ON A COMBINATORIAL RESULT OF R. A. BRUALDI
AND M. NEWMAN

MARVIN MARCUS' AND STEPHEN PIERCE

1. Introduction. Let H be a subgroup of S, and let 4 be an n-square
matrix over a field F. Following Schur (7) we define the generalized matrix
function dgz(4) by

n

dH(A) =Z latu(t)'

o€H =

For example, if H = S,, then dg(4) is the permanent function, per(4); if
H is the identity group, then dg(4) is the product of the main diagonal
elements of 4, etc. For 1 £ » < »n define H, to be those elements of H which
leave » + 1,...,n individually fixed, and let H’, be the subgroup of S,
obtained by restricting the permutations in H, to {1,...,r}. Our main
result is contained in the following theorem.

THEOREM. Let A be an n-square row substochastic malrix, i.e., @ non-negative
malrix in which every row sum is at most 1. Then

1) dg(4) = m:?;df,,,(A[a(l), coya(®) (1), 7(D]),
where Ale(1),...,a(r) | 7(1),...,7(r)] is the r-square matrix in which the
i!j entry s Ao(),7()» 1:] =1...,r

To discuss cases of equality in (1), we place a mild restriction on H which
henceforth will be referred to as condition (M): for every pair,,7,1 <, < n,
there exists ¢ € H such that 4,7 € [e(r + 1),...,0(n)]. We remark that
condition (M) is certainly true for any doubly transitive group but is sub-
stantially weaker than double transitivity. Clearly, if » = » — 1, H cannot
satisfy (M), and thus we state the following necessary and sufficient conditions
for equality to hold in (1).

If r £ n — 2, H satisfies (M), and dg(A) # 0, then equality holds in (1)
if and only if A is a permutation matrix corresponding lo some ¢ in H. If dg
is the permanent function, then H = S, and (M) is satisfied by H. Moreover,
in this case, H', = S, and hence (1) becomes

per(4) = Ti};per(A[o(l), vy o) ), ... T(M)]);
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if r £ n — 2, equality holds if and only if A is a permutation matrix. This
inequality was recently proved by M. Newman and R. Brualdi (1). The
result is interesting in that it relates a generalized function of the matrix 4
to induced generalized functions of submatrices of 4.

It is clear that the above theorem will apply to any matrix with non-
negative entries and positive row sums by suitable normalization. We state
this result in Theorem 4 below.

2. Theorems and proofs. Before proceeding we introduce some nota-
tion. Let G be any subgroup of S,, and for 1 =7 < #x let T',, denote the

set of n” sequences w = (w1,...,w,), 1l Sw; =n,¢=1,...,r. If wand v
are in T',,, we say that w is equivalent to v, (w ~ v) (modulo G), if there is
some o € G such that w; = vo, ¢ =1,...,7: o = v° Clearly, ~1is an

equivalence relation. From each equivalence class, choose the representative
that is first in lexicographic order. Denote the resulting system of distinct
representatives (S.D.R.), ordered lexicographically, by AY,. We shall some-
times abbreviate AY, to Ag. If a € Ag, let T(a) be the equivalence class in
T,., to which it belongs. Note that Q,,, C G,,, C Ag¢, where Q,,, is the set of
all strictly increasing sequences in I'; , and G,,, is the set of all non-decreasing
sequences in I, ,. For @ € T, ,, let m,(a) be the number of times ¢ occurs in
a, and for 1 £ p = 7, let Ag? be the lexicographically ordered subset of Ag

consisting of all sequences « satistying m,(a) = p, t =1,..., n. For a and
Bin Ag, let Kg(A) be the matrix whose «, 8 entry is
do(A"[Bla])

where »(a) is the number of ¢ in G satisfying o’ = a. For example, if all the
a; are different, v(a) = 1; if all a; are the same, v(a) = g, the order of G; if
G = S,, then
v(a) = H1 m ().
1=
Also observe that if G = .5,,

_ per(4”[8la])
(KG(A))a..B - 'Y(a) ’

and hence Kg(4) is P,(4), the rth induced power matrix of 4 (6). A result
in (8) states that
3) Kg(AB) = Kg(A)K¢(B).

Observe that
AT[Bla] = (Ala|8])T
and thus

de(AT[Bla]) = da((A[a|B])T) = de(AlalB]).
For a, B € Ag?, let Ks?(A) be the matrix whose «, 8 entry is
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dG(A [01;»8])

4 s

@ /(8)

Observe that (Kg"(A4))T = Kg(AT).

THEOREM 1. Let A be an mn-square row substochastic matrix. Then for
12 p Sr =n K(A) is also row substochastic.

Proof. Since 4 is row substochastic, we may write
AJ = DJ,
where J is the n-square matrix, all of whose entries are 1, and
D = diag(d1y, - - - , dun),

in which d;, is the 7th row sum of A. Then from (3)

(5) Ks(4)Ke(J) = Ke(D)Ke(J).

Computing the «, 8 entry of both sides of (5), we obtain
do(Alalv]) de(JIv[B]) _ de(Dlalv]) de(J1v|B])

©) 'YE;G v(e) v(v) B v€Ag v(a) v(v) )

Now dg¢(J[v|8]) = g, the order of G, for any v and 8 in As Hence, after
suitable cancellation, (6) becomes

de(Alaly]) _ > de(Dlafy])

(7)

v€dg v(v) el g v(v)
By computation,
(8) dG(‘D[al’Y]) = ZG 1 dal”yﬂ(L).
L4 =
Unless a = 77,
1=1 d"z"’o(t) = 0.

But @ and y come from an S.D.R., and hence a = v° implies ¥ = «, and
o = a. Thus,

de(Dla|v]) = 0

unless v = «, and, from (8),

doDlalel) = X TT deyevy

T

There are v(a) such ¢ in G for which a° = «, and hence

©) 5 Tl deyary = »@ 11 doye, = v@) 1] @25,

0EG 1=
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Using (9) in (7) and the fact that 4 is row substochastic (d,, = 1), we obtain

de(A] L -
(10) Z a(A] !'Y]) H ﬂi() <
v€dg v(v) =1
Now all terms on the left of (10) are non-negative and hence, summing over
v € Ag?, we obtain

(11) de(4faly]) <1

vézgr v(y) -

for all @ € Ag?. But the left side of (11) is just the ath row sum of K7 (4).
This proves the theorem.

If dg is the permanent function, and p = 1, then Ag! = Q,, and v(y) =
for all v € Q,,. Then (11) becomes

(12) > per(dlay]) <

” t()‘f "

for all @ € Q,,. This is the Newman-Brualdi result (1).
We next prove the following purely combinatorial result that will enable
us to discuss the cases of equality in (1).

THEOREM 2. Let G be a subgroup of S,. Let A be an r X n matrix with no
zero rows. If 1 = p = r = n, then

(13) de(A[l, ..., r]y]) =0

for all v € Ag, v & AP, if and only if every column of A has at most p non-
zero entries. (Recall thal v ¢ Ag” implies that m,(y) > p for some t.)

Proof. Suppose no column of 4 has more than p non-zero entries, and
m,(y) = k > p, where v € Ag. Then 4[1, ..., r|]y] clearly has an (r — p) Xk
zero submatrix. Since k> p, » — p + k& > r and hence, by the Frobenius-
Konig Theorem, (13) must hold.

Conversely, suppose the sth column of 4, 4, has k non-zero entries,

k> p. Choosing v = (¢,4,...,%), 2 =1, ..., n, we see from (13) that
every column of A has at least one zero entry. Thus, p < & < 7 — 1. Deter-
mine w = (w1, ..., w;) € Qk,,such that au ... duws # 0. Let B = (By,. ..,
B,—x) be the sequence complementary to « in {1,...,7}. Then ag, = 0,
i=1,...,7 — k. Choose any sequence y € TI';, with the following proper-
ties: ms(y) =R Yoy = ... = Yo, = 5. We assert that for any such v

(14) de(A[L, ..., 7]y]) =

First, if ¥ € Ag, then v satisfies (13) and hence (14) holds. If v ¢ Ag, then
v € T'(a) for some a € Ag, ie., v = a° for some ¢ € G. Then, since

ms(a) = ms(@®) = k> p,
we have
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dG(A [lv ey 7"7]) = dG(A [1» ey 710‘ ]) = Z H Qiagr sy

TEG i=

> 11 Giay, = da(AlL, ..., 7]a]) = 0.

REGQ i=1

The above procedure shows, in fact, that if « ~ 3 and v ~ §, then
(15) de(Alaly]) = de(A[B]6])

Returning to the proof, we expand (14) as follows:

r—k
(16) 0 =dgA[l,...,r|y]) = Z H Qi = Z H @y 7a(w,)H (TR
Let G,_; be the subgroup of G consisting of all ¢ in G which map {wy, . .., w}

onto itself. If ¢ ¢ G,_, then for some ¢ and j, 1 S <1 =<r —k, 1 <j =<k,
a(B;) = w;. In this case the second product in (16) contains the term

WBivgy = WBive; = Wis = 0.
Thus, we may assume that (16) is summed over G,_;:

r—k

amn) > H Qoivg(wi) H pive(p) =

gEGr—k 1=1

Now
k k
131 Qoivgy = g Qois

is a constant ¢ # 0 for ¢ € G,_;. Hence, (17) becomes

—k

(18) Z II Wivg(pry =

0€CQr—k i=1

Since ¢ € Gy, ¢ maps {By,...,B,—} onto itself, and thus ¢(8;) = Bscs,
i1=1,...,r —k, for some ¢ € S,_; (¢ depends on ¢). The set of all ¢ thus
determined is clearly a subgroup S of S,_, and, of course, as ¢ runs over
G,_x, ¢ runs over S. Hence (18) has the form

Z H a"”ﬂ\b() dS(A[.Bly ce ey Br——kl'yﬁu c e ey 731-—1:]) = 0-

¢€S i=1
It is clear from the choice of vy that v, can be any of 1, ..., n, except s, for
1=1,...,7r — k. Thus, setting B = A[B1,...,Br= 1, ...,s —1,5s+1,
.., n], we have
(19) ds(B[l,...,7r —kly]) =0

for any v € T';—4—1. We now assert that (19) implies that B has a zero row.
To see this, let VV be an (# — 1)-dimensional space over F with basis
e, ..., e—1. Let
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xi=21bijej, i=1,...,r—kF
]’=

Consider (2, p. 322) the symmetric product of %, ..., x,_, with respect to
S, denoted by
(20) X1k .ok Ky
Using the multilinearity of the symmetric product, we find that (20) has
the form

ds(B[l,...,r — &
Q1)  wik... kX, = D, s(Bl ) []) Cos ¥ o v o * Cop_pe

“’EA‘%—’E m—1

Clearly, (19) and (21) imply that %1 %...#*x,_, = 0. Hence, some x; = 0,
and thus the ¢th row of B, By, is zero. But the 7¢th row of B is the §,th row
of A[B1, ... Bl 1,...,s — 1,5+ 1,...,n]. However, ag;; is also 0;
hence, the B8;th row of 4 is 0, a contradiction. This completes the proof.

THEOREM 3. Suppose r # 1 and 1 £ p < r. Let A be an n-square row sub-
stochastic matrix. Then Ko (A) is row stochastic if and only if A is a permuta-
tion matrix.

Proof. If Kz7(A4) is row stochastic, we have from (11) that

. de(4aly]) me ()
22 1= <Jlane <
=2) T P T] i s
for all & € Ag?. Since Q,, C As?, (22) implies that all the d,, are 1. There-
fore, D = I, and AJ = J. Hence, 4 is row stochastic. Referring to (10), we
see that if (22) holds, then

do(Alelv]) =0

for any a € A%, and any v ¢ Ag?, i.e., any vy € Ag, with m,(y) > p for
some £ Therefore, for each a € As?, the matrix Ale|l, ..., n] satisfies the
hypothesis of Theorem 2, and we conclude that 4[«|l, ..., n] has at most
p non-zero entries in each column. We now claim that in fact A has at most
one non-zero entry in each column. Suppose A had non-zero entries in
rows 7 and j. Construct a non-decreasing sequence a using ¢ exactly p times
and j at least once but not more than p times and such that m,(a) = p for
all ¢. Since G,, C Ag, it is clear that a € Ag?. Then the sth column of
Alall, ..., n] will have at least p + 1 non-zero entries, a contradiction.

Now since 4 is row stochastic, the sum of its entries is #. Furthermore,
since every column has at most one non-zero entry, each column sum can
be at most one. But, if the column sums are to add up to %, each column
sum must be one. Hence every column of 4 has exactly one non-zero entry
which must be one, i.e., 4 is a permutation matrix.

Now suppose 4 is a permutation matrix corresponding to some 7 € S,.
If o, B € Ag? we compute (8 is the Kronecker delta)
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T

(23) do(4lal8]) = 3 I_ll Qaify(;y = > 16“”(‘%@)) = %5,1,(5.1) =2 St

0EG 1= TEG i= oeCG

Now 7! is a one-to-one function; therefore, if m (a) < p for all ¢, the same
must be true for the sequence 7—!(a). Therefore, 7~'(a) € T'(w) for some w
in Ag?, and hence, 7 1(a) = w? for some ¢ € G. Then (23) becomes

(24) Z Outgr = 2 §wg”‘f’_1.

TEG cEG

Hence, (24) is zero unless 8 = » and «¢™' = w. Thus,

(25) do(AlalB]) = v(77(@)dc—1(? 5.

Using (25), we obtain for @ € Ag?,

de(Alalv]) _ p (" (@)1 @nety _ 1
YEAGP v(v) 76‘4’@7’ v(v) '

and hence Kg?(A4) is row stochastic. In fact, K;”(4) is also a permutation
matrix. Observe that if » = 1, then p must be 1 and hence K4;'(4) = 4.
Therefore, for r = 1 we can only conclude that 4 is row stochastic.

Before proving our main result, we state a Laplace expansion theorem
for dy(A4) as developed in (4). Let H, be defined as in the introduction. For

r + s = n let H, be those elements of H which leave 1, ..., 7 individually
fixed. For X an r-square matrix, and Y an s-square matrix, define

(26) d(X) = du,(X + 1)

and

(27) d*(Y) = dy,(I, + V).

Since H, M H; is the identity, the product H, X H, is direct. Let H be
expressed as a union of left cosets of H, X H; and let R be a system of distinct
representatives for these cosets. Then the result in (4) states that for any
c€ER

(28) dy(4) = %d'(A [e(1),...,eM)|r), ..., 7(N])
Xd&Ale@r +1),...,0@)|r(r+ 1), ..., 7(#)]).

The summation may also be taken over ¢ in R with 7 in R fixed. Recall that
H’, is the restriction of H, to {1,...,r}.If o € H,, theno(r + 1) = 7 + ¢ (1),

1 =1,...,s, forsome ¢ € S,. It is clear that the set of all ¢ thus determined
is a subgroup H'; of S;. We now assert that

(29) ' (X) = du,(X)

and
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(30) a(Y) = dy (7).

We prove (30); the proof of (29) is essentially the same. From (27),

n

(1) &Y) =dg,(I,+ V) =2 [1 T+ Vo

ocHs i=1

If i <7 (@) =47and (I, + V)i = 1, so that (31) becomes

s

Z H (I, + Y)i,tr(i) = Z H (Ir + Y)r+:',«(r+j) =

0€EH s i=7+1 6EH; j=1

Z L (I, + Y)r+j.r+¢(j) = Z L View = dH's(Y)'

GEH's j= PEH' s j=

Now (28) has the form
(32)  du(4) = ;eda'f(z‘l[ff(l), cey o),y (D)

X dy(Ale(r +1),...,0@)|r(r + 1),...,7(n)]).

Denote the ordered sets (1,...,7) and (* +1,...,#) by £, and £/,
respectively. We rewrite (32) as
(33) dy(4) = ZG:RdH'T(A o (I ) (I ) Ddp (Ao (I )7 (F))).

We next prove that
(34) Tze;idH’s(A [0'(<ﬂ’r)|7'(j,r)]) =1

for all ¢ € R. In (11), let G = H';, and let p = 1. Let Ag.,! = A,. Note
that A, = Ags, M Ds,, where D, is the set of all w = (w1, ..., w;) € Ty,
in which the w; are distinct. Then, since »(y) = 1 for any v € D,,, (11)
becomes

(35) 2 dw, (Alaly]) £ 1

v€Rs
for all « € A,. If we knew that 7(#’,) ran through a subset of A; as r runs
through R (hitting no element of A, twice), we could use (35) to obtain
(34). However, 7(.#’,) does not necessarily have this property. Nevertheless,
since 7 is a one-to-one function, 7(#’,) € D,,, and hence 7(#’,) is equiva-
lent to some «, € A, Thus, by (15),

duy (Ao (I )7 I D)) = du o (Aoe]ers])

for suitable a,, a, € A,. Therefore, we can use (35) to obtain (34) if we can
show that 71, 72 € R, 71 5% 72 implies that 7;(#’,) and 7.(#’,) are in dif-
ferent equivalence classes of D;, as determined by H’, i.e., we need to show
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that the mapping r — a, is one-to-one on R. Suppose 71(F’,) ~ 7.(F’,). Let
v:=71(r +1) and 8, = 79(r + 1), 2 = 1,...,s. Then there exists ¢ € H',

such that vy; = 84¢», ¢ = 1,...,s. Thus,
Tl<r+'i) = 72(7’+¢<i))1 7’: 1,...,8.
We know that there is some ¢ € Hysuch 7 + ¢(1) = o(r +1),2=1,...,5,

so we have

r1(r + 1) = 190(r + 1), 1=1,...,s.
Thus,

o lrylr(r + 1) = 7 + 14, 1=1,...,s.

Hence, o747y € H,, ie., o lrs7iry =60 for some 6 € H,. Therefore,
7o lry = o0 € H, X H,. Therefore, s = 71, a contradiction. This establishes
(34). Letting

dH’s(A [U(j,T)‘T(f/r)]) = Cory

we write Y ,cpCr = 1 for all ¢ € R. We now have

(36) dp(4) = Z_;ecwdm(/l [o (L) (F )]

= <Z c>[ 2 s i, (4 [a<f,>if<fr>])]

TER TER KERCop

<> Co max dy, (Ale(F )7 (I )])

TER TE

for all ¢ € R. Thus, (36) is at most
(37) max dg:, (Ao (I )|7(SF)]) £ max dg, (A[a(SI,) (I )]).
0, TER o, T€EH

This proves (1). Suppose equality holds in (1), » # n — 1, dy(A4) # 0, and
H satisfies (M). We claim that R also satisfies (M). To see this, let
1 =14, 7 £ n. We know that there exists some § ¢ H such that 4, j € 0(#',).
The permutation 6 is in some left coset of H, X Hj; let ¢ be the element
of R representing this coset. Then ¢—10 € H, X H, and setwise we have

(38) o-19(I,) =S,
Since ¢ is one-to-one, we may apply ¢ to both sides of (38) to obtain
¢(V¢,r) = O(j,r)

and hence, 7,7 € ¢(#’,). Now, referring to (36), we see that if equality holds
in (1), we must have

(39) ZTER Ccrr = ]-
for all ¢ € R. Hence, from (35) and (39) we have

1= % dH’a(A [a,l'y]) - H dr;Lt,(a") - 1.
RAS Y
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Since R satisfies (M), every ¢ between 1 and # is in some «,. Hence, all
d,, are 1, and 4 is row stochastic. Moreover, from (10) and (39) we have

dars (Al (S )|v]) = 0

whenever, v € Ag., and v ¢ A, i.e., whenever m,(y) = 2 for some t. There-
fore, for all ¢ € R, the matrix A[o(F',)[1, ..., n] satisfies the hypothesis of
Theorem 2 for the case p = 1. Hence, A[o(#’,)| 1, ..., n] has at most one
non-zero entry in each column. This implies that A has at most one non-
zero entry in each column. For, suppose 4¢? had non-zero entries in rows 7
and j. Picke € Rsothat,j€ o(F’,). Then the tth column of 4o (J')|1,. .., u]
would have at least two non-zero entries, a contradiction. Since 4 is row
stochastic, we conclude, as in Theorem 3, that 4 is a permutation matrix
and, since dyz(A4) # 0, A must be a permutation matrix corresponding to
some ¢ € H. Conversely, suppose 4 is a permutation matrix corresponding
to some ¢ € H. Then dyg(4) = 1. For o, 7 € H, let

Xor = Alo(J)]| 7(I )]

Clearly, dg/,(X,,) must be 0 or 1 since X,, will have at most one non-zero
entry in each row and column. We shall find ¢, 7 € H such that dy,(X,,) =1.
Let ¢ be the identity and let 7 = ¢. We know that a¢;; = §,4¢;, so

(40)  du,Ale(I )T (ID]) = du, (A[L, ..., 7o), ..., 6(N]) =

T
Z Qigh(1) = E H digcy = L.
1 0cHr i=1

6cH'y i=
3. Counterexamples. In dealing with the question of equality in (1),
we had to exclude the case r = n — 1. We give two examples to show that
in this case the result fails. In both examples, dy will be the permanent func-
tion. Thus, H = S, and H', = H',_; = S,1. Hence, dy,_, is also the per-
manent function. First, let 4 = J,, the matrix all of whose entries are n—1.
Clearly,

per (4o (S )r(F ) = 1. (1 — DI = % = per(4)

for any o, 7 € H. Thus equality holds in (1), but 4 is certainly not a per-
mutation matrix. Observe that H satisfies (M) and dg(4) % 0. Next, con-
sider the matrix

|

Clearly, per(4) = 1/8. It is easy to check that any 3-square matrix of the
form A[o(1),c(2),c(3)| (1), 7(2), 7(3)], for any o,7 € S);, can have at

v O O e
vk O v O
QO v O N
O v v O
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most one non-zero diagonal. Thus we have equality in (1) and again 4 is
not a permutation matrix.

We now give an example to show that (M) cannot in general be omitted.
Consider the matrix

O O v
O O = =

0
0
1
0

Let H = [e, (12)] be a subgroup of S,. Let r = 2. We see that H’, is S..
Moreover, dg(4A) = 1. Clearly, for any choice of ¢, 7 € H, we obtain

SRS

I |
Thus equality holds in (1) and again 4 is not a permutation matrix.
We now obtain a generalization of (1) for arbitrary non-negative matrices.

G, (Al (1), o) (1), 7)) = dur,|

(SRS

THEOREM 4. Let A be an mn-square non-negative matrix with positive row
sums dy, ..., d,. Let H be a subgroup of S, and let H', be defined as before.
Then

(41) du(4) = max dotri - - dodar, (Ao (I )|7(F)]).
If r £n — 2,dy(4) # 0, and H satisfies (M), then equality holds in (41) if
and only if A is a generalized permutation mairix corresponding to some ¢ € H.

(A generalized permutation matrix is a matrix which has exactly one non-gero
entry in each row and column.)

Proof. Let B be an n-square matrix defined as follows:

(42) By = (d)'4 .
Then B is row stochastic and hence (1) applies to B. Therefore,
(43) du(B) = max dy:, (Blo(J,)[r(SF,)]).
o, T€EH
Clearly,
(44) dy(B) = (d1...d,)""du(4)

and we compute

7

(45) dH'r(B[a(jT)IT(fT)]) =GEZH’

ba( t),70(0)
1

rl=

T
_ _C_l_a_(g,re(t)>
Z H < da(z)

0EH" r t=1
= (o - - - dotn) " dur,(A[0 (I ) |7 (I ).
Using (44) and (45) in (43), we obtain (41).
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Now suppose equality holds in (41). Clearly, if the inequality were strict
in (43), it would also be strict in (41). Therefore equality must hold in (43).
Hence, B is a permutation matrix corresponding to some ¢ € H. Using (42),
we see that 4 must be a generalized permutation matrix corresponding to
the same ¢. The non-zero entry in row 7 of 4 is, of course, d;.
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