]). Then, by [19; Prop. 1.1], we have P ¢ &(A/B).
This completes the proof.

On the other hand we have
THEOREM 1.5. There is an exact sequence
1-UWL) N UK)— UK) - Aut (A/B) —» P(A/B) — Pic (B) .

Proof. The map U(L) N U(K) — U(K) is the canonical one, and the
map U(K) — Aut (A/B) is d — d, where d(a) = dad™* for allac A. Then
1— UWE) N UWL)— UK) — Aut (A/B) is evidently exact. For any ¢ in
Aut (A/B), we correspond the map i,: B — Au,, b — bu, (cf. [19]). For
din UK),d —d—i;. Put d =c. Then A => Au,,a— ad"'u,, as A-A-
modules, and B -=»> B, as B-B-modules, by b~ bd~!, and we have a
commutative diagram
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B2, 4

zld—l lz

B*—’L‘—>Au,

Let ¢ be in Aut (A/B), and suppose that i, is isomorphic to i5: B — A.
Then there are isomorphisms «, such that

B2, 4

4ol

B _—> A’LL,,
(%

is commutative. Put a~'(u,) = d. Then, for any a € A, s(a)d = a"(c(a)u,)
= a (u,0) = da, and so o(e)d = da. Since p(d)u, = a(d) = u,, we have
Bd) =1, whence d is in U(K), because p is a B-B-isomorphism.
Finally, for ¢: P—>M in P(A/B), we correspond [P]e Pic(B). If
3By —> zPz, 1—u, then P = Buand M = A-p(u). Since M => A® P
as left A, right B-modules, a-p(u) =0 (¢ € A) implies ¢ = 0. Hence
there is an automorphism ¢ e Aut (A/B) such that ¢(u)a = g(@)p(u) for
all ae A. Then ¢ is isomorphic to ¢,. This completes the proof.

If we cut out P(A/B), we have well known exact sequences.

PROPOSITION 1.6. There are two exact sequences

1—> UREK) —> UV 4B) —~> &A/B) —> Pic(B),
1—> UWL) —> UV (B)) £, Aut (A/B) —> Pic (4) ,
where a(d) = Bd and p(d)(e) = dad™(d e U(V 4(B)),a e A).
Here we indicate Th. 1.4, Th. 1.5, and Prop. 1.6 by the following

diagram:
UK >Aut(4/B) > Pic(4)
BN T T
UL) N UK) U(VA(B)):\ P P(A/B)
vw Seam. 5 Pie®

If A is an R-algebra, we define Picy, (4) = {[P] € Pic (4)|rp = pr for
all reR and all peP} and PZ(A/B) ={lple P(A/B)|¢: P— N, [N] e
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Picy (4)}. If B is an S-algebra, we define P4(A/B) = {[p]€ P(A/B)|¢: P
— N, [P] e Picg (B)}.

§2. The definition of C(4/B), and an exact sequence associated with 4/B.

In this section, we fix a (finite or infinite) group G, rings B C A4,
and a group homomorphism J: ¢ — J, from G to &(A/B). Then J induces
a group homomorphism G — Aut (V,(B)/L) (cf. [19; Prop. 3.3]), and
further G — Aut(K/K N L). A generalized crossed product @ ,cs/,/B
agsociated with J is defined by (x,)(y,) = (¢,), where z, = >..,_, 2.y,. We
denote this by 4/B in the sequel. Pic (B) is a left G-group defined by
‘[Pl =[J,® zP® pJ,-.] (conjugation). Then we define Pic (B)¢ = {[P]e
Pic (B)|“[P] = [P] for all ¢ € G}, and Pic, (B)? = Pic (B)¢ N Picg (B). The
homomorphism G&(A/B) — P(A/B) in Th. 1.4 induces a left G-group P(A/B)
defined by conjugation.

PROPOSITION 2.1. The following exact sequences consist of G-homo-
morphisms:

1—UW) N UK)— UK)— Aut (A/B) — P(A/B) — Pic (B)
1— UWL) — UV (B)) —> Aut (A/B) — Pic (4)

Proof. Let seAut(4/B), and Xe®(A/B), and let >, aa; =1
(e X,a;e X™"). Then X(o)(@) = >; a;-a(a)a(a) >, o(a)a; for all a in A
(cf. §1), and so Au, —> Auy, as A-A-modules, by the map au, —a
>iola)aiuy,,. Then the following diagram is commutative:

X® zBQ z X' — Au, , QbR —> xbu,x’ = xb-o(x)Hu, .

l L] |

/
B —> AUy, xbx — xbx Uy,

Hence Aut (A/B) — P(A/B) is a G-homomorphism. Let ¢ be in U(V «(B)).
Then, since X induces an automorphism of V ,(B), there is a ¢’ ¢ U(V (B))
such that xc = ¢z for all xeX (le., X(¢© =¢). Put u=>;a,é&0).
Then c¢'¢™'-é&(x) = c’c t-cxe™! = ¢’ze™! = x for all x in X. Hence we know
that ¢’'c' =u (cf. §1). For any a in A, X(@)(a) = u-éa)u™ = ¢'c cac™
.¢¢’"' = c'ac’”'. Hence X(@) = ¢ = )r(\(g). The remainder is obvious.
We define P(A/B)® = {[¢le P(A/B)|¢: P—> M, J, -¢(P) = ¢(P)-J, for
all 6eG}. Then PA/B)® is a subgroup of P(A/B)¢. In fact, for
¢: P— M in P(A/B), [¢] belongs to P(A/B)® if and only if, for any ¢

https://doi.org/10.1017/50027763000015269 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000015269

EXACT SEQUENCE 27

in G, there is a B-B-isomorphism f,: P —J, ® ;P ® zJ,-, such that the
diagram

r
f¢l\¢‘M
L®P@J

is commutative, where (‘¢)(x, ® p @ ) = z,-$(p)x,. Here we shall check
that P(A/B)® is closed with respect to inverse. We may assume that
PC M and P*C M* (cf. [19; Lemma 3.1]). Then P* = {ge M*|P?
C B}. In this sense, (P)J,P*J,..=(PJ,)P*J,.,=(J ,P)P*],..=J (P)P*)J,_,
=J,J,.. =B, and so J,P*J,_, C P* for all s G. Hence J P*J,_, = P*
for all ¢ G.

We put Pr(A/B)® = Px(A/B) N P(A/B)®. Further we define
Aut(A/B)® = {feAut(A/B)|f(J,) = J, for all e G}. Then we have

PROPOSITION 2.2. There is an exact sequence

1—UW) NUK)— UK) — Aut (A/B)@
—— Px(A/B)® — Picg (B)¢ .

Proof. The above sequence is a subsequence of the one in Th. 1.5.
Therefore it suffices to prove that, for f in Aut (A/B), the image of f
is contained in Px(A/B)® if and only if feAut(4A/B)®. However
J,Buyd,-. =J,- f(J,)""u;, so that J,.-Bu,J,-, = Bu; if and only if J,- f(J,)!
= B, or equivalently, f(J,) =J,. This completes the proof.

Next we state several lemmas (which are well known).

For any two-sided B-module U, we denote by Vy(B){uec U|bu = ub
for all be B}.

LEMMA 2.3. Let B be an R-algebra, and P an R-module such that
=P |zR (i.e., finitely gemerated and projective). Then End, (3B Q pP)
=5 B® rEnd, (P) canonically, and zB ® xPg|zBp (cf. [191). And further
V sep(B) =5 KQ® zP canonically, where K is the center of B. Therefore
if End (zP) = R then zB® zPy ts o Morita module.

Proof. The first assertion is well known. The remainder is evident,
if zP is free. Hence it is true for any P such that zP|,R.

LEMMA 2.4. Let zMp|zBs. Then M = B.Vy(B) => B® Vu(B)
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canonically, and zV(B)|xK. Further End, (xV,(B)) => End, (;M) and
End, (M) => B® End, (M), canonically.

Proof. zMg|zBsz implies that V,(K) = M, and hence M may be
considered as a left B¢-module, where B* = B® zB°?. Then zM]|z.B.
Evidently Hom, (3.B, 3.M) —=»> V,(B) canonically. By [14; Th. 1.1], z.M
25 Hom, (3.B¢, zM)-=> Hom, (3B, 3B) ® Hom, (B, M) => B®
2Vu(B), Vx| xK and End, (xHom, (3.B, z.M)) —> End, (;M;). Combining
this with Lemma 2.3, we obtain the last assertion.

COROLLARY 1. Further assume that End, (;Mz) = K, Then My is
o Morita module.

COROLLARY 2. Let zMy| 3By and zM’y| 3By Then My > M, if
and only if zVu(B) = Vu(B).

The following corollary is repeatedly used to check commutativity
of diagrams.

COROLLARY 8. Let My|pBy and zM’'y|zBs.  Then V gy (B) —>
Vu(B) Q Vi (B) canonically, and there is an isomorphism M @ M’ 5 —
M Q Mg, my@m — m' @ my,, mQ my— my@m (m,ecVy(B), meM, m)e
Vu(B), m' e M), where unadorned & means Qz. We call this isomorphism
the “tramsposition” of M and M’

Proof. By Lemma 2.4, M =B® xV,(B) and M’ = B® zV,.(B).
Consequently, MQ M’ = B® xVu(B)® xVy(B). Then, by Lemma 2.3,
Vwgu(B) —> Vy(B) ® xV(B) canonically. Since V,(B)® xV,.(B) =
Vu(B)Q V,(B) by transposition, we obtain the latter assertion.

Remark. Weput {[{M]ePic(B)|zMz ~ zBg} = Pic,(B)([19]). Then, by
Lemma 2.3, Lemma 2.4, and Cor. 3 to Lemma 2.4, Picy (K) = Pic, (B),
[P] » [P & gBIl.

The following lemma is also used to check commutativity of diagrams

LEMMA 2.5. Let BU ® BWB ~ BBB ~ BMB‘ If X e VM(B) and Z’L ui
R w; € Vygw(B), then >, u, ® v ® w; € Vygugw(B).

Proof. Forany 2 in VB, UQ ;W ->UQMOSQW,u@Qw—u® x@w
is a B-B-homomorphism.

Next we shall define an abelian group C(4/B), which is the main
object in the present paper. In the rest of this section, unadorned ®
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always means ®z. C(4/B) consists of all isomorphic classes of generalized
crossed products @ ,.4V,/B of B with G such that ;V,z ~ zJ,5 for all
geG (cf. [19]). Let® V,/B and @ W, /B be generalized crossed products
of B with G, and let f be a B-ring isomorphism from ® V,/B to ® W, /B.
If f(V,)=W, for all 6@, we call f an isomorphism as generalized
crossed products. Precisely a generalized crossed product @ V,/B is
written as (@ V,/B, f,..), and its isomorphic class is denoted by [® V, /B, f, .1,
where f,.: V,® V.-V, is the multiplication. In particular, the mul-
tiplication of 4 is denoted by ¢,.. However we denote often (©J,/B, ¢,.)
by ©J,/B, simply. Let (®V,/B,f,. and (®W,/B,g,.) be generalized
crossed products in C(4/B). Then the o-component of the product of
@®Vv,/B,f,.) and (®W,/B,g,,.) is defined as V,®J,.,® W,. The mul-
tiplication is defined by h,.: V,®J,.®@ W,®V.®J..®@W. > V,® V.
R QI QW, W, AN Ve ®J (- @ W, where ¢ is the transposi-
tion of J,.,@ W,and V.® J,.-,, and * = f, . ® 4, . ® ¢, .. The associativity
of the above multiplication is proved by making use of Cor. 3 to Lemma
2.4. If we identify the canonical isomorphism B&® B ® B — B, then we
have a generalized crossed product (®(V,&®J,..® W, /B, h,.). The
associativity of this composition in C(4/B) is proved by using Cor. 3
to Lemma 2.4, too. Evidently [®J,/B,4,.] is the identity element of
C(4/B). The o-component of the inverse of (@ V,/B,f,)isJ, ® ViR J,,
where V¥ = Hom, (3V,, 3B). The multiplication is defined by f*.:J,®
VE®I)®U.QVHRI, 1,000 VIR (Vi®J)®J, L8, 5 ¢
V¥R J,, where x: V¥ Q V¥ - (V,® V,)* — V¥ is the canonical isomor-
phism induced by f,. We identify the canonical isomorphism B & B*
® B — B, and we have a generalized crossed product (& (J/,® V¥ ® J,)/B,
J*). By the isomorphism V,® (/,-.®J,)RQVIQJ, - (V,®VH®J, —
J,, the product of (®V,/B,f,.) and (B J,®V*®J,)/B, f¥) is isomor-
phic to 4, as generalized crossed products. Hence C(4/B) is a group.
Finally C(4/B) is an abelian group, because the isomorphism V,®J,-,
QW >V, ®Tu®@W,® (/,x®J) —> W, ®J, @V, R, ®J,) - W,
®J,-..QV, is an isomorphism as generalized crossed products, where ¢
is the transposition of V,® J,-, and W,® J,-.. By Cy(4/B), we denote
the subgroup of all generalized crossed products [® V,/B,f,.] such that
5V oy —> 5., for all ce G. We put Picg (B)¢? = {[P] e Pick (B)|;P®J,
® *Pp ~ pJ,, for all ¢ in G}, where *P = Hom, (P, Bp), and “~" means
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“similar” (ef. [19]). Then Picy (B)¥! is evidently a subgroup of Pick (B).
Then the canonical isomorphism *P ® P — B induces an isomorphism P &
J,Q*PRIPIRJ.®*P—-PRJ,®J,Q® *P, and we obtain 7¢,.: (PR J,
RPR PRI, Q) —>PRJ,QJ.0 P 2%, peJ, ®*P. Then
@PRJI,®*P)/B,?$,.) is a generalized crossed product, and [P]—
PRI, Q*P)/B,?¢,.] is a group homomorphism from Picg (B)¥! to
C(4/B). Thus we have proved the following theorem

THEOREM 2.6. C(4/B) is an abelian group with tdentity 4/B, and
C/(4/B) is a subgroup of C(4/B). There is a commutative diagram

Pick (B)* —— Cy(4/B)

l |

Picy (B)9! — C(4/B)

Remark. Cyd/B) is isomorphic to H*G,U(K)). The isomorphism
is defined as follows: Let [®J,/B,f,.] be in C(4/B). Then, for any
g,z in G, there exists uniquely a,.c U(K) such that f, (z,®z) =
a,. ¢, (x,®x) for all x,eJ,,z.€J.. Then {a,.|s,rc G} is a (normalized)
factor set, and [® J,/B, f,.] — class {a,.} is an isomorphism. (®J,/B,
f..) may be written as (®J,/B,a,.,) when 4 is fixed.

PROPOSITION 2.7. There is an exact sequence
Px(4/B)® —— Picg (B — C,(4/B) .

Proof. The semi-exactness follows from the definition of Pg(4/B)*®
([19; §3D). Let [P]ePicg (B)® be in the kernel. Then (® (PR J, ® *P),
*4,.) is isomorphic to (®J,,4,.) = 4. However, by [19; p. 116], (D P&
J,® *P),*$, )/B is isomorphic to End, (P ® z4,)/B, as rings, and so we
have a Morita module ,P&® z4,, Then the canonical homomorphism P
to PRA,p—p®1 is in Pr(4/B)©®.

An abelian group B(4/B) is defined by the following exact sequence:

Picy (B9l — C(4/B) —> B(4/B) — 1

Then we have

PROPOSITION 2.8. There is an exact sequence

Pick (B)Y — C(4/B) — B(4/B)

https://doi.org/10.1017/50027763000015269 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000015269

EXACT SEQUENCE 31

Proof. The semi-exactness is trivial. If [®J,,f,.] is in the kernel
of Cy(4/B) — B(4/B), then there is [P] in Picg (B)¥! such that [P]~—
[®J,,f,.] under the homomorphism Picg (B)¥1— C(4/B). Then it is
evident that [P] is in Pick (B)°.

By Remark to Cor. 3 to-Lemma 2.4, Picg (K) — Pic, (B), [P,] —
[P, ® ¢B] is an isomorphism, and [P] — [V(B)] is its inverse.

PROPOSITION 2.9. The above isomorphism is a G-isomorphism.

Proof. Let [P] be in Pic,(B). Then P = B® zVp(B), and J,Q P
RJ,.s 2 J,@BR V(BN RJ,-1 > (J, ® xVa(B) ®J,—, as two-sided
B-modules. It is easily seen that J,® yVa(B) — Ku, ® Vp(B) @ Ku,-.
® xJ, 2, Q Dy U, ® Py D U,-, ® x, is a B-B-isomorphism, where ¢ denotes
the automorphism induced by J,. Therefore J,Q P®J,-. —> Ku, ®
2Vp(B) ® xKtt,—. ® xB, %, @ Dy ® -1 = U, ® Py ® U1 @ X,8,-1(X, € J,, Ty-s €
J,-1,00 € Vo(B)) is a B-B-isomorphism. Hence, by Lemma 2.3,
V segpgre-i(B) —> Ku, ® (Vp(B) ® xKu,-,, as K-modules. This completes
the proof.

COROLLARY. ZYG,Picg (K)) = Z\(G, Pic, (B)).

There is a group homomorphism [®V,,f, 1~ (e — [V I/, 1) (e®
from C(4/B) to Z'G,Pic,(B)). Then the following sequence is exact:

1— Cy4/B) — C(4/B) — Z*(G, Pic, (B))

H'(G, Pic, (B)) is defined by the exactness of the following row:

Picy (B)®1 —» ZX@, Pic, (B)) —> HY(G, Pic,(B)) —> 1

NS

C(4/B)

ProposITION 2.10. Cy(4/B) — B(4/B) — H'(G, Pic, (B)) is exact.

Proof. Evidently the above sequence is semi-exact. Let [[® V,, [, ]]
(the class of [® V,,f, ] in B(4/B)) be in the kernel. Then there is a
[P] € Picg (B)? such that PR J, ® *P =» V, for all ¢ G, where *P =
Hom, (P3,By). For any ¢e G, we fix an isomorphism k,: PR J,Q *P
— V,. f. . is defined by the commutativity of the diagram
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PRJ.Q*PRPRJ.Q* P2 v oy

*l zlfﬁ,f

PRJ,.®*P V..

ha,r

where « is defined by *P® P -=-> B (canonical) and ¢,.. Then (®V,,
J...) differs from (@ V,, f,.) by some factor set {a,.}, ie., f..=a,.f,.
(cf. Remark to Th. 2.6.). Then, by the canonical isomorphism J, ® J,-,
RV, =V,®J,a,) X @V, is isomorphic to (D V,, f2). Since
@V, f,) is isomorphic to (®(P®J,® *P),?¢, ), this completes the
proof.

PROPOSITION 2.11. There is an exact sequence
B(4/B) — HYG, Pic, (B)) — H¥G, U(K)) .

Proof. For ¢ in Z'(G, Pic, (B)), a homomorphism @ from G to Pic (B)
is defined by @(0) = ¢(0)[J,]. Let &) =[U,Jand U, = B. Then U, ~ J,,
as B-B-modules, for all ¢ G. For o,z in G, we take a B-B-isomor-
phism f, :U,®U,—-U,. If ¢=1 or =1 then we take f,. as a
canonical one. Then, for any o, 7,7 in G, there exists uniquely u(g,z,7) €
U(K) such that u(e,z,7)f, I, ® f. )@ = f,. (f,.®)(x) forall x in J,,
where I, is the identity of U,.

U,QU.QU,

LS / \ for®I,

U,QU, U,.QU,

fn‘,frl lfur,r

u,, 200 Ly,
If 6=1o0r c=1or y=1, then u(o,z,7) = 1. Let f;. be another iso-
morphism from U, ® U, to U,,, and let %/(s,7z,7) be the one determined
by f... Then, for any ¢,z in G, there exists a unique u(o, v) € U(K) such
that w(o,o)f,.=f/.. If =1 or z=1, then u(o,7) =1. It is easily
seen that v/(e, z,7) = uloz, Pule, o) - ‘Uz, )" ule, ty) ulo, z,7). Let H be the
group of all functions u from G X G X G to U(K). Then ZX(G, Pic, (B))
— H|BY(G, U(K)), ¢ — class {u(g,z,7)} is well defined, and this induces
a: H(G, Pic, (B)) — H|BXG, U(K)), where BG, U(K)) consists of all
u(—, —, —)e H such that u(o, r,7) = ulor, Pule, 2)-“ulz, ) 'uls, cy)™* for
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some mapping u(—, —): G X G — U(K) such that u(s, r) = 1 provided
c=1or r=1. If class {u(o,z,7)} = 1 then, for a suitable choice of f, ,
we can take u(s,7,7) =1 for all ¢,7,7y€ G. Next we shall show that «
is a homomorphism from HYG, Pic,(B)) to H/BXG,U(K)). We take
another + ¢ ZY(G, Pic, (B)), and put ¥(e) = ¥(o)[J,] = [W,]. And let each
9, W, W,— W, be a B-B-isomorphism, and u,(c,7,7) be the one
determined by g,.. Put ¢y =z. Then I1(s) = ¢(@)V(IJ,] = ¢/, 11,1
A)J,] = O(@[J, 1 W) =[U,QJ,-.Q W,]. We take an isomorphism
ket U@ T @ W, QU QT ® W, —> U, QU.® T ®J, . ® W, ® W,
25U, ®J 40 ®W,,, where t is the transposition of J,.,® W, and
U.®J.y,and x =f, ®¢.s,-1®9,. Then, by using of Cor. 3 to Lemma
2.4, it is easily seen that w(o, 7, Pu,(o, 7, Dk, 0, S k. ) =k, (k, . I).
The fact that Im« is contained in H*G, U(K)) will be proved later.
Thus we have obtained the following theorem, which may be considered
as a generalization of Chase, Harrison, Resenberg [8; Cor. 5.5].

THEOREM 2.12. Let G be a group, end 4/B=(®DJ, ¢,.) be a
generalized crossed product of B with G. Let C and K be the centers
of 4 and B, respectively. Then there is an exact sequence

1— U N UK) —> UK) — Aut (4/B)®
—— Px(4/B)®> —— Picg (B)® —— Cy(4/B)
—— B(4/B) — HYG, Pic, (B)) — H¥G, U(K)) .

Proof. This follows from Propositions 2.2, 2.7, 2.8, 2.10 and 2.11.

Remark. The above sequence can be expressed as a seven term
exact sequence:

1 — HY(G, U(K)) — Px(4/B)¥ —— Picg (B)Y — H¥G, U(K))
—— B(4/B) — HG, Pic, (B)) — H¥G, U(K)) .

In fact, for any fec Aut(4/B)® and any ¢ec G, there exists uniquely
¢, € U(K) such that f(x,) = c,x, for all z,eJ,. Then it is easily seen
that ¢,, = ¢,-°c, for all ¢,7¢ G, and we have an isomorphism Aut (4/B)‘®
=5 ZY(G, U(K)). Evidently the image of U(K) in Aut (4/B)‘®’ corresponds
to BYG, U(K)).

Let P,(ceG) be a family of Morita B-B-modules such that zP,p
~ pBp, P, =B. Then zP,®J,p ~ pJ,5. Put V,(B) =P,,. Then P,
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~ xK, and so gP,,® xKu, ~ xKu,. It was noted in the proof of
Prop. 2.9 that Ku, ® (P,.® Ku,. Z5v reapero—1(B), as K-K-modules,
U, D QUi > Y0, D, Qaj, where a;ed,, ajed,, D00, =1, Let

1 P,®J,QP,Q®J,..— P,(0,7€G) be a family of B-B-isomorphisms.
Then, since V,,gp.ps-1(B) —> Ku, ® P, . ® xKu,-,, each f#*_ induces a
K-K-isomorphism f¥,.: Py, ® xKu,® gP,.&® xKu,-. — P, (cf. Cor. 3
to Lemma 2.4), and conversely, and it is evident that {f*.|o,re G} —
{f¥,:lo,7€ G} is a one to one mapping between them. This is nothing
but an isomorphism in Cor. to Prop. 2.9, and we can prove the com-
mutativity of the following diagram:

Z\(G, PipK (K)) —> Z'(G, Pic,(B))

N
H/BXG, U(K))

Then, by the same way as in [16; Lemma 8], the image of Z'(G, Picy (K))
in H/BYG, U(K)) is contained in H¥G, U(K)), and this completes the proof
of Th. 2.12. On the other hand, f*.:P,®J,®P.®J,, 128%
P,(s,7€ @) induces f, .: P,®J,Q P, J,. - (P,®J,®P.®J,- ) ® (J,QJ)
—P,.®J, (0,7 G and conversely, and {f¥.|o,c€ G}~ {f,.l0,7€G} is
a 1 — 1 mapping. A similar fact holds with respect to P, (c€ G) and a
crossed product @ Ku, with trivial factor set: { /¥, .|o,7 € G}~ {f,, .|lo,7 € G}.
Let {f, o {f¥}e{f&. o {fo.3- Then {f,} defines a generalized
crossed product if and only if so is {f;,.}. Its proof is easy, but it is
tedious, so we omit it. Next we shall show that {f,.}— {f,,.} is an
isomorphism from C(4/B) to C(® Ku,/K). To this end, let [ (Q, ® J,),
9...] be another element in C(4/B), and let [® (P,® Q,® J,), ,.] be the
product of [® (P,&®J,),f,.] and [®(Q,®J],),9,.] (cf. the proof of Th.
2.6). Then f*¥.:P,®J,®P,®J,.,=>P, and 9¥.:Q,®J,®Q.® J,~
~=>Q,, induce f¥.®9*.:P,®J,0P.®J,..Q®Q,RJ,®Q.&J,.. >
P, ® Q,. Similarly f¥,. and g¢&,. induce f¥,.® 9&,.. On the other
hand there are isomorphisms P,®J,QP.®J,..®Q, RJ,®Q.®J,-,
L P®Q®I,OP.RU,.RI)DQR], 2> P,0QQJ,OP.® Q,
® J,-1, where t is the transposition of J,® P,® J,-, and Q,. Similarly
we have an isomorphism P,, ® Ku, ® P,,® Ku,-.® Q,, ® Ku, ® Q,.®
Ku,.,— P, ,® Q, ® Ku, ® P, ,® Q. ® Kut,-, for all ¢,zc¢G. Then the
following two diagrams are commutative:
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r¥ @k,
Pv ®JV®P1®J0—1®-Q0®JJ®Q1®J0—1__—-—) P01®Q"t

o] B
P4®Q¢®J0®P1®Q7®J¢—l
P0,4®KKua®KP0,r®KKu¢—l®QO,a®Kua®Q0,r®KKua—1

*otl B
A 0,0,
Po,v ® KQO,u ® KKuc ® KPO,r ® KQO,t ® KKuu-l

f(;ko,r®g(;'jd,r
—_ PO,vr®KQ0,at

where [® (P, ® xQ,,, ® xKu,), I, , .1 is the product of [® (P, , ® xKu,), f,,,,.]
and [® (Q,, ® xKu,), 9,..). Then, since {f¥ ® g¥} o {f&. .Qgf, ) is
evident, we know that {h,} < {h..}. Thus we have proved that C(4/B)
— C(® Ku,/K),{f, .} — {/o.. is an isomorphism. It is easily seen that
Cyd/B) = C(® Ku,/K) under the above isomorphism. Thus we have
proved

THEOREM 2.138. There are commutative diagrams:

1— C4/B)y —> CU/B) —> Z'G,Pic,(B)) (exact)

1 —> C(® Ku,/K) —> C(® Ku,/K) —> Z'(G, Pick (K)) (exact)
Z\(G, Pic, (B))

zl HYG, UK))
Z/(G, Picy (K))

We shall further continue the study of the relation between 4/B and
® Ku,/K (with trivial factor set).

PROPOSITION 2.14. There exists a commutative diagram
Picg (K) —> C(® Ku,/K)
Pic, (B)I¢1 —>  C(4/B)

Proof. Let [P, e Picg (k). It is necessary to prove that (D (P,®
wKu, ® *Py),P¢, , ) corresponds to (® (B ® xPp ®J, ® (B® x*Py),%9,,.)
under the isomorphism C(® Ku,/K) — C(4/B), where ¢, , . is the canonical
isomorphism Ku,® Ku, — Ku,., u, ® u, — u,.,P = BQ P, and *P, =
Hom, (Pyg, Kx) (cf. the proof of Th. 2.6). However this is done by using
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Ku,® g*Py® gKu,-» —=> V;,gepgr.-(B) and *P -=» B® *P, canonically
(cf. the proof of Th. 2.13).

Next we define a homomorphism from P (® Ku,/K)© to Px(4/B)©,
Let ¢: Py— M, be in Pg(® Ku,/K)®. Then Ku,® xP,® xKu, ,-—>
Vieorar-i(B), as K-K-modules, %, ® py® #,-.— 3 ;a,,® 1®p)Ra,,,
where P =B® xPy, a,,€J,, a,;€J,.5, >,;0,,0,, =1 Therefore Ku,®
Po® xKu, ., ® J, =>J,®P, as B-B-modules, u, ®p,®u,..R® x, —
2, ® (1 ®py (cf. the proof of Prop. 2.9). Now, for the sake of simplicity,
we may assume that P, & M,. Then w,Pu,-, = P, for all 6 G. Then
P,® J, =>J,® P, as B-B-modules, u,pu,-,® x, — x, ®p, and this
induces a B-B-isomorphism P, ® x4 (—> PR 4) = 4Q (P, (-=> 4Q P).
Then, by Lemma 1.2, we have a Morita module ,4 ® xP,,, where (z, ® p,)x,
=z, ® u._.pu. (x,eJ,,0o€ Py,x.€J,). Hence the canonical homomor-
phism ¢: B xPy, =P — 4Q P, is in Pr(4/B)®: Let ¥,: Q,— U, be
another element of Pr(® Ku,/K)®. Then [g]lv,]l: P,® xQ — M, R’ U,
Do ® @y > (Do) ® Yo(qy), Where ®’ means the tensor product over @ Ku,.
On the other hand, [¢lly]: (B® xPy) ® (BR® xQ) — (4 & Py ® (4 & xQ,)
is the canonical map. Then it is easily seen that the canonical isomorphism
AR Py R xQy— (A® xPy) ® (4 xQ,) is a 4-d-isomorphism such that
the diagram

B® xP,® xQ, I 4® Py & xQ,
(B®KP0)®B(B®KQO)“_>(A®K 0)®A(A®KQ0)

is commutative. Hence pg: [#] — [¢] is a homomorphism from
Py(® Ku,|K)® to Pg(4/B)®.

THEOREM 2.15. There is a commutative diagram with exact rows:
UK) —> Aut (® Ku,/K)'® —> P(® Ku,/K)® —> Picg (K)¢

H ) alz 5 ﬁT rI
UK) —> Autd/B)® —> Pud/B)® —> Picy (B)°
s C® Ku,/K) —> B@® Ku,|K) —> H(G, Picg (K)) —> H(G, UK))

I- ai 4 U

—> C4/B) —> B(/B) — HYG, Picy(B)) —> H G, U(K))

where « is Aut (@ Ku,/K)® Z> Z(G, UKK)) > Aut (4/B)® (cf. Remark
to Th. 2.12). and B is the homomorphism defined above.
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Proof. By Cor. to Prop. 2.9 and the definition of H(G, Pic,(B)),
¢ is surjective, and hence so is . As r is injective, so is p, if (1) and
(2) are commutative. Therefore it suffices to prove that (1) and (2) are
commutative. However the commutativity of (1) is evident. To prove the
commutativity of (2), let «(f,) = f. Then, for any ¢c G, there exists
uniquely ¢, € U(K) such that f(z,) = c,z, for all z,e¢J,. Then f(u,) =
cu, for all e G, and so (x, ® uy)x, = 2,x, @ U Us U, = T, L, Q@ U—:C UMy,
=2 ® 7 cus = 2, f(x) Dus in 4Q xKu;, where z,ed,, 2. €J, (cf.
the definition of p). This means that (2) is commutative.

THEOREM 2.16. There exists a commutative diagram
UK) —> Aut (4/B)® ——> P (A/B)® — Picg (B)°

KR

UK) —> Aut(4/B)® —> Px(4/B)® — Picg (B)¢ .

Proof. Let f be in Aut(4/B)®. Then f(J,) =J, for all e G, so
Jf induces canonically an automorphism of 4/B = @ J,/B. Then the com-
mutativity of (1) is evident. Next we define a homomorphism Pz(4/B)®
— Px(4/B)®. Let ¢: P— M be in Px(A/B)®. For the sake of sim-
plicity, we may assume that P is a submodule of M. Then J,P=J,®
gP=PJ,=PQ® ], in M for all ;e G. We construct ®J,P, formally.
Then this is isomorphic to 4® zP canonically, as B-B-modules.
Similarly @ PJ, =»> P® 4. Since J,P = PJ,, we have an isomorphism
A® P =5 P® zd4, as B-B-modules. It is easily seen that this iso-
morphism satisfies the condition of Lemma 1.2. Thus é: P —> 4Q zP,
p—>1®pisin Px(4/B)®. Let v : Q — U be another element in Px(A/B)?.
Then [¢][v]: PR ;Q — M ® ,U. On the other hand, we have [¢]l[V]: P&
Q> URP)R® (4® Q). Then it is easily seen that the canonical
isomorphism 4® ;P ® zQ > U® zP)® ,(4R® zQ) is a 4-4d-isomorphism
such that the diagram

4® zP® Q

P®BQ/ |

(4® 5P) ®,(4® 5Q)

is commutative. Hence the mapping [¢] — [¢] is a group homomorphism.
Finally, the commutativity of (2) is evident from the definition of the
homomorphism Pg(A/B)® — Pr(4/B)®.
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Evidently 1 — Aut(A/3J,) — Aut (4/B)® — Aut (4/B)® is exact.
Then the commutativity of Th. 2.16 implies that

Aut (A/3J,) — Px(A/B)® — Pr(4/B)*®
is exact. Thus we have

COROLLARY. The following diagram is commutative, and two rows
are exact:

Aut (4/B)®

-

Aut (4/B)©

!

1-UWL) N UK) — UK — Aut (A/2J,) —» Px(A|B)'® — Pr(4/B)'®

1

Remark. If L C K then Aut (A/B)¢ is a subgroup of Aut(4/B)“.
On the other hand, if V,B) = K then Aut (4/B) = Aut (4/B), because
Hom (3J,5, 3J.5) = 0 for any ¢ +# ¢ (cf. [17; §6]).

§3. In this section, G is a group, and B DO T are rings with a
common identity. We fix a group homomorphism G — Aut, (B/T) (the
group of all T-automorphisms of B/T), ¢ — &, and we consider B as a
G-group. K and F are centers of B and T, respectively. We put 4, =
® ,eeBu,/B, which is a crossed product of B and G with trivial factor
set: u,u, = u,,u,b = o(b)u,. We denote by C, the center of 4,. Then,
applying Th. 2.12 in §2 to this generalized crossed product, we obtain
an exact sequence

1—UICY N UK) —> UK) —> Aut (4,/B)® —— Pr(4,/B)@
— Pieg (B)® —— Cy(4,/B) —— B(4,/B)
— HY(G, Pic, (B)) — HG, UK)) ,

where Aut (4,/B)® =5 ZYG, U(K)) and C,4,/B) = HYG, U(K)).
We begin this section with the following

PROPOSITION 3.1. The following two exact sequences consist of
G-homomorphisms:
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1— UK NUF)— UK — &B/T) —> P(B/T) — Pic (B) ,
1 — UF) — UVE(T) — &B/T) — Pic (D) .

Proof. The exactness was proved in Th. 1.4 and Prop. 1.6.
Canonically &(B/T) is a G-group, and the homomorphism G — Aut (B/T)
induces a homomorphism G — Aut (K), by restriction. By Th. 1.5, there
is a homomorphism Aut(B/T)— P(B/T), and this defines a G-group
P(B/T), by conjugation. Then it is evident that P(B/T) — Pic(B) is a
G-homomorphism. Next we shall show that &[B/T) — P(B/T) is a G-
homomorphism. Let¢e Aut (B/T), and X € &(B/T). Then o(X) ¢ &B/T),
and the image of X in P(B/T) is ¢x: X — B,z x. On the other hand
the image of ¢ in P(B/T) is ¢,: T — Bu,,t > tu,. Then there is a com-
mutative diagram

T®r X® ;T ——> Bu,® 5B Q® zBu,-,

alz alz

O-(X) B B ’

where « is the canonical one. This shows that &B/T) — P(B/T) is a
G-homomorphism. It is easily seen that U(Vx(T) — &(B/T), d — Td is
a G-homomorphism.

We denote by &(B/T) the group {X ¢ &(B/T)|X(s) = ¢ for all s € G},
where ¢ denotes the image of ¢ in Aut(B/T) (cf. Prop. 1.1). In §1,
we have seen that &B /1)@ = {Xe&B/D)|uwX,s,D) e K} ={XeGB/T)|
for any ¢ e G, there exists ¢, e U(K) such that ¢,x = a(x) for all ze X}.
We denote by PX(B/T)*® the subgroup of P*(B/T) (cf. § 1), which consists
of all [¢] satisfying (xx).

(¥x) For any oe (G, there exists a B-B-isomorphism f,: M — Bu,
&® zM @ zBu,-, such that the diagram

plim

w\, [ I

Bu,, ® BM ® BBua—l

is commutative, where °¢ is the map p — u, ® $(P) ® u,-.(p € P). The
proof that PX(B/T)“ is a subgroup is the following

PROPOSITION 3.2. PX(B/T)¢ is a subgroup of PX(B/T).
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Proof. Let ¢: P— M and +: Q — U be two representations of an
element of PX(B/T)*, and let the diagram

PNy
alz ﬁlz
P—M
¢
be commutative, where « is a T-T-isomorphism, and p is a B-B-

isomorphism. For any ¢ in G, there is a B-B-isomorphism f,: M —
Bu,® zM & zBu,-, such that the diagram

plim

A?

Bu, ® BM ® BBua—l

is commutative. Then a B-B-isomorphism g¢,: U — Bu,® ;U ® zBu,-,
is determined by the commutativity of the following diagram:

QY5> U -%25 Bu,® 3U R 3Bu,-. ,

alz ‘Blz 1®‘B®llz
P—? M ——f—) Bu,,@ BM® BBu.,—l

that is, g, = A ® B 1'f,8. It is easily seen that g, (@) = u, ® ¥()
® u,-.(q € Q), and hence PX(B/T)® is well defined. It is evident that
PE(B/T)® is closed under multiplication. Finally f,: zMp — zBu, ® ;M
® zBu,-.p induces a B-B-isomorphism Hom, (zM, zB) —> Hom, (3Bu, ®
3M Q gBu, ., zB), and there is a canonical B-B-isomorphism Bu, ®
sHom, (3M, zB) ® zBu,-, — Hom, (3Bu, @ pM @ pBu,-1, zB), %, & h Q@ t,-, —
W, QxR u,-, — o(@)(xeM). Then we have a commutative diagram:

Hom, (;P, ;T) —> Hom, (;M, 5B)
GT ~

Bu, ® z;Hom, (M, z3B) ® zBu,_,

where y is the canonical homomorphism f +— (¢(p) — p/) (p e P). This
completes the proof.
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THEOREM 3.3. There is an exact sequence
UKK) — &(B/T)® — PX(B|T)® —— Picg (B)¢ .

Proof. For X in G&(B/T), the image of X in PicX (B/T) is the
canonical inclusion map ¢: X — B. Then °¢ is X — B,z — o(x). There-
fore [¢] is in Pic® (B/T)® if and only if, for any oc G, there is a
¢, € U(K) such that ¢, = o(x) for all z¢ X, that is, X e &B/T)®. Then
the exactness of the present sequence follows from Th. 1.4.

THEOREM 3.4. There is a commutative diagram with exact rows:

UK) — GB/T)® —— PXB/T)® — Picg (B)¢

o o o

UK) —> Aut (4,/B)¥ ——> Px(4,/B)® — Picg (B)¢

Proof. The isomorphism U(K) N UK)isc—cl. Let Xe®B/T)P.
Then, for any ¢ in G, there exists uniquely ¢, ¢ U(K) such that ¢,z = o(x)
for all xe X. If is easily seen that c¢,. = ¢,-a(c) for all ¢,7€¢ G,c, = 1.
Then ¢,(c € G) defines an automorphism p: >, b,u, — >, b,c,u,. We define

&WB/T)© —ﬁ—> Aut (4,/B)®, X+ p. The commutativity of (1) is easily seen.
Next we shall define PX(B/T)® — s P.(4,/B)®. Let ¢: P — M be in

PX(B/T)%. Then, for any oe(@, there exists a B-B-isomorphism

foi M — Bu,® ;M ® zBu,-, such that f,¢ = °¢. Then f, induces an iso-

morphism 77: M ® ,Bu, 22%L Bu, ® ;M ® ,Bu,. ® 4Bu, > Bu, ® ;M,

where x is induced by the canonical map Bu,-, ® zBu, — B. As is easily
seen, fi¢(p) Pu,) =u,®é(p) (peP). Taking direct sum, we have an
isomorphism 4, ® ;M -=> M ® ,4,, and it is easy to check that this iso-
morphism satisfies the condition of Lemma 1.2. Thus we have ¢: M —
4, M, m—1Qm, in Pr(4,/B)® (cf. §2). Let +: @ — U be another ele-
ment in PX(B/T)®. Then the canonical isomorphism 4, ® ;M ® ;U =
4, ® M) ® ,4,® 35U) is a 4,-4,-isomorphism such that the diagram

Mo, U 40, M0 ,U

5@%\ lz
4, ® M) ®,, (4, ® zU)

is commutative. Hence the map ¢ — ¢ is a homomorphism. Finally we
shall show the commutativity of (2). Let 1 = >, ziz;(x;c X, x; ¢ X).
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Then 4, ®zBsu,®1=>,u2;®@x;, so @ Du, =G ux,® x)u, =

Qi o@du, @ xdu, = 3 o(@Puu, @ x; = 3 uxu, 2, = 2 urur, @ 1 =

Suuaieu, ®1 =u, pu) 1. Hence 4, ® zB "> Au,,u, ®1->u,u, is a

4,-4,-isomorphism. Hence (2) is commutative. This completes the proof.
The next Cor. 1 is follows from Th. 3.4.

COROLLARY 1. The following diagram is commutative, and two rows
are exact:

Aut (4,/B)©

/'
@(B/T)(G)

e

1- UK® N UF) - UKE®) — &B¢|T) — PX(B|T)® — Pr(4,/|B)®

e

where K and F are centers of B and T, respectively.

1

COROLLARY 2. If B® =T then two homomorphisms &B/T)¢ —
Aut (4,/B)® and PE(B|T)® — Pg(4,/B)® are monomorphisms. There-
fore, in this case, &B/T)® is an abelian group.

COROLLARY 3. If B/T is a finite G-Galois extension, then all vertical
maps in Th. 3.4 are isomorphisms.

Proof. It suffices to prove that y is surjective, by Cor. 2, Th. 1.4.
and Th. 1.5, because the center of 4, is F' in this case. Let ¢: M — M
be in Px(4,/B)®, and let M € M. Then, u,M = Mu, (¢ G), and this
yields a left 4,-module M: u,sm = u,mu, , (nec M,cc G). Then, by [8;
Th. 1.3], M = BQ® ;M,, where M, = {me M|um = mu, for all ¢ = G}.
Similarly M = M,® B, and the inclusion map ¢: M, — M is in PX(B/T)9,
because M,, —> ;Hom, (,B, ,M); is a Morita module. By the proof
of Th. 3.4, 7(¢) = § is easily seen.

PropoSITION 3.5. If Vu(T) = K then GB/T)® = &(B/T).

Proof. Let Xe®MB/T), and let 1= 3, a,0l(a;eX,a;e X, and
6eG. Then u =3 ,0a;-0(@)eVy(T) =K, and u-o(x) =z for all xeX
(cf. §1).
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§4. Morita invariance of the exact sequence in § 2.

In this section we shall cast a glance at the Morita invariance of
the exact sequence in Th. 2.12. We fix two Morita modules ,M, D zPz.
such that M = A® ;P =P Q zA’ (cf, [19]), where BC A and B’ C A’.
We put V,(A) =L,V .(A) = L', VgB) = K, and Vz(B’) = K’. There is
an isomorphism V ,(B) — V ..(B’), ¢ — ¢’ such that ¢p = p¢’ for all pe P,
and this induces L -=> L/ and K -=> K’, by [19; Prop. 3.3]. Further,
by [19; Th. 3.5], Aut(4/B) => Aut(4’/B’), ¢ — ¢, where . a(a)p; =
>19;-0(@) for all > ap, =3 q0j(a;e A,p;,q9;€ P,a;e€A’) in M. Then
it is evident the diagram

U(V,B)) —> Aut(4/B)

l l

UV ,(B)) —> Aut (4’/B’)

is commutative. Let ¢+ ¢’ under the isomorphism Aut (4/B)—
Aut (A’/B’). Then Au,® M —->MQ AU, ,u, P~ P u, (peP)is an
A-A’-isomorphism. Hence

Aut (A/B) —> Pic (4)
Aut (4’/B’) —> Pic (4

is a commutative diagram, where Pic (4) — Pic(4"),[X]~ [X'] is the
isomorphism such that X® M => M ® X’ as A-A’-modules. There
is an isomorphism &(A/B) — &(A’/B"),Y — Y’ such that YP = PY’ (cf.
[19; Prop. 3.3]). Then the following diagram is commutative:

UV (B) — &(A/B) —> Pic(B)
zl zl zl*
Uy ,(B)) — &(A’/B") —> Pic (B

where x: [W]— [W’] is the isomorphism such that W® zP -=> P® , W’
as B-B’-modules. The isomorphism P(A/B)— P(A’/B), ¢:Q— U +—
¢': Q' — U’ is defined by the commutativity of the diagram

Q® P <~ P®,Q

l l

U®AM<—’;——M®A,U'
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for some B-B’-isomorphism « and some A-A’-isomorphism . In fact,
we put @ = Hom, (3P, ;B) ® 5Q ® P and U’ = Hom, (,M, ,4) ® ,UR® ,M,
and take the canonical isomorphisms P® ,Q —=> Q® P and M ® .U’
Z>U® M. Then it is clear that the following diagrams are
commutative:

Aut(A/B) —> P(A/B) —> Pic(B)
Aut(4’/B’) —> P(A’/|B’) —> Pic (B’)
&A/B) —> P(A/B) —> Pic(4)
&A’/B) —> P(A’/|B") —> Pic(4’)

We now fix a commutative diagram

®&(A/B)
-7
G zl
J’ @(A’/B,)
consisting of group homomorphisms. Put 4 =@ J,/B and 4' = ® J,/B’.
Then we have

THEOREM 4.1. There exists a commutative diagram

UK) —> Aut 4/B)® —> Px(4/B)® —> Picg (B)* —> C,(4/B)

l l l l l

U(K') —> Aut (4'|B)® —> Py.(4'|B)® — Picg. (B')* —> Cy(4'|B")
— B(4/B) —> HYG, Pic,(B)) —> H%G, U(K))

i l l

—> B(4'|B’) —> H(G, Pic, (B")) —> H¥G, U(K"))
where all vertical maps are isomorphisms.

Proof. First we shall show that there is an isomorphism C(4/B)
=5 C('|B),®U,/B—@®U,/B. Put P* = Hom, (5P, ;B) and P*® ,U,
® P = U.,. Then, for any ¢c G, there is a canonical B-B’-isomorphism
foiU,®@pP - PR g P*Q gU, ® 3P =P ® 5 U,. The multiplicalion in
@ U, /B is defined by the commutativity of the diagram
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U,Q3U)Q 3P —>U,Q3PQ pU.—> PR (U, R U

l l

Uaf ® BP P ® B'U:f

The isomorphism @ f,: @ U,) @ zP — P ® (@ U’) satisfies the condition
in Lemma 1.2, and f, induces an isomorphism U, ® zP — P ® zU,, that
is, ®U,/B and @ U,/B’ defined above are equivalent as generalized
crossed products. In particular, 4/B and 4’/B’ are equivalent. The
isomorphism Pic (B) — Pic (B’) induces the isomorphism Picg (B)¢! —
Picg. (BN, [W] — [P* Q zW ® zP], where P* = Hom, (3P, z;B). We put
W =P*Q® ;W ® zP. Then W* -=»> W'* canonically, where W'* =
Hom, (5 W’, z.B’). Noting this fact, we can see that the diagram

Picg (B)®) —> C(d4/B)

l l

Pick. (B — C(4'|B")

is commutative. The isomorphism Pic,(B) — Pic,(B’) induces the iso-
morphism Z*G, Pic, (B)) — ZX(G, Pic, (B")) (cf. Cor. to Prop. 2.9), and it
is evident the diagram

C4d/B) — Z(G, Pic, (B))

l l

C'|B)) —> Z\(G, Pic, (B)

is commutative. The facts that the isomorphism P(4/B) — P(4'|B’)
induces Px(4/B)® -Z» Pr.(4'/B)®, and that the isomorphism Aut (4/B)
— Aut (4'/B’) induces Aut (4/B)® => Aut (4'/B))® are easily checked.
After these remarks it is easy to complete the proof.

If we take a commutative diagram

/, Aut (A/B)
o

then each ¢,: Au, @ M > MQQ AU, u, P —~>pRu,(pecP) is an A-A’-
isomorphism, and @ g,: (® Au,) ® M —> M ® ,(D A'w)) satisfies the con-
dition of Lemma 1.2, so that @ Awu,/B and @ A’w, /B’ with trivial factor

G
Aut (4’/B)
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set are equivalent as generalized crossed products. Therefore Th. 4.1
is applicable to this case.

§5. In this section we fix a Morita module 4 zMpg. 4 (cf. [19]) and
a commutative diagram

®(4/B)
¢ zla

N

Aut (B*/A*)

of group homomorphisms, where «: X — ¢ is defined by (xm)-a(b*) =
x(mb*)(x e X, me M, b* ¢ B¥) (cf. [19; Th. 1.5]), and A D B and B* D A*
are rings. For any ¢ in V,(B), there is a ¢’ € Vz(A*) such that em =
me’ for all me M. Then the map ¢~ ¢’~! is a group isomorphism
UV (B)) — U(Vg{A*)), and this induces isomorphisms U(K) — U(K*),
UWL) — UWL*), where K = VyzB), K* = Vz(B*),L =V, ,(A4), and L* =
V «(A*). The following diagram is commutative:

UV «(B) —> Aut (4 /B)

l(inverse) Ta*

where a*: X* — ¢* is defined by (¢*(a)m)x* = a(mx*)(x* e X*, me M,
ac A), or equivalently, ¢*(@)(my*) = (am)y*(y* e X*71).

PROPOSITION 5.1. Aut (4 /B)® Z=» @(B*/A*)©@,

Proof. Let X — ¢ under the isomorphism &(A/B) — Aut (B*/A%),
and let ¢* — X* under the isomorphism Aut(4/B) — &(B*/A*). Then
it suffices to prove that X(¢*) — ¢(X*) under Aut (A/B) — &(B*/A*). Let
7o d(X*) under Aut(4/B) — &(B*/A*). There is a ue U(V4(B)) such
that X(e*)(a) = u-c*(@)u~! (@ e A) (cf. §1). Then u-.-o*(x) = « for all xe X,
and so u-o*(x)m = am for all me M. Let y*e X* . Then (xm)-o(y*)
= x(my*) = u.c*@)(my*) = u((@m)y*) = (xm)y*u’, so that o(y*) = y*u’
for all y* e X*°!, where um = mw’ for all me M. Then, for any acA,
t@(m-a(y*) = (am)-o(y*) = (@my*u’ = w((@m)y*) = u-d*(a)(my*) =
% - o*(@ut - u(my*). But ulmy*) = my*u’ = m-o(y*). Hence. z(a) =
X(@®)(a) for all ac A.

PROPOSITION 5.2. There is an isomorphism P(A/B) —> P(B*|A¥).
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Proof. Let ¢: P— N be in P(A/B). Put zP’'s = Hom, (M, ;B) ®
sP ® M and N’ 4 = Hom, (M, ,A)Q N& ,M. Then there are canonical
isomorphisms M Q pP’pe — sP® gMp and M Q uN 4 — JNQ M4
Then ¢': N’ — P’ in PrJ(B*/A*) is defined by the commutativity of

M® P =5 P® M
=l [p®1
M® N =>NQ® M

Let ¢: @ — U be another element in P(A/B), and ¢': U’ — @ is the one
defined by . Then the following diagram is commutative:

M pP Q@ pl —> PR M 5l —> PR Q& zM
MR UN Q@ U —>NIMR U —>NQURQ M

On the other hand we have a diagram

M® (PR Q) > M® pP' @ pQ —> PQ Q® ;M

T €Y) T 2 T

MRQWANQ U —>MQQ(NQ U —> N U M

where (2) and (1) + (2) are commutative, and * is induced by (P ® zQ)
Z5 P'® Q. Hence (1) is commutative, and this proves that the map
[¢] — [¢'] is a homomorphism. Similarly we can define a homomorphism
P(B*/A*) — P(A/B). Hence P(A/B) -=» P(B*/A*),[$] — [¢].

THEOREM 5.3. @ J,/B and @ B*u,/B* are equivalent by pMpg, as
generalized crossed products. Therefore Th. 4.1 is applicable to this case.

Proof. For any ¢ in G, the map J,® M — M & zB*u,, xt @ m —
xm Q@ u, is a B-B*-isomorphism, and the following diagram is com-
mutative:

Ja ® BJ:- ® BM -—> Ja ® BM ® B*B*u, —_—> M ® B*B*ua ® B*‘B*ZI/f

i l

Jar ® BM —_— M® B*B*u‘"

THEOREM 5.4. There is a commutative diagram
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UK) —> Aut (A/B)® —> Pr(A/B)® ——> Picg (B)

zl A zl @) zl ®) zl

U(K*) —> &(B*/A*)@ — PE(B*|A*)® — Picg. (B*)

Proof. It suffices to prove that P(A/B) -=> P(B*/A*) induces
PK(A/B)(G)j——)PK*(B*/A*)(G’, and that (1), (2), (8) are commutative.
Now, J, ® ;M => M ® gB*u,,x @ m — xm ® u,, as B-B*-modules. Let
¢: P — N be in Px(A/B)®. Then, for any ¢ in G, there exists an iso-
morphism f,: zJ, ® P & zJ,-15 — Pz such that

s X1
J.®P® 4, @ M2 pe

v¢®\ T¢®1

N® M

is commutative. Then a B*-B*-isomorphism f/: P — B*u, ® pP' ®
zB*u,_, is defined by the commutativity of

1 1o
M& mB*u, ® B*PI@ B*B*u,_l (S)Q_;f_ M& B*P,
<

1®"¢'\ T1®¢’
M@ N’

Thus [¢] is in PX*(B*/A*), and hence Px(A/B)¥ = PEY(B*|A*)®,
The commutativity of (1) and (8) is easily seen. To prove the com-
mutativity of (2), let o€ Aut (4/B)®, and ¢ — X under the isomorphism
Aut (A/B)® — &(B*/A*)®, Then MX = M ®Q X > Au, ® ,M, mQx
—u, ®mr is an A-A*-isomorphism. And it is easy to see that the
diagram

M@ X =5 Au,® M

l T

MQ® nB* =5 B® ;M
is commutative. Hence (2) is commutative. This completes the proof.

§6. PROPOSITION 6.1. If B/T is a trivial finite G-Galois extension
then Py(4,/B)® — Picg (B)¢ — 1 is exact and splits, where 4, is a crossed
product of B and G with trivial factor set (Cf. [16; Cor. 2].)
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Proof. B is the direct sum of (G: 1) copies of 7. Put e, =
©,---,0,1,0,---,0) (the o-component is 1). Then >}, ¢, =1,¢,e. =9, e,
and B = ,® Te,. The operation of G on B is given by z(e,) = e.,.
Let [PlePicg (B)Y. Then zBu,® pPjg =5 ,P® sBu,, for all ceG.
Multiplying e, on the right, we have zBu.e, ® ze,Py —> Pe, ® pe,Bu,,
for all s G. Hence h,: re,Py —> ye,P, for all oG, because ,e,B, =
e, Tr > ;Tr, et — t(teT). It is easily seen that [e,P] ¢ Picy (T), where
F is the center of T. Put ¢P = P,, and let (P,); be the module of all
G X G matrices over P,, and let P’ be its diagonal part. Then it is
evident that (P,); is canonically a two-sided (7);-Morita module, where
(T, is the ring of all G X G matrices over T. Indifying B with the
diagonal part of (T),, zP’ is isomorphic to zP;. And (T); ® zP' = (P,
as left (T)4, right B-modules, canonically. Since e¢,(6 € @) is a basis for
By, 4, = Hom, (B;, By) —> (T)s. Then we can easily see that the canonical
map P’ — (1) ® pP’ is in Px((T)g/B)?.

PROPOSITION 6.2. If 4/B is a group ring then the sequence Py(4/B)
— Picg (B) — 1 is exact, and splits.

Proof. Let [PlePicg(B). Then there is a B-B-isomorphism
BG® 3P —>PQ zBG, 0 @ p—p»RalcecG), and this isomorphism satisfies
the condition in Lemma 1.2.

Remark. The above proposition can be generalized to the case that
4 =3 ® Bu,, u,b = bu,(beB), uu, = a,u, with a,.c UK). The proof
is analogous to the above one.

PRrROPOSITION 6.3. Let A,B,L, and K be rings as in §2, and fix a
group homomorphism J: G — &(A/B). Suppose that B/K is separable
and that K & L. Then

P.(A/B)® =5 Aut (4/B)® X Picg (K) ,
and this tnduces
PL(A/B)® =5 Aut (A/B-L)® X Picg (K) .

Proof. Letg: P— Mbein Pr(A/B). Then there is an automorphism
f of V,B)/K such that f(c)¢(p) = ¢(p)c for any ce V (B),p € P, and the
map [¢] — f is a group homomorphism from Px(A/B) to Aut (V B)/K)
(cf. [19; Prop. 3.3]). Then the map Aut (A/B) — Pz(A/B) — Aut(V 4B)/K)
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is the restriction to V,(B). Let U be a B-B-module such that bu = ub
forallbe K,ucU. Put B¢ = B® B*Y. Then U may be considered as a left
Be-module. By [14; Th. 1.1], ,, U = Hom, (,, B¢, ,.B) ® Hom, GeB, ;e U),
and so U = B® Vy(B). Inparticular, A = B® xV,(B). Hence Aut(4/B)
=5 Aut (V(B)/K) by restriction. Let f|VB)= f, and assume
that ¢e Px(A/B)®. Then J,-¢(P) = ¢(P)J, = f(J)p(P), because J, =
B-V;/(B). Hence f(J,) =J, for all ¢eG. Therefore the image of ¢
in Aut(A/B) belongs to Aut(A/B)®. Hence the map Aut(4/B)®
— Px(A/B)® — Aut (A/B)® is the identity map. Combining this with
Prop. 2.2, we know that Px(A/B)® =5 Aut (A/B)® x Im «, where
a: Px(A/B)® — Picg (B)¢ is the one as in Prop. 2.2. By Remark to Lemma
2.4, Picg (K) -=> Picg (B), [Pl —~ [B® xP,]. Then the canonical map B®
xPy— A ® gP, is in Px(A/B)®. Therefore Im o -=» Picg (K). Thus we
have the first assertion. The second assertion is obvious.

COROLLARY. Let L D K be commutative rings, and we fix a group
homomorphism G — Aut (L/K). Then

PL(L/K)® = PYL/K) Z> Picg (K) . (cf. §3)

Proof. Let ¢eG. Then, for any [P,] € Picg (K), (Lu, ® xPy) @ Lu,_,
=5 L® gPy, 2u, ® py ® U,y — 2y @ py, as L-L-modules.

Remark. By the above Cor, the sequence
&(L/K)® —— PXL|/K)® — Pic, (L)¢
is isomorphic to
&(L/K)® —— Picg (K) — Pic, ()7 .
(Cf. Th. 3.4, [8], and [16].)

PROPOSITION 6.4. Let A D B be rings, and L the center of A.
Assume that A Q [ V,(B)|A as left A, right V,B)-modules, and

PL(A/B) =5 &A/B) X Ima
where a: PL(A|B) — Pic, (A) is the one as in Th. 3.4. (Cf. [14], [19].)

Proof. By [19; Th. 1.4], Aut(V(B)/L) => ®(A/B), and the map
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®(A/B) —> PX(A/B) —> Aut (V(B)/L) => &(A/B)

is the identity (cf. [19; Prop. 3.8]). Then, by Th. 1.4, we can complete
the proof.
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