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1. Introduction. Let H be a subgroup of Sn and let A be an n-square 
matrix over a field F. Following Schur (7) we define the generalized matrix 
function dH(A) by 

n 

dH(A) = Z ) I T a>t*<t). 

For example, if H = Sn, then dH(A) is the permanent function, per(^4); if 
H is the identity group, then dH(A) is the product of the main diagonal 
elements of A, etc. For 1 ^ r S n define Hr to be those elements of H which 
leave r + 1, . . . , n individually fixed, and let H'r be the subgroup of Sr 

obtained by restricting the permutations in HT to {1, . . . , r } . Our main 
result is contained in the following theorem. 

THEOREM. Let A be an n-square row substochastic matrix, i.e., a non-negative 
matrix in which every row sum is at most 1. Then 

(1) dH(A) g max^ r ( i4[cr ( l ) , . . . , er(r) | r ( l ) , . . . , r(r)]), 
<r,T£H 

where A[<r(l), . . . , <r(r) \ r ( l ) , . . . , r{r)] is the r-square matrix in which the 
i,j entry is affii)tTUh i, j = 1, . . . , r. 

To discuss cases of equality in (1), we place a mild restriction on H which 
henceforth will be referred to as condition (M) : for every pair, i, j , 1 ^ i,j ^ n, 
there exists a £ H such that i,j Ç [a(r + 1), . . . , a(n)]. We remark that 
condition (M) is certainly true for any doubly transitive group but is sub­
stantially weaker than double transitivity. Clearly, if r = n — 1, H cannot 
satisfy (M), and thus we state the following necessary and sufficient conditions 
for equality to hold in (1). 

If r S n — 2, H satisfies (M), and dH(A) ^ 0, then equality holds in (1) 
if and only if A is a permutation matrix corresponding to some </> in H. If dH 

is the permanent function, then H — Sn and (M) is satisfied by H. Moreover, 
in this case, Hf

r = Sr and hence (1) becomes 

per (A) g max per(^ [cr(l), . . . , <r(r) | r ( l ) , . . . , T(r)]) ; 
<T,T£H 
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if r ^ n — 2, equality holds if and only if A is a permutation matrix. This 
inequali ty was recently proved by M. Newman and R. Brualdi (1). T h e 
result is interesting in t h a t it relates a generalized function of the matr ix A 
to induced generalized functions of submatrices of A. 

I t is clear t ha t the above theorem will apply to any matr ix with non-
negative entries and positive row sums by suitable normalization. We s ta te 
this result in Theorem 4 below. 

2. T h e o r e m s a n d proofs . Before proceeding we introduce some nota­
tion. Let G be any subgroup of Sr, and for 1 ^ r ^ n let Tr,n denote the 
set of nr sequences co = (coi, . . . , cor), 1 ^ co* S n} i = 1, . . . , r. If co and y 
are in TTjn, we say t h a t co is equivalent to 7, (co ^ 7) (modulo G), if there is 
some a G G such t ha t co* = yaa)i i = 1, • • • , r: co = ya. Clearly, ~ is an 
equivalence relation. From each equivalence class, choose the representative 
t h a t is first in lexicographic order. Denote the resulting system of distinct 
representat ives (S.D.R.) , ordered lexicographically, by A%n. We shall some­
times abbreviate Aft7l to AG. If a £ AG, let T(a) be the equivalence class in 
Tr,n to which it belongs. Note t ha t Qr,n C GT,n C AGj where Qr<n is the set of 
all strictly increasing sequences in Tr,n and Gr,n is the set of all non-decreasing 
sequences in Tr,n. For a £ Tr,n, let mt(a) be the number of times t occurs in 
a, and for 1 ^ p ^ r, let AG

P be the lexicographically ordered subset of AG 

consisting of all sequences a satisfying mt(a) ^ p, t = 1, . . . , n. For a and 
P in AG, let KG(A) be the matr ix whose a, ($ ent ry is 

where v(a) is the number of a in G satisfying of = a. For example, if all the 
0Lt are different, v(a) = 1; if all o^ are the same, p(a) = g, the order of G; if 
G = 5 r , then 

n 

Also observe tha t if G = 5 r , 

(KG(A))a,s= ^ , 

and hence KQ(A) is P r(^4) , the r th induced power matr ix of A (6). A result 
in (8) s tates t h a t 

(3) KG(AB) = KG(A)KG(B). 

Observe t h a t 
4 T [0 [a ] = (A[a\(l]r 

and thus 
d*C4T[|8|a]) = d0({A[a\fl)T) = do(A[a\0]). 

For a, /3 6 A</, let J K V W ) be the matr ix whose a, 0 en t ry is 
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(A<\ d0(A[*\fl\) 

Observe that (KG
r(A))T = KG(AT). 

THEOREM 1. Lei A be an n-square row sub stochastic matrix. Then for 
1 :g p ^ r ^ n, KG

P(A) is also row sub stochastic. 

Proof. Since A is row substochastic, we may write 

AJ = DJ, 

where J is the w-square matrix, all of whose entries are 1, and 

D = diag(dn, . . . , 4 ) , 

in which du is the ith row sum of A. Then from (3) 

(5) KG(A)KG{J) = KG(D)KG(J). 

Computing the a, (3 entry of both sides of (5), we obtain 

( 6 ) y - da(A[a\y]) d0(J[y\fi) = y , d0(D[a\y]) d0(J[y\p]) 
7€Aff "(a) v(y) y^G v(a) v{y) 

Now dG(J[y\fi]) = g, the order of G, for any y and /3 in Ac. Hence, after 
suitable cancellation, (6) becomes 

m V do{A\a\y\) ^ d0(Z?[a|7]) 

By computation, 

(8) d0(D{a\y})=j: n i „ T , ( ( ) . 

Unless a = ya, 
r 

But a and 7 come from an S.D.R., and hence a = Y implies 7 = a, and 
a* = a. Thus, 

dG(D[a\y]) = 0 

unless 7 = a, and, from (8), 

dG(D[a\a]) = X É M v < V , r 

There are v(a) such a- in G for which aa = a, and hence 

(9) E ri 4,.«„w = K«) n dat,at = K«) n d7«w. 
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Using (9) in (7) and the fact t h a t A is row substochastic (dtt ^ 1), we obtain 

do) E d°{A}a\i]) = n dm
tr s i. 

7€AG v(y) t=i 

Now all terms on the left of (10) are non-negative and hence, summing over 
7 G A</, we obtain 

(ID E dG(A;iy]) s i 

for all a G AG
P. But the left side of (11) is jus t the ath row sum of KG

P(A). 
This proves the theorem. 

If dG is the permanent function, and p = 1, then A^1 = Qr>n and v(y) = 1 
for all 7 G Qr.w- Then (11) becomes 

(12) E per (4 MY]) ^ 1 

for all a G (?r,rc- This is the Newman-Brualdi result (1). 
We next prove the following purely combinatorial result t ha t will enable 

us to discuss the cases of equali ty in (1). 

T H E O R E M 2. Let G be a subgroup of Sr. Let A be an r X n matrix with no 
zero rows. If 1 ^ p ^ r ^ n, then 

(13) d G W [ l , . . . , r | 7 ] ) = 0 

for all 7 G àG, 7 G A</, ?/ awd on/3; ^/ every column of A has at most p non­
zero entries. (Recall that 7 G AG

P implies that mt(y) > £ /or some £.) 

Proof. Suppose no column of A has more than p non-zero entries, and 
mt(y) = k > p, where 7 G AG. Then A[l, . . . , r|7J clearly has an (r — £) Xk 
zero submatr ix . Since k > p, r — p + k > r and hence, by the Frobenius-
Konig Theorem, (13) mus t hold. 

Conversely, suppose the 5th column of A, A{s\ has k non-zero entries, 
k > p. Choosing 7 = (i, i, . . . , i), i = 1,. . . . , n, we see from (13) t ha t 
every column of A has a t least one zero entry. Thus , p < k ^ r — 1. Deter­
mine co = (coi, . . . , co*) G Ç/t,r such t ha t aMlg . . . aaks j* 0. Let j3 = (/3i, . . . , 
j3r_fc) be the sequence complementary to co in {1, . . . , r). Then a$is = 0, 
i = 1, . . . , r — k. Choose any sequence 7 G TTtTl with the following proper­
ties: ms(y) = k; yai = . . . = yw]c = s. We assert t ha t for any such 7 

(14) dG(A[l, . . . , r\y]) = 0 . 

First , if 7 G ACT, then 7 satisfies (13) and hence (14) holds. If 7 G àG, then 
7 G T(a) for some a G AG, i.e., 7 = of for some o G G. Then , since 

ms(a) = ms(a
a) = k > p, 

we have 
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da(A[l, . . . . r\y}) = d0(A[l r|«']) = E IT «^T(0 = 
r 

Z IT a,ia = dG(A[l, ..., r\a\) = 0. 
n£G i=l 

The above procedure shows, in fact, that if a ~ 0 and y ~ <5, then 

(15) dQ(A[a\y]) =do(A\0\o]). 

Returning to the proof, we expand (14) as follows: 

(16) 0 = d0(A[l, . . . , r\y]) = 2 f l <>>**.& =11 Yl ^ M c o . ) I I "toy^y 
<r£G i=l <r£G i=l i=l 

Let Gr-k be the subgroup of G consisting of all a in G which map {coi, . . . , cok} 
onto itself. If a (? G>-&, then for some i and j , 1 ^ i ^ r — k, 1 ^ j ^ k, 
<r(Pi) = o^. In this case the second product in (16) contains the term 

afoy*Wi) = afcy»j = ah* = 0-

Thus, we may assume that (16) is summed over Gr-k: 

k r-k 

(i7) 22 n awiyc{œi) n ^.-Terdso= °-
Now 

k k 

1 I ao}iya(œi) ~ 1 I #«»•« 
i = l î = l 

is a constant g ^ 0 for a Ç Gr-k. Hence, (17) becomes 

(18) £ f l a„„.m = 0. 

Since a- £ G>_*, o- maps {/3i, . . . , pr_k] onto itself, and thus <r(pt) = iS0(î), 
i = 1, . . . , r — k, for some 0 Ç Sr_fc (0 depends on a). The set of all </> thus 
determined is clearly a subgroup 5 of Sr-k} and, of course, as a runs over 
Gr_fc, <t> runs over 5. Hence (18) has the form 

r-k 

Z H a^ydé() = ds(A[pl9 . . . , /3r-*|70i, • • • , Tor-J) = 0. 

It is clear from the choice of y that y^{ can be any of 1, . . . , n, except s, for 
i = 1, . . . , r - k. Thus, setting B = A[/3U . . . , pr__k\ 1, . . . , 5 - 1, 5 + 1, 
. . . , « ] , we have 

(19) < k ( B [ l , . . . , r - % ] ) = 0 

for any 7 G rr_^,n_i. We now assert that (19) implies that B has a zero row. 
To see this, let V be an (n — 1)-dimensional space over F with basis 
eu . . . j en-u Let 
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w - 1 

%i = 22 bifîj, i = 1, . . . , r — k. 

Consider (2, p. 322) the symmetric product of xi, . . . , xT-k with respect to 
5, denoted by 

(20) xi * . . . * xr-k. 

Using the multilinearity of the symmetric product, we find that (20) has 
the form 

(21) Xl*...*x^ = Z ds(Blh'':\r-kM)e„l*...*e„r_k. 

Clearly, (19) and (21) imply that Xi* . . . * xr-k = 0. Hence, some xt = 0, 
and thus the 2th row of B, B(i)} is zero. But the ith row of B is the /^th row 
of A[/3i, . . . , fir-k\ 1, . . . , 5 — 1, 5 + 1, . . . , n\. However, a$is is also 0; 
hence, the /3*th row of A is 0, a contradiction. This completes the proof. 

THEOREM 3. Suppose r ^ 1 and 1 ^ p ^ r. Le/ 4̂ 6# aw n-square row sub-
stochastic matrix. Then KG

P(A) is row stochastic if and only if A is a permuta­
tion matrix. 

Proof. If KG
P(A) is row stochastic, we have from (11) that 

(22) i = x; d°(A}°M) ^ n ,*?!<«> s i 

for all a G AG
P. Since Çr.rc C àG

p, (22) implies that all the dtt are 1. There­
fore, D — In and ^4/ = / . Hence, A is row stochastic. Referring to (10), we 
see that if (22) holds, then 

dG(A[a\y]) = 0 

for any a G A</, and any y G AG
P, i.e., any y G AGl with mt(y) > p for 

some t. Therefore, for each a G àG
p, the matrix ^4[a|l, . . . , n] satisfies the 

hypothesis of Theorem 2, and we conclude that A[a\l, . . . , n] has at most 
p non-zero entries in each column. We now claim that in fact A has at most 
one non-zero entry in each column. Suppose A(s) had non-zero entries in 
rows i and j . Construct a non-decreasing sequence a using i exactly p times 
and j at least once but not more than p times and such that mt(a) ^ p for 
all t. Since Gr,n C AG, it is clear that a G àG

p. Then the sth column of 
A[a\lj . . . , n] will have at least p + 1 non-zero entries, a contradiction. 

Now since A is row stochastic, the sum of its entries is n. Furthermore, 
since every column has at most one non-zero entry, each column sum can 
be at most one. But, if the column sums are to add up to n, each column 
sum must be one. Hence every column of A has exactly one non-zero entry 
which must be one, i.e., A is a permutation matrix. 

Now suppose A is a permutation matrix corresponding to some r G Sn. 
If a, fi G àG

p we compute (<5 is the Kronecker delta) 
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r r 

( 2 3 ) dG(A[a\B]) = 2 2 I I a^a(i) = 2 2 H Ô^r(^(l)) = 2 2 SarGS*) = 2 2 Sr-l(«)0«r. 

Now r _ 1 is a one-to-one function; therefore, if mt(a) ^ p for all /, the same 
must be t rue for the sequence T - 1 ( « ) . Therefore, r~l(a) Ç T(co) for some œ 
in AG

P, and hence, r - 1 ^ ) = œ* for some </> £ G. Then (23) becomes 

(24) 22 w = 22 v*"1. 
Hence, (24) is zero unless /3 = co and co0"0-1 = w. Thus , 

(25) do(4[<*|0]) = Kr^WJV-1^))^1,^ 

Using (25), we obtain for a G AG
P, 

76AGP v(y) ye&Gv v(y) 

and hence KG
V(A) is row stochastic. In fact, KG

P{A) is also a permuta t ion 
matrix. Observe t h a t if r = 1, then p mus t be 1 and hence KG

l{A) = A. 
Therefore, for r = 1 we can only conclude t h a t A is row stochastic. 

Before proving our main result, we s ta te a Laplace expansion theorem 
for dH(A) as developed in (4). Let HT be defined as in the introduct ion. For 
r + 5 = n let Hs be those elements of H which leave 1, . . . , r individually 
fixed. For X an r-square matr ix, and Y an s-square matr ix, define 

(26) dr(X) = dHr(X + Is) 

and 

(27) d'(Y) =dHs(Ir+ Y). 

Since HT C\ Hs is the identi ty, the product Hr X Hs is direct. Le t H be 
expressed as a union of left cosets of Hr X Hs and let R be a system of dis t inct 
representat ives for these cosets. Then the result in (4) s ta tes t h a t for any 

a e R 

(28) dH(A) = 2 2 dT(A[*(l), . . . , c r ( r ) | r ( l ) , . . . , r ( r ) ] ) 

X d ' ( i l [ a ( r + 1), . . . , a(n)\r(r + 1), . . . , T ( W ) ] ) . 

T h e summat ion may also be taken over a in i? with r in i? fixed. Recall t h a t 
H'T is the restriction of Hr to {1, . . . , r). If a £ Hs, then a(r -\- i) = r + # ( i ) , 
?' = 1, . . . , s, for some <j> £ 5 5 . I t is clear t ha t the set of all <£ thus determined 
is a subgroup if ' s of Ss. We now assert t h a t 

(29) dr(X) =dH.r{X) 

and 
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(30) d'(Y) =dH,s(Y). 

We prove (30); the proof of (29) is essentially the same. From (27), 

(31) ds(Y) = dHs(Ir + Y) = £ ft (Ir + Y)i«d). 

If i ̂  r, <r(i) = i and (IT + Y) u{i) = 1, so that (31) becomes 

Z n (/r + v)iMi) = T,fi(iT+ Y)r+jMr+j) = 
aCHs i=r+l aeHs j=l 

E fl (Ir + Y)r+Ur+,U) = E IÎ ̂ .*o> = ^ . (F) . 
<t>£H'sj=l 4>£H'sj=l 

Now (28) has the form 

(32) dH(A) = Z dH.r(AW(l), • • • , ̂ W k ( l ) , . . . , r(r)]) 

X dH..(AW(r + 1), . . . , er(»)|T(r + 1), . . . , r(»)]). 

Denote the ordered sets (1, . . . , r) and (r + 1, . • • , n) by JT and */',., 
respectively. We rewrite (32) as 

(33) dH(A) = £ dB.T{A["^r)\r{Jr)])dB.MWi^'r)\r{.J,r)\). 

We next prove that 

(34) ZdH'ÀAW(J'r)\r(J'r)])^L 

for all * £ R. In (11), let G = # ' „ and let £ = 1. Let A ^ 1 = A,. Note 
that As = AHrs r\ Ds>ny where Ds>n is the set of all œ = (coi, . . . , cos) G T5|W 

in which the wt are distinct. Then, since v(y) = 1 for any 7 G I}5,w, (11) 
becomes 

(35) Z < W ^ H T ] ) ^ 1 
7<EAS 

for all a G As. If we knew that T{J'T) ran through a subset of As as r runs 
through R (hitting no element of As twice), we could use (35) to obtain 
(34). However, r(Jr

 r) does not necessarily have this property. Nevertheless, 
since r is a one-to-one function, r{Jf

r) G DSt7ly and hence T(J'T) is equiva­
lent to some aT G As. Thus, by (15), 

drMWrWr)]) = dH.,(A[«Mr\) 

for suitable afft aT G Ag. Therefore, we can use (35) to obtain (34) if we can 
show that n , r2 Ç i?, ri ̂  r2 implies that T\(J'T) and r2( e / /

r) are in dif­
ferent equivalence classes of DSt7l as determined by H's, i.e., we need to show 
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that the mapping r —» aT is one-to-one on R. Suppose T\(J' r) ~ r2(J'\). Let 
7i = ri(r + i) and bt = r2(r + i), i = 1, . . . , s. Then there exists <£ £ # '« 
such that 7^ = 00(t), i = 1, . . . , 5. Thus, 

ri(r + i) = r2(r + 0(i)) , i = 1, . . . , s. 

We know that there is some a £ Hs such r + 0(i) = c(f + i) , i = 1, . . . , s, 
so we have 

TI(T + i) = T2(r(r + i), i = 1, . . . , s. 
Thus, 

<T~1T2~
1Ti(r + i) = r + i, i = 1, . . . , s. 

Hence, O--1T2_1TI G i7 r, i.e., <T~1T2~1TI = d for some 6 G iJ r . Therefore, 
T2~1ri = ad £ Hr X Hs. Therefore, r2 = n , a contradiction. This establishes 
(34). Letting 

<W^W'r)k( . / ' r ) ] ) = <;,„ 

we write J^T^R^T ^ 1 for all a £ R. We now have 

(36) dH(A) = E CaTdH'r(AW(Jr)\r(Jr)}) 
T£R 

\rCi2 / L T£R L^^RCo, 
dff,r(AW(^r)\r(Jr)]) 

ST,Ccrm3XdB.r(AW(^r)HJT)]) 
T£R T£R 

for all a £ R. Thus , (36) is a t most 

(37) maxdH>r(AW(Sr)HJT)]) ^ max dH,r(A[a(Jr)\r(Jr))). 

This proves (1). Suppose equal i ty holds in (1), r ^ n — 1, dH(A) ^ 0, and 
H satisfies ( M ) . We claim t h a t R also satisfies ( M ) . T o see this, let 
1 ^ i, j ^ n. We know t h a t there exists some 6 £ H such t h a t i, j G 6(J>r

r). 
T h e permuta t ion 0 is in some left coset of Hr X Hs; let <£ be the element 
of R representing this coset. Then <frl6 £ Hr X Hs and setwise we have 

(38) <t>-ld{J'r) = J \ . 

Since <£ is one-to-one, we may apply </> to both sides of (38) to obtain 

<t>(J'T) = B{J't) 

and hence, i,j £ <j>{^'r). Now, referring to (36), we see that if equality holds 
in (1), we must have 

(39) ZrtRCar = 1 

for all a £ R. Hence, from (35) and (39) we have 

i=3LdB..(Afo,\y)) = Û<nila') = i. 
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Since R satisfies (M) , every t between 1 and n is in some aa. Hence, all 
dtt are 1, and A is row stochastic. Moreover, from (10) and (39) we have 

dB.,(A[<r(S'r)\y]) = 0 

whenever, y £ AH>S and y $ As, i.e., whenever mt(y) ^ 2 for some /. There­
fore, for all a G R, the matr ix A[a(J'/r)\l, . . . , n] satisfies the hypothesis of 
Theorem 2 for the case p = 1. Hence, A\<J{J' T)\ 1, . . . , n] has a t most one 
non-zero en t ry in each column. This implies t h a t A has a t most one non­
zero ent ry in each column. For, suppose A{t) had non-zero entries in rows i 
and j . Picko- £ i? so t ha t i, j G (r(J'r). Then the tth column of A [a(J'r)\l,... ,n] 
would have a t least two non-zero entries, a contradiction. Since A is row 
stochastic, we conclude, as in Theorem 3, t h a t A is a permutat ion matr ix 
and, since dH(A) ^ 0, A must be a permutat ion matrix corresponding to 
some 4> £ H. Conversely, suppose A is a permutat ion matrix corresponding 
to some <j> G H. Then dH(A) = 1. For a, T £ H, let 

X,T = A[a(Jr)\T(Jr)]. 

Clearly, dH>r(XaT) mus t be 0 or 1 since XffT will have a t most one non-zero 
ent ry in each row and column. We shall find a, r 6 H such t h a t dH>r(X<rT) = 1. 
Let a be the identi ty and let r = <f>. We know tha t atj = <5^o), so 

(40) dH,r(AW(Sr)WJr)]) = dB>Mll, . . . , H<KD, • • • > *(')]) = 

2^ 11 0*00(0 — 2^ 11 ^*0(i) 
06#"'r *=1 0<Ei7'r 2=1 

1. 

3. C o u n t e r e x a m p l e s . In dealing with the question of equali ty in (1), 
we had to exclude the case r = n — 1. We give two examples to show t h a t 
in this case the result fails. In both examples, dH will be the permanent func­
tion. Thus , H = Sn and H'T = Hr

n_i = Sn-i. Hence, dH>n_x is also the per­
manen t function. First , let A = Jn, the mat r ix all of whose entries are n~l. 
Clearly, 

per(A[a(Jr)\r(Jr)]) (n-!)! = - = per (A) 

for any a, r £ H. T h u s equali ty holds in (1), bu t A is certainly not a per­
muta t ion matrix. Observe t h a t H satisfies (M) and dH(A) ^ 0. Next , con­
sider the matr ix 

A = 

0 0 

Clearly, per (A) = 1/8. I t is easy to check t ha t any 3-square matr ix of the 
form A[a(l), <x(2), o-(3)| r ( l ) , r ( 2 ) , r (3 ) ] , for any a, T f 4 , can have a t 
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most one non-zero diagonal. Thus we have equality in (1) and again A is 
not a permutation matrix. 

We now give an example to show that (M) cannot in general be omitted. 
Consider the matrix 

A = 

Let H = [e, (12)] be a subgroup of S4. Let r = 2. We see that H\ is 52. 
Moreover, dH(A) = ^. Clearly, for any choice of a, r Ç H, we obtain 

1 
2 

1 
2 0 o i 

1 
2 

1 
2 0 0 

0 0 1 0 
0 0 0 1 

d^ r(^[<r(l) ,<r(2) |T(l) ,r(2)]) =dH.r 
2 2 
1 1 
2 2 

Thus equality holds in (1) and again A is not a permutation matrix. 
We now obtain a generalization of (1) for arbitrary non-negative matrices. 

THEOREM 4. Let A be an n-square non-negative matrix with positive row 
sums dh . . . , dn. Let H be a subgroup of Sn and let H'\ be defined as before. 
Then 

(41) dH{A) ^ m a x i ( r + i ) . . . da(n)dH,r(A[a(Jr)\T(JT)]). 

If r ^ n — 2, dH{A) ^ 0, and H satisfies (M), then equality holds in (41) if 
and only if A is a generalized permutation matrix corresponding to some 4> £ H. 
{A generalized permutation matrix is a matrix which has exactly one non-zero 
entry in each row and column.) 

Proof. Let B be an n-square matrix defined as follows: 

(42) B(i) = ( d , ) - ^ « ) . 

Then B is row stochastic and hence (1) applies to B. Therefore, 

(43) 

Clearly, 

(44) dH(B) = {di . . . d„)-HH(A) 

and we compute 

dH{B) S maxda.r(B[«{Jr)WJ,)\). 

(45) dB.,(B[*(JT)\T(J,)\) = £ rik<o.T.<o 
d£H'r t=l 

= \ ^ F T (a<r(t),Td(t)\ 

6£H'r t=l \ d<r(t) / 

= (d,(1) . ..dHr)y
1dH,r(AW(J!r)\r(Jr)}). 

Using (44) and (45) in (43), we obtain (41). 
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Now suppose equality holds in (41). Clearly, if the inequality were strict 
in (43), it would also be strict in (41). Therefore equality must hold in (43). 
Hence, B is a permutation matrix corresponding to some <j> £ H. Using (42), 
we see that A must be a generalized permutation matrix corresponding to 
the same <£. The non-zero entry in row i of A is, of course, dt. 
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