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Abstract

A graph G is divisible by ¢ if its edge set can be partitioned into ¢ subsets, such that the
subgraphs (called factors) induced by the subsets are all isomorphic. Such an edge partition
is an isomorphic factorization. It is proved that a 2k-regular graph with an even number of
vertices is divisible by 2k provided it contains either no 3-cycles or no 5-cycles. It is also shown
that any 4-regular graph with an even number of vertices is divisible by 4. In both cases the
components of the factors found are paths of length 1 and 2, and the factorizations can be
constructed in polynomial time.

1980 Mathematics subject classification (Amer. Math. Soc.): 05 C 70.

1. Introduction

In this paper the problem of decomposing an r-regular graph into r isomorphic
subgraphs is examined. A graph to us is a finite simple graph; if we wish to allow
multiple edges (but not loops) the term multigraph will be used. The number of
vertices and edges of a graph G will be denoted v(G) and e(G) respectively. A
graph G is divisible by t if its edge set can be partitioned into ¢ subsets, such that
the subgraphs (called factors) of G induced by the subsets are all isomorphic.
Such a partition is an isomorphic factorization of G into t parts. The obvious
necessary condition t|e(G) is called the divisibility condition for G and t. G is
t-rational if G is divisible by ¢ or if the divisibility for G and ¢ is not satisfied.

© 1988 Australian Mathematical Society 0263-6115/88 $A2.00 + 0.00

402

https://doi.org/10.1017/51446788700032183 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700032183

(2] Isomorphic factorization 403

In previous work on isomorphic factorizations of regular graphs, Wormald [8]
has shown that for 2 < ¢t < r/2, “almost all” labelled r-regular graphs are not
divisible by ¢t. More positively, it is easy to establish that every r-regular graph
is t-rational for all t > r + 1 (a simple proof appears in [3]). Therefore, probably
the most tractable unresolved questions is the folowing conjecture.

CONJECTURE 1.1. All r-regular graphs are r-rational.

So far this problem has not yielded to any unified approach. Wormald and the
author [3] have proved that all 3-regular multigraphs are divisible by 3. Using a
similar method, the author [2] has shown that for large values of r all r-regular
graphs are r-rational. In this paper a different technique is used to attack the
problem for regular graphs of even degree.

Since an isomorphic factorization into ¢ parts is just an edge partition, it
can be thought of as an edge-colouring of a graph G. Given an edge partition
{E1, Es,...,E:} we assign a distinct colour ¢; to all edges in E;. Conversely,
any edge-colouring of G yields an edge partition by collecting together all edges
of the same colour; if this is an isomorphic factorization the colouring will be
called sofactorial.

2. Regular graphs of even degree

In this section we show how to find an isofactorial edge-colouring of a 2k-
regular graph with 2k colours, provided that the graph has an even number of
vertices (this is necessary for the divisibility condition to hold), and is either free
of 3-cycles or free of 5-cycles. The strategy used is a form of “divide and conquer”:
the graph is first divided into 2-factors (2-regular spanning subgraphs), and each
2-factor is then suitably coloured with exactly 2 colours. In order to do this the
following lemma, due to Petersen, is required.

LEMMA 2.1 [7]. Every 2k-regular graph, k > 0, is the union of k edge-
disjoint 2-factors.

Such a decomposition into 2-factors is known an a 2-factorization.

An r-edge-colouring of a graph G is a function v : E(G) — T', where I is a
set of colours, and |I'| = r. An edge-colouring of a graph will be called allowable
if the components of each subgraph induced by all edges of one colour are paths
of length 1 and 2 (1-paths and 2-paths). For graphs (but not multigraphs) this
is equivalent to each being incident with at most one other edge of the same
colour. In all cases so far where Conjecture 1.1 has been verified, it has been by
finding isofactorial allowable colourings. The following conjecture, stronger than
Conjecture 1.1, therefore seems to be true.
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CONJECTURE 2.2. Every r-regular graph with an even number of vertices
has an isofactorial allowable r-edge-colouring. (Equivalently, every such graph
has an isomorphic factorization into r parts, the components of each factor being
paths of length 1 and 2.)

Let 4: E(G) — T be an edge-colouring of a graph GG with colours from a set
I'. For any colour ¢ € T', N(¢,) is the subgraph of G induced by the edges
of colour ¢, and n(c,y) = e(N(c,~)) is the number of edges coloured c. If v
is allowable, let n;(c,v), ¢ = 1 or 2, be the number of components which are
i-paths in N(c, 7). Also, let n;(7) = 3_ cr ni(c,7). When a particular colouring
« is understood these symbols will be abbreviated to N(c), n(c), ni(c) and n;.
No confusion between n;(y) and n;(c) should result, since edge-colourings will
always be represented by Greek letters and colours by Roman letters.

In our strategy each 2-factor will receive a special sort of allowable colouring.
A bisection of a graph G is an allowable colouring with two colours, say a and
b, such that

(a) n(a) —n(b) =1, 0 or —1, and

(b) n2(a) — nz(b) = n(a) — n(b).

The first condition requires that the number of edges of each colour be the same
if e(G) is even, or differ by 1 if e(G) is odd. The second condition requires that
the number of 2-paths of each colour do the same, in such a way that if there
are more ¢ than b edges, then there are more a than b 2-paths, and vice versa.
Note that na = e(G) (mod 2) for any bisection of G.

We wish to construct bisections of the 2-factors of a graph. The components
of each 2-factor are just cycles, and the bisections of the 2-factors will be con-
structed from bisections of cycles, using the following results.

LEMMA 2.3. Let C be a cycle of length l. Then for any integer m such that
0<m<1/2 and m =1 (mod 2), there is a bisection B of C with na(B) =m.

Proof. Suppose that C has edges e;,¢€s,...,¢ (in order). Let
a if <i<2m,i=1or 2 (mod 4),
b if1<i<2m,i=3or0 (mod 4),
a if2m+1<i<ll-i=1 (mod 2),
b if2m+1<:<!,l—7=0 (mod 2).

Bles) =

Then as we traverse C from e; to ¢; we encounter m 2-paths, alternately coloured
a and b, followed by [ — 2m 1-paths, also alternately coloured a and b. The
colouring (3 will be allowable if 8(e;) # B(e;) and, if 0 < I/2, provided B(ezm) #
B(eam+1)- The former is always true since S(e1) = a and S(¢;) = b. If I is odd
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then m is also odd, and S{ezm) = a # b = B(€2m+1), while if [ is even then m is
even and f(eam) = b # a = B(e2m+1). Therefore 8 is allowable.

Now if [ and m are odd, then na(a) = (m + 1)/2, n2(b) = (m — 1)/2, n(a) =
(141)/2 and n(b) = (1-1)/2, while if | and m are even, then ny(a) = na(b) = m/2
and n(a) = n(b) = /2. Hence 8 is a bisection, with na(8) = m as desired.

LEMMA 2.4. Suppose that Gi and G2 are disjoint graphs with bisections
B1 and B respectively. Then Gy U Gy has a bisection § such that na(8) =

n3(B1) + na2(Ba2)-

PROOF. By recolouring if necessary we may assume that both 8; and S use
the colours @ and b; furthermore we may suppose that n(a,81) > n(b, /1) and
n(a, B2) < n(b, B3). Define B to be f1 on G and B2 on Gy; then it is not difficult
to verify that g is the required bisection.

COROLLARY 2.5. If Gi, G3...Gyx are disjoint graphs, each G; having a
bisection B;, then Gy UGa U --- U Gk has a bisection B with na(B8) = na(f1) +
na(B2) + - - - + na(Bk).

PROOF. This follows from Lemma 2.4 by induction on k.

We now wish to use Lemma 2.3 and Corollary 2.5 to construct bisections of
2-regular graphs. However, the bounds on m (0 and [/2) in Lemma 2.3 are not
tight because of the restriction that m be an integer congruent to ! modulo 2.
Therefore, for each ! > 3 let p(l) and ¢(l) be respectively the smallest and largest
integers congruent to ! modulo 2 between 0 and [/2.

LEMMA 2.6. Let G be a 2-regular graph, with ¢; cycles of length | for each
1> 3. Then

(a) v(G) = 3c3 +4cg +5¢c5 +6cg + - .

(b) For all m such that m = v(G) (mod2) and P < m < Q, G has a
bisection B such that na(8) = m, where

oo
P=Zp(l)cl=63+65+C7+69+"' )
1=3

oo
Q=) _q(l)e; =c3+2ca+c5 +2c6 +3c7 + 4cs + 3co + - .
=3
(Note that P, Q = v(G) (mod 2).)

PROOF. (a) Count the vertices by cycles.
(b) Let Zy, 23 ..., Zx be the cycles which compose G, and let Z; be of length

li, Then P = Y2, p(l)er = S5, p(l) and Q = Y2, q(0)er = X5, q(ls).
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Therefore, since P < m < Qand m = v(G) = L1 + Iz +--- + Iy (mod 2),
for each ¢ we can choose m; = I; (mod 2) with p(l;) < m; < ¢(/;), such that
m = m; +mg+ -+ mg. By Lemma 2.3 each Z; has a bisection g; with
ny(Bi) = my, and thus by Corollary 2.5 G has a bisection 8 with nz(8) = m.

LEMMA 2.7. Let G be a 2-regular graph having ¢; cycles of length l for each
[ > 3. Suppose that v = v(G) 13 even.

(a) If c3 = 0 then G has a bisection such that ny(a) = na(b) = |v/10].

(b) If c5s = 0 then G has a bisection such that na(a) = na(b) = [v/6].

PROOF. (a) Since c¢3 = 0, by Lemma 2.6 we have
v(G) = 4¢q + 5es +6cg + Ter + - - -
and G has a bisection 8 with ny(8) = m for any every m, P < m < @, where
P=cs+ecr+cg+c1n+---
C.5P =5¢5 +5c7 +5c9 +5¢c11 4+ - <wv
and

Q@ =2cq4 +c5+ 2c6 + 3c7 + deg + 3cg + 4c10 + - -
. 0Q = 10¢4 + 5e5 + 10¢g + 15¢7 + 20¢g + 15cg + 20¢19 + -+ - > v.

Also P and Q are both even (since v(G) is even) and thus P < 2|v/10], @ >
2[v/10]. Hence ny(f) may be chosen to be 2|v/10], and then it follows from
the definition of a bisection that na(a, 8) = na(b, 8) = |v/10].

(b) Since ¢5 = 0, from Lemma 2.6 we obtain

‘U(G) =3c3 +4cqy +6c6+Tc7 + - --
and G has a bisection § with ny(8) = m for any even m, P < m < @, where

P=c3+cr+co+cii+--
S.3P=3c3+3c7+3cg+3c11+--<v

and

Q@ =c3+2c4+2cg+ 3c7 +4cg +3cog +4c10+ -
S03Q = 3eg +6¢c4 + 6¢6 + 97 + 12¢5 + 9cg + 12¢10+ - 2 0.

Since P and Q are both even, P < 2|v/6) and Q > 2[v/6]. Hence ny(f) may
be chosen to be 2|v/6], and therefore ng(a, §) = na(b, 8) = [v/6).

THEOREM 2.8. Let G be a 2k-regular graph, k > 0, with v = v(G) even.
Suppose that G has either no 3-cycles or no 5-cycles. Then G has an isofactorial
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allowable 2k-edge-colouring. (In other words, G has an isomorphic factorization
into 2k-parts, the components of each factor being paths of length 1 and 2.)

PROOF. By Lemma 2.1 G has a 2-factorization, consisting of 2-factors Fy, Fy,
..., Fx. If G has no 3-cycles, then no F; has any 3-cycles, and so by Lemma 2.7
(a) each F; has a bisection §;, using colours a; and b;, such that na(a;, 5;) =
na(bs, B) = |v/10]. Also, n(a;i,8;) = n(bi,Bi) = e(F;)/2 = v/2. Therefore
the colouring ~ of G defined by ~(e) = Bi(e) for all ¢ € E(F;) is an allowable
colouring with each N(c,~) isomorphic to |v/10|P3 U (v/2 — 2|v/10|) P, (where
P represents a path of length k — 1). Thus + is isofactorial, as required.

Similar reasoning, using Lemma 2.7(b), applies if G has no 5-cycles.

The method developed in this section unfortunately does not work for a 2k-
regular graph which contains both 3-cycles and 5-cycles. Consider for example, a
6-regular graph with 30 vertices and a 2-factorization containing three 2-factors,
one consisting of ten 3-cycles and the other two of six 5-cycles each. A bisection
of the first 2-factor necessarily has ny = 10, while bisections of the other two
must have ng = 6. Is it therefore impossible to match bisections of these three
2-factors to form an isofactorial colouring of the whole graph. In the next section
we shall see how to surmount this difficulty in the particular case of 4-regular

graphs.

3. 4-regular graphs

In this section we prove that every 4-regular graph G with v(G) even has an
isofactorial allowable 4-edge-colouring (e(G) is divisible by 4 if and only if v(G) is
even). In order to find such a colouring G will be decomposed into two subgraphs,
which will be generalizations of the 2-factors used in the previous section, and
the colouring of G will be assembled from bisections of these subgraphs.

A near 2-factor of a graph is a spanning subgraph in which all vertices have
degree 2, except for one vertex of degree 1 and one vertex of degree 3. An (r, s)-
lollipop, or L, s, consists of a cycle of length r and a path of length s which
intersect in exactly one vertex, one of the ends of the path. The vertices of a
lollipop are therefore cycle vertices or path vertices; there is one common vertex
which is both. The other end of the path from the common vertex is the eztreme
vertez. The components of a near-2-factor must all be cycles, except for one
which is a lollipop.

As in Section 2, bisections of the subgraphs of interest will be constructed
from bisections of their components, which here will be cycles and lollipops. In
order to describe the range of ny values achievable by this method, the following
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terminology will be employed. An ordered pair of integers (f,g) is a bisection
limit pasr for a graph G if

(a) f+9<v(G),

(b) f, v(G) — g =2v(G) (mod 4), and

(c) for any m = v(G) (mod 2) such that f < 2m < v(G) — g, there is a
bisection 8 of G with n2(8) = m.
In other words, G has bisections with nz = f/2 and ny = (v(G) —¢)/2, and with
ng = m for any m of the correct parity between these two values.

COROLLARY 3.1. If G1,Gs,...Gg are disjoint graphs, and each G; has a
bisection limit pasir (f;,9:), then Gy UG U ---U Gk has the bisection limit pasr
(itht - +figt+g+ -+

PROOF. This follows easily from Corollary 2.5.

Henceforth, let Z denote the congruence class of an integer z modulo 4.

COROLLARY 3.2. For eachl > 3 let
0 ifl=00r2,that s, | is even,

Ci) = 2p() = 1o
f( l) p() {2 1fl=]_ or 3, thatis,liSOdd,

and o
0 #fl=0,

3 ifi=1,

C)=1-2¢() = S

oC) =12 =], i

1 =3

Then (f(C1),9(Cy)) 1s a bisection limit pair for the l-cycle C;.

PROOF. By Lemma 2.3 and the definitions of p(!) and ¢(l), C; has bisections
with ng = m for any m = v(G) (mod 2) between (and including) p(l) = f(C)/2
and q(!) = (v(Ci) — 9(C1))/2, as required. It follows from their definitions that
p(1) and ¢(I) depend only on [, giving f(C;) and g(C;) the values listed.

Notice that g(C;) depends only on I. This is why the second element of a
bisection limit pair was taken to be g, rather than the perhaps more natural
v(G) — g; for cycles and lollipops g will take only finitely many values.

LEMMA 3.3. Suppose thatr > 3 and 3 > 1. Let
4 iff+5=0 or2, that s, r+ s is even,

L,s) = T &
f(Lrs) {2 tffF+3=1 or 3, that is, r + s 13 odd,
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and _ _ _
(0 fF+3=0,f=0o0r3,
4 ifFf+35=0,7=1 or2,
3 ifr+s3=1,
9(Lr.s) =J 2 ifFf+5=2,
1 ff+5=37f=0,20r3
5 ifFf+5=3,7=1

Then (f(Ly,s),9(Ly,s)) i3 a bisection limit pair for the (v, s)-lollipop L, ,.

PROOF. The proof is by induction on r + s. It can be verified that bisections
with the required nq values exist for all lollipops with r + s < 7, or in fact for all
sixteen lollipops with r = 3,4,5 or 6 and s = 1,2, 3 or 4 (see Figures 3.1 and 3.2,
where the two colours are indicated by solid and dashed lines). Assume therefore
that r + s > 8, and that the result holds for all lollipops L., with t +u < r+s.
Moreover we may suppose that r > 7 or s > 5.

Consider any m = v(L,;) (mod 2) such that f(L,;) < 2m < v(L,,) —
g(Lr,s). Since either r > 7 or s > 5, one of the cycle or the path which constitute
L, , must contain a path of length 5, say between vertices w and z, which can
be replaced by a single edge wz to form a lollipop L;, (where either t = r — 4,
u=3sort=r,u=s—4). Thus f(Lyy) = f(Lrs), 9(Lt,u) = 9(Lrs), and
v(L¢,u) = v(Ly,s) — 4. Hence m = v(L; ) (mod 2) and

f(Lt,u) <2m< 'v(Lt,u) - g(Lt,u) +4.

Suppose first that 2m < v(L;y) — g(L¢,u)- Then by the induction hypothesis
L, has a bisection # with nz(8) = m using, say, colours a and b. Without loss
of generality B(wz) = a. If wz is replaced by a path of length 5 coloured as in
Figure 3.3 (a), a bisection 3’ of L, s results with ny(f8') = m.

Now if 2m > v(L:y) — 9(Lt,u) then since m = v(L¢,) (mod 2), 2m =
v(L¢,u) — g(Le,w) + 4. By the induction hypothesis L, ,, has a bisection g with
ng(f) = m — 2 = (v(Ls,y) — 9(Lt,u))/2. Assume that S(wz) = a. There is
at most one other edge coloured a incident with wz; therefore without loss of
generality it may be suppose that all other edges incident with w are coloured
b. Then, by replacing wz by a path of length 5 coloured as in Figure 3.3(b), a
bisection §’ of L, , is obtained for which ns(8') = m, as required.

Now that bisection limit pairs for cycles and lollipops have been found, it
is possible to derive them for any graph of all whose components are cylces
are lollipops. Such a graph will be called a cluster. Given a cluster G with
components Gy, Gy, ..., Gk, let f(G) = f(G1)+ f(G2)+- -+ f(Gy) and ¢(G) =
9(G1) + 9(G2) + - - - + g(Gx). Then by Corollary 3.1 (f(G), 9(G)) is a bisection
limit pair for G.
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e Dree e

(3,1) f=4, g=0, n,=2 2) f=2, ¢g=3, n,=1 (3,3) f=4, g=2, ny,=2

NI SO

(34) /=2,9=1,n,=1or3

S e

(4,1) =2, g=3, n,=1 (4,2) f=4, 9=2, n,=2

p .

. .
c\j --0—o0 < pP—o0—0--0

. p

. p

(43) f=2,g=1,ny=1lor3

\\ \\

< P——0---0—0--0 z< P—O0—0---0---0
. ,
. ,

(44) f=4, g=0, ny = 2 or 4

FIGURE 3.1

Henceforth G will be a 4-regular graph with v = v(G) even. Each component
of G has a closed eulerian trail. By concatenating the edge sequences of one
closed eulerian trail from each component of G (call these the component trails)
an eulerian sequence eq, eg, . . ., €, (note that ¢(G) = 2v) in G is obtained, which
contains every edge exactly once. If the edges of this sequence are coloured
alternately a and b, then each component trail is coloured alternately, and thus
each vertex must be incident with two a edges and two b edges. This is true
even for the terminal vertez (the one incident with the first and last edges) of
each component trail, because each component, and hence each trail, has an
even number of edges. Therefore the edges of both colours induce 2-factors of
G. (Closed eulerian trails have been used previously to generate k-factors of
2k-regular graphs in a paper by A. J. W. Hilton on proper edge-colourings.)

Consider now a fixed eulerian sequence ej,é€z,...,€2, in G. If the colours
a and b are interchanged along some initial segment, of even length, of this
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e e [

5,1) f=4, g=2, n,=2 5,2) f=2, g=5, n,=1 (5,3) f=4, g=A4, ny=2
2

Yo e

(54) f=2,9=3,ny=10r3

fl°{fox>H

(6,1) f=2,9=1,ny=1o0r3 2) f=4, g=4, ny=

Oy

(6,3) f=2,9=3, ny=1or3

(e e

(6,4) f=4,9=2,n,=20r4

FIGURE 3.2
woa Z w g b a b a T
(a) o—a>0 — O0—0—0—0 O O
w F w
(b) a a a b b a I
FIGURE 3.3

sequence, a new edge-colouring ; results for each 7, 0 £ j < v, where
b 1<:<24,70dd,
a 1<12<2j,1even,
a 274+1<i<2v,7o0dd,
b 27+1<17<2v,7even.

vile) =

Thus ~g is the colouring discussed in the preceding paragraph. Let A; and B;
be the subgraphs induced by the edges coloured a and b respectively under ~;.
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If 7 =0 or v, or if ez; and ez;41 are in different components of G, then A; and
B, are 2-factors of G, obtained from Ay and By by interchanging the cycles in
certain components of G. Otherwise, e3; and eg;41 lie in the same component
H of G. Let w be the vertex common to e;; and ez, and let 2 be the terminal
vertex of the component trail in H. If w = 2 then A; and B; once again form
2-factors. If w # 2 then w will have degree 3 in A; and degree 1 in B;, while 2
has degree 1 in A; and degree 3 in B;; A; and B; will therefore be near-2-factors.

For any j, v(A;) = v is even. Also, A; is a cluster, and therefore has a
bisection limit pair (f(A;), g(A,)). That is, for any m = v (mod 2) such that
f(A4,) £2m <v—g(Aj), A; has a bisection for which ny = m. Let [z, 5] denote
the interval in the integers between 7 and j; then this may be rephrased by saying
that for any ¢ € I; = [f(A;)/4, (v — g(A;))/4], A; has a bisection, using colours
a’ and a”, say, for which ny(a’) = ny(a”) = 7. Each B; has a similar interval J;.
It will be shown that for some j, I; N J; # &. Suitable bisections of A, and B;
can then be combined to obtain an isofactorial colouring of G.

In order to show that I; N J; # & for some j, a “continuity” argument will
be used. It is therefore necessary to show that, for each j, I;4; and J;41 do not
differ too much from I; and J; respectively. Thus we shall investigate how A4,
and Bj, are obtained from A; and B;.

The colouring 7,41 differs from ~; in that ez; 41 and ez; 42 exchange colours.
Now e3;4+1 and esj42 must be consecutive edges in some component trail, since
each component trail has an even number of edges. Therefore suppose that
e2;+1 = wz and ez;42 = zy, and let z be the terminal vertex of the component
trail containing these edges. Now A;4; = A; U {zy} — {wz}. Form A} from
Aj by deleting the component or components containing w,z and y; then A7 is
a subgraph of Aj4; also. Thus 4; = A;- U A; and Aj4y = A;. u A;-' for some
clusters A7, Aj. Similarly B; = By U Bj and Bjy = B; U By, where B; is
obtained by deleting from B, the components containing w,z and y.

LEMMA 3.4. The transformation a; — A’ has one of the following forms,
wherer, t > 3 and s, u > 1.

(a) Ly,s = Li,u (wherer + s =1+ u).

(b) Lr,a UG, — Lt,r+s'

(¢) Lt,p4s = Lrs UC:.

(d) Lr,s U Cg - C,- U Lt,s-

(e) Cr+s - Lr,s-

(f) Lr,s — Crys.

(g) C+rUCs — L, .

(h) Ly s —» C, UC,.

PROOF. Let w,z,y and z be as in the preceding discussion. Either w or y
may be equal to 2z, but not both (or G would contain a 2-cycle).

https://doi.org/10.1017/51446788700032183 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700032183

(12] Isomorphic factorization 413

FIGURE 3.4

Suppose that w # z. Then w is the common vertex of the unique lollipop L
in A;, z is adjacent to w in L, and z is the extreme vertex of L; y may be any
vertex of A; except w or z. Let C, P and R denote respectively the sets of cycle
vertices of L, of path vertices of L, and of all the vertices in the other, cyclic,
components of A;. There are eight cases according to whether z € C or P and
y € C, P—{z}, {z} or R (see Figures 3.4 and 3.5). (Note that in cases (5) and
(8) z and z may be equal; this is impossible in all other cases.)

(1) z € C, y € C gives transformation (a).

(2) z € C, y € P — {2} gives transformation (a).

(3) z € C, y = z gives transformation (f).

(4) z € C, y € R gives transformation (b).

(5) z € P, y € C gives transformation (a) (here ¢t =r and u = s).

(6) z € P, y € P — {2} gives transformation (c).

(7) z € P, y = z gives transformation (h).

(8) z € P, y € R gives transformation (d).
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FIGURE 3.5

Now suppose that w = z (and hence z,y # 2). Then A; is a 2-factor of G
because the terminal vertex z = w appears in ez;4+1 = wz, indicating that it is
the first edge of a new component trail (the last edge of a component trail must
have an even subscript), and thus e;; was in a different component. Hence all
components of A; are cycles, including one, H, containing the edge wz. There
are now two cases (see Figure 3.6).

(9) y € V(H) gives transformation (e).

(10) y ¢ V(H) gives transformation (g).

COROLLARY 3.5. The forms of transformation listed in Lemma 3.4 also
apply to B; — B}.

PROOF. Another eulerian sequence for G is ey, €24—1,...,€1. Applying
Lemma 3.4 to this sequence, each transformation B} — B} must be one of types
(a) to {h). However, since the inverse of each form of transformation is also a
form of transformation, these eight types also apply to B; — B;’ .
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FIGURE 3.6
For each 7, 0 < j < v, write I; = [a;,¢;] and J; = [b;,d;].

LEMMA 3.6. For each j, 0 < 7 <, |aj4+1 —ajl, |bj+1 — b5, |cj+1 —¢;| and
diy1 — d;| are at most 1.
3+ 3

PROOF. By definition of I}, |a;4+1 — a;] = |f(A;) — f(Aj+1]/4. Therefore, to
prove that |aj4+1 — a;| < 1 it suffices to show that |f(A4;) — f(A,41)| < 7, since
f(4;) = 2v = f(Aj+1) (mod 4). For each of the transformations A; — AY in
Lemma 3.4, A and A7 both consist of a cycle, a lollipop, two cycles, or a cycle
and a lollipop. Therefore, by Corollary 3.2 and Lemma 3.3, f(A}) and f(A})
are both between 0 and 6. Thus

[/ (Aj41) — F(A5)] = |F(AF U A7) — f(AF U AY)| = |f(A]) - f(A))| <6 <7,

as required.

Similarly, to prove that |¢;4+1 — ¢;| < 1, it is enough to show that |g(A; 1) —
9(A;)| = |g(A7) — g(Aj3)| is at most 7. By Corollary 3.2 and Lemma 3.3, g(A})
and g(A}’ ) are both between 0 and 8, and thus the only way in which this can
fail to hold is if one of g(A)) or g(AY) is 0 and the other is 8. Also, g(A}) or
g(A;-’) can equal 8 only if the graph is of the form L, ;UC; with 7 +35=3,7 =1
(so that 3 = 2), and # = 1. Therefore the transformation A} — A} must be of
the types (b), (c), or (d) listed in Lemma 3.4.

If the transformation is of type (b) then g(A}) = 8 and A} = L., UC; as
above. But then A} = L¢ ;45 with I = 1 and 7 + § = 3, and thus by Lemma 3.3
g9(Aj) = 4 # 0. The same argument, interchanging A; and A7, holds for type
(¢). Suppose therefore that the transformation is of type (d), namely L, ,UC; —
C; UL, ;. Without loss of generality assume that g(Ag-) = 8. Then, since ¥ =1,
§ =2 and f = 1, by Corollary 3.2 and Lemma 3.3 g(A4]) = 3+5 =8 # 0.
Therefore |c;41 — ¢j41] < 1, as required.
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By Corollary 3.5 the transformations B; — By also have the eight possible
forms listed in Lemma 3.4, and thus the same arguments show that |b; 41 — b;|
and |d;4, — dj| are < 1.

A cluster C will be said to be inflezible if f(C)+g(C) = v(C). I C is inflexible
then there is only one n, value (namely f(C)/2) for which a bisection of C can
be constructed by our methods. Every component or union of components of an
inflexible cluster is also inflexible. The final stage of our proof will show that
if no I; N J; is nonempty, then some A; and Aj,, are both flexible, but with
different ny values. The next two lemmas prove that this is impossible.

LEMMA 3.7. The only inflexible cycles are C3 and Cs. The only inflexible
lollipops are L3 1,L33,L33,L4,1,L4,2,L51,Ls32,Ls3 and Lg 2.

PROOF. By Corollary 3.2 any inflexible cycle must have at most 5 vertices,
and by Lemma 3.3 any inflexible lollipop must have at most 9 vertices. Check
all cycles with 5 or fewer vertices and all lollipops with 9 or fewer vertices.

LEMMA 3.8. If Aj and Aj4, are both inflexible then aj = ¢; = aj41 = ¢j41.

PROOF. Since A; and A;4; are inflexible, a; = ¢; = f(A4;)/4 and aj41 =
¢;+1 = f(Aj41)/4. Therefore it suffices to prove that f(A;) = f(A;4+1), or,
equivalently, that f(A}) = f(A]). Note that since A} and AY are unions of
components of A; and A;;; respectively, they are inflexible. There are eight
possible situations, as listed in Lemma 3.4.

(a) A} = Ly s and AY = Ly, 7+ s =t +u. Then 7+ 3 =+ &, and hence
f(A}) = f(A]) by Lemma 3.3.

(b) Ag = L, s UC; and A;’ = L y4s. Sincer >3 and s >1,r+s > 4. But
then A;-’ cannot be inflexible, by Lemma 3.7.

(d) A;. =L,,UC; and A;-’ =C, UL, Then C; and C, must be inflexible,
and thus by Lemma 3.7 » and ¢ must both be odd (3 or 5, in fact). Therefore
f(Ly,s) = f(Lt,s) by Lemma 3.3, and f(C:) = f(C,) by Corollary 3.2, giving
f(A}) = f(A]) as required.

(e) A} = Crys and A}' = L,,. Since r+s > 4 and C,, is inflexible, r+38 = 5.
Therefore f(Cy4s) = 2 by Corollary 3.2 and f(L, ) = 2 by Lemma 3.3, whence
1A = £(49).

(8) A; = Cr UG, and A} = L, ,. Since C, and C, are inflexible, r and s are
both odd (3 or 5) and thus r + s is even. Hence f(C,UCs) =2+ 2 =4 by
Corollary 3.2 and f(L,,s) = 4 by Lemma 3.3. Therefore f(4}) = f(A7).

Now transformations of types (c), (f) and (h) are the inverses of types (b),
(e) and (g) respectively, and therefore the proof in these cases can be obtained
by interchanging A} and AY in the appropriate argument above.
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THEOREM 3.9. Let G be a 4-regular graph with an even number of vertices.
Then G has an tsofactorial allowable 4-edge-colouring. (In other words, G has
an tsomorphic factorization into 4 parts, the components of each factor being
paths of length 1 and 2.)

PROOF. Suppose that, for some j, there exists ¢ € I; N J;. Then A; has a
bisection, using say colours a’ and a”, such that na(a’) = na(a”) = ¢, and B;
has a bisection using b’ and b” such that ny(b') = na(b”) = i. Together they
form an allowable 4-edge-colouring ~ of G. For each ¢ € {d’,a",¥,b"}, N(e,)
is isomorphic to 1P3 U (v/2 — 2¢) P, (where Py is the path of length k — 1), and
thus #~ is isofactorial.

Therefore suppose that I; NJ; = D forall j,0 < j <wv. Then Iy NJp =
[ao, co) N [bo, do] = D, and without loss of generality it can be assumed that ¢y <
bo. Then ¢y, = do > bo > ¢co > ap = by, and hence 7* = min{j : ¢;4+1 > bj41}
exists. Let j = j*.

Then b; > ¢; + 1, but ¢;41 > b;41. Also, since Ij3 N Jj41 = [@j41,¢541] N
[bj+1,dj=1] = O, it must be true that a;4; > d;4; + 1. Hence, from these
inequalities and from Lemma 3.6 it follows that

bis1+12b;2ci+12a;+12a41 2djp1+12bj41 +1,
and

bj+1+12ijcj+IZCj+1 2aj41 2djip1+1>bjp1 + 1.
Both of the above chains of inequalities must hold with equality at every stage,
and therefore a; +1 = ¢; + 1 = aj41 = ¢;41. Thus A; is inflexible because
a; = ¢;, and A;4; is inflexible because a4, = cj41. But a; # aj41, which
contradicts Lemma 3.8. It is therefore impossible to have I; N J; = @ for all j,
and hence G has the required isofactorial colouring.

4. Algorithms

Sections 2 and 3 provide not only proofs that isofactorial edge-colourings
exist, but also polynomial time algorithms for finding them. In order to give
asymptotic bounds on the number of operations each algorithm requires, the
following three results are needed.

LEMMA 4.1. If G is a graph all of whose vertices are of even degree, then
a collection of closed eulerian trails, one for each component of G, can be found
in O(e(G)) operations.

PROOF. The maze-searching algorithm of Edmonds and Johnson {1, 5.3, page
114], slightly modified to allow for disconnected graphs, accomplishes this.
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LEMMA 4.2. A 1-factor (1-regular spanning subgraph) of a regular bipartite
graph G can be found in O(v(G)'/?e(G)) operations.

PROOF. The algorithm of Hopcroft and Karp [5) produces a maximum match-
ing (1-regular subgraph) of a bipartite graph G in O(v(G)/2?¢(G)) operations;
if G is regular then by a theorem of Konig [6] this matching is a 1-factor.

LEMMA 4.3. A 2-factorization of a 2k-regular graph G, k > 1, can be found
in O(k?v(G)3/2) operations.

PROOF. As explained by Fleischner [4, page 30], this can be done as follows.
First, find closed eulerian trails in each component of GG, and orient each edge
in the direction of the trail containing it. Split each vertex of G into two,
one incident with the inwardly oriented edges and the other with the outwardly
oriented edges, to form a k-regular bipartite graph G*, where v(G*) = 2v(G) and
e(G*) = 2¢(G). By k applications of Lemma 4.2, a decomposition of G* into 1-
factors can be found in O(kv(G)Y/2e(G)) = O(k*v(G)3/?) (since ¢(G) = kv(G))
operations, and this corresponds to a 2-factorization of G. The bound on the
number of operations is determined by this last step.

These results may now be used to give an upper bound on the number of
operations required to implement the methods of Section 2.

THEOREM 4.4. Let G be a 2k-regular graph, k > 1, with v(G) even. Then
the follounng algorithm, which attempts to find an isofactorial allowable 2k-edge-
colouring of G, can be implemented so as to take O(k*v(G)3/2) operations. It
can fail only if G contains both 3-cycles and 5-cycles.

First, find a 2-factorization of G into 2-factors F\, Fs, ..., Fy. For each F;
calculate the length of each component cycle of F;, and thence the numbers P(F;)
and Q(F;) as in Lemma 2.6 (b). Let P* = max{P(F;): i = 1,2,...k} and
Q= min{QUF,): 1 = 1,2,...k}. If P* > Q* stop: G contains both 3-cycles
and 5-cycles. Otherunse, construct for each F; a bisection with ng = P*, giving
the required colouring of G.

PROOF. Each step of the algorithm can be implemented in O(e(G)) =
O(kv(G)) operations, except for finding a 2-factorization of G, which by Lemma
4.3 can be done in O(k?v(G)3/?) operations. Hence is obtained the bound on
the number of operations required.

If G has either no 3-cycles or no 5-cycles then it follows from Lemma 2.7 that
P* < @Q*, and therefore the algorithm will succeed.

The algorithm obtained from Section 3 is asymptotically a little less efficient
than that of Section 2, when applied to 4-regular graphs, but of course it works
for all such graphs with an even number of vertices.
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THEOREM 4.5. Let G be a 4-regqular graph, with v(G) even. Then an iso-
factorial allowable 4-edge-colouring of G can be found in O(v(G)?) operations by
an implementation of the following algorithm.

First, find a eulerian sequence in G. For each 7, 0 < j < v{G), construct the
graphs A; and Bj as in Section 3, identify their components, and calculate the
intervals I; and J;. If there exists © € I; N J;, construct bisections of A; and B;
with ny = 1, and hence obtain the required colouring of G.

PROOF. In Theorem 3.9 it was proved that I; N J; is nonempty for some
J, and therefore the algorithm will find the desired colouring. Construction
of an eulerian sequence can be done in O(e(G)) operations, by Lemma 4.1,
and the final step of constructing the bisections for a particular A; and B;
also can be done in O(e(G)) operations. Constructing each A; and B; and
identifying their components also takes O(e(G)) operations, but this may have
to be done v(G) + 1 times. Therefore the algorithm overall can be implemented
in O(v(G)e(G)) = O(v(G)?) operations.
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