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THE GROUP OF EIGENVALUES 
OF A RANK ONE TRANSFORMATION 

J. R. CHOKSI AND M. G. NADKARNI 

ABSTRACT. In this paper, several characterizations are given of the group of eigen­
values of a rank one transformation. One of these is intimately related to the corre­
sponding expression for the maximal spectral type of a rank one transformation given 
in an earlier paper. 

1. Introduction. The purpose of this paper is to compute the group e{T) of L°° 
eigenvalues of a general rank one transformation T. These will be the L2 eigenvalues 
when the underlying space is of finite measure. The possibility of such a calculation was 
suggested by J-F. Mela in connection with our earlier paper [1]. Our expression for the 
eigenvalue group is intimately related to the corresponding expression for the maximal 
spectral type of T calculated in [1]. This raises certain natural questions about the group 
of quasi-invariance of the maximal spectral type of T. We prove our results for measure 
preserving transformations, but they can be extended to non-singular transformations 
obtained by cutting and stacking. 

Descriptions of eigenvalue groups of certain non-singular flows were given by 
M. Osikawa [4] and by Y. Ito, T. Kamae and I. Shiokawa [3]. These authors were mo­
tivated by certain questions in non-singular weak equivalence theory. From the point of 
view of spectral theory, however, it is advantageous to recast their work using the "cut­
ting and stacking" description of a rank one transformation and some results on Fourier 
transforms (characteristic functions) of products of circle valued independent random 
variables, revealing thereby the close resemblance of an expression for e(T) to the ex­
pression for the maximal type of T (up to a discrete measure) obtained in [1]. Thus the 
present paper complements the work in [1]. 

2. Preliminary calculations. 
2.1. We recall the construction of a rank one transformation from [1]. Divide the unit 
interval Qo into m\ equal parts, add spacers and form a stack of height h\ in the usual 
fashion. At the &-th stage we divide the stack obtained at the (k — 1 )-st stage into m^ equal 
columns add spacers and obtain a new stack of height h^. If during the k-th stage of our 
construction the number of spacers put above the y-th column of the (k — 1 )-st stack is 
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EIGENVALUES OF A RANK ONE MAP 43 

J n <r „(*) a] % 0 < ay < oo, 1 < j < mk, then we have 

mi 

- 1 .(*) 
7=1 

Proceeding thus we get a rank one transformation 7 on a certain measure space 
(X, $, m) which may be finite or a-finite depending on the number of spacers added. 
For each k — 1,2,3,... let Q* and £lk denote respectively the base and the top of the 
k-th stack; of course Qk Q ^o- There is no loss of generality in assuming in addition that 
£lk Ç Çl0, i.e., no spacers are added on the last column at any stage in the construction. 
For given a rank one transformation T constructed by cutting and stacking as above, we 
can construct as follows an isomorphic transformation S with no spacers added on the 
last column at any stage: initially, cut Qo into m\ equal pieces, add b^ = a^p spacers 
on they-th column, 1 <j <m\, and stack. No spacers are added on the last column, i.e. 
b$ = 0. Cut Qi into mi equal parts add 

^(2) _ (2) (1) 
J J m\ 

spacers on they'-th column 1 <j<ni2 and stack; again b%l = 0. At the k-th stage of the 
construction cut Q.k-\ into mk equal pieces add 

1=1 

spacers on they-th column, 1 < j < mk, and stack; again b^k — 0. It is easily verified that 
the two transformations S and T with spacers a^ and b^ respectively are isomorphic, 
but no spacers are added on the last column at any stage in the construction of S. From 
now on we assume that £lk C £lo for all k. 

We denote the mk equal columns obtained by dividing the (k — l)-st stack by 
C j , . . . , Ck

mk. For 1 < i < mk, write 

Qk = union of parts of Qo in the column Ck. 

Then {Q\,..., Qk
mk} gives a partition î \ of Qo> and the partitions 

form an independent sequence of partitions of Qo', % being the trivial partition. They 
correspond to the partitions of the product space 

oo 

Q= n{0 , l , 2 , . . . ,m*- l } 
k=\ 

given by the co-ordinate functions. Let r denote the transformation on Qo induced by T. 
We know that r is isomorphic to the odometer action on £1. 
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44 J. R. CHOKSI AND M. G. NADKARNI 

2.2 The functions 7*. We now define a sequence 7*, k — 0 , 1 , 2 , 3 , . . . of independent 

integral valued random variables on QQ- First define 

Ao(o;) = 0 for all UJ G Qo. 

X\(UJ) = first entry time under T of UJ into Q1 , with Ai (UJ) = 0 if UJ G Q1 . 

In general 

A^(CJ) = first entry time under T of u into £2*, with A*(a;) = 0 if UJ G Q*. 

The sequence 7*, & = 0 , 1 , 2 , 3 , . . . , of independent integral valued random variables 

is defined as follows: 

70(o;) = X0(UJ) = 0 for all UJ G Qo, 

lk(uj) = Xk(uj) - A*_, (u;), k = 1 ,2 ,3 , . . . . 

We have 

(1) lk(uj) = first entry time of TXk-](uj)(uj) into Q*, 

A*M = 7 o M + • • • + 7*(u;). 

Note that rA*-,(u;)(ci;) G Q*_1 , whence (1) shows that 7*(u;) is constant on each piece 

of the partition Tk\ thus 7o, 7 i , 72, • • • form a sequence of independent random variables; 

7* assumes the value 0 on Qk
mk. Further let us write 

7*,,- = value of 7* on g ^ _ ; , 1 < / < mk. 

The values 0,7&, I > • • •, lk,mk-\ assumed by lk are related in a natural and useful manner 

to the values 0, R\k, R2k,..., Rmk-\^k, k = 1 ,2 ,3 , . . . which occur in the expression for 

the maximal type of a rank one transformation described in our paper [1]. We have 

lk,i(J) = Ri,k(T~lX lkAT~X) = Ri,k(T). 

To see this one notes that the inverse of the rank one transformation T is also a rank one 

transformation obtained by cutting and stacking and one has a construction of T~l in 

which Qk, Qk are respectively the base and the top of the k-th stack for T~l. 

For UJ G Qo let 1(UJ) be the last integer p for which UJ G OP, i.e. 1(UJ) = p, where p is 

given by 

X0(UJ) = Xi(UJ) = • • • = XP(UJ) = 0, A^i(UJ) Ï 0. 

Let/(a;) equal the first re-entry time of UJ into Qo: 

f(uj) — (number of spacers above UJ) + \. 

Then 

lk(uj) = 0, for 1 < k < 1(UJ\ 

lk(uj) = Xk(r(uj)) +f(uj\ k = 1(UJ) + 1, 

7*(o;) = 7*(T(a;)), * > / ( a ; ) + l . 
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We therefore have in view of (1): 

E ( V<") - 7P(TM) ) =/(w) + A;M+1 (r(uO) - £ %>M 
(2) p=\ V ' ^=1 

= f(uo) = (number of spacers above a;) + 1. 

Now let Zjt denote the group of permutations on {0,1,2, . . . , m* — 1} and JL the re­
stricted direct product of the X̂  acting on 

oo 

n= n(o,i,...,m,-i} 
k=\ 

by changing finitely many co-ordinates. We may view E as acting on QQ- Then the or­
bits of Z and r agree except on a countable subset of Qo- Note that if a G X, a = 
(cri,..., a*, e, e,...), then for each n> k,ci leaves invariant each element of fPn. [Here e 
denotes the identity permutation on (0 ,1 , . . . , m^ — 1) for all k.]. In particular, since each 
7« is (Pn measurable, ln o cr = 7« for all n> k. 

3. The eigenvalue group: Osikawa's criterion. 
J.7. Let e(T) denote the group of eigenvalues of T and le t / be as in Section 2. The 
proposition and Theorem 1 below are essentially due to Osikawa [4]. 

PROPOSITION. Let s e [0,1). Then e2ms £ e{T) if and only if there exists a measur­
able function 4>:£lo —• [0,1) such that 

(3) 0(r(a;))=0(a;) + 5/(a;) (modi). 

PROOF. If a function <j> satisfying (3) exists then e2m<i> can be extended from Q0 to all 
of X in a natural way so that the extended function is an eigenfunction with eigenvalue 
e2ms: indeed if x E X is the p-th spacer above u, so that x = TP(UJ), define </>(x) by 

(4) (j>(x) = </>(&) +ps (mod 1). 

The function e2m<t>, where </> is the extended function, is then an eigenfunction with eigen­
value e2ms. 

On the other hand if e2ms is an eigenvalue with eigenfunction ij) of absolute value one, 
then I/J = e2m(f>l for some measurable function </>i defined on X with 0 < <j>\ < 1. Set 
<t> — ̂ l |Q0' m e n 0 satisfies 

<f>{r((jj)) = <t>(u) + sf(uj) (mod 1), 

which completes the proof of the proposition. 
Let ji denote the Lebesgue measure on £IQ — [0, 1). 
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46 J. R. CHOKSI AND M. G. NADKARNI 

THEOREM 1. Let s E [0,1), then e2ms E e(T) if and only if there exist real constants 
cn,n — 1,2,... such that 

OO 

(5) £ ( * 7 * M - Q ) 
k=\ 

converges (mod \)for \i a.e. UJ. 

PROOF. Suppose for an s E [0,1), the series (5) converges (mod l)/i a.e. to a func­
tion (/>. Then (mod 1), for \x a.e. u, 

r(o>)) - <K») = E «(^(T-M) - ^(w)) 
k—i V ' k=\ 

= -Sf(u>) = (I - 5)f(Lj), 

by (2). By the proposition above we see that e~2ms is an eigenvalue of T. Since e(T) is a 
group, e27rw is also an eigenvalue of T whenever (5) holds. 

Conversely if e~2ms E e(T) then by the proposition and (2) there exists <j>: Q0 —> [0,1 ) 
such that (mod 1), 

oo 

</>(r») - 0(w) = E d - s^lk^u) - lk(w)), 
k—\ 

for all v E Z. If a — {p\, 02, • • • » ^ e, e,...) E X, then CT(CJ) = r^^u;) for some 
measurable function v. Hence we have : 

A:=l 

k=\ 

since 7jt(o"(^)) = 7(^) for k > n. (Recall that 7* is fP* measurable.) Define 

<M") = £(l-*)7*("), 
it=i 

and note that 0n is fPj V ¥2 V • • • V *Pn measurable. The function ifjn = <f> — <\>n satisfies 

((/> - </>n)(u) = cf>(u) - £ ( 1 " *)7*(a;) (mod 1) 
*=i 

which is invariant under all a = (a\,..., on, e, e,...) and therefore measurable VibU+i ^k-
Now (/> = cj)n + 1/̂  and 

e^+'Eie2™*") = E(c 2 ^ | 2>i V • • • V 2>n) -> e27""* a.e. 

as w —> 00. [Here E denotes the expectation or the conditional expectation.] Clearly 
there exist real constants An such that <\>n — An —> <j> (mod 1 ), indeed we can take An — 
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ArgEO27*). If we set A0 = 0 and ck = Ak - Ak-{, k = 1,2,..., then it follows that 
(mod 1) 

n 

<t>n(d) - An = J2((! - syyk(v) - Q ) —• ^ a.e. [^]. 
* = 1 

This proves the theorem. 

J. 2 Restatement of Theorem 1. For any real number a let [a] denote the largest integer 
< a, {a} = a — [a] and 

(a) = {a} if 0 < {a} < 1/2, (a) = {a}- 1 if 1/2 < {a} < 1. 

We note that |(#)| < 1/2 so that T%L\ ®n converges (mod 1) if and only if E£i(fl«) 
converges. 

Using these remarks we can restate Theorem 1 in the following form. 

THEOREM 2. For s e [0,1), e2nis G e(T) if and only if there exist real constants 
ck,k = 1,2,... such that any one of the following series converges (mod 1) a.e. [/i], 

oo 

(a) £({*7j-Q), 
k=\ 

(X) 

(b) J2((slk(cj))-ck\ 
k=\ 
oo 

(c) E«^M-^»-
k=\ 

We can replace s by —s or I — s in any of (a), (b), (c) above since eigenvalues form a 
group. 

4. The eigenvalue group: structural criterion. 

4.1. We now give a criterion for e2ms to be an eigenvalue of T in terms of the quantities 
7*j> 0 !$ 7 ^ w* — 1, /: = 1,2,3,... which determine the rank one transformation T. 
We need Theorem 3 below which is an analog for the circle group of a similar theorem 
for the real line. (See Doob [2], p. 115, Theorem 2.7.) Recall that an infinite product 
nj£i cik °f complex numbers is said to be convergent if there is an M such that Uk=M cik 
converges to a non-zero complex number as TV tends to infinity, which in turn holds true 
if and only if Uk=M ak tends to one as M, TV tend to infinity. In case 0 < ak < 1, the 
non-convergence of the infinite product n£ii <*k is equivalent to the convergence to zero 
as N tends to infinity of the product Uk=M cik for every M. 

Let F be a random variable taking values in the circle group Sx. We will assume that 
our random variables are defined on a probability space ( W, C, P). Let v denote the dis­
tribution of Y and v its Fourier transform. Let E(7) and Var(y) denote respectively the 
expectation and variance of Y. We note that 

E(Fn) = Jx zndv = v(n\ neZ, 

Var(F) = / , |z - E(F)|2 dv = 1 - \E(Y)\2 = 1 - \Û(\)\2. 
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THEOREM 3. Let Y\,Yi,Y^,...bea sequence of independents valued random vari­
ables with distributions v\, 1/2,1/3,... respectively. Then the following are equivalent: 

(a) There exist real constants ck, k — 1,2,3,... such that ifZn = n£=i Yke
lCk then 

Zn, n — 1,2,3,... converges a.e. over a subsequence, 
(b) for all integers p G Z, the infinite product 

00 

n \^(P)\2 

k=l 

converges, 
(c) £j£i V a r ^ ) converges, 
(d) for some p ^ 0, the infinite product 

00 

n \h(p)\2 

k=\ 

converges. 

PROOF, (a) implies (b). If ZnjJ = 1,2,3,... converges a.e. then 

Zn^Zn.)-1 = f t YkeiCk — 1 
k—Hj+l 

a.e. as7,/ —-» 00, whence for all/7, n^L .̂+i vk(p)eipCk —> 1 as7,/ —»• 00. Therefore since 

|^*(p)| < 1» n £ i |^(p)|2 is a convergent infinite product for all p. 

Since Var(y^) = 1 — |z/^(l)|2, it is easy to see that (b) implies (c) and that (c) implies 

(d). 
We prove that (d) implies (a). Suppose that for some/7 ^ 0, n £ i |#*(p)|2 is a conver­

gent infinite product. Then 

as 7, / —> 00. Since |#fc(#)| < 1 the limit as n —• 00 of 11^=/|^*(tf)|2 exists for each g and 
the resulting limit as a function of g is the Fourier transform of a probability measure, 
say pi. The functions pi are non-decreasing and their limit as I —> 00 is the Fourier 
transform of a probability measure, say p. Since p(p) = 1 and/7 7̂  0 the measure p is the 
point mass at 1. 

Let Xk be the random variable Xk(x,y) = Yk(x) • Yk(y). (The bar denotes the complex 
conjugate.) Its distribution has Fourier transform |£A:(-)|2- The finite products Yll

k=:Xk 

converge in distribution to the point mass at 1 as7, / —* 00. Hence they also converge in 
measure to the constant function 1. It follows that njj=i Xk,n = 1,2,3,... converges a.e. 
over an increasing subsequence «1,^2,^3,... of natural numbers. By Fubini's theorem 
we see that for some y the products n^=1 Yk(x) • Yk(y), 7 = 1,2,3,... converge for a.e. x 
as 7 —• 00. If we write Yk(y) = elCk, (a) follows, completing the proof of the theorem. 

4.2. We apply this theorem to the random variables Yk = g27"57*, k = 1,2,3,... of The­
orem 1. Note that, in this case, if the products n£=i Yk • e

lCk, k — 1,2,3,... converge a.e. 
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over a subsequence then the argument used in the proof of Theorem 1 shows that the re­
sulting limit extends to an eigenfunction of T with eigenvalue e2ms. Hence by Theorem 1 
the same product converges a.e. over the full sequence of natural numbers, possibly for 
some different constants Q . Also note that 

1 m* _ 1 „ . 

E(r*) = — E * ^ > 

Var(y,) = 1 - — 
m\ 

1 \mk~l ^ • 
1 I j S e2mf1K 

7=0 

In view of Theorem 1 above we have at once the following characterization of the 
group e(T). Write 

mk — \ 

h(z) = £ z"7". 
j=o 

THEOREM 4. For s 6 [0,1), the following are equivalent: 

(a) 

(b) the infinite product 

e2™ e e(T); 

OO 1 

I l —\Pk(e
2™)\2 

is convergent; 

(c) 
OO OO x 1 s 

£ Var(e2^<) = £ ( l - - ^ | n ( ^ ) | 2 ) 
t—i t—i V 77Î, / k=l k=l v m f c 

is finite. 

COROLLARY. If either of the series 

oo , 1 mk-\ v 

Ef-Eli-^^l) 
jk=1 vm*: 7=0 

or 
oo f 1 m j f c - 1 

Ef^E 
^ V W f c ; = 0 

oo • 1 mjfc-1 x 

£(-£| i-*2™^l2) 

is finite then e2ms € e(r). 
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PROOF. If the first series converges, then so does the second. We have 

m2
k 

mk-\ 

7 = 0 

,27rzYy*. 

m 

i mk-\mk-\ 

-2 £ E d 
k 7 = 0 £ = 0 

= ^ E k 
2 T T / ^ 7 , _27TiJ7Jfc,H2 

m * K* 

= Z3EI0 
m 

. ^ 2 7 r ' ^ j ) . (\~e 

M) 

2 T T / 5 7 U \ | 2 

* K* 

<Z2Bli-« : 27r/57)t. ^ l - é -^ O ^ ^ 

2(mk- n m* — 1 

m * 7 = 0 

Thus convergence of the second series implies condition (c) of Theorem 4, which 
proves the corollary. 

4.3 Comments on Theorem 4. We note the close resemblance (already mentioned in 
the introduction) between the criterion for e(T) obtained above and the expression for 
the maximal spectral type (up to discrete measures) obtained in our paper [1]. Since 
T and T~l are spectrally equivalent, and as remarked in 2.2., Rj^iT) — 7*,/(^_1) and 
Ri,k(T~l) — 7&,/(71, it follows that both the sequences of polynomials Pk{z) = 
E^o"1 z~Ri'k a n d Pk(z) give the eigenvalue group e(T) = e(T~l). Thus z E e(T) if and 
only if n^Lj -^i\Pk(z)\2 converges or equivalently if U^L\ ^\Pk(z)\2 converges. The max-

k k 

imal spectral type a (denoted by <7o m [1]) of T or T~x is given, up to a discrete measure, 
by either of the generalized Riesz products n ^ i -^\Pk(z)\2 or Y^LX -£-\Pk(z)\2. (The gen­
eralized Riesz product n £ i -^~\Pk(z)\2 is understood as the weak limit of the probability 

MPk(z)\2dz^n- OO.) measures n£= x 

4.4. 

THEOREM 5. (a) If for s £ [0, 1), e2lTis £ e(T), then the series £ £ , Var(|27r(s7*)|) 
is convergent. 

(b) If the series E ^ Var(27r(^7^)) is convergent then e2jrls E e(T). 

PROOF, (a) Suppose e2™ G e(T\ 0 < s < 1, then 

• - A 
mi 

mk-\ 

7 = 0 
0 

as k —• oo. Without loss of generality we assume that | — E ^ 0
 ! £27rLy7 '̂ | > 1 /2 . For z ^ 

0 write z — \z\elB, —IT < 9 < TT. The map I/J:Z —• \0\ is Lipschitz on any compact subset 
of the complex plane not containing the origin. Hence it is Lipschitz on 1/2 < \z\ < 1. 
Let C be the Lipschitz constant on this domain. Then 

^{e 27TW7* 
/ 1 mk~l „ . 

< C2\e2wisJ< 
1 mk-\ 

™k j=o 

l-nisTiv 
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Since the variance of a random variable is smaller than the second moment around any 
other point, 

Var^e27"'57*)) = Var(27r|(*7*)|) 

<C2Var(é>^') . 

Thus (a) follows by Theorem 4. 
(b) The map </>(z) — elz is Lipschitz on any compact subset of the complex plane. Let 

C be Lipschitz constant for the domain \z\ < 1. We have 

\e2^k - em2^^\ < C\2v(slk) - E(2TT(J7*»|. 

Hence, by a similar argument as in (a), if the series T%L\ Var(27r(57£)) is finite then the 
series E ^ Vav(e27Tislk) is finite and by Theorem 4, e2™ G e(T). This proves (b). 

REMARK. In case the mk are bounded then it follows from a theorem of Y. Ito, 
T. Kamae and I. Shiokawa [3] that the converse of (b) holds, i.e. if e2ms G e(T) then 
£ ^ ! Var(27r(s7*)) is finite. 

4.5 An example. In the case of Chacon's transformation, the height h^- \ of the (k — 1 )-
st stack is hk-\ — ^y -̂ (see [1]), and 7* assumes three values 0,3*, ̂ - , with equal 
probability. The series 

g(l_J_| l+^^+^/^|2A 

can be shown to be divergent for all s ^ 0 so that Chacon's transformation has no 
non-trivial eigenvalues. This proves the well known fact that Chacon's transformation is 
weakly mixing. 

5. An expression for ĝ% a G e(T). 

5.1. We first describe a very concrete necessary and sufficient condition for e2m\ s G 
[0,1) to be an eigenvalue of T. For each k — 1,2,3,..., we define a function ^k on £2o 
as follows: Let 

qk{uj) = least integer > 0 such that T~qM\UJ) G Q* 

= hk-\k{u)- 1. 

If UJ ^ Q*, qk(ruj) = qk{uo) +f(uj). Define 

^.((j) — e
2™<lk(u) _ e2ms(-Xk(uj)+hk-]) 

If linv^oo ipkn(uj) exists a.e. along some subsequence kn —> oo, then the limit func­
tion ijj satisfies ^(ruo) = e27risf^%lj(uj), so that, by the proposition, e2ms G e(T). Con­
versely if e2ms G e(T) for some s G [0,1), then there exist real constants ck such that 
E^Lj (s7*(^) — ck) converges a.e. (mod 1). Equivalently 

n n 

Y, {snk{uj) - ck) = s\n(u) -J^ck = s\n(u) - An 
k=\ k=\ 
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converges a.e. (mod 1), where An = ££=1 ck. Since the An are constants, s\k converges 
a.e. (mod 1) along a subsequence. For the same reason, since s, hk are constants, 

sqk(oS) = shk — s\k(u) — s 

converges a.e. (mod 1) along a further subsequence, say kn, to a function 0, so that 
ei-Kisqkn c o n v e r g e s a e . to e2m(f>. We thus have: 

THEOREM 6. For s G [0,1), e2nis G e(T) if and only if the sequence x/jk = e2irisqk, 
k — 1,2,3,... converges along a subsequence to a function 0. This function ijj then 
extends in a natural way to an eigenfunction of T with eigenvalue e2ms. 

Note that our argument in fact shows that e2ms G e(T) if and only if given any in­
creasing sequence kn,n — 1,2,3,... of natural numbers there is a subsequence of it over 
which the functions ipk, k = 1,2,3,... converge a.e. to a function ijj which then extends 
to an eigenfunction of T with eigenvalue e2ms. Any two such limits differ by a multi­
plicative constant of absolute value one. Note also that e2ms G e(T) if and only if the ijjk 

converge over a subsequence in the L2 norm. 
We note that the functions i[)k vanish outside QQ- Since Qo has finite measure the i)k 

are in L2(X, (B, m) with bounded L2 norms. Any weak limit -0 of the collection {il)k : k = 
1,2,3,...} satisfies the relation 

\J){TW) = e2™f(u;)i)(uj). 

If such a 0 is non-zero then it extends to an eigenfunction of T, and 0 is then an a.e. limit 
of the ij)k over a subsequence. Thus we see that either the i[)k converge weakly to zero or 
the i/jk converge a.e. over a subsequence to a function which extends to an eigenfunction 
with eigenvalue e2ms. 

5.2. The maximal spectral type a of Uj is given (up to a discrete measure) by the weak 
limit as n —> oo of the measures nJUi ^-|^Â:fe)|2 dz. We will assume in the rest of this 
section that the weak limit is indeed precisely equal to the maximal spectral type of Uj. 
Such is the case, for example, when the measure m is infinite or when none of the Pk 

vanish on S1. If a G S\ then the translate aa of a by a is given by the weak limit of 
the measures Uk=\ ^~\Pki.ocz)\2. It is known that if a G e(T) then oa and a are mutually 
absolutely continuous. 

Fix s G [0,1), write a — e2ms and let ipk be the functions as in Theorem 6 for this s. 
The correspondence UJ\Q0 <-> zn, n G Z extends by linearity to an invertible isometry S 
from the closed linear span H of {UJIQ0 : n G Z} to L2(Sl, a). We know from [1] that 

ioo = (n^(w)i^, 
and one sees similarly that 

7=1 ' 
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SlQi = (n^-)W 
7=1 J 

S*l>k=(flPj(âz))siak. 

Since 51Q0 = 1, we see that 

7=1 

Sfa = 11 
Ai P& 

By Theorem 6 , aG e(T) if and only if the fa converge over a subsequence to a function 
x/j in the L2 norm. Hence a E e(T) if and only if Sfa converge over a subsequence in the 
L2 norm. If fa converge over a subsequence in the L2 norm to a function t/;, then (Sfa) 
will converge in the L2 norm over the same subsequence to SI/J. Any two subsequential 
limits of the ^ differ by a constant of absolute value one, hence any two subsequential 
limits of the Sfa will also differ by a constant of absolute value one. In view of the remark 
after Theorem 6, we see that if a G e(T) then 

k 

n 
Pjim 

Pjiz) 

converges in L2 norm as k —» oo to the function \Sil>\, the convergence being over the 
full sequence of natural numbers. Hence, if a 6 e(T) then 

n 
7=11 

Pjiocz) 

Pj(z) 

converges in Ll(Sl,cr) to \Stp\2. 
When a e e(T), a subsequential limit i/> of the i/>* is the restriction to tio of an eigen-

function ip' with eigenvalue a. We have for such a subsequential limit i/> and n € Z; 

( f / ^ ^ ) = (t/^'ln0 ,V'lQ0) 

(az)"rftr 
- A 

(where <ra(A) = a(a A)) 

i 
ndcra 

, , z -r-da. 

But 

Thus 

(Un
Tfafa = J ]Z

n\Sfa2da, nez. 

d(Tg 

da M2, 
and we have proved: 
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THEOREM 7. Ifae e(T) then 

—- = hm H 
do k—^oo •_ j Pj& 

convergence being in the l) norm. 

We conclude with the query whether, when a fi e(T), the measures a and oa are 
mutually singular and further if 

= 0 a.e. [a] 

in that case? 
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