
Canad. Math. Bull. Vol. 59 (1), 2016 pp. 170–181
http://dx.doi.org/10.4153/CMB-2015-070-2
©Canadian Mathematical Society 2015

A Note on Fine Graphs and Homological
Isoperimetric Inequalities

Eduardo Martínez-Pedroza

Abstract. In the framework of homological characterizations of relative hyperbolicity, Groves and
Manning posed the question of whether a simply connected 2-complex X with a linear homological
isoperimetric inequality, a bound on the length of attachingmaps of 2-cells, and ûnitelymany 2-cells
adjacent to any edge must have a ûne 1-skeleton. We provide a positive answer to this question. We
revisit a homological characterization of relative hyperbolicity and show that a groupG is hyperbolic
relative to a collection of subgroups P if and only if G acts cocompactly with ûnite edge stabilizers
on a connected 2-dimensional cell complex with a linear homological isoperimetric inequality and
P is a collection of representatives of conjugacy classes of vertex stabilizers.

1 Introduction

In this article, we investigate the relation between the notion of a ûne graph and ho-
mological isoperimetric inequalities of combinatorial complexes. We work in the cat-
egory of combinatorial complexes and combinatorial maps as deûned, for example,
in [2, Chapter I.8, Appendix]. All group actions on complexes are by combinatorial
maps.

_e notion of a ûne graph was introduced by Bowditch in his investigations on the
theory of relatively hyperbolic groups [1].

Deûnition 1.1 (Fine graph) A graph Γ is a 1-dimensional combinatorial complex. A
circuit is a simple closed combinatorial path. A graph Γ is ûne if for every edge e and
each integer L > 0, the number of circuits of length at most L that contain e is ûnite.

Let K denote either Z, Q, or R. For a cell complex X, the cellular chain group
C i(X ,K) is a free K-module with a natural ℓ1-norm induced by a basis formed by
the collection of all i-dimensional cells of X, each cell with a chosen orientation from
each pair of opposite orientations. _is norm, denoted by ∥γ∥1, is the sum of the
absolute value of the coeõcients in the unique representation of the chain γ as a linear
combination over K of the elements of the basis.

Deûnition 1.2 (Homological Dehn function of a cell complex) _e homological
Dehn function of a cell complex X overK is the function FVX ,K∶N→ K∪{∞} deûned
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as

FVX ,K(k) = sup{∥γ∥∂ ∶ γ ∈ Z1(X ,Z), ∥γ∥1 ≤ k} ,

with

∥γ∥∂ ,K = inf{ ∥µ∥1∶ µ ∈ C2(X ,K), ∂(µ) = γ} ,

where the supremum and inûmum of the empty set are deûned as zero and ∞, re-
spectively. In other words, FVX ,K(k) is the most eõcient upper bound on the size of
ûllings by 2-chains over K of 1-cycles over Z of size at most k.

_e following result exhibits the natural relation between the notions of ûne graph
and homological Dehn function in the context of G-spaces. Observe that a necessary
condition for FVX ,K being ûnite-valued is that X has trivial ûrst homology group
over K.

_eorem 1.3 Let X be a cocompact G-cell complex with ûnite stabilizers of 1-cells.
_e following two statements are equivalent:
(i) X has ûne 1-skeleton and H1(X ,Z) is trivial;
(ii) FVX ,Z(k) < ∞ for any integer k.

Deûnition 1.4 (Homological isoperimetric inequalities) Let X be a complex. We
say that X satisûes a homological isoperimetric inequality overK if FVX ,K(k) < ∞ for
any integer k, and we say that X satisûes a linear homological isoperimetric inequality
over K if there is a constant A ≥ 0 such that FVX ,K(k) ≤ kA.

_e deûnition of linear homological isoperimetric inequality above is equivalent to
the deûnition used by Groves and Manning [9, Deûnition 2.28]; see Proposition 3.4.
_e following question was raised in [9].

Question 1.5 ([9, Question. 2.51]) Let X be a simply connected 2-complex with
a homological (linear?) isoperimetric inequality, a bound on the length of attaching
maps of 2-cells and ûnitely many 2-cells adjacent to any edge. Must X be ûne?

Question 1.5 was raised in the context of homological isoperimetric inequalities
over the rational numbers. It can also be interpreted in the context of homological
isoperimetric inequalities over the integers. In both cases the question is answered
in the positive by the following theorem, but we remark that in the rational case our
argument requires the suggested hypothesis of a linear isoperimetric inequality.

_eorem 1.6 Let X be a cell complex such that each 1-cell is adjacent to ûnitely many
2-cells. _e 1-skeleton of X is a ûne graph if either
(i) FVX ,Z(k) < ∞ for any integer k, or
(ii) X is simply-connected, there is a bound on the length of attaching maps of 2-cells,

and there is C ≥ 0 such that FVX ,Q(k) ≤ Ck for every k.

https://doi.org/10.4153/CMB-2015-070-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2015-070-2


172 E. Martínez-Pedroza

In _eorem 1.6, the question of whether the assumption FVX ,Q(k) < ∞ for every
k is suõcient to conclude ûneness remains open for the rational case. In this regard,
there is a related question raised by Gersten of whether there is a constant C ≥ 0 such
that FVX ,Z(k) ≤ C ⋅FVX ,Q(k); see [4, Section 4, open question] and [5, Introduction].
A positive answer to Gersten’s question would imply that in _eorem 1.6, for the ra-
tional case, only the assumptions that X is simply-connected and FVX ,Q(k) < ∞ are
suõcient to conclude ûneness.

We provide a proof of the following converse of _eorem 1.6(ii) in the class of
cocompactG-spaces. For a deûnition of hyperbolic graph, we refer the reader to [1,2].
We say that a complex X is 1-acyclic if it is connected and has trivial ûrst homology
group over the integers.

_eorem 1.7 Let G be a group. Let Y be a 1-acyclic cocompact G-complex with ûne
and hyperbolic 1-skeleton and ûnite G-stabilizers of 1-cells. _en there is C ≥ 0 such that
FVY ,Z(k) ≤ Ck for every k. In particular, FVY ,Q(k) ≤ Ck for every k.

_ere are results implying hyperbolicity with assumptions in terms of homological
linear isoperimetric inequalities overQ orR. _ese aremore subtle results. In the case
where X is the universal cover of a K(G , 1)with ûnite 2-skeleton and FVX ,K is linearly
bounded, Gersten proved that FVX ,Z is also linearly bounded using constructions by
Papasoglu and Ol’shanskii; see [4, _eorems 5.1 and 5.7] and the references therein.
_is argument was revisited by Mineyev in [14, _eorem 7]. Groves and Manning
remarked that these arguments do not rely on the complex X being locally ûnite and
observed that the following result holds.

_eorem 1.8 ([9, _eorem 2.30]) Let X be a simply-connected complex such there
is a bound on the length of attaching maps of 2-cells. If FVX ,Q is bounded by a linear
function, then the 1-skeleton of X is a hyperbolic graph.

_e homological functions in Deûnition 1.2 have been considered in the contexts
of relatively hyperbolic groups, for example, in [9,11,15]. Combining_eorems 1.6, 1.7,
and 1.8 allows us to provide a characterization of relatively hyperbolic groups in terms
of homological Dehn functions stated as _eorem 1.10. _is characterization resem-
bles the approach to relative hyperbolicity by Osin in terms of a relative Dehn func-
tion [16], strengthens the homological characterization by Groves and Manning [9,
_eorem 3.25], and extends a characterization of hyperbolic groups by Gersten [6,
_eorem 3.1].

We use the deûnition of relatively hyperbolic groups by Bowditch in terms of co-
compact actions on ûne graphs [1]. _is approach is equivalent to the well-known
deûnitions by Gromov [8] and Osin [16] when one restricts to the class of ûnitely
generated groups; see [10, 16].

Deûnition 1.9 (Relatively hyperbolic group [1]) A groupG is hyperbolic relative to a
ûnite collection of subgroupsP ifG acts on a connected, ûne, δ-hyperbolic graph Γ with
ûnite edge stabilizers and ûnitely many orbits of edges andP is a set of representatives
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of distinct conjugacy classes of vertex stabilizers (such that each inûnite stabilizer is
represented). A G-graph Γ with all these properties is called a (G ,P)-graph.

We remark that in Deûnition 1.9 the group G is not assumed to be ûnitely gener-
ated, and there are no assumptions on the subgroups in P. Recall that a complex X is
1-acyclic if it is connected and has trivial ûrst homology group over the integers.

_eorem 1.10 (Relative hyperbolicity characterization) Let G be a group and let P
be a ûnite collection of subgroups. _en G is hyperbolic relative to P if and only if there
is a 1-acyclic G-complex X such that
(i) the G-action on X is cocompact;
(ii) there is C ≥ 0 such that FVX ,Z(k) ≤ Ck for every k;
(iii) the G-stabilizers of 1-cells of X are ûnite;
(iv) P is a collection of representatives of conjugacy classes of G-stabilizers of 0-cells

such that each inûnite stabilizer is represented.

A complex studied in the context of relatively hyperbolic groups is the coned-oò
Cayley complex Ĉ of a ûnite presentation ofG relative to a collection of ûnitely gener-
ated subgroups P; for a deûnition of this complex, see [9, Deûnition 2.47] or the last
section of this note. _e statement of_eorem 1.10 replacing X by the coned-oò Cay-
ley complex is a homological characterization of relative hyperbolicity by Groves and
Manning [9, _eorem 3.25]. Finding a more direct proof of this characterization was
one of the motivations of Question 1.5. A precise statement of this characterization
together with a discussion of its proof is in Section 3.5.

_e rest of the article is organized in two parts. _e ûrst section contains results on
the relation between ûne graphs and homological Dehn functions and, in particular,
the proof of_eorem 1.3. _e second section contains the proofs of_eorems 1.6, 1.7,
and 1.10; this part concludes with a discussion of coned-oò Cayley complexes.

2 Fine Graphs and the Homological Dehn Function Over Z
_roughout this article, when considering a complex X, we assume that for each cell
of positive dimension, an orientation has been chosen once and for all. As usual, the
group of n-cycles Cn(X ,Z) is understood as the free abelian group with free basis
the collection of n-cells with their chosen orientation. _ese chosen orientations are
necessary in order to deûne the boundary maps.

In this section, we only consider homological Dehn functions over Z, so through-
out the entire section FVX and ∥ ⋅ ∥∂ shall denote FVX ,Z and ∥ ⋅ ∥∂ ,Z. For statements of
results we use the standard notation.

2.1 Proof of Theorem 1.3

Proposition 2.1 Let X be a complex such that FVX ,Z(k) < ∞ for every integer k,
and each 1-cell of X is adjacent to ûnitely many 2-cells. _en the 1-skeleton of X is a ûne
graph.
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For the proof of Proposition 2.1, we introduce the notions of disjoint 1-chain and
special 2-chain.

Deûnition 2.2 (Disjoint chains) Let X be a complex and consider the free abelian
group of chains C1(X ,Z) with basis the collection of 1-cells of X. Two 1-chains α, β ∈
C1(X ,Z) are disjoint if, when considering their unique expressions as linear combi-
nations in the basis, there is no element of the basis having non-zero coeõcients in
both expressions.

Lemma 2.3 Let γ ∈ Z1(X ,Z) be a cellular 1-cycle induced by a circuit in the 1-skeleton
of X. If γ = α + β where α, β ∈ Z1(X ,Z) are disjoint, then either α or β is trivial.

Proof Let {e i}i∈I be the collection of 1-cells of X. Suppose that γ = ∑i∈I c i e i . Since
γ is induced by a circuit, observe that for every proper subset J ⊊ I we have that
either ∑i∈J c i e i = γ, ∑i∈J c i e i = 0, or ∂(∑i∈J c i e i) ≠ 0. _erefore, if γ = α + β where
α, β ∈ Z1(X ,Z) are disjoint, then either α = 0 or β = 0.

Deûnition 2.4 (Special 2-chain) Let X be a complex and consider C1(X ,Z) and
C2(X ,Z)with their freeZ-bases corresponding to the collections of 1-cells and 2-cells
of X respectively. Let e be a 1-cell of X. A special 2-chain based at e is a 2-chain µ
such that there is a sequence f1 , . . . , fn of elements of the basis of C2(X ,Z) such that
µ = ∑n

i=1 є i f i where є i = ±1 and
(i) ∥µ∥1 = n;
(ii) the 1-chains e and ∂ f1 are not disjoint;
(iii) for every k < n the 1-cycles ∂∑k

i=1 є i f i and ∂ fk+1 are not disjoint.

Remark 2.5 If µ = ∑n
i=1 є i f i is a special 2-chain of X based at e, then for every

k ≤ n, the chain∑k
i=1 є i f i is special.

Proof of Proposition 2.1 Consider C1(X ,Z) and C2(X ,Z) with their free Z-bases
corresponding to the collections of 1-cells and 2-cells of X, respectively. We show that
for any 1-cell e, any circuit γ containing e is (as a 1-cycle) the boundary of a special
2-chain µ based at e such that ∥µ∥1 ≤ FVX(∥γ∥1), this is Claim 1 below. Since FVX is
ûnite-valued, it follows that it is enough to prove that for each positive integer n and
each 1-cell e of X, there are ûnitely many special 2-chains based at e with ℓ1-norm
bounded from above by n, this is Claim 2 below.

Claim 1:Minimal area ûllings are special. Let γ be a 1-cycle induced by a circuit in the
1-skeleton of X containing e, and let µ be a 2-chain such that ∂µ = γ and ∥µ∥1 = ∥γ∥∂ .
_en µ is a special 2-chain based at e, and in particular ∥µ∥1 ≤ FVX(∥γ∥1).

Indeed, we have a unique expression µ = ∑i∈I є i f i where each f i is an element
of the basis of C2(X ,Z), є i = ±1, and ∥µ∥1 equals the cardinality of I. Consider a
non-empty proper subset of J ⊊ I and consider the 1-cycles α = ∂(∑i∈J є i f i) and
β = ∂(∑i∈I∖J є i f i). Since ∥µ∥1 = ∥γ∥∂ , we have that α and β are non-zero cycles.
Since γ = α + β is a 1-cycle induced by a circuit, Lemma 2.3 implies that α and β are
not disjoint. An induction argument then shows that we can order I = {1, . . . , n} so
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that µ = ∑n
i=1 є i f i , the 1-chains e and ∂ f1 are not disjoint, and for every k < n the

1-cycles∑k
i=1 є i f i and ∂ fk+1 are not disjoint.

Claim 2. Let n be a positive integer and let e be a 1-cell of X. _en there are ûnitely
many special 2-chains based at e with ℓ1-norm equal n

Nowwe use the hypothesis that each 1-cell of X is adjacent to ûnitely many 2-cells.
Let∑n

i=1 є i f i be a special 2-chain based at e. By the hypothesis, there are ûnitely many
choices for f1. Once we have chosen ∑k

i=1 є i f i special based at e, since ∂ (∑k
i=1 є i f i)

and ∂ fk+1 are not disjoint, the hypothesis implies that there are ûnitely many choices
for fk+1.

Proposition 2.6 Let X be a cocompact G-complex with trivial ûrst homology and ûne
1-skeleton. _en FVX ,Z(k) < ∞ for every integer k.

Lemma 2.7 ([7, Lemma A2]) Let X be a complex. Any 1-cycle γ ∈ Z1(X ,Z) can
be expressed as a ûnite sum ∑i α i , where each α i is a 1-cycle induced by a circuit and
∥γ∥1 = ∑i ∥α i∥1.

Proof of Proposition 2.6 Since the 1-skeleton of X is ûne graph and G acts cocom-
pactly, for each positive integer n, the G-action on the collection of circuits in the
1-skeleton of X of length at most n has ûnitely many orbits.

Observe the induced actions of G on the cellular chain groups C i(X) preserve the
ℓ1-norm and commute with the boundary maps. In particular, the norm ∥ ⋅ ∥∂ on
Z1(X ,Z) induced by C2(X ,Z) is G-equivariant.

Since X has trivial ûrst homology and has ûnitely many circuits of length at most n
in the 1-skeleton up to theG-action, there exists a constant Bn < ∞with the following
property: ∥α∥∂ ≤ Bn for every 1-cycle α such that ∥α∥1 ≤ n and α is represented by a
circuit of length at most n in the 1-skeleton of X.

Let γ ∈ Z1(X) be a cellular 1-cycle of X such that ∥γ∥1 ≤ n. Invoke Lemma 2.7
to have an expression γ = γ1 + γ2 + ⋅ ⋅ ⋅ + γk where each γ i is a 1-cycle represented
by a circuit and such that ∥γ∥1 = ∥γ1∥1 + ⋅ ⋅ ⋅ + ∥γk∥1 and k ≤ n. Observe that ∥γ∥∂ ≤
∥γ1∥∂ + ⋅ ⋅ ⋅ + ∥γk∥∂ . It follows that ∥γ∥∂ ≤ nBn , and hence FVX(n) ≤ nBn .

Proof of_eorem 1.3 Observe that if X is a cocompact G-cell complex with ûnite
stabilizers of 1-cells, then each 1-cell is adjacent to ûnitely many 2-cells. _e result
follows from Propositions 2.6 and 2.1.

2.2 Isoperimetric Functions and FVX ,Z

We refer the reader to [2, Appendix: Combinatorial 2-Complexes] for a discussion on
van Kampen diagrams, which are used below.

Deûnition 2.8 (Isoperimetric function) A function f ∶N → N is an isoperimetric
function for a complex X if it ismonotonic non-decreasing, andwhenever P is a closed
edge path of X, there is van Kampen diagram D for P with area bounded from above
by f (∣P∣), where ∣P∣ denotes the combinatorial length of the path.
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Deûnition 2.9 (Superadditive closure) A function f ∶N → N is superadditive if
f (m)+ f (n) ≤ f (m+n) for every pair m, n ∈ N. For an arbitrary function g∶N→ N,
let g denote the least function such that g ≤ g and g is super-additive. Speciûcally,

g(n) = max{ f (n1) + ⋅ ⋅ ⋅ + f (nk)∶ n1 + n2 + ⋅ ⋅ ⋅ + nk = n},

where the maximum is taken over all k ≤ n and all partitions n1 + n2 + ⋅ ⋅ ⋅ + nk of n.
We refer to g as the superadditive closure of g.

Remark 2.10 If f (n) = Cn, then f (n) = Cn.

Proposition 2.11 ([5, Proposition 2.4]) Let X be a simply-connected complex admit-
ting an isoperimetric function f ∶N→ N. _en FVX ,Z(n) ≤ f (n) for every n ∈ N, where
f is the superadditive closure of f .

Proof Let γ ∈ Z1(X) be a 1-cycle in X such that ∥γ∥1 = n. By Lemma 2.7, there
is an expression γ = γ1 + ⋅ ⋅ ⋅ + γk where each γ i is a 1-cycle represented by a closed
path Pi such that ∥γ∥1 = ∥γ1∥1 + ⋅ ⋅ ⋅ + ∥γk∥1 and ∥γ i∥1 = ∣Pi ∣. For each i, there is a
van Kampen diagram D i with boundary path Pi . Observe the diagram D i induces a
2-chain µ i such that ∂µ i = γ i . Since ∥γ i∥∂ ≤ ∥µ i∥1 ≤ Area(D i) ≤ f (∣Pi ∣) = f (∥γ i∥1),
and ∥γ∥∂ ≤ ∥γ1∥∂ + ⋅ ⋅ ⋅ + ∥γk∥∂ , we have ∣γ∣∂ ≤ f (n). _erefore, FVX(n) ≤ f (n).

_e following proposition is a version of the statement that hyperbolicity in terms
of thin triangles implies a linear isoperimetric inequality.

Proposition 2.12 ([1, Proposition 3.1]) Let Γ be a hyperbolic graph with hyperbolicity
constant k. _en there is a constant n = n(k) with the following property. If Ωn(Γ) is
the 2-complex with 1-skeleton the graph Γ and such that each circuit of length at most n
is the boundary of a unique 2-cell, then Ωn(Γ) is simply-connected and admits a linear
isoperimetric function.

2.3 Barycentric Subdivisions, Fineness, and FVX

Lemma 2.13 Let X be complexwith a bound on the length of attachingmaps of 2-cells,
and let Y be the barycentric subdivision of X. _en there is a constant B = B(X) such
that FVX ,Z(n) ≤ FVY ,Z(Bn) and FVY ,Z(n) ≤ B ⋅ FVX ,Z(Bn) + Bn for every integer n.

Sketch of a proof Denote by X′ the cell-complex obtained subdividing each 1-cell
of X into two 1-cells by inserting an extra 0-cell at the “midpoint” of each 1-cell, and
let X′′ denote the barycentric subdivision of X. One veriûes that FVX′′(n) ≤ C ⋅
FVX′(2Cn)+ 2Cn, where C is the maximal length of the boundary path of a 2-cell in
X, from which it follows that FVX′′(n) ≤ C ⋅ FVX(4Cn)+ 2Cn. Analogously, one can
show that FVX(n) ≤ FVX′′(2n).

Lemma 2.14 ([13, Lemma 2.9][1, Lemma 2.4]) Let X be a cocompact G-complex
with ûne 1-skeleton and ûnite edge stabilizers. _en the 1-skeleton of its barycentric
subdivision has ûne 1-skeleton.
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Proof Observe that the barycentric subdivision of a ûne graph is ûne. Moreover,
the 1-skeleton of the barycentric subdivision of X is obtained from the barycentric
subdivision of the 1-skeleton of X a�er G-equivariantly attaching ûnitely many orbits
of new arcs (the half-diagonals or diagonals of higher dimensional cells). _is type of
construction was explicitly shown to preserve ûneness in [13, Lem. 2.9]; alternatively,
it also follows from [1, Lem. 2.4].

3 Homological Dehn Functions and Relative Hyperbolicity

3.1 Linear Isoperimetric Inequalities and Hyperbolicity

Deûnition 3.1 (Condition FZN andWeak linear isoperimetric inequality [6, Def. 6.1])
Let Γ be a graph. For an integer N , we say that Γ satisûes condition FZN if for any
circuit γ in Γ there are circuits γ1 , γ2 , . . . , γk each of length at most N such that

(3.1) [γ] =
k

∑
i=1

є i , [γ i]

where [γ] denotes the class of γ in H1(Γ,Z) and є i = ±1. If Γ satisûes FZN , then
the weak area of the circuit γ is the minimum k in all expressions (3.1). _e graph Γ
satisûes a weak linear isoperimetric inequality if there are integers N and C such that
Γ satisûes FZN and the weak-area of each circuit γ is at most C∣γ∣ where ∣γ∣ denotes
the length of the circuit.

_e following theorem is a version by Gersten of the fact that a (standard) linear
isoperimetric inequality implies hyperbolicity.

_eorem 3.2 ([6, _m. 6.3]) If Γ is a connected graph satisfying FZN and a weak
linear isoperimetric inequality, then Γ is a hyperbolic graph.

Corollary 3.3 Let X be a 1-acyclic 2-dimensional cell complex such that there is a
bound on the length of attaching maps of 2-cells. If FVX ,Z is linearly bounded, then the
1-skeleton of X is a ûne hyperbolic graph.

Proof _e assumption that there is a bound on the length of the attaching maps
of 2-cells implies that the 1-skeleton of X and the one of its barycentric subdivision
are quasi-isometric. Since hyperbolicity is invariant under quasi-isometry, in view of
Lemma 2.13, we can replace X with its barycentric subdivision and assume that the
attachingmaps of 2-cells are circuits. Let γ be a circuit in the 1-skeleton of X. Abusing
notation we denote by γ the induced 1-cycle. Since X has trivial ûrst homology, there
is a 2-chain β ∈ C2(X) such that ∂β = γ and ∥γ∥∂ = ∥β∥1. Let N be an upper bound
for the length of boundary paths of 2-cells of X, which are assumed to be circuits. It
follows that γ = ∂β = ∑m

i=1 є iγ i , where each γ i is a 1-cycle induced by a circuit of length
at most N , and m = ∥β∥1. It follows that m = ∥β∥1 ≤ FVX ,Z(∥γ∥1) ≤ C∥γ∥1, where C
depends only on X. _erefore, the 1-skeleton of X is FZN and satisûes a weak linear
isoperimetric inequality. By _eorem 3.2, the 1-skeleton of X is a hyperbolic graph.
Since FVX is ûnite-valued, Proposition 2.1 implies that the 1-skeleton of X is ûne.
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3.2 Proof of Theorem 1.6

Proof of_eorem 1.6 _e ûrst statement of the theorem is Proposition 2.1. For the
second statement, the assumptions together with _eorem 1.8 imply that the 1-skele-
ton of X is hyperbolic. It follows that X admits a linear isoperimetric inequality in
the standard sense; this follows, for example, from [2, Ch.III.H Proposition 2.2] or
Proposition 2.12. _en Proposition 2.11 together with Remark 2.10 imply that FVZ,X
is bounded by a linear function, and hence Proposition 2.1 implies that the 1-skeleton
of X is ûne.

Proposition 3.4 shows that [9, Deûnition 2.28] and Deûnition 1.4 of linear homo-
logical isoperimetric inequality are equivalent.

Proposition 3.4 A complex X satisûes a linear homological isoperimetric inequality
overK if and only if there is a constant A ≥ 0 such that for any circuit c in the 1-skeleton
of X there is β ∈ C2(X ,K) such that ∂β equals the 1-cycle induced by c and ∥β∥1 ≤ A∣c∣.

Proof _e only if part follows from the observation that for a circuit c, the ℓ1-norm
of the induced 1-cycle, and the combinatorial length ∣c∣ are equal. For the if part,
invoking Lemma 2.7, any cycle γ ∈ Z1(X ,Z) is a ûnite sum∑i α i , where each α i is a
1-cycle induced by a circuit and ∥γ∥1 = ∑i ∥α i∥1. For this type of expression, we have
that ∥γ∥∂ ≤ ∑i ∥α i∥∂ from which the implication follows.

3.3 Proof of Theorem 1.7

Remark 3.5 Let X be a complex and suppose there is C ≥ 0 such that FVX ,Z(k) ≤
Ck for every k. _en FVX ,Q(k) ≤ Ck for every k. Indeed, let α be a 1-cycle in
Z1(X ,Q). _en there is an integer m such that mα ∈ Z1(X ,Z). It follows that there
is a 2-chain β ∈ C2(X ,Z) such that ∂β = mα and ∥β∥1 ≤ FVX ,Z(∥mα∥1) ≤ C∥mα∥1 ≤
mC∥α∥1 . In particular, ∂ 1

m β = α and ∥ 1
m β∥1 ≤ C∥α∥1. Since α was an arbitrary ele-

ment, we have FVX ,Q(k) ≤ Ck.

_e following lemma uses notation introduced in Proposition 2.12.

Lemma 3.6 Let Γ be a connected, ûne, hyperbolic graph equipped with a cocompact
G-action with ûnite edge stabilizers. If n is a large enough integer, then X = Ωn(Γ) is
a simply-connected cocompact G-complex such that FVX ,Z is bounded from above by a
linear function.

Proof Invoke Proposition 2.12 to obtain an integer n such that X = Ωn(Γ) is a
simply-connected complex with 1-skeleton Γ and with linear isoperimetric function.
_eG-action on Γ extends to an action on X. By construction, the collection of 2-cells
of X are in one-to-one correspondence with circuits in Γ of length at most n. Since
there are ûnitely many G-orbits of 1-cells in Γ and each 1-cell appears in ûnitely many
circuits of length at most n, there are ûnitely many G-orbits of 2-cells. Remark 2.10
and Proposition 2.11 imply that FVX ,Z is bounded from above by a linear function.
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Proof of_eorem 1.7 By taking a (double) barycentric subdivision of Y , assume
that attaching maps of 2-cells of Y are embedded circuits in its 1-skeleton and there
are no pairs of 2-cells with the same boundary path. Observe that taking barycentric
subdivisions preserve the hypothesis on Y in view of Lemmas 2.13 and 2.14. Let Γ
be the 1-skeleton of Y . By Lemma 3.6, there is n such that X = Ωn(Γ) is a simply-
connected cocompact G-complex such that FVX ,Z is bounded from above by a linear
function. By the assumption on the attaching maps of 2-cells of Y , taking n large
enough implies that Y can be considered as a G-equivariant subcomplex of X.
By _eorem 1.3, FVX ,Z(k) < ∞ and FVY ,Z(k) < ∞ for every k. Since Y and X

have the same 1-skeleton, if we let C = FVY ,Z(n), then FVY ,Z(k) ≤ C ⋅ FVX ,Z(k) for
every k. Indeed, this follows by observing that any 2-chain µ ∈ C2(X) can be replaced
by a 2-chain ν ∈ C2(Y) such that ∂µ = ∂ν and ∥ν∥1 ≤ C∥µ∥1. It follows that FVY ,Z is
also bounded from above by a linear function.

3.4 Proof of Theorem 1.10

Proof of_eorem 1.10 SupposeG is hyperbolic relative toP. A complex X with the
required properties is obtained by invoking Lemma 3.6.
Conversely, suppose that there is a complex X with the four properties. By cocom-

pactness there is a boundon the length of attachingmaps of 2-cells. _enCorollary 3.3
implies that the 1-skeleton Γ of X is a ûne hyperbolic graph, and hence the G-action
on Γ satisûes Deûnition 1.9 of relative hyperbolicity.

3.5 Coned-off Cayley Complexes and Homological Dehn Functions

Let G be a group and let P be a ûnite collection of ûnitely generated subgroups. Sup-
pose there is a ûnite relative presentation ⟨S ,P∣r1 , . . . , rm⟩ of G with respect P; for a
deûnition, see [16]. Assume that each P ∈ P is generated by S ∩ P and that S is sym-
metrized, that is, S = S−1. Assume that for each s ∈ S, the relation ss−1 is one of the
r is.

_e coned-oò Cayley graph Γ̂ = Γ̂(G ,P, S) of G relative to P and S is the G-graph
obtained from the standard Cayley graph of G with respect to S, by adding a new
(cone) vertex v(gP) for each le� coset gP with g ∈ G and P ∈ P, and edges from
v(gP) to each element of P. _e cone-vertices are in one-to-one correspondence
with the collection of le� cosets of subgroups in P, the G-action on the cone-vertices
is deûned using the corresponding G-action on le� cosets by G.

_e coned-oò Cayley complex Ĉ induced by the relative presentation

⟨S ,P ∣ r1 , . . . , rm⟩

is the 2-complex obtained by equivariantly attaching 2-cells to the coned-oò Cayley
graph Γ̂ as follows. Observe that the relators r i correspond to loops in Γ̂. Attach a
2-cell with trivial stabilizer to each such loop, and extend in a manner equivariant
under the G-action on Γ̂. Similarly, for each P ∈ P, for each generator in s ∈ S ∩ P
and each g ∈ G corresponds a loop in Γ̂ of length three passing through the vertices
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g , gs, v(gP), where v(gP) is the cone-vertex corresponding to the le� coset gP. At-
tach a 2-cell with trivial stabilizer to each such loop, equivariantly under theG-action.
_is deûnition of the coned-oò Cayley complex appears in [9, Deûnition 2.47].

_e following characterization of relative hyperbolicity in terms of linear homo-
logical Dehn functions on coned-oò Cayley complexes appears in the work of Groves
and Manning [9, _eorem 3.25]. _eir proof uses other characterizations of relative
hyperbolicity. Below we provide the sketch of a more direct proof of this characteri-
zation using the results of this note.

_eorem 3.7 Let G be a group and let P be a ûnite collection of ûnitely generated
subgroups. _e following statements are equivalent.
(i) G is hyperbolic relative to P in the sense of Bowditch, Deûnition 1.9.
(ii) G is ûnitely presented relative to P, and for any ûnite relative presentation

⟨S ,P ∣ R⟩, the coned-oò Cayley complex Ĉ = Ĉ(G ,P, S) satisûes a linear homo-
logical isoperimetric inequality over the integer numbers.

(iii) _ere is a ûnite relative presentation ⟨S ,P ∣ R⟩ such that the corresponding coned-
oò Cayley complex Ĉ = Ĉ(G ,P, S) satisûes a linear homological isoperimetric
inequality over the integer numbers.

(iv) G is ûnitely presented relative to P, and for any ûnite relative presentation
⟨S ,P ∣ R⟩, the coned-oò Cayley complex Ĉ = Ĉ(G ,P, S) satisûes a linear homo-
logical isoperimetric inequality over the rational numbers.

(v) _ere is a ûnite relative presentation ⟨S ,P ∣ R⟩ such that the corresponding coned-
oò Cayley complex Ĉ = Ĉ(G ,P, S) satisûes a linear homological isoperimetric
inequality over the rational numbers.

Proof _e implications (ii) ⇒ (iii) and (iv) ⇒ (v) are trivial. _e implications
(ii)⇒ (iv) and (iii)⇒ (v) follow from the observation that for a complex X, if FVX ,Z
is linearly bounded, then FVX ,Q is linearly bounded as well; see Remark 3.5.

(ii)

��

+3 (iii)

��

(i)

\d

(iv) +3+3 (v)

\d

_e implication (v) ⇒ (i) is proved as follows. If Ĉ is the coned-oò Cayley com-
plex corresponding to a ûnite relative presentation satisfying a linear homological
isoperimetric inequality over the rational numbers, then its 1-skeleton is a cocom-
pact G-graph with trivial edge stabilizers by construction, it is simply-connected [9,
Lemma 2.48]; it is ûne by _eorem 1.6(ii), and it is hyperbolic by _eorem 1.8.

_e implication (i)⇒ (ii) is proved as follows. Let K be a (G ,P)-graph; see Def-
inition 1.9. _en Lemma 3.6 implies that K is the 1-skeleton of a simply-connected
cocompact G-complex, and from here one veriûes that G is ûnitely presented relative
to P. Let ⟨S ,P ∣ R⟩ be an arbitrary ûnite relative presentation of G with respect to P,
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let Ĉ be the corresponding coned-oò Cayley complex, and let Γ̂ be its 1-skeleton. _e
combinatorial construction shows that Γ̂ quasi-isometrically embeds as a subgraph of
a (G ,P)-graph; this construction has been studied by diòerent authors, ûrst in Dah-
mani’s thesis [3, Proof of Lemma A.4], then in Hruska’s work [10, Proof of (R-H4)⇒
(RH-5)], and also by Wise and the author [12, Proposition 4.3]. Since hyperbolicity
is preserved by quasi-isometry and ûneness is preserved by taking subgraphs, it fol-
lows that Γ̂ is a (G ,P)-graph. _en_eorem 1.7 implies that Ĉ satisûes a homological
linear isoperimetric inequality over the integers.
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