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Abstract

There is a well-known equivalence between avoiding accuracy dominance and having
probabilistically coherent credences (see, e.g., de Finetti 1974; Joyce 2009; Predd et al.
2009; Pettigrew 2016). However, this equivalence has been established only when the set
of propositions on which credence functions are defined is finite. In this article, I establish
connections between accuracy dominance and coherence when credence functions are
defined on an infinite set of propositions. In particular, I establish the necessary results
to extend the classic accuracy argument for probabilism to certain classes of infinite sets
of propositions, including countably infinite partitions.

1. Introduction
A central norm in the epistemology of partial belief is probabilism: a person’s degrees
of belief—or credences—should satisfy the laws of probability.1 There is a long tradi-
tion in the spirit of Savage (1971) and de Finetti (1974) of appealing to the epistemic
virtue of accuracy to justify probabilism (also see Rosenkrantz 1981). One particular
form of argument is the accuracy dominance argument for probabilism introduced by
Joyce (1998). Let a set F of propositions be an opinion set and a function c : F ! �0; 1�
be a credence function on F . Let a credence function be coherent if it satisfies the axioms
of probability. A credence function c0 onF accuracy dominates a credence function c on
F if c is more inaccurate than c0, no matter how the world turns out to be (where
inaccuracy is precisified as in Section 2). Then the existing accuracy dominance argu-
ments purport to vindicate probabilism by showing that a credence function is not
accuracy dominated if and only if it is coherent.

© The Author(s), 2022. Published by Cambridge University Press on behalf of the Philosophy of Science Association. This
is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://
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1 This article is based on work done by Kelley (2019).
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However, there is a limitation to almost all of the literature on accuracy domi-
nance arguments for probabilism: the opinion set is assumed to be finite.2 Indeed,
de Finetti (1974), Lindley (1987), Joyce (1998, 2009), Predd et al. (2009), Leitgeb and
Pettigrew (2010a, b), and Pettigrew (2016) all establish their dominance results only
for finite opinion sets.3 In this paper, I remove this assumption and prove dominance
results that I hope to be useful in evaluating the extent to which accuracy dominance
arguments for probabilism succeed when the opinion set is infinite.

I begin in Section 2 by reviewing the mathematical framework and the standard
dominance result for finite opinion sets. Sections 3–5 are concerned with accuracy
and coherence in the infinite setting. In Sections 3 and 4, I make headway on char-
acterizing the opinion sets and accuracy measures for which there is an equivalence
between coherence and avoiding dominance as in the finite case. In Section 5, I extend
the accuracy framework to the uncountable setting and prove that coherence is
necessary to avoid dominance on uncountable opinion sets. I conclude in Section 6
with a discussion of the results established in Sections 3–5.

2. The finite case
I first set up the framework that will be used throughout the article. Fix a set W (not
necessarily finite) that represents the set of possible worlds and, for now, a finite set
F � P�W� of propositions that represents an opinion set—the set of propositions that
an agent has beliefs about.

Definition 2.1. An algebra over W is a subset F �� P�W� such that:

1. W 2 F �;
2. if p; p0 2 F �, then p [ p0 2 F �; and
3. if p 2 F �, then W n p 2 F �.

Definition 2.2.
i. A credence function on an opinion set F is a function from F to �0; 1�.
ii. A credence function c is coherent if it can be extended to a finitely additive

probability function on an algebra F � over W containing F . That is, there
is an algebra F � � F over W and a function c� : F � ! �0; 1� such that:

2 In an unpublished manuscript, Walsh (ms) proves an accuracy dominance result in the countably
infinite context, to which we return in Section 3. In a related but distinct area, Huttegger (2013) and
Easwaran (2013) extend to the infinite setting part of the literature on using the minimization of
expected inaccuracy to vindicate epistemic principles. See, for example, Greaves and Wallace (2005).
Schervish et al. (2014) prove that in certain countably infinite cases, coherence is sufficient to avoid
strong dominance. Schervish et al. (2009) and Steeger (2019) explore a different way to weaken the assump-
tion that the opinion set is finite. We will return to their work in Section 4.

3 The same holds for accuracy dominance results pertaining to approximating coherence (De Bona and
Staffel 2018; Staffel 2019, chap. 5) and accuracy dominance results that significantly weaken the addi-
tivity assumption on the measure of inaccuracy (Pettigrew 2022; Nielsen 2022), although neither will
be my focus here.
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(a) c��p� 	 c�p� for all p 2 F ;
(b) c��p [ p0� 	 c��p� 
 c��p0� for p; p0 2 F � with p \ p0 	 ∅; and
(c) c��W� 	 1.

iii. A credence function that is not coherent is incoherent.

Remark 2.3. If F 	 fp1; . . . ; png, a credence function c over F can be identified with
the vector �c�p1�; . . . ; c�pn�� 2 �0; 1�n. Thus, the space of all credence functions over F
can be identified with �0; 1�n � Rn. We often simplify notation by setting ci : 	 c�pi�.

We introduce an important subclass of the class of all credence functions, namely,
the (coherent) credence functions that match the truth values of F at a world w
exactly.

Definition 2.4. Fix an opinion set F . For each w 2 W, let vw : F ! f0; 1g be defined
by vw�p� 	 1 if and only if w 2 p. We call vw the omniscient credence function at world w.
We let VF denote the set of all omniscient credence functions on F . Note
that jVF j � 2jF j.

Next, we specify the inaccuracy measures that we will be concerned with in this
section. Fix a finite opinion setF , and let C denote the set of credence functions onF .
We define an inaccuracy measure to be a function of the form

I : C × W ! �0; ∞ �:
The class of inaccuracy measures we consider is a generalization of the class defended
by Pettigrew (2016): the inaccuracy measures defined in terms of what we call
a quasi-additive Bregman divergence. It is a subclass of the inaccuracy measures assumed
by Predd et al. (2009).4

Definition 2.5. Suppose D : �0; 1�n × �0; 1�n ! �0; ∞ �.

1. D is a divergence if D�x; y� � 0 for all x; y 2 �0; 1�n with equality if and only
if x 	 y.

2. D is quasi-additive if there exists a function d : �0; 1�2 ! �0; ∞ � and a sequence
of elements faigni	1 from �0; ∞ � such that

D�x; y� 	
Xn
i	 1

aid�xi; yi�;

in which case we say D is generated by d and faigni	 1.
3. D is a quasi-additive Bregman divergence ifD is a quasi-additive divergence gener-

ated by d and faigni	1, and in addition, there is a function ϕ : �0; 1� ! R such that:

4 Using terminology from Definition 2.5, Predd et al. (2009) consider a more general class in allowing
different one-dimensional Bregman divergences for different propositions.
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(a) ϕ is continuous and strictly convex on �0; 1�;5
(b) ϕ is continuously differentiable on �0; 1� with the formal definition

ϕ0�i� :	 lim
x!i

ϕ0�x�

for i 2 f0; 1g;6 and
(c) for all x; y 2 �0; 1�, we have

d�x; y� 	 ϕ�x� 
 ϕ�y� 
 ϕ0�y��x 
 y�:
We call such a d a one-dimensional Bregman divergence.

We take the inaccuracy of a credence function c at a world w to be the distance
between c and the omniscient credence function vw, where distance is measured with
a quasi-additive Bregman divergence.

Definition 2.6. Let a legitimate inaccuracy measure be an inaccuracy measure given by

I�c;w� 	 D�vw; c�;
where D is a quasi-additive Bregman divergence.

By allowing different weights depending on the proposition, we can accommodate
the intuition that some propositions are more important to know than others.7 Even if
one thinks that inaccuracy measures should be additive, as Pettigrew (2016) does,
relaxing this restriction makes our results more widely relevant. A popular example
of an additive legitimate inaccuracy measure is the Brier score (see Section 12,
“Homage to the Brier Score,” in Joyce 2009):

I�c;w� 	
Xn
i	1

�vw�pi� 
 c�pi��2:

Remark 2.7. The class of additive Bregman divergences is the class of additive and
continuous strictly proper scoring rules (See Pettigrew [2016, 66]; also see, for example,
Banerjee et al. [2005] and Gneiting and Raftery [2007] for more details on Bregman
divergences, as well as their connection to strictly proper scoring rules).

We now recall the dominance result connecting coherence to accuracy dominance
when the opinion set is finite. It was first proved for the Brier score by de Finetti
(1974, 87–90) and extended to any legitimate inaccuracy measure by Predd et al.

5 Therefore, ϕ is bounded because it is a continuous function on a compact interval.
6 We do not require ϕ0�i� < ∞ for i 2 f0; 1g.
7 Although see Levinstein 2019 for an argument that one should expect weights to vary with respect to

worlds as well as propositions.
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(2009).8 See Schervish et al. (2009) and Pettigrew (2022) (see also Nielsen 2022) for
further generalizations of the finite result.

Definition 2.8. For each pair of credence functions c; c� over F :

1. c� weakly dominates c relative to an inaccuracy measureI ifI�c;w� � I�c�;w�
for all w 2 W and I�c;w� > I�c�;w� for some w 2 W;

2. c� strongly dominates c relative to I if I�c;w� > I�c�;w� for all w 2 W .

Theorem 2.9. (de Finetti 1974; Predd et al. 2009) Let F be a finite opinion set,I be a
legitimate inaccuracy measure, and c be a credence function on F . Then the following
are equivalent:

1. c is not strongly dominated;
2. c is not weakly dominated;
3. c is coherent.

Further, if c is incoherent, then c is strongly dominated by a coherent credence
function.

On the basis of Theorem 2.9, authors in the accuracy literature conclude that an
incoherent credence function is objectionable because there is an undominated
coherent credence function that does strictly better in terms of accuracy, no matter
how the world turns out to be, whereas coherent credence functions are not accuracy
dominated in this way. Because it is the basis of the accuracy dominance argument for
probabilism in the finite case, Theorem 2.9 is the result we would like to extend to
infinite opinion sets. We now make progress toward this goal when F is countably
infinite.

Note that any missing proofs in Sections 3–5 can be found in the appendix.

3. The countably infinite case: Coherence is necessary

3.1 Generalized legitimate inaccuracy measures
We begin with a discussion of how to measure inaccuracy in the countably infinite
setting. Fix a countably infinite opinion set F over a set W of worlds (of arbitrary
cardinality). Let C be the set of credence functions over F , which can be identified
with �0; 1�∞ (see Remark 2.3). An inaccuracy measure remains a map from C × W
to �0; ∞ �.

The class of inaccuracy measures that we use is defined in terms of generalizations
of quasi-additive Bregman divergences.

Definition 3.1. Suppose D : �0; 1�∞ × �0; 1�∞ ! �0; ∞ �. Then we call D a
generalized quasi-additive Bregman divergence if

8 See Section 7 of Predd et al. (2009).
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D�x; y� 	
X∞
i	1

aid�xi; yi�;

where d is a bounded9 one-dimensional Bregman divergence as in Definition 2.5.3 and
faig∞i	1 is a sequence of elements from �0; ∞ � with supi ai < ∞ .10

Remark 3.2. Note that d—defined in terms of ϕ—being bounded is equivalent to ϕ0

being bounded on �0; 1�. Further, we may assume that ϕ�0� 	 ϕ0�0� 	 0 because
dϕ 	 dϕ̄ if ϕ and ϕ̄ differ by a linear function.11

In the appendix, I show that generalized quasi-additive Bregman divergences are
examples of what Csiszár (1995) calls Bregman distances, which are generalizations of
quasi-additive Bregman divergences defined on spaces of nonnegative functions.

We consider the suggestively named inaccuracy measures:

Definition 3.3. Given an enumeration of F ,12 let a generalized legitimate inaccuracy
measure be an inaccuracy measure I : C × W ! �0; ∞ � given by

I�c;w� 	 D�vw; c� (1)

for D a generalized quasi-additive Bregman divergence.13

Notice that the Brier score extends to a generalized legitimate inaccuracy measure,
namely, the squared ‘2�F � norm

I�c;w� 	 jjvw 
 cjj2
‘2�F � 	

X∞
i	1

�vw�pi� 
 c�pi��2: (2)

We call (2) the generalized Brier score.
The name “generalized legitimate inaccuracy measure” is motivated by the obser-

vation that a generalized legitimate inaccuracy measure naturally restricted to the
finite opinion sets is a legitimate inaccuracy measure. This is because 1) for both
the generalized and finite legitimate inaccuracy measures, the score of an individual
proposition is defined by a one-dimensional Bregman divergence, and 2) for both the
generalized and finite legitimate inaccuracy measures, the scores of individual prop-
ositions are combined in a weighted, additive way to give a score for the entire
credence function. To use the terminology of Leitgeb and Pettigrew (2010a), in the
finite and countably infinite setting, the local scores are the same, and the global
scores relate to the local scores in the same way. These observations support the view
that insofar as quasi-additive Bregman divergences are the appropriate functions to

9 Boundedness is assumed for technical reasons.
10 Recall that supi ai 	 a 2 R[ f
∞ ;
∞ g such that ai � a for all i 2 N, and for any b < a, there is

some ai such that b < ai � a.
11 Proof. Let ϕ̄�x�	ϕ�x�
ax
b. Then dϕ̄�x;y�	ϕ�x
 ax
b
ϕ�y�
ay
b
�ϕ0�y�
a� �x
y�	ϕ�x�


ax
b
ϕ�y� 
ay
b
ϕ0�y��x
y�
ax
ay	ϕ�x�
ϕ�y�
ϕ0�y��x
y�	dϕ�x;y�. Further, if ϕ satisfies the
conditions in Definition 2.5.3, then ϕ̄ does as well.

12 The choice of enumeration does not matter because the terms in the infinite sum defining inaccu-
racy are nonnegative. Thus, convergence is absolute and independent of order.

13 Note that in the infinite setting, we may have vw1
	 vw2

with w1 ≠w2.
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use for measuring inaccuracy in the finite setting, generalized quasi-additive
Bregman divergences are the appropriate functions to use for measuring inaccuracy
in the countably infinite setting (see Section 6 for further discussion of generalized
legitimate inaccuracy measures).14

3.2 Coherence is necessary
I now state one of the main results: coherence is necessary to avoid accuracy domi-
nance in the countably infinite case.

Theorem 3.4. Let F be a countably infinite opinion set, I a generalized legitimate
inaccuracy measure, and c an incoherent credence function. Then:

1. c is weakly dominated relative to I by a coherent credence function; and
2. ifI�c;w� < ∞ for each w 2 W , then c is strongly dominated relative toI by a

coherent credence function.

Remark 3.5. By analyzing the proof of Theorem 3.4, one can see that the most
general way to state the theorem is as follows: assume c is incoherent; if
I�c;w� < ∞ for some w, then there is a coherent credence function d such that
I�d;w� < I�c;w� for all w such that I�c;w� < ∞ ; if I�c;w� 	 ∞ for all
w 2 W, then any omniscient credence function weakly dominates c.

Remark 3.6. The following is easy to prove from the results of Schervish et al. (2009):
any incoherent credence function c over a countably infinite opinion set is weakly
dominated but not necessarily by a coherent credence function; and if
I�c;w� < ∞ for each w 2 W , then c is strongly dominated but not necessarily by
a coherent credence function.15 Thus, the value in the proof strategy to come is that
the dominating credence function is proven to be coherent, which is analogous to the
finite case.16,17

14 The class of generalized legitimate inaccuracy measures could also be justified by defending the
following axiom, which picks out the generalized legitimate inaccuracy measures: let F be a countable
opinion set, and letF 1 � F 2 � . . . be a sequence of increasing subsets ofF whose union isF . Then there
are legitimate inaccuracy measures I1;I2; . . . generated by the same one-dimensional Bregman diver-
gence and compatible weights such that the inaccuracy of a credence function c on F at world w is given
by I�c;w� 	 limn!∞ In�cjn;w�, where cjn is the restriction of c to F n. “Compatible weights” means
that if In and In
1 are generated by weights faigjF n j

i	1 and fbigjF n
1j
i	1 , respectively, then ai 	 bi for

1 � i � jF nj.
15 Proof sketch. If c is incoherent, then there is some finiteF � F on which c is incoherent. Restrict c

to cjF on F . Then, by Theorem 2.9, there is some d that strongly dominates cjF . Extend d to a credence
function d onF by copying c off ofF . Then, so long as c has finite inaccuracy at some world, dwill weakly
dominate c.

16 Thanks to Teddy Seidenfeld for suggesting this connection to the finite case.
17 Further, it is often argued that not all dominated credence functions are irrational—only those that

are dominated by a credence function that is itself not dominated (see discussion of various dominance
principles in Pettigrew 2016, 22). For the opinion sets and inaccuracy measures discussed in Section 4, the
undominated credence functions will be precisely the coherent credence functions, and so the added
strength of Theorem 3.4 is normatively important, as well.
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Note that one direction of Walsh’s (ms) accuracy dominance result follows imme-
diately from Theorem 3.4. We first recall his result.

Theorem 3.7. (Walsh ms) Let F be a countably infinite opinion set. Let

I�c;w� 	
X∞
i	1

2
i�vw�pi� 
 c�pi��2: (3)

Then:

1. if c is incoherent, then c is strongly dominated relative to I by a coherent
credence function; and

2. if c is coherent, then c is not weakly dominated relative to I by any credence
function d≠ c.

Part 1 of this result follows from Theorem 3.4 by defining I in terms of the general-
ized quasi-additive Bregman divergence generated by f2
ig∞i	1 and

d�x; y� 	 x2 
 y2 
 2y�x 
 y� 	 ϕ�x� 
 ϕ�y� 
 ϕ0�y��x 
 y�;

where ϕ�x� 	 x2. Note that I�c;w� < ∞ for all c 2 C and w 2 W as
P∞

i	1 2

i < ∞ .

4. The countably infinite case: The sufficiency of coherence
Unlike coherent credence functions on finite opinion sets, coherent credence func-
tions on countably infinite opinion sets can be strongly dominated.

Example 4.1. Let F 	 ffn � N : n 2 Ng : N 2 Ng be an opinion set over N (including
zero). Let

c�fn � Ng� 	 1�������������
N 
 1

p
:

Then c is coherent—in fact, countably coherent (see Definition 4.6)—but
I�c;w� 	 ∞ for all w 2 W when I is the generalized Brier score. Thus, any omni-
scient credence function strongly dominates c.

In fact, the classic example of a merely finitely additive probability function—the
0-1 function defined on the finite-cofinite algebra over N taking value zero on finite
sets—restricts to a coherent dominated credence function.

Example 4.2. Let F 	 ffn � N : n 2 Ng : N 2 Ng be an opinion set over N (including
zero). Let

c�fn � Ng� 	 0:

Then c is coherent—as well as finitely supported and not countably coherent—but
I�c;w� 	 ∞ for all w 2 W when I is the generalized Brier score. Thus, any omni-
scient credence function strongly dominates c.
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The goal of this section is to characterize the opinion sets and inaccuracy measures
for which some variant of Theorem 2.9 holds. We can extend Theorem 2.9 by proving
dominance results for countably coherent credence functions and using an opinion set
compactification construction to transfer these results to merely coherent credence
functions. At points, the results will only apply to the generalized Brier score. I conjec-
ture that any such result extends to any generalized legitimate inaccuracy measure. In
any case, this is a well-motivated restriction because the Brier score has been defended
by many—including Horwich (1982), Maher (2002), Joyce (2009), and Leitgeb and
Pettigrew (2010a)—as being a particularly appropriate way to measure inaccuracy.

A summary of the main results from Sections 3-4 can be found in Figure 4.1.
Throughout the rest of Section 4, we assume that the opinion set F is countably infinite,

unless otherwise stated.

4.1 Countable coherence
I begin by introducing the notion of a countably coherent credence function and estab-
lishing a characterization theorem regarding countable coherence on countably
discriminating opinion sets that extends a result of de Finetti (1974).

Definition 4.3. For an opinion set F � P�W�, we define an equivalence relation �
on W such that w � w0 if and only if fp 2 F : w 2 pg 	 fp 2 F : w0 2 pg. We call the
set of equivalence classes of W the quotient of W relative to F . If the quotient of W
relative to F is countable, then we call F countably discriminating.

Clearly, any countable opinion set over a countable set of worlds is countably
discriminating.

The following characterization of the coherent credence functions on finite
opinion sets is due to de Finetti (1974). Recall that VF is the set of omniscient
credence functions on F , which is finite when F is finite.

Theorem 4.4. (de Finetti 1974) c is a coherent credence function on a finite opinion
set F if and only if there are λw 2 �0; 1� with Pvw2VF

λw 	 1 such that

c�p� 	
X

υw2VF

λwυw�p�

for all p 2 F .

Theorem 4.4 is integral to Predd et al.’s (2009) proof that coherence is sufficient to
avoid dominance in Theorem 2.9. I now show de Finetti’s (1974) characterization of the
coherent credence functions on finite opinion sets extends to countably coherent
credence functions on countably infinite opinion sets that are countably discriminating.

Definition 4.5. A σ-algebra over W is a subset F � � P�W� such that:

1. W 2 F �;
2. if fpig∞i	1 � F �, then

S∞
i	1 pi 2 F �; and

3. if p 2 F �, then W n p 2 F �.

100 Mikayla Kelley

https://doi.org/10.1017/psa.2021.37 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2021.37


Definition 4.6. Let a credence function c be countably coherent if c extends to a count-
ably additive probability function on a σ-algebra F � containing F .18 That is, there is a
c� : F � ! �0; 1� such that:

1. c��p� 	 c�p� for all p 2 F ;
2. c��S∞

i	1 pi� 	
P∞

i	1 c
��pi� for fpig∞i	1 � F � with pi \ pj 	 ∅ for i≠ j; and

3. c��W� 	 1.

Otherwise, a credence function is countably incoherent.

Proposition 4.7. Let F be a countably infinite opinion set that is countably discrim-
inating (thus, VF is countable). Then a credence function c is countably coherent if
and only if there are λvw 2 �0; 1� with Pvw2VF

λvw 	 1 such that

c�p� 	
X

υw2VF

λυwvw�p�

for all p 2 F .

4.2 Compactification of an opinion space
In this section, I introduce the compactification construction of what is called an
opinion space. The construction will be relevant to transferring dominance results
for countably coherent credence functions to merely coherent credence functions,
the reason being that merely coherent credence functions become countably
coherent if the underlying set of worlds is “compactified.”

Definition 4.8. An opinion space is a pair �W;F �, where W is a nonempty set
and F � P�W�.

From here on out, I will speak in terms of opinion spaces as opposed to opinion sets in
order to keep track of the underlying set of worlds. We continue to assume that F is
countably infinite.

Borkar et al. (2003) proved that the opinion spaces that satisfy a certain compact-
ness property are precisely those where the set of coherent credence functions and
the set of countably coherent credence functions coincide.19

Definition 4.9. Let �W;F � be an opinion space. Let f �n� 2 f0; 1g and set pf �n�n 	 pn if
f �n� 	 0 and pf �n�n 	 pcn if f �n� 	 1. Then �W;F � is compact if for any choice of
fpng∞n	1 � F and f : N ! f0; 1g, if

TN
n	1 p

f �n�
n is nonempty for every N, thenT∞

n	1 p
f �n�
n is nonempty.

18 Note that if c is countably coherent on F , then c extends to a countably additive probability func-
tion on σ�F �, the σ-algebra generated by F .

19 Borkar et al., (2003) do not restrict attention to opinion spaces where F is countably infinite, and it
is easy to see that there are analogues of the following compactification results in the uncountable
setting. However, we continue to restrict our attention to the countably infinite setting because we have
not yet extended the accuracy framework beyond that.
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As an example, note that the opinion spaces from Examples 4.1 and 4.2 are not
compact. Indeed, for the first example,

T∞
n	1 pn 	 ∅, and yet every finite subset

of F has a nonempty intersection; for the second example,
T∞

n	1 p
c
n 	 ∅, whereasTN

n	1 p
c
n ≠∅ for every N.

Theorem 4.10. (Borkar et al. 2003) The following are equivalent:

1. �W;F � is compact;
2. for every credence function c on �W;F �, c is coherent if and only if c is count-

ably coherent.

I now show how to turn any space into a compact space and, in light of Theorem
4.10, any coherent credence function into a countably coherent credence function. Let
�W;F � be an opinion space. Let S denote the set of sequences of the form fpf �n�n g (as in
Definition 4.9) such that

TN
n	1 p

f �n�
n ≠∅ for every N but

T∞
n	1 p

f �n�
n 	 ∅. Define

W� 	 W [ fxs : s 2 Sg, where each xs is a formal point corresponding to the element
s 2 S. Define F � � P�W�� as follows: for each p 2 F , let Sp denote the set of
sequences s of the form fpf �n�n g (as in Definition 4.9) such that s 2 S, pn 	 p for some
n, and f �n� 	 0. Then define

p� 	 p [ fxs : s 2 Spg:

Finally, let F � 	 fp� : p 2 F g. We call �W�;F �� the compactification of �W;F �. We
always denote the compactification of �W;F � by �W�;F ��. Further, we let Ψ denote
the natural bijection from F to F � given by Ψ�p� 	 p�.

We first note that �W�;F �� is in fact compact.

Lemma 4.11. For �W;F � an opinion space, �W�;F �� is compact.

Next, we note that, as suggested, we can naturally turn a coherent credence func-
tion into a countably coherent credence function by compactifying the underlying
opinion space.

Lemma 4.12. Let �W;F � be an opinion space and c be a coherent credence function
on �W;F �. Let �W�;F �� be the compactification of �W;F �, and define
c��Ψ�p�� :	 c�p� for each p 2 F . Then c� is a countably coherent credence function
on �W�;F ��, and I�c;w� 	 I�c�;w� for w 2 W.

For a coherent credence function c defined on an opinion space �W;F �, we let c�

denote the countably coherent credence function on �W�;F �� given as in
Lemma 4.12.

Example 4.13. As an example, let us compute the compactification of the opinion
space from Example 4.2 and show how to identify a coherent credence function
on the space with a countably coherent credence function on its compactification.
We note that only for f �n� 	 1 for all n 2 N is

TN
n	1 p

f �n�
n nonempty for every N whileT∞

n	1 p
f �n�
n 	 ∅. Indeed, assume f �m� 	 0 for some m. If f �i� 	 1 for some i � m
 1,
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then because pci \ pm 	 ∅, we have
Ti

n	1 p
f �n�
n 	 ∅which contradicts our assumption.

So f �i� 	 0 for all i � m
 1. But then because
Tm

n	1 p
f �n�
n ≠∅ and

Tm
n	1 p

f �n�
n � pi for

all i � m
 1, it also follows that
T∞

n	1 p
f �n�
n ≠∅, which contradicts our assumption. So

S is a single point x, W� 	 W [ fw�g, and F � 	 ffn � Ng : N 2 Ng. F � is identical to
F , except that there is a point in the complement of every proposition in F �. For a
coherent credence function c on �W;F �, c� on �W�;F �� is identical to c and is a
countably coherent credence function on the compact opinion space �W�;F ��. For
example, for credence function c in Example 4.2, c� extends to the countably additive
omniscient credence function vw� on the σ-algebra generated by F �.

Using Theorem 4.10, Lemma 4.11, and Lemma 4.12, the proof strategy for extending
Theorem 2.9 is more precisely as follows. First, we establish dominance results for
countably coherent credence functions. Second, we transform each coherent credence
function on �W;F � into a countably coherent credence function on �W�;F ��, as in
Lemma 4.12. Lastly, we use the dominance results for countably coherent credence
functions to establish dominance results for coherent credence functions in certain
cases where there is “accuracy dominance stability” in compactifying.

4.3 W-stable opinion spaces
In this section, we establish the equivalence between coherence and avoiding weak
dominance for certain countably infinite opinion spaces (Theorem 4.19), as well as
additional results extending Theorem 2.9 to the countably infinite setting (corollary
4.22 and Theorem 4.23). We first note that under certain circumstances, countably
coherent credence functions are not weakly dominated (Proposition 4.15 and
Proposition 4.16); then I use the compactification construction from the previous
section and a property of an opinion space—W-stability (Definition 4.17)—to establish
that for certain opinion spaces, mere coherence is also sufficient to avoid weak
dominance.

I first prove that if a countably coherent credence function c has finite expected
inaccuracy, then c is not weakly dominated.

Definition 4.14. For c, a countably coherent credence function, andI, a generalized
legitimate inaccuracy measure, we say that c has finite expected inaccuracy relative toI
if c has a countably additive extension c̄ defined on the opinion space �W; σ�F �� such
that Ec̄I�c; �� < ∞ .20 For c, a coherent but not countably coherent credence func-
tion, and I, a generalized legitimate inaccuracy measure, we say that c has finite
expected inaccuracy relative to I if c� has finite expected inaccuracy relative to I.

Proposition 4.15. Let �W;F � be an opinion space andI be a generalized legitimate
inaccuracy measure. If c is a countably coherent credence function on �W;F � with
finite expected inaccuracy relative to I, then c is not weakly dominated relative
to I.

20 Consider the measure space �W; σ�F �;µ�. Note that d�vw�pi�; di� 	 1pi �w�d�1; di� 
 �1 
 1pi
�w��d�0; di�, so each term in I�d; �� is measurable for any credence function d, and thus the infinite
sum is measurable because the finite sum and limit of measurable functions are measurable. Thus,
we can take the expectation of I�d; �� with respect to µ for any credence function d.
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Here is another dominance result for countably coherent credence functions
where we assume F is point-finite �jfp 2 F : w 2 pgj < ∞ for all w 2 W) but weaken
the assumption that c has finite expected inaccuracy considerably, namely, to
somewhere finitely inaccurate (there is a w 2 W such that I�c;w� < ∞ ). We also
restrict to the generalized Brier score B.

Proposition 4.16. Let �W;F � be a point-finite opinion space. If a credence function c
is countably coherent and somewhere finitely inaccurate relative to B, then c is not
weakly dominated relative to B.

I now introduce the notion of W-stability, which will allow the use of Propositions
4.15 and 4.16 to prove extensions of Theorem 2.9. Intuitively, an opinion space is
W-stable if coherence is preserved under compacitification.

Definition 4.17. Let �W;F � be W-stable relative to I if for any coherent credence
function c on �W;F �, if c is weakly dominated relative to I, then c� on �W�;F ��
is weakly dominated relative to I.

Remark 4.18. Not all opinion spaces are W-stable relative to every generalized legit-
imate inaccuracy measure. Indeed, consider the opinion space from Example 4.2. The
credence function c in that example, which assigns 0 to each proposition, is strongly
dominated. However, where w� is the single world added to the complement of each
proposition when compactifying (see Example 4.13) and vw� : F � ! �0; 1� is the omni-
scient credence function at world w�, we have that c� 	 vw� , and so B�c�;w�� 	 0.
Further, for any credence function d≠ c�, we have B�d;w�� > 0 because
B�d;w�� 	 0 if and only if d 	 vw� 	 c�. Thus, once the underlying space is compac-
tified, c is no longer weakly dominated relative to B.

Using Proposition 4.15, we establish one of the main results: sufficient and partly
necessary conditions on an opinion space for coherence to be equivalent to not being
weakly dominated.

Theorem 4.19. Let I be a generalized legitimate inaccuracy measure and �W;F � a
W-stable opinion space relative to I where all coherent credence functions have
finite expected inaccuracy relative to I. Then the following are equivalent:

1. c is coherent;
2. c is not weakly dominated.

Proof. We prove that if c is coherent, then c is not weakly dominated. Let �W�;F �� be
the compactification of �W;F �. If c is coherent on �W;F �, then c� is countably
coherent by Lemma 4.12. Further, c� has finite expected inaccuracy by definition
and the assumption that c has finite expected inaccuracy. Thus, by Proposition
4.15, c� is not weakly dominated. But since �W;F � is W-stable, this implies that c
is not weakly dominated. The other direction follows from Theorem 3.4. □
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Remark 4.20. It is trivial to see that W-stability is necessary for the equivalence of
coherence and not being weakly dominated. How far finite expected inaccuracy can
be weakened is an open question.

Remark 4.21. If I is defined with summable weights, that is, faig∞i	1 such thatP∞
i	1 ai < ∞ , then there is a C < ∞ such that I�c;w� < C for all credence func-

tions c and w 2 W. So, in particular, all coherent credence functions have finite
expected inaccuracy relative to I.

If we add in an additional finiteness assumption, then we get the full equivalence of
Theorem 2.9.

Corollary 4.22. In Theorem 4.19, if in addition, all coherent credence functions c
have I�c;w� < ∞ for all w 2 W , then the following are equivalent:

1. c is coherent;
2. c is not weakly dominated;
3. c is not strongly dominated.

We combine W-stability and Proposition 4.16 to get another set of sufficient condi-
tions on �W;F � for Theorem 2.9 to go through for the generalized Brier score.

Theorem 4.23. Let �W;F � be a W-stable opinion space with �W�;F �� point-finite
such that all coherent credence functions on �W;F � are somewhere finitely inaccu-
rate relative to B. Then the following are equivalent:

1. c is coherent;
2. c is not weakly dominated relative to B;
3. c is not strongly dominated relative to B.

Remark 4.24. We can drop the assumption that all coherent credence functions are
somewhere finitely inaccurate in Theorem 4.23 if we strengthen W-stable to compact
so that �W;F � 	 �W�;F ��. Indeed, compactness alongside point-finiteness implies
that coherent credence functions on �W;F � 	 �W�;F �� are somewhere finitely inac-
curate: if there were a coherent (and thus countably coherent) credence function infi-
nitely inaccurate at all worlds, then it would be strongly dominated by an omniscient
credence function, contradicting Proposition 4.27 later in this section.

4.3.1 Partitions
As an application of Theorem 4.19, I establish Theorem 2.9 for countably infinite parti-
tions.21 In parts of the existing literature (e.g., Joyce 2009), credence functions are
assumed to be defined on a (finite) partition of W to begin with, and so such a result

21 It has been noted that de Finetti’s (1974) original proof of Theorem 2.9 assumes the Brier score
extends to countably infinite opinion sets. However, the only proof I have seen is a sketch of the necessity
of coherence for countably infinite partitions by Joyce (1998, 6n).
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might be especially relevant to extending the accuracy dominance argument for
probabilism to countably infinite opinion sets.

Lemma 4.25. A countably infinite partition is W-stable relative to any generalized
legitimate inaccuracy measure.

Theorem 4.26. Let �W;F � be a countably infinite partition and I be a generalized
legitimate inaccuracy measure. Then the following are equivalent:

1. c is coherent;
2. c is not weakly dominated;
3. c is not strongly dominated.

4.4 S-stable opinion spaces
In this section, I establish the equivalence between coherence and avoiding
strong dominance for certain countably infinite opinion spaces (Theorem 4.29).
The conditions are in terms of the analogous stability condition—S-stability
(Definition 4.28)—but a different finiteness assumption, and the proof strategy is
the same as for Theorem 4.19.

I begin by establishing that on compact countably infinite opinion spaces, coherent
and thus countably coherent credence functions (recall Theorem 4.10) are not
strongly dominated.

Proposition 4.27. Let �W;F � be a compact opinion space and I be a generalized
legitimate inaccuracy measure. If c is coherent (and thus countably coherent), then
c is not strongly dominated relative to I.

I now introduce S-stability and the main theorem of this section.

Definition 4.28. Let �W;F � be S-stable relative toI if for any coherent credence func-
tion c on �W;F �, if c is strongly dominated relative to I, then c� on �W�;F �� is
strongly dominated relative to I.

Theorem 4.29. LetI be a generalized legitimate inaccuracy measure and �W;F � be
an S-stable opinion space relative toI. Assume thatI�c;w� < ∞ for each coherent
credence function c and w 2 W. Then the following are equivalent:

1. c is coherent;
2. c is not strongly dominated.

Proof. Assume c is coherent. c� defined on the compact opinion space �W�;F �� is
countably coherent by Lemma 4.12. Thus, by Proposition 4.27, c� is not strongly
dominated. But since F is S-stable, this implies that c is not strongly dominated
relative to I. The other direction follows from Theorem 3.4. □
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Remark 4.30. It is trivial to see that S-stability is necessary for the equivalence of
coherence and avoiding strong dominance. How much the assumption that coherent
credence functions satisfy I�c;w� < ∞ for all w can be weakened is an open
question.

Remark 4.31. Schervish et al. (2009) take a different approach to dropping the
assumption that the opinion set is finite: they apply weak and strong dominance
notions to finite subsets of opinion sets of arbitrary cardinality. They also explore
connections between the two notions of dominance considered here—weak and
strong dominance—and what they call coherence1, which amounts to avoiding being
susceptible to a finite Dutch book.22

Remark 4.32. Theorem 4.29 is related to Theorem 1 of Schervish et al. (2014).
However, 1) their assumptions are in some ways weaker and in some ways stronger

Figure 4.1. Summary of the results presented in Sections 3 and 4. Each column summarizes a main result by
specifying conditions under which a particular conclusion about a credence function c holds. The column
titled “Opinion Space” specifies conditions on the opinion space on which c is defined, the column titled
“Inaccuracy Measure” specifies conditions on the generalized legitimate inaccuracy measure relative to
which dominance is defined, and the column titled “Conclusion” specifies what can be deduced regarding
the relationship between coherence and dominance for c under the given conditions. “–” in a box means no
additional condition is imposed.

22 Thanks to Teddy Seidenfeld for pointing me to this work of Schervish et al. (2009). An additional
point worth noting about their work is that they further generalize the finite results of Predd et al. (2009)
by i) allowing a wider variety of inaccuracy measures, including those that are merely proper as opposed
to strictly proper, and ii) by scoring conditional probabilities. A natural direction for future work is to use
these relaxations in the finite case to relax the assumptions made here. Similarly, Steeger (2019)
considers the property of avoiding strong dominance with respect to the Brier score for every finite
subset of opinion sets of arbitrary cardinality (see “sufficient coherence” on p. 38 of Steeger 2019).
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than those in Theorem 4.29,23 and 2) although Schervish et al. (2014) establish that
coherence is sufficient for avoiding strong dominance in certain cases, unlike
Theorems 4.19 and 4.29, their results do not show that coherence is sufficient for
avoiding even weak dominance in certain cases or that incoherence always entails
being weakly dominated (and sometimes strongly dominated) by a coherent credence
function (see Remark 3.6).

For a summary of the results established thus far, see Figure 4.1.

4.5 Further directions
Although Theorems 4.19 and 4.29 come close to characterizing the countably infinite
opinion spaces on which not being weakly and strongly dominated, respectively, are
equivalent to coherence, how far the finiteness assumptions in the theorems can be
weakened is an open question. This is a natural next line of inquiry. In addition, it
would be useful to determine characterizations of W- and S-stability in terms of
the inaccuracy measure that would make it relatively easy to check whether an
opinion set is W- or S-stable. For example, might it be that an opinion space is
W- and S-stable relative to a generalized legitimate inaccuracy measure if the gener-
alized legitimate inaccuracy measure only outputs finite scores for credence functions
on that opinion space? Also, there are natural ways to generalize the previous results
to more closely match the finite results: allow different one-dimensional Bregman
divergences for different propositions and allow unbounded one-dimensional
Bregman divergences.

Another direction one could go in exploring the sufficiency of coherence for
avoiding dominance is as follows: instead of characterizing the countably infinite
opinion sets on which Theorem 2.9 goes through, one could characterize the kinds
of coherent credence functions for which Theorem 2.9 goes through on any countably
infinite opinion set.24 Doing so might show that although coherence is not enough to
avoid dominance in all cases, coherence along with additional plausible constraints is
sufficient. In particular, although restricting to finitely supported credence functions
is not enough to establish the sufficiency of coherence for avoiding strong dominance
(as shown in Example 4.2), whether countable coherence is equivalent to avoiding
weak or strong dominance on the restricted class is an open question.

5. The uncountable case
So far, we have been concerned with credences defined on countable opinion sets. We
now consider what can be said in favor of probabilism when credences are defined on
uncountable opinion sets, though much of what is said will be preliminary. When
extending from the finite to the countably infinite setting, we used inaccuracy meas-
ures that naturally restrict to legitimate inaccuracy measures in the finite case. When
extending from the countable to the uncountable setting, we will use inaccuracy
measures defined as integration against a measure on the uncountable set of

23 Schervish et al. (2014) require that the prevision for the inaccuracy of the credence function be finite
and that inaccuracy be pointwise finite, whereas I only assume the latter. On the other hand, I require the
opinion set to be S-stable, whereas they do not.

24 Thanks to Thomas Icard and Milan Mossé for suggesting this alternative direction of study.
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propositions. This is a natural generalization of (generalized) legitimate inaccuracy
measures, for (generalized) legitimate inaccuracy measures are defined as integration
against a particular kind of measure on a countable set of propositions. Indeed, upon
inspection, one can see that in the finite and countably infinite setting, a (generalized)
legitimate inaccuracy measure defined in terms of weights faig and one-dimensional
Bregman divergence d is given by integrating d�vw���; c���� as a function of
F 	 fp1; p2; . . .g against the measure µ on F defined by µ�A� 	P

pi2A ai for
A 2 P�F �. We generalize this construction for uncountable F by defining the legiti-
mate inaccuracy measures to be given by integration of a one-dimensional Bregman
divergence d�vw���; c���� as a function of F against a measure µ defined on F .

Due to the measure-theoretic construction of the inaccuracy measures we
consider, we restrict our attention to measurable credence functions and equate
credence functions that are equal almost everywhere. On some measure spaces, such
as the weighted counting measure spaces (with all nonzero weights) underlying
(generalized) legitimate inaccuracy measures, we lose nothing since every credence
function is measurable and only the empty set is measure zero. However, in other
cases, these assumptions are substantive. I discuss this issue further after stating
the main theorem of this section (Theorem 5.3).

We now formally extend the accuracy framework to the measure theoretic setting.

Definition 5.1. Let F � P�W� be an opinion set, �F ;A;µ� a measure space,25 and
c : F ! R
. If c is A-measurable and µ�fp : c�p�=2�0; 1�g� 	 0, we call c a µ-credence
function. We say that a µ-credence function c is µ-coherent if there is a coherent (in the
usual sense) credence function c0 on F with c 	 c0 µ-a.e. We say a µ-credence func-
tion c is µ-incoherent if there is no coherent credence function c0 such that c 	 c0

µ-a.e.

Definition 5.2. Let F be an opinion set (of arbitrary cardinality) over a set W of
worlds. Let �F ;A;µ� be a σ-finite measure space over the opinion set F . Let C be
the space of all µ-credence functions. Assume I : C × W ! �0; ∞ � is such that,
for all �c;w� 2 C × W , we have

I�c;w� 	 Bϕ;µ�υw; c�;

where Bϕ;µ is a Bregman distance relative to ϕ26 and �F ;A;µ� (see Definition A.1).
In particular, each vw is a µ-credence function. Then we call I an integral inaccuracy
measure on �F ;A;µ�.

Here is a dominance result for integral inaccuracy measures. The proof is essen-
tially a measure theoretic version of the proof of Theorem 3.4.

Theorem 5.3. Let I be an integral inaccuracy measure on a finite measure space
�F ;A;µ�.27 Then for every µ-credence function c, if c is µ-incoherent, then there
is a µ-coherent µ-credence function c0 that strongly dominates c relative to I.

25 So A is a σ-algebra on F , and µ is a (countably additive) measure on �F ;A�.
26 Again, we assume that the one-dimensional Bregman divergence d generated by ϕ is bounded.
27 We assume finiteness for technical reasons.
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It is worth noting that this result does not show that every incoherent credence
function is strongly dominated because not every incoherent credence function is a
µ-incoherent credence function: there can be incoherent credence functions that are
µ-a.e. equivalent to coherent credence functions, even ones that are undominated
insofar as any coherent credence function is undominated.28 This is to be expected
because, as discussed earlier, in moving to a measure-theoretic framework,
measure-zero differences between credence functions will not be detected as far
as accuracy is concerned, and thus incoherent credence functions that deviate from
coherence by a measure-zero set will have the same inaccuracy scores as coherent
credence functions. Thus, an accuracy dominance argument in this measure-theoretic
setting will at most establish that one ought to have a credence function that is
coherent off a measure-zero set (i.e., is µ-coherent). Theorem 5.3 is a first step toward
such an argument. I leave for future work a consideration of different ways to extend
inaccuracy measures to the uncountable setting that might establish not just
µ-coherence but (strict) coherence.

Here is an example of how Theorem 5.3 can be used to give an accuracy argument
in a concrete uncountable setting. Assume we have a coin with unknown bias θ 2 �0; 1�
and a set of propositions of the form “a � θ � b” for each a; b 2 �0; 1�with a � b. Then
a credence function on this uncountable opinion set can be represented by a function

c : X ! �0; 1�;
where X 	 f�a; b� : 0 � a � b � 1g � �0; 1�2. We put the Lebesgue measure on X to
generalize the additive constraint often assumed in the finite case. We let

I�c;w� 	
Z
X
d�vw�X�; c�X��λ�dX�

for a bounded one-dimensional Bregman divergence d. Then the assumptions of
Theorem 5.3 hold, so we get the following dominance result: for any λ-credence func-
tion c, if c is λ-incoherent, then there is a λ-coherent λ-credence function that
strongly dominates c.

6. Discussion
I now briefly consider the difficult question of what normative conclusions to draw
from the results of Sections 3–5.

6.1 Extending the finite accuracy dominance argument for probabilism
To begin, it has been shown by Schervish et al. (2009, Theorem 1) that a credence
function on an opinion set of arbitrary cardinality is coherent if and only if its restric-
tion to any finite subset of the opinion set is not strongly dominated. One might
wonder whether this result suffices for an accuracy-based argument for probabilism
on an infinite opinion set.29 Why care, in addition, about dominance relations when all
infinitely many of the agent’s credences are scored at once?

28 Thanks to an anonymous referee for raising this issue.
29 Easwaran (2016) suggests appealing to a similar notion of “local accuracy dominance” when dealing

with infinite sets of full beliefs.
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We need to separate the questions of whether there is an accuracy-based argument
for probabilism in the infinite setting and whether there is an extension to the infinite
setting of the accuracy dominance arguments for probabilism already established in
the finite setting. Although there are differences between the various accuracy domi-
nance arguments for probabilism in the finite setting, they share the key feature of
appealing to the following mathematical fact: relative to some legitimate way of
scoring the inaccuracy of credence functions over a given opinion set, every inco-
herent credence function is accuracy dominated by a coherent credence function,
and no coherent credence function is accuracy dominated by any other credence
function.30 Motivating the appeal to this mathematical fact is a commitment to
the epistemic value of having an overall accurate epistemic state, where the epistemic
state in question is represented by a credence function.

By suggesting that the epistemic value underlying the finite accuracy dominance
arguments is that of overall accuracy, I do not mean to suggest that inaccuracy meas-
ures ought to be sensitive to what Pettigrew (2016) calls the “irreducibly global
features” of a credence function (see 49–50). To suggest so would likely conflict with
allowing an inaccuracy measure to be additive, which I do here. Indeed, Pettigrew
motivates additivity by suggesting that inaccuracy need not be sensitive to global
features because credence functions are not unified doxastic states but simply
agglomerations of individual credences.31 The thought here, however, is that in
the finite accuracy dominance argument, all credences in the agglomeration
contribute to the accuracy scores of the representing credence function (perhaps
differentially weighted), which are then analyzed for dominance relations. Doing
so is motivated by the epistemic ideal of an accuracy undominated epistemic state,
where every credal state in the epistemic state is accounted for in scoring. By simi-
larly requiring every credal state in an infinite agglomeration to contribute to the
accuracy scores of the representing credence function that are then analyzed for
dominance relations, I prove results that allow one to extend the accuracy dominance
argument while retaining this underlying motivating ideal.

Now, Schervish et al.’s Theorem 1 alone does not establish the cited crucial math-
ematical fact when credence functions are defined over an infinite opinion set, for it
suggests no way to score credence functions over infinite opinion sets in the first
place. Therefore, an appeal to their result would not be motivated by a commitment
to the epistemic value of having an overall accurate epistemic state, a commitment
that underwrites the existing accuracy dominance arguments for probabilism.
Moreover, while their Theorem 1 establishes that for an incoherent credence function
c, the restriction of c to any finite subset on which it is incoherent is strictly domi-
nated by a coherent credence function, the dominating credence function may
depend on the finite subset.32 Thus, their result does not provide even an alternative
sense in which every incoherent credence function is dominated by a single coherent
credence function, which is the kind of result appealed to in the argument for finite
accuracy dominance.

30 One notable exception is that unlike Joyce (2009), Joyce (1998) does not appeal to the second half of
this key fact.

31 I am grateful to an anonymous referee for raising this objection.
32 In fact, this dependence may hold even in the finite case. See Schervish et al. (2009, example 10).
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Of course, even if a local dominance result like that of Schervish et al. cannot be
used to extend to the infinite setting what is often referred to as the accuracy domi-
nance argument for probabilism, it could be used to establish a different accuracy-based
argument for probabilism in the infinite setting. Thus, we should not assume that
from an accuracy perspective, probabilism in the infinite setting will stand or fall
based on the results in this article—that depends, for instance, on whether it is irra-
tional in itself to be in an epistemic state where restrictions of one’s representing
credence function are accuracy dominated. My point is simply that whatever accu-
racy-based arguments one can give for probabilism in the infinite setting, it is impor-
tant to determine whether the influential set of arguments that are often referred to
under the single heading of “the accuracy dominance argument for probabilism”
must be restricted to finite opinion sets. In light of these considerations, to make clear
that I will be concerned with comparing the “total” inaccuracy scores of credence
functions, let us call the inaccuracy (resp., accuracy) of an agent’s entire epistemic
state—that is, the inaccuracy of the agent’s full credence function—the total inaccu-
racy (resp., total accuracy) of the agent’s epistemic state.

6.2 The status of the accuracy dominance argument for probabilism
on infinite opinion sets
Given the results of the last three sections, what should we conclude about the accu-
racy dominance argument for probabilism and more generally about the accuracy
framework applied to credence functions defined on infinite opinion sets? When
an agent’s epistemic state contains only finitely many credences, the concern for total
accuracy leads to a dominance justification for probabilism (using Theorem 2.9).
However, we saw earlier that when the agent’s epistemic state includes even count-
ably infinitely many credences, the concern for total accuracy does not so clearly lead
to a dominance justification for probabilism because coherence is not sufficient to
avoid accuracy dominance in all cases (as in Examples 4.1 and 4.2). I suggest that
the main normative challenges at this point are i) to clarify this asymmetry in the
relationship between coherence and total accuracy dominance for finite and infinite
opinion sets and ii) to determine what this asymmetry means for the accuracy frame-
work more generally.

One response is to deny that real-world agents ever have infinitely many
credences at a time, and thus this entire discussion is mere ideal theory. The empirical
claim that real-world agents are restricted to finite opinion sets is not obvious,
however. For example, if there were a coin in front of me of unknown bias, could
I not have credences in each of the propositions “the bias of the coin is x” for
x 2 �0; 1�?33 Or could I not have credence 2
n in the proposition “the coin would land
heads n times in a row if I flipped it n times in a row” for each n 2 N? More generally,
it seems we can have credences parameterized by some infinite set such as the natural
numbers. Thus, this kind of objection to considering infinite opinion sets at all seems
unlikely to work or, at the very least, requires further defense.

33 Pettigrew (2016, 222) gives this example to motivate dropping his assumption that the opinion set is
finite.
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Alternatively, one could argue that any asymmetry is unimportant with regard to
probabilism: while the results show that some coherent credence functions are
ruled out as irrational on the basis of total accuracy dominance, all incoherent
credence functions are ruled out on the same basis (in light of Theorems 3.4 and
5.3). Thus, probabilism is justified similarly in both the finite and infinite case:
one ought to have at least coherent credences so as to avoid total accuracy domi-
nance. The only difference is that in the infinite case, coherence is not enough to
avoid total accuracy dominance. I find this response promising. However, one
complication is that although Theorems 3.4 and 5.3 together guarantee that inco-
herent credence functions are dominated by coherent credence functions, no
matter the infinite opinion set, they do not guarantee dominance by an undominated
coherent credence function in general.34 But as discussed in Footnote 17, it has been
argued that being accuracy dominated is not irrational in itself, but rather, being
dominated by a credence function that is itself not dominated is irrational.35 Thus,
this line of response would require proving additional results or appealing to a
controversial decision-theoretic principle.

A more radical response would be to claim that upon examination, there is simply
no reasonable formal measure of total inaccuracy for an agent with infinitely many
credences. In particular, no generalized legitimate inaccuracy measure, as I have been
calling them, is in fact a legitimate measure of total inaccuracy in the infinite setting.
Thus, to justify probabilism on any opinion set using accuracy considerations, there is
no other option but to appeal to a local dominance result like that of Schervish et al.
(2009). I see three challenges with this response. First, if there is no way to evaluate
epistemic states with infinitely many credences for total inaccuracy, i) is the ability to
justify norms on epistemic states in terms of total inaccuracy restricted in scope, and
ii) if so, might this restriction in scope have negative consequences for the more
general project of justifying epistemic norms by appealing to total inaccuracy? For
example, if concern for total accuracy can only motivate epistemic norms in the finite
case so that one must appeal to other epistemic virtues in the infinite case anyway,
why care so much about total accuracy in the finite case?

Second, there are infinite opinion sets for which the natural extensions of the inac-
curacy measures used in the finite case seem to behave as they do in the finite case
with respect to accuracy dominance (e.g., for countably infinite partitions). Do we
reject the legitimacy of generalized legitimate inaccuracy measures even in these
cases where the measures behave as we would like? If so, why? And if not, then work
must be done to spell out precisely for which infinite opinion sets there is no reason-
able way to measure total inaccuracy. Presumably, Theorems 4.19 and 4.29 would be
helpful toward this end.

Third, if one is to deny the legitimacy of what I have called generalized legitimate
inaccuracy measures, then one needs to explain what exactly is wrong with them,

34 It is an important open question whether Theorems 3.4 and 5.3 can be strengthened to conclude
that the dominating coherent credence function can always be assumed to be undominated.

35 See Pettigrew (2016, 20–21) for a counterexample to the stronger principle that dominance alone is
irrational.
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given their structural and axiomatic similarity to the inaccuracy measures often used
to measure the total accuracy of credence functions on finite opinion sets.36 Although
one might think that a simple response is that no credence function should be
infinitely inaccurate according to a reasonable inaccuracy measure, this response
is not so obviously compelling. First, as Pettigrew (2016) points out, it is hard to assess
the plausibility of this claim because whether inaccuracy can be infinite or not “is not
something which our concept of accuracy contains much information about” (37).
Another issue with this response, also raised by Pettigrew, is that the logarithmic
inaccuracy measure—often seen as a reasonable way to measure inaccuracy in the
finite case (see, e.g., McCutcheon 2019)—can output an infinite inaccuracy score even
for finite opinion sets. So if one rejects generalized legitimate inaccuracy measures by
virtue of their outputting infinite values, this will have consequences for what the
legitimate inaccuracy measures are in the finite case. Lastly, insisting on only inac-
curacy measures that output a finite inaccuracy score would justify focusing on a
subclass of the generalized legitimate inaccuracy measures rather than justify
rejecting all of them.37 In fact, it is an interesting open question whether this restric-
tion to the finite generalized legitimate inaccuracy measures picks out a set of gener-
alized legitimate inaccuracy measures for which the finite dominance result goes
through to all countably infinite opinion sets.38

To conclude, I do not claim to have provided a full analysis of the options available
for responding to the results in this paper, but I hope to have shown that further
philosophical work is in order if we are to understand their implications for proba-
bilism and accuracy-based justifications of epistemic norms more generally.

7. Conclusion
As discussed in the previous section, there is plenty of normative work to be done
using the results established in this article. In light of the failure of coherence being
sufficient to avoid strong dominance on certain countably infinite opinion sets, the
most pressing question seems to be this: is there an accuracy dominance argument for
probabilism on at least all countable opinion sets? If not, what does this mean for the
accuracy project as a whole? Can we give some sort of privileged status to certain
kinds of opinion sets or inaccuracy measures for which coherence is equivalent to

36 For example, generalized legitimate inaccuracy measures satisfy all of Pettigrew’s (2016, 65) axioms
on a legitimate measure of inaccuracy except for his decomposition axiom because it is not clear how to
even define a key part of the decomposition axiom—what he calls the “well calibrated counterpart” of a
credence function—in the infinite setting. See also footnote 14. Clearly, generalized legitimate inaccu-
racy measures do not satisfy Joyce’s (2009) “coherent admissibility” in general. However, generalized
legitimate inaccuracy measures do satisfy coherent admissibility when restricted to countably infinite
partitions (Theorem 4.26), and Joyce (2009) restricts them to credence functions on partitions in his argu-
ment in the finite case. Further analysis of the axiomatic properties of generalized legitimate inaccuracy
measures is left for future work.

37 For example, if the weights defining a generalized legitimate inaccuracy measure are summable,
then inaccuracy is always finite.

38 Walsh’s (ms) result discussed earlier (see Theorem 3.7) may provide some evidence in the
affirmative.
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not being dominated (e.g., partitions)? What is the normative status of the stronger
condition of countable coherence? Further, although the measure theoretic frame-
work introduced in Section 5 to score the inaccuracy of credence functions over
opinion sets of arbitrary cardinality seems like a natural extension of the finite
and countably infinite frameworks, is it well motivated that inaccuracy does not track
the behavior of a credence function on measure zero sets? The hope with this paper is
to start a conversation about these questions by first establishing relevant mathemat-
ical results.
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A. Appendix

A.1 Proof of Theorem 3.4
I review the necessary background before proving Theorem 3.4.

A.1.1 Generalized Projections
Csiszár (1995) showed that what he calls generalized projections onto convex sets with respect to Bregman
distances exist under very general conditions. I review his relevant results here (but assume knowledge
of basic measure theory).

Definition A.1. Fix a σ-finite measure space �X;X ;µ�. The Bregman distance of nonnegative
(X-measurable) functions s and t is defined by

Bϕ;µ�s; t� 	
Z

d�s�x�; t�x��µ�dx� 2 �0; ∞ �;

where d�s�x�; t�x�� 	 ϕ�s�x�� 
 ϕ�t�x�� 
 ϕ0�t�x���s�x� 
 t�x�� for some strictly convex, differentiable
function ϕ on �0; ∞ �.39 Note that Bϕ;µ�s; t� 	 0 if s 	 t µ-a.e. See Csiszár (1995, 165) for details.

Remark A.2. Notice that a generalized quasi-additive Bregman divergenceD with weights faig∞i	1 whose
generated one-dimensional Bregman divergence d is given in terms of ϕ has a corresponding Bregman
distance Bϕ̄;µ with

39 For Bϕ;µ to be a distance measure, we do not need to assume that ϕ�1� 	 ϕ0�1� 	 0 by the remark
following equation (1.9) in Csiszár (1995).
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1. the measure space being �N;P�N�;µ�, where µ�A� 	P
i2A ai for each A 2 P�N�;

2. ϕ̄ on �0; ∞ � being a strictly convex, differentiable extension of ϕ on �0; 1�.40

Thus, nonnegative �P�N�-measurable) functions are elements of R
∞
. Note, importantly, that the

corresponding generalized legitimate inaccuracy measureI determined byD is also given by the corre-
sponding Bregman distance. That is,

I�c;w� 	 Bϕ̄;µ�vw; c�:

To simplify notation, let B denote a Bregman distance Bϕ̄;µ. Let S be the set of nonnegative measurable
functions on �X;X ;µ�. For any E � S and t 2 S, we write

B�E; t� 	 inf
s2 E

B�s; t�:
If there exists s� 2 E with B�s�; t� 	 B�E; t�, then s� is unique and is called the B-projection of t onto E (see
Csiszár 1995, Lemma 2). As Csiszár notes, these projections may not exist. However, a weaker kind of
projection exists in a large number of cases. To describe them, we need to introduce a kind of conver-
gence called loose in µ-measure convergence.

Definition A.3. We say a sequence fsng of elements from S converges loosely in µ-measure to t, denoted by
sn ⇝ µt, if for every A 2 X with µ�A� < ∞ , we have

lim
n!∞

µ�A \ fp : jsn�p� 
 t�p�j > ɛg� 	 0 for all ɛ > 0:

Definition A.4.

i. Given E � S and t 2 S, we say that a sequence fsng of elements from E is a B-minimizing
sequence if B�sn; t� ! B�E; t�.

ii. If there is an s� 2 S such that every B-minimizing sequence converges to s� loosely in µ-
measure, then we call s� the generalized B-projection of t onto E.

The result that is integral to proving Theorem 3.4 is the following (see Csiszár’s Theorem 1,
Lemma 2, and corollary of Theorem 1).

Theorem A.5. (Csiszar 1995) Let E be a convex subset of S and t 2 S. If B�E; t� is finite, then there exists
s� 2 S such that

B�s; t� � B�E; t� 
 B�s; s�� for every s 2 E;

and B�E; t� � B�s�; t�. It follows that the generalized B-projection of t onto E exists and equals s�.

A.1.2 Extending Partial Measures

We also use an extension result of Horn and Tarski (1948) in the proof of Theorem 3.4. Following Horn
and Tarski, we introduce partial measures and recall that they can be extended to finitely additive prob-
ability functions. Recall the definition of a finitely additive probability function in Definition 2.2
(although we drop the assumption that F is finite).

40 Using that ϕ0 exists and is finite at x 	 1 as we assumed d is bounded, we can extend ϕ as follows: for
x 2 �1; ∞ �, let ϕ̄�x� 	 q�x� 	 x2 
 bx
 c, where b and c are chosen so that ϕ�1� 	 q�1� and
ϕ0�1� 	 q0�1�. Then, using the fact that ϕ̄ is differentiable at 1 by construction, and a function is strictly
convex if and only if its derivative is strictly increasing, it is easy to see that ϕ̄ is differentiable and strictly
convex on �0; ∞ �.
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Remark A.6. It is a simple corollary of the definition of a finitely additive probability function c over an
algebra F that for any p; p0 2 F : if p � p0 , then c�p� � c�p0�.

Here is another useful fact about finitely additive probability functions:

Proposition A.7. If c is a finitely additive probability function on an algebra F and a0; . . . ; am
1 2 F ,
then

Xm
1
k	0

c�ak� 	
Xm
1
k	 0

c
[

p2 Sm;k

\
i� k

api

0
@

1
A; (4)

where Sm;k is the set of all sequences p 	 �p0; . . . ; pk� with 0 � p0 < . . . < pk < m.

To introduce the notion of a partial measure, we need the following definition:

Definition A.8. Let ϕ0; . . . ; ϕm
1 and ψ0; . . . ;ψn
1 be elements of F . Then we write

�ϕ0; . . . ; ϕm
1� � �ψ0; . . . ;ψn
1�
to mean [

p2 Sm;k

\
i� k

ϕpi �
[

p2 Sn;k

\
i� k

ψpi for every k < m; (5)

where Sr;k (r 	 m; n) is as in Proposition A.7.41

Definition A.9. A function c, defined on a subset S of an algebra F over W, that maps to R is called a
partial measure if it satisfies the following properties:

1. c�x� � 0 for x 2 S;
2. if ϕ0; . . . ; ϕm
1;ψ0; . . . ;ψn
1 2 S and

�ϕ0; . . . ; ϕm
1� � �ψ0; . . . ;ψn
1�;
then

Xm
1
k	 0

c�ϕk� �
Xn
1
k	 0

c�ψk�; and

3. W 2 S and c�W� 	 1.

The following result is the point of introducing the previous definitions.

Theorem A.10. (Horn and Tarski 1948) Let c be a partial measure on a subset F of an algebra A. Then
there is a finitely additive probability function c� on A that extends c.

A.1.3 Proof

We now establish the necessity of coherence to avoid dominance.

Theorem 3.4. Let F be a countably infinite opinion set,I a generalized legitimate inaccuracy measure,
and c an incoherent credence function. Then:

41 Note that if m > n, this condition implies
S

p2 Sm;k
T

i� k ϕpi 	
S

p2 Sn;k
T

i� k ψpi 	 ∅ for k � n.
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1. c is weakly dominated relative to I by a coherent credence function; and
2. if I�c;w� < ∞ for each w 2 W, then c is strongly dominated relative to I by a coherent

credence function.

Proof. Let I be a generalized legitimate inaccuracy measure and thus defined by a Bregman distance
Bϕ̄;µ (see Remark A.2). We write B for Bϕ̄;µ. Let S be the set of nonnegative functions onF . Let E � S be the
set of coherent credence functions on F . Then clearly E is convex.

Let c be an incoherent credence function.

Case 1: I�c;w� 	 ∞ for all w 2 W. Then because I�vw;w� 	 0 for all w 2 W, any omniscient
credence function weakly dominates c.

Case 2: I�c;w0� < ∞ for some w0 2 W. We can show that there is a coherent credence function πc

such that

I�c;w� > I�πc;w� for any w such that I�c;w� < ∞ :

Since vw0 2 E, we see that

B�E; c� � B�vw0 ; c� 	 I�c;w0� < ∞ :

Thus, we can apply Theorem A.5 to get a πc 2 S such that

B�s; t� � B�E; c� 
 B�s;πc� for every s 2 E: (6)

In particular, (6) holds when s is the omniscient credence function at world w for any w 2 W, and so we
see that

I�c;w� � B�E; c� 
I�πc;w� (7)

for all w, where all numbers in (7) are finite whenever I�c;w� < ∞ .
Next, we can show that πc is in fact coherent. This is due to the following claim: E is closed under

loose convergence in µ-measure, where µ is a weighted counting measure on P�N� defined with weights
faig∞i	1. To see this, let cn 2 E for each n and c 2 S. Assume cn ! c loosely in µ-measure. We can show
c 2 E; that is, c is coherent. Note that c is coherent on F if and only if c0 : F [ fWg ! �0; 1� is coherent on
F [ fWg, where c0 	 c on F and c0�W� 	 1. Thus, it suffices to assume c and cn for all n are defined
on F [ fWg with c�W� 	 cn�W� 	 1 for all n.

It is easy to see that loose convergence in a weighted counting measure (where all weights are
nonzero) implies pointwise convergence on F , so

c�p� 	 lim
n!∞

cn�p� 2 �0; 1�

for each p 2 F [ fWg. To show c 2 E, it suffices to show that c can be extended to a finitely additive
probability function on P�W�.

First, we can show that c is a partial measure on F [ fWg. Definitions A.9.1 and A.9.3 clearly hold for
c, so we just need to show that Definition A.9.2 holds. Let ϕ0; . . . ; ϕm
1;ψ0; . . . ;ψm0
1 2 F [ fWg and[

p2 Sm;k

\
i� k

ϕpi �
[

p2 Sm
0 ;k

\
i� k

ψpi

for every k < m. Because the cn are coherent and thus extend to finitely additive probability functions on
algebras containing F , we have by Proposition A.7 and Remark A.6 that

Xm
1
k	 0

cn�ϕk� 	
Xm
1
k	 0

cn
[

p2 Sm;k

\
i� k

ϕpi

0
@

1
A �

Xm0
1

k	 0

cn
[

p2 Sm
0 ;k

\
i� k

ψpi

0
@

1
A 	

Xm0
1

k	 0

cn�ψk�

using that [
p2 Sm;k

\
i� k

ϕpi 	
[

p2 Sm
0 ;k

\
i� k

ψpi 	 ∅

for k � m0 . Sending n to infinity and using the pointwise convergence of cn to c on F [ fWg, we obtain
that
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Xm
1
k	 0

c�ϕk� �
Xm0
1

k	 0

c�ψk�:

Thus, c is a partial measure on F [ fWg. By Theorem A.10, it follows that there is a finitely additive
probability function c� on an algebra F � � F that extends c, and so c 2 E, which concludes the proof
that E is closed under loose µ-convergence.

By Theorem A.5, πc is the generalized B-projection of c onto E. Also, because

B�E; c� 	 inf
s2 E

�s; c� < ∞ ;

there is a B-minimizing sequence fsng � E such that B�sn; c� ! B�E; c� by the definition of infimum. By
the definition of a generalized projection, sn ⇝ µπc. Since E is closed under loose convergence, it follows
that πc 2 E. Further, by Theorem A.5,

B�E; c� � B�πc; c� > 0

because πc ≠ c (because c is incoherent) and B�s; t� 	 0 if and only if s 	 t (because µ is a weighted
counting measure with all nonzero weights). Thus, for every w such that I�c;w� < ∞ , we deduce that

I�c;w� � B�E; c� 
I�πc;w� > I�πc;w�:
This proves that c is weakly dominated by πc , and c is strongly dominated by πc if I�c;w� < ∞ for all
w 2 W. □

A.2 Proofs from Section 4

We assume throughout this section that F is countably infinite.

Proposition 4.7. Let F be a countably infinite opinion set that is countably discriminating (thus, VF is
countable). Then a credence function c is countably coherent if and only if there are λvw 2 �0; 1� withP

vw2VF
λvw 	 1 such that

c�p� 	
X

υw2VF

λvwυw�p�

for all p 2 F .

Proof. I adapt the proof of Proposition 1 of Predd et al. (2009). Let F 	 fp1; p2; . . .g. Let X be the collec-
tion of all nonempty sets of the form

T∞
i	1 p

�
i , where p

�
i is either pi or p

c
i . Then X partitions W. Also, X is

in bijection with VF , the set of omniscient credence functions.
Indeed, let f map vw to

T∞
i	1 p

�
i , where p

�
i 	 pi if vw�pi� 	 1 and p�i 	 pci otherwise. Then for each w,

w 2 f �vw�, and so f �vw� 2 X . Note that f is onto. Indeed, let w 2T∞
i	1 p

�
i , where

T∞
i	1 p

�
i 2 X . Then

f �vw� 	
T∞

i	1 p
�
i . Also, f is injective. Indeed, assume f �vw� 	 f �vw0 �. Then

f �vw� 	
\∞
i	1

p1i 	
\∞
i	1

p2i 	 f �vw0 �

for pji 	 pi or p
j
i 	 pci for all i 2 N and j 2 f1; 2g. If p1i ≠ p2i for some i, then without loss of generality,

we may assume p1i 	 pi and p2i 	 pci . So w 2 p1i but w =2 p2i , and thus w =2T∞
i	1 p

2
i . But w 2T∞

i	1 p
1
i by defi-

nition of f and so
T∞

i	1 p
1
i ≠

T∞
i	1 p

2
i , which is a contradiction. It follows that p1i 	 p2i for all i, but then by

definition of f , this implies vw�pi� 	 1 if and only if vw0 �pi� 	 1 for all i, and so vw 	 vw0 .
It is easy to see that because F is countably discriminating, VF is countable. It follows that X is

countable. Enumerate the elements of VF and X by vw1
; vw2

; . . . and e1; e2; . . ., respectively, such that
f 
1�ej� 	 vwj

. We have that pi is the disjoint union of ej such that ej � pi or, equivalently, the ej where
f 
1�ej��pi� 	 1. Note that i) for any countably additive probability function µ on a σ-algebra containing
F (and thus containing X ) and any pi 2 F :
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µ�pi� 	
X∞
j	1

µ�ej�f 
1�ej��pi�:

Now we can prove the equivalence. Assume c is countably coherent. By the definition of countable
coherence, c extends to a countably additive probability function µ on a σ-algebra containing F . Then
by i),

c�pi� 	 µ�pi� 	
X∞
j	1

µ�ej�f 
1�ej��pi�

for all pi 2 F . But because µ�ej� are nonnegative and sum to 1 (because the ej values partitionW, and µ is
a countably additive probability function), we have that c has the form stated.

Now assume c�pi� 	
P∞

j	1 λjvwj
�pi� for all i, where

P∞
j	1 λj 	 1. Let σ�F � be the smallest σ-algebra

onW containing F . Then it is easy to check that the function on σ�F � defined by v̄wj
�p� 	 1 if and only if

wj 2 p extends vwj
and is a countably additive probability function on σ�F �. ThenP∞

j	1 λj v̄wj
is a count-

ably additive probability function on σ�F � since a countable sum of countably additive probability func-
tions with coefficients that sum to 1 is a countably additive probability function. Because

c�pi� 	
X∞
j	1

λjυwj
�pi� 	

X∞
j	1

λiῡwj
�pi�

for all i, it follows that c extends to a countably additive probability function on a σ-algebra
containing F . □

Lemma 4.11. For �W;F �, an opinion space, �W�;F �� is compact.

Proof. Let fΨ�pn�f �n�g∞n	1 be a sequence of elements ofF � or their complements, as in Definition 4.9. Case
1: For each N, there is some wN 2 W such that wN 2TN

n	1 Ψ�pn�f �n�. Then, since i) Ψ�p� \W 	 p and ii)
Ψ�p�c \W 	 pc for any p 2 F , it follows that wN 2TN

n	1 p
f �n�
n for each N. If there is some w0 2 W with

w0 2T∞
n	1 p

f �n�
n , then, by i) and ii), it follows that w0 2 T∞

n	1 Ψ�pn�f �n�. Otherwise, by construction, we
defined some xs to be such that xs 2

T∞
n	1 Ψ�pn�f �n�. In either case, we are done. Case 2: There is some N

such that
TN

n	1 Ψ�pn�f �n� � W� nW. I claim this implies that
TN

n	1 Ψ�pn�f �n� 	 ∅. Indeed, if there were
some w 2 W� nW such that w 2TN

n	1 Ψ�pn�f �n�, then that is because fpf �n�n gNn	1 is an initial sequence of
some sequence fp̄f̄ �n�n g∞n	1 such that

Tl
n	1 p̄

f̄ �n�
n ≠∅ for each l and thus, in particular,

TN
n	1 p

f �n�
n ≠∅. Thus,

there is some w 2 W such that w 2TN
n	1 Ψ�pn�f �n� by i) and ii), which is a contradiction. Thus, we have

established that �W�;F �� is compact. □

Lemma 4.12. Let �W;F � be an opinion space and c be a coherent credence function on �W;F �.
Let �W�;F �� be the compactification of �W;F �, and define c��Ψ�p�� :	 c�p� for each p 2 F . Then c�

is a countably coherent credence function on �W�;F ��, and I�c;w� 	 I�c�;w� for w 2 W.

Proof. Because �W�;F �� is compact, we only need to show that c� is coherent by Theorem 4.10. Thus, it
suffices to show that c� can be extended to a finitely additive probability function on A�F ��. Since c is
coherent, there is a finitely additive probability function c̄ such that:

1. c̄�p� 	 c�p� for p 2 F ;
2. c̄�p [ q� 	 c̄�p� 
 c̄�q� for p; q 2 F with p \ q 	 ∅; and
3. c̄�W� 	 1.

First, define Ψ�pc� :	 Ψ�p�c for each p 2 F . Then each element in A�F �� can be represented bySN
i	1

TM
j	1 Ψ�qij�, where qij or its complement is in F . We define
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c̄�
[N
i	1

\M
j	1

Ψ�qij�
 !

:	 c̄
[N
i	1

\M
j	1

qij

 !
:

Using that p 	 Ψ�p� \W and pc 	 Ψ�p�c \W, we can show that c̄� is a well-defined finitely additive
probability function on A�F �� extending c�. First, we can show that c̄� is well defined. Assume that

[N
i	1

\M
j	1

Ψ�qij� 	
[N0

i	1

\M0

j	1

Ψ�rij�:

This clearly implies that

[N
i	1

\M
j	1

Ψ�qij� \W 	
[N0

i	1

\M0

j	1

Ψ�rij� \W;

which, noting that p 	 Ψ�p� \W and pc 	 Ψ�p�c \W, establishes that

[N
i	1

\M
j	1

qij 	
[N0

i	1

\M0

j	1

rij;

and so

c̄�
[N
i	1

\M
j	1

Ψ�qij�
 !

	 c̄
[N
i	1

\M
j	1

qij

 !
	 c̄

[N0

i	1

\M0

j	1

rij

 !
	 c̄�

[N0

i	1

\M0

j	1

Ψ�rij�
 !

:

Thus, c̄� is well defined. Clearly, c̄� extends c�. Now, since W � W�, if

[N
i	1

\M
j	1

Ψ�qij� \
[N0

i	1

\M0

j	1

Ψ�rij� 	 ∅;

then

[N
i	1

\M
j	1

Ψ�qij� \W \
[N0

i	1

\M0

j	1

Ψ�rij� \W 	 ∅

and so

c̄
[N
i	1

\M
j	1

qij [
[N0

i	1

\M0

j	1

rij

 !
	 c̄

[N
i	1

\M
j	1

qij

 !

 c̄

[N0

i	1

\M0

j	1

rij

 !
:

Then, noting the definition of c̄� in terms of c̄, we establish finite additivity. Lastly, if

W� 	
[N
i	1

\M
j	1

Ψ�qij�;

then

W 	
[N
i	1

\M
j	1

Ψ�qij� \W;

and so

c̄�
[N
i	1

\M
j	1

Ψ�qij�
 !

	 c̄
[N
i	1

\M
j	1

qij

 !
	 c̄�W� 	 1:

This establishes that c� is coherent on �W�;F ��, and so because �W�;F �� is compact, c� is countably
coherent. Further, w 2 p if and only if w 2 Ψ�p� for each w 2 W, so vw defined on F is the same
as vw defined on F � for each w 2 W. Since c�p� 	 c��Ψ�p�� for all p 2 F , this establishes that
I�c;w� 	 I�c�;w� for each w 2 W. □
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Proposition 4.15. Let �W;F � be an opinion space andI be a generalized legitimate inaccuracy measure.
If c is a countably coherent credence function on �W;F � with finite expected inaccuracy relative to I,
then c is not weakly dominated relative to I.

Proof. Since c is countably coherent, let c̄ be a countably additive probability function on σ�F � extending
c such that Ec̄I�c; �� < ∞ . Note that d is a strictly proper inaccuracy measure for singleton opinion sets
(see Remark 2.7 and Pettigrew [2016, Theorem 4.3.5] for a precise definition), which implies by definition
that pd�1; x� 
 �1 
 p�d�0; x� is uniquely minimized at x 	 p.42 It follows that

Ec̄d�vw; ci� 	 cid�1; ci� 
 �1 
 ci�d�0; ci� < cid�1; x� 
 �1 
 ci�d�0; x� 	 Ec̄d�vw; x�

for any x≠ ci .
Assume toward a contradiction that there is a credence function d with d≠ c and I�d;w� � I�c;w�

for each w with strict inequality for some w. Then Ec̄I�d; �� � Ec̄I�c; �� < ∞ , so both I�d; �� and
I�c; �� are integrable with respect to the measure space �W; σ�F �; c̄�. Then let i be any index such that
di ≠ ci. There must be at least one because c≠ d. Then

Ec̄d�vw; ci� < Ec̄d�vw; di�:

If i is such that di 	 ci, then clearly, Ec̄d�vw; ci� 	 Ec̄d�vw; di�. So because Ec̄I�c; �� < ∞ and
Ec̄I�d; �� < ∞ , we have

Ec̄I�c; �� 	
X∞
i	1

aiEc̄d�vw; ci� <
X∞
i	1

aiEc̄d�vw; di� 	 Ec̄I�d; ��;

which implies that Ec̄�I�c; �� 
I�d; ��� < 0. Thus, there is some nonempty set E 2 σ�F � with c̄�E� > 0
on whichI�c; �� 
I�d; �� < 0 (since the Lebesgue integral is positive). But this contradicts our assump-
tion that d weakly dominates c, and so we are done. □

Proposition 4.16. Let �W;F � be a point-finite opinion space. If a credence function c is countably
coherent and somewhere finitely inaccurate relative to B, then c is not weakly dominated
relative to B.

Proof. Assume d weakly dominates c. Note that i) c is somewhere finitely inaccurate if and only if
B�c;w� < ∞ for all w 2 W if and only if

P∞
i	1 c

2
i < ∞ . It follows by weak dominance that

B�d;w� < ∞ for all w 2 W, and therefore
P∞

i	1 d
2
i < ∞ . Let B�c;w� 	 D�vw; c� for D a generalized

quasi-additive Bregman divergence.
Because �W;F � is point-finite, it is also countably discriminating as there are only countably many

finite subsets of F . So by Proposition 4.7, c 	P∞
j	1 λjvwj

for λj 2 �0; 1� with
P∞

j	1 λj 	 1 and
VF 	 fvwj

g∞j	1. First, note that D�P∞
j	1 λjvwj

; c� 	 0 and �P∞
j	1 λjvwj

�pi� 
 c�pi��2 	 0 for all i, so

D
X∞
j	1

λjvwj
; c

 !

D

X∞
j	1

λjvwj
; d

 !
	
X∞
i	1

ai
X∞
j	1

λjvwj
�pi� 
 ci

 !
2



X∞
j	1

λjvwj
�pi� 
 di

 !
2

" #
:

42 In more detail, a special case of Theorem 4.3.5 in Pettigrew (2016) establishes that because d is a
one-dimensional Bregman divergence, there is a function s : f0; 1g × �0; 1� ! �0; ∞ � that satisfies
i) ps�1; x� 
 �1 
 p�s�0; x� is uniquely minimized at x 	 p for all p 2 �0; 1�, ii) s is continuous, and iii)
s�vw; x� 	 d�vw; x� for all w 2 W and x 2 �0; 1�.
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Using that

X∞
j	1

λjvwj
�pi� 
 ci

 !
2



X∞
j	1

λjvwj
�pi� 
 di

 !
2

	 c2i 
 d2i 
 2�di 
 ci�
X∞
j	1

λjvwj
�pi�

	
X∞
j	1

λjc2i 

X∞
j	1

λjd2i 

X∞
j	1

λj2�di 
 ci�vwj
�pi�

	
X∞
j	1

λj�c2i 
 d2i 
 2�di 
 ci�vwj
�pi��

	
X∞
j	1

λj��vwj
�pi� 
 ci�2 
 �vwj

�pi� 
 di�2�

for each i because
P∞

j	1 λj 	 1, we have that

D
X∞
j	1

λjvwj
; c

 !

D

X∞
j	1

λjvwj
; d

 !
	
X∞
i	1

ai
X∞
j	1

λj��vwj
�pi� 
 ci�2 
 �vwj

�pi� 
 di�2� �8�

	
X∞
i	1

ai
X
j:wj=2pi

λj

0
@

1
A�c2i 
 d2i � 
 ai

X
j:wj2pi

λj

0
@

1
A��1 
 ci�2 
 �1 
 di�2�

	
X∞
i	1

ai�c2i 
 d2i � 
 2ai
X
j:wj2pi

λj

0
@

1
A�di 
 ci�

	
X∞
i	1

ai�
c2i 
 d2i � 
 2ai
X
j:wj2pi

λj

0
@

1
Adi

because ci 	
P

j:wj2pi λj. We have
P∞

i	1 c
2
i 
 d2i < ∞ by item (i). Thus,

0 �
X∞
i	1

ai2
X
j:wj2pi

λj

0
@

1
Adi < ∞ (9)

because

0 � D
X∞
j	1

λjvwj
; c

 !

D

X∞
j	1

λjvwj
; d

 !
:

Having established (9), we can claim that we can use the dominated convergence theorem (see, e.g.,
Theorem 1.4.49 in Tao 2011) to switch the limits in equation (8). Indeed,

X∞
i	1

ai
XN
j	1

λj��vwj
�pi� 
 ci�2 
 �vwj

�pi� 
 di�2� 	
X∞
i	1

ai
X
1�j�N

λj

 !
�c2i 
 d2i � 
 2ai

X
j:wj2pi1�j�N

λj

0
@

1
A�di 
 ci�:

Letting

gN�i� 	 ai
X

1� j�N

λj

 !
�c2i 
 d2i � 
 2ai

X
j:wj2 pi1� j�N

λj

0
@

1
A�di 
 ci�

and noting that 
 P
j:wj2 pi1� j�N λj

� �
ci � 
c2i because ci 	

P
j:wj2 pi λj , we see that

jgN�i�j � ai�2c2i 
 d2i 
 2
X
j:wj2 pi

λj

0
@

1
Adi�:

Each of c2i ; d
2
i ; and �Pj:wj2pi λj�di is summable in i and supi ai < ∞ . So, the dominated convergence

theorem applies, and we can switch limits.

124 Mikayla Kelley

https://doi.org/10.1017/psa.2021.37 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2021.37


Thus, we have

0 � D
X∞
j	1

λjvwj
; c

 !

D

X∞
j	1

λjvwj
; d

 !

	
X∞
j	1

λj

X∞
i	1

ai��vwj
�pi� 
 c�pi��2 
 �vwj

�pi� 
 d�pi��2�

	
X∞
j	1

λj�D�vwj
; c� 
D�vwj

; d�� � 0;

where we used that D�vwj
; c� 	 B�c;wj� < ∞ and D�vwj

; d� 	 B�d;wj� < ∞ for each j by i) to break
up the summation in the second line. Thus, we can conclude that c 	 d becauseD�c; d� 	 0 if and only if
c 	 d. □

Theorem 4.23. Let �W;F � be a W-stable opinion space with �W�;F �� point-finite such that all coherent
credence functions on �W;F � are somewhere finitely inaccurate relative to B. Then the following are
equivalent:

1. c is coherent;
2. c is not weakly dominated relative to B;
3. c is not strongly dominated relative to B.

Proof. If c is coherent, then c� is countably coherent on a point-finite opinion set. Further, c� is some-
where finitely inaccurate relative to B, as c is somewhere finitely inaccurate by assumption. Thus, by
Proposition 4.16, c� is not weakly dominated relative to B. By W-stability, c is not weakly dominated
relative to B. Clearly, if c is not weakly dominated, then c is not strongly dominated. Finally, we show
that if c is incoherent, then c is strongly dominated. First, if c is not somewhere finitely inaccurate, then
any omniscient credence function strongly dominates c because I�vw;w0� < ∞ for every w;w0 2 W
by point-finiteness. If c is somewhere finitely inaccurate, then I�c;w� < ∞ for all w 2 W by
point-finiteness. Thus, Theorem 3.4 establishes that c is strongly dominated relative to B. □

Lemma 4.25. A countably infinite partition is W-stable relative to any generalized legitimate inaccuracy
measure.

Proof. Let F 	 fp1; p2; . . .g be a partition. Assume that a coherent credence function c on F is weakly
dominated by some credence function d. We can assume d is coherent by Theorem 3.4, and soP∞

m	1 dm � 1. We can show that c� is weakly dominated by d� , thereby establishing that a partition
is W-stable.

First,I�c�;w� 	 I�c;w� andI�d�;w� 	 I�d;w� for all w 2 W by Lemma 4.12. Thus, by the assump-
tion of weak dominance,

I�c�;w� � I�d�;w� for all w 2 W

with a strict inequality for some w 2 W. We therefore only need to check what happens for w 2 W� nW.
The compactification of a partition consists of adding one point w� that is in the complement of all
p� 2 F �; so W� 	 W [ w�. If I�c�;w�� 	 ∞ , then clearly, d� weakly dominates c�. So, we assume
I�c�;w�� < ∞ . Because I�d�;w�� and I�d�;w� differ by a single term for any w 2 W and
I�d�;w� < ∞ for some w 2 W by the assumption of weak dominance, we have I�d�;w�� < ∞ .
Now, consider

I�c�;w�� 
I�d�;w�� 	
X∞
m	1

am�ϕ�dm� 
 ϕ0�dm�dm� 

X∞
m	1

am�ϕ�cm� 
 ϕ0�cm�cm�;

which we claim is greater than or equal to 0. Indeed, assume toward a contradiction that
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X∞
m	1

am�ϕ�dm� 
 ϕ0�dm�dm� <
X∞
m	1

am�ϕ�cm� 
 ϕ0�cm�cm�:

Then, because dn ! 0 as
P∞

n	1 dn � 1, cn ! 0 as
P∞

n	1 cn � 1, and ϕ0�0� 	 limx!0 ϕ
0�x� 	 0 (recall

Remark 3.2), we have that ϕ0�dn� 
 ϕ0�cn� ! 0; and so we can find a K such that

jϕ0�dn� 
 ϕ0�cn�j < j
X∞
m	1

am�ϕ�dm� 
 ϕ0�dm�dm� 

X∞
m	1

am�ϕ�cm� 
 ϕ0�cm�cm�j

for n � K. Thus, for any n � K and any wn 2 pn,

I�c;wn� 
I�d;wn� 	
X∞
m	1

am�ϕ�dm� 
 ϕ0�dm�dm� 

X∞
m	1

am�ϕ�cm� 
 ϕ0�cm�cm� 
 ϕ0�dn� 
 ϕ0�cn� < 0;

contradicting that d weakly dominates c. So indeed, d� weakly dominates c�. □

Theorem 4.26. Let �W;F � be a countably infinite partition andI be a generalized legitimate inaccuracy
measure. Then the following are equivalent:

1. c is coherent;
2. c is not weakly dominated;
3. c is not strongly dominated.

Proof. The result follows from Corollary 4.22, Lemma 4.25, and the fact thatI�c�; �� is bounded onW� for
each coherent credence function c. To see the latter, note that because c is coherent, it follows thatP∞

i	1 ci 	
P∞

i	1 c
�
i � 1. For w 2 W such that w 2 pi , recalling that ϕ�0� 	 0 (Remark 3.2),

I�c�;w� 	 aid�1; c�i � 

X
j≠ i

ajd�0; c�j � 	 aid�1; c�i � 

X
j≠ i

aj�c�j ϕ0�c�j � 
 ϕ�c�j �� � C
 D
X
j

c�j � C
 D

for some constants C;D independent of c�. Similarly, as seen in the proof of Lemma 4.25, W� nW 	 fw�g,
where

I�c�;w�� 	
X∞
j	1

ajd�0; c�j � 	
X∞
j	1

aj�c�j ϕ0�c�j � 
 ϕ�c�j �� � C

for some constant C independent of c� or w. It follows that i) all coherent credence functions have finite
expected inaccuracy, and ii) I�c;w� < ∞ for c 2 C and w 2 W. Thus, Lemma 4.25 and Corollary 4.22
establish the result. □

Proposition 4.27. Let �W;F � be a compact opinion space and I be a generalized legitimate inaccuracy
measure. If c is coherent (and thus countably coherent), then c is not strongly dominated relative to I.

Proof. Let In�c0;w� :	
Pn

i	1 aid�vw�pi�; c0�pi�� for each n 2 N, w 2 W, and credence function c0 on F .
Consider a credence function d≠ c. Define

Tn 	 f�vw�p1�; . . . ; vw�pn�� : Ik�c;w� < Ik�d;w� for some k � n;w 2 Wg

and T 	 feg [S∞
n	1T

n, where e is the empty sequence. For each s; t 2 T, we set s < t if and only if s is an
initial sequence of t, and we set the height of t 2 T to be the length of the tuple. Then T is a binary tree.

We claim T is infinite. Fix n 2 N. Then there is a t 2 T with height n if and only if Tn ≠∅ if and
only if Ik�c;w� < Ik�d;w� for some k � n and w 2 W. Let k be the maximum of n and the smallest
i such that c�pi�≠ d�pi�. Then, because c restricted to any subset of F is coherent, by Theorem 2.9,
Ik�c;w0� < Ik�d;w0� for some w0 2 W, and so �vw0 �p1�; . . . ; vw0 �pn�� 2 Tn.
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By Konig’s lemma (see, e.g., Hrbacek and Jech 1999, sec. 12.3), there exists an infinite branch

B 	
[∞
n	1

f�vwn
�p1�; . . . ; vwn

�pn��g

through T, where

�vwn
�p1�; . . . ; vwn

�pn�� < �vwm
�p1�; . . . ; vwm

�pm��
whenever n < m. For each i, let p�i 	 pi if vwi

�pi� 	 1 and p�i 	 pci if vwi
�pi� 	 0. Then wn 2

Tn
i	1 p

�
i

because vwi
�pi� 	 1 if and only if vwn

�pi� 	 1 for i < n as �vwi
�p1�; . . . ; vwi

�pi�� < �vwn
�p1�; . . . ; vwn

�pn��.
Thus,

Tn
i	1 p

�
i ≠∅ for each n, and so by compactness, there is some w 2 T∞

i	1 p
�
i . Then

�vw�p1�; . . . ; vw�pn�� 	 �vwn
�p1�; . . . ; vwn

�pn�� 2 Tn

for each n 2 N. By the definition of Tn, for each n 2 N, we have

Ikn �c;w� < Ikn �d;w�
for some kn � n. Sending n to infinity, I�c;w� � I�d;w�, and thus d does not strongly
dominate c. □

A.3 Proof of Theorem 5.3

Theorem 5.3. Let I be an integral inaccuracy measure on a finite measure space �F ;A;µ�.43 Then for
every µ-credence function c, if c is µ-incoherent, there is a µ-coherent µ-credence function c0 that
strongly dominates c relative to I.

Proof. LetI�c;w� 	 Bϕ;µ�vw; c�. We write B for Bϕ;µ. Let S be the set of nonnegativeA-measurable func-
tions on F . Let E � S be the set of µ-coherent µ-credence functions over F . Then E is convex. Let c be a
µ-incoherent µ-credence function. Because µ is finite and d is bounded,

B�E; c� < ∞ :

Thus, we can apply Theorem A.5 to get a πc 2 S such that

B�s; c� � B�E; c� 
 B�s;πc� for every s 2 E: (10)

In particular, (10) holds when s is the omniscient credence function at world w for each w,
so we obtain

I�c;w� � B�E; c� 
I�πc;w� (11)

for all w, where all numbers in (11) are finite. We show that πc is in fact a µ-coherent
µ-credence function. It suffices to show that πc is µ-a.e. equal to a coherent credence function
on F (because πc 2 S, it isA-measurable). To do so, we prove the following claim: E is closed under loose
convergence in µ-measure.

To see this, let cn 2 E for each n and c 2 S. Assume cn ! c loosely in µ-measure. The first thing to
notice is that because µ is finite, loose µ-convergence implies µ-a.e. convergence on a subsequence
fang∞n	1 of fng∞n	1,

44 so that

c�p� 	 lim
n!∞

can �p� 2 �0; 1�

for each p 2 G with µ�Gc� 	 0. Since the can are µ-coherent, we can change each can on a (measurable)
measure zero set Xn to get coherent µ-credence functions can . Further, we replace G with G n �[∞

n	1X n�.

43 We assume finiteness for technical reasons.
44 It is a standard fact that convergence in measure implies a.e. convergence on a subsequence. Now

notice that loose convergence implies convergence in measure when the measure is finite.
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Assuming these adjustments have been made, we have that can ! c on G with µ�Gc� 	 0, and each can is
coherent. We can now show c 2 E by showing it is equal to a coherent credence function on F when
restricting to G.

First, we extend c (resp., can ) to c (resp., can ), where c (resp., can ) is a credence function on G [ fWg such
that c 	 c (resp., can 	 can ) on G and c�W� 	 1 (resp., can �W� 	 1). Then notice that c (resp., can ) is
coherent on G if and only if c (resp., can ) is coherent on G [ fWg. Thus, we work with c and can instead,
noting that c 	 limn can on G [ fWg. To show c 2 E, we first show that c is a partial measure on G [ fWg.

Definitions A.9.1 and A.9.3 clearly hold for c, so we just need to show that Definition A.9.2 holds. Let
ϕ0; . . . ; ϕm
1;ψ0; . . . ;ψm0
1 2 G [ fWg and[

p2 Sm;k

\
i� k

ϕpi �
[

p2 Sm
0 ;k

\
i� k

ψpi

for every k < m. Since can are coherent on G[ fWg and thus extend to measures on an algebra containing
G [ fWg, we have by Corollary A.7 that

Xm
1
k	 0

can �ϕk� 	
Xm
1
k	 0

can
[

p2 Sm;k

\
i� k

ϕpi

0
@

1
A �

Xm0
1

k	 0

can
[

p2 Sm
0 ;k

\
i� k

ψpi

0
@

1
A 	

Xm0
1

k	 0

can �ψk�

using that [
p2 Sm;k

\
i� k

ϕpi 	
[

p2 Sm
0 ;k

\
i� k

ψpi 	 ∅

for k � m0. Sending n to infinity and using the pointwise convergence of can to c on G [ fWg, we conclude
that

Xm
1
k	 0

c�ϕk� �
Xm0
1

k	 0

c�ψk�:

Thus, c is a partial measure on G [ fWg. By Theorem A.10, it follows that there is a finitely additive
probability function c� onA�F � such that c� 	 c on G [ fWg. Thus, c�jF is a coherent credence function
on F , and

c 	 c̄jF 	 c�jF
µ-a.e. (specifically off Gc). Further, we already assumed c is A-measurable and fp : c�p� 2 �0; 1�g � G.
Thus, c is a µ-coherent µ-credence function.

The proof is finished just as in the proof of Theorem 3.4. By Theorem A.5, πc is the generalized projec-
tion of c onto E. Since

B�E; c� 	 inf
s2 E

�s; c� < ∞ ;

there is a B-minimizing sequence fsng of elements in E such that B�sn; c� ! B�E; c� by the definition of
infimum. By the definition of a generalized projection, sn ⇝ µπc. Since E is closed under loose conver-
gence, it follows that πc 2 E. Further, because c is µ-incoherent, we know c≠πc (up to µ-a.e. equiva-
lence), so we see that B�E; c� � B�πc; c� > 0 because B�s; t� 	 0 if and only if s 	 t µ-a.e. Since
I�c;w� < ∞ for all w, we deduce that

I�c;w� � B�E; c� 
I�πc;w� > I�πc;w�
for all w 2 W. This proves that c is strongly dominated by πc , and we are done. □
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