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Abstract. In this paper, we use the theory of critical points of distance functions to study the
rigidity and topology of Riemannian manifolds with sectional curvature bounded below. We prove
that an n-dimensional complete connected Riemannian manifold M with sectional curvature
Ky = 1isisometric to an n-dimensional Euclidean unit sphere if M has conjugate radius bigger
than n/2 and contains a geodesic loop of length 2n. We also prove that if M is an
n( = 3)-dimensional complete connected Riemannian manifold with Ky, > 1 and radius bigger
than 7/2, then any closed connected totally geodesic submanifold of dimension not less than
two of M is homeomorphic to a sphere.
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1. Introduction

Let M be a complete Riemannian manifold. For a point p € M, we denote the dis-
tance from p to x by d(p, x) and set d,(x) = d(p, x). Notice that the distance function
d, is not a smooth function (on the cut locus of p). Hence, the critical points of d, are
not defined in a usual sense. The notion of critical points of d, was introduced by
Grove and Shiohama in [GS].

A point g(# p) € M is called a critical point of d, if there is, for any non-zero vector
v e T,M, a minimal geodesic y from ¢ to p making an angle /(v, y'(0)) < n/2 with v.
We simply say that ¢ is a critical point of p.

Grove and Shiohama established the theory of critical points to prove their diam-
eter sphere theorem which states that an n-dimensional complete connected
Riemannian manifold M with Kj; > 1 and diameter bigger than n/2 is home-
omorphic to an n-sphere.

Critical points of distance function is an important tool in global Riemannian
geometry. Many interesting results have been proven by using this tool. One can
find some of them, e.g., in [A], [AG], [CX], [G], [GP1], [GP2], [P1], [Pel], [Pe2], [SS],
[S1], [S2], [X].
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The purpose of this paper is to study some metric and topological rigidities of
Riemannian manifolds with sectional curvature bounded below by using the theory
of critical points.

A well-known theorem of Toponogov [T] states that a two-dimensional complete,
connected Riemannian manifold with sectional curvature K, > 1 is isometric to a
unit 2-sphere if it has a closed geodesic without self-intersections of length 2.
Our first application of the critical point theory is to prove a similar result for
the higher-dimensional case. Before mentioning the result, we fix the following defi-
nition for the conjugate radius.

DEFINITION 1.1. Let M be a Riemannian manifold and p be a fixed point of M.
Denote by C(p) the conjugate locus of p, that is, the set of the first conjugate points
to p, for all the geodesics that start at p. We define the conjugate radius of M
at p to be

[ 400, it Cp) =,
pp) = {dist(p, Cpy, it Cp) 0.

The conjugate radius of M is given by p(M) = inf,cpr p(p).
Now we can state our first theorem as follows:

THEOREM 1.2. Let M be an n-dimensional complete connected Riemannian
manifold with sectional curvature Ky = 1 and conjugate radius p(M) > n/2. If M

contains a geodesic loop of length 2n, then M is isometeric to an n-dimensional unit
sphere S"(1).

DEFINITION 1.3. Let (X, d) be a compact metric space and x € X. The radius of X
at x is defined as rad x = max,cx d(x, y). The radius of X is given by rad X =
min,cy rad x.

The concept of radius was invented in [SY]. As a second application of the critical
points theory, we have the following sphere theorem for totally geodesic
submanifolds in a manifold of positive sectional curvature.

THEOREM 1.4. Let M be an n( = 3)-dimensional complete Riemannian manifold
with sectional curvature Ky > 1 and radius rad M > n/2. Suppose that N is a
k(= 2)-dimensional closed connected totally geodesic submanifold. Then N is home-
omorphic to a k-dimensional Euclidean sphere S*.

One can take the real projective space and consider the totally geodesic
submanifolds of it to understand that our condition ‘rad M > /2’ in
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Theorem 1.4 is essential. We don’t know if it can be weakened so that ‘the diameter of
M is bigger than n/2’.

2. Proof of the Results

Throughout this paper, all geodesics are assumed to have unit speed.

Proofof Theorem 1.2. Since Kj; > 1, M is compact by the Bonnet-Myers Theorem
[CE]. We denote by i(M) the injectivity radius of M and for any x € M, let C,,(x) be
the cut locus of x. It is well known that the function f: M — R* defined by
f(x) =d(x, C,(x)) is continuous and that (M) = inf,cy f(x), where d denotes
the distance function on M. Thus there exists a point p € M such that
i(M)=d(p, Cpn(p)). Since C,(p) is closed and so is compact, there exists
q € Cyu(p) such that ¢ assumes the distance from p to C,(p). By Proposition 2.12
in [C, p.274], we conclude

(a) either that there exists a minimizing geodesic ¢ from p to ¢ along which ¢ is
conjugate to p.

(b) or that there exists exactly two minimizing geodesics ¢; and ¢, from p to ¢ with
o) = —a3(D), I =d(p. q).

If (a) holds, then the assumption on the conjugate radius implies that
i(M) =4d(p,q) > n/2. Now we assume that (b) holds. Since ¢ € C,,(p), we have that
p € C,(g) and, by its very definition, p realizes the distance from ¢ to C,,,(¢). It follows
that ¢7(0) = —5(0). Since Ky > 1, the Rauch comparison theorem implies that
C(x) #0, Vx € M and, consequently, for any x € M, we have

rad x = maxd(x, y) = max d(x,y) = p(x) = p(M) > r 2.1
yeM yeC(x) 2

For any x € M, let y € M with d(x, y) = rad x; then, by using the Toponogov
comparison theorem, one can prove that x has only y as a critical point (cf. [GS],
[P1]). Since any local maximal point of d, is a critical point of x according to Berger’s
lemma (Cf. [CE]), one concludes therefore that for any x € M, there exists a unique
point A(x) which is at maximal distance from x. We claim that the map
A: M — M is continuous. In fact, let {x,} ¢ M, x, — xp, be a convergent sequence
in M, then d(x,, A(x,)) = d(xo, Axy), since the map x — max,ey d(x,y) =
d(x, A(x)) is obviously continuous. For any convergent subsequence {A4x,} C
{Ax,} with Ax,, — x;, we conclude from

|d(xnk ’ Aan) - d(xo’ x6)| g d(xnk, X()) + d(Axl’I/(’ XE))

that d(x,,, Ax,,) = d(xo, x;). Thus we have d(xo, x;) = d(xo, Axo) and so x; = Axg
because 4Xx is the unique point which is at maximal distance from x,. The continuity
of A follows. Since M is homeomorphic to S" and 4Ax # x, for any x € M, the
Brouwer fixed point theorem implies that 4: M — M is surjective. Assume now that
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p = A(r) is the unique point which is at maximal distance from some r € M; then
d(p,r) > n/2. If r = q, then d(p, q) > ©/2. Consider now the case that r # ¢ and take
a minimal geodesic o3 from ¢ to r; then either

(30, —ol (D) < 5, o Aoy(0), —oh(D) < 3.

We assume without loss of generality that /(¢5(0), —a}(/)) < m/2.
Applying the Toponogov comparison theorem to the hinge (o1, 03), we obtain
cosd(p,r) = cosd(p, g)cosd(q,r)+
+sind(p, g)sind(q, r) cos /(a5(0), —a (1)) (2.2)

> cosd(p, g)cosd(q,r).
Using d(p, r) > d(q, r) and d(p, r) > n/2, we deduce from (2.2) that
Y
d@p,q) > 5 (2.3)

Summarizing the above discussions, we know that the injectivity radius of our M
satisfies (M) > n/2 and so we can find a sufficiently small § >0 such that
M) > m/2+6.

Lety:[0, 2n] — M be a geodesic loop of length 27 with base point x = y(0) = y(2n).
Since (M) > n/2 + J, y has no self-intersections. Let

3
y:y(g—i—é), m=y(n) and z:y<§—5>

and set
71 = V10,540 V2 = Vlg+o.n> 73 =Vgazs and  y4 =7l s om
then y,(i =1, ..., 4) are minimal geodesics. Take a minimal geodesic 7 from m to x.

We claim that the length of t satisfies L(tr) = = and therefore, M is isometric to
S”"(1) by Cheng’s maximal diameter theorem [Ch]. Assume, on the contrary, that
L(t) < 7 and set

o= /A7(0), —=y'(m)) and B = /7(0),7(n)).

Applying the Toponogov comparison theorem to the geodesic triangles (y;, y,, t) and
(y3, y4, 7), respectively, we can construct two geodesic triangles (7,,7%,,7) and
(3. 74, T) in S%(1) with vertices X, y, 7 and X, Z, 7, respectively, and satisfying

L) =Ly, i=1234 L(%) = L(), (2.4)
and
a<a f<P, (2.5)

where @ and f are the inner angles of (7,,7,,7) and (75, J,, T) at 7, respectively.
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Let X be the antipodal point of X in S$%(1) and let 7| be the minimal geodesic from 7
to ¥. Denote by & and f the inner angles of the triangles Az and Az 5 v at m,

respectively. Let d be the distance function on S?(1). From

A7) =n—dF7) =1 —d(x,y) = g — 6(2.14) = d(m, 7), (2.6)
one obtains by using the cosine law to the triangle A5 7+ that

sin(% - 5) sind(m,X')cos&
= cos(% - 5) - cos(g - 5) cosd(m, X')

=sind (1 — cosd(m, X))

> 0,
and so
T
<5 (2.7)
Similarly, one deduces that
— Y
=z 2.
P <3 2:8)
Combining (2.5), (2.7) and (2.8), we find
+B +a+B<n+a+pf<n4a+p=2n, (2.9)
which is a contradiction. Thus d(x, m) = n and so M is isometric to S"(1). O

Proof of Theorem 1.2. We denote by d and d" the distance functions on M and N,
respectively. Let p; and p, be in N to realize the diameter of N, say
s:=d"(p1, p;) = diam N. From Berger’s Lemma ([CE]), we know that p and ¢
are mutually critical points in N. That is, if we denote by I',,,, (resp., I';,,,) the
set of unit vectors in 7}, N (resp., T, N) corresponding to the set of normal minimal
geodesics of N from p; to p, (resp., p» to p1), then I', ,, (resp., I'p,p,) is m/2-dense
in Sy, N (resp., Sp,N), here S,N denotes the unit tangent sphere of N at x. Since
a /2-dense subset of a great sphere S’ in a unit sphere S, / < m, is also n/2-dense
in $”, we know that I', ,, is n/2-dense in S, M. Similarly, I',,, is n/2-dense in S,, M.

Since N is totally geodesic, it has sectional curvature Ky > 1. Thus, in order to
prove that N is homeomorphic to S, it suffices to show that s > n/2 by the Grove
and Shiohama diameter sphere theorem [GS]. We assume, on the contrary, that
s<n/2. Take a point ¢ € M such that /:=d(pi, q) = max,cp d(p;, x); then
[ >rad M > n/2. Let y:[0,/]] > M be a minimal geodesic from p; to ¢. Since
I'yp, is m/2-dense in T, M, there is a v € I',,, such that /(v,y](0)) < n/2. By the
definition of I',, ,,, we can find a minimal geodesic y; of N from p; to p, such that
77(0) = v. Note that y; is also a geodesic of M since N is totally geodesic. Set
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t = d(p2, q). Applying the Toponogov comparison theorem to the hinge (y, y,), we get

cost = cosscos/ + sinssin/cos /(y'(0), y1(0)) = cosscos/. (2.10)

Similarly, let :[0, f] — M be a minimal geodesic from p, to ¢ and since I',,,, is
n/2-dense in T,, M, we can take a geodesic o; of length s of M from p, to p; such
that /(¢’(0), ¢,(0)) < n/2. Then one can apply the Toponogov inequality to the hinge
(0, 01), and obtain

cos/ > cosscost+ sinssinzcos /(6'(0), 07(0)) > cosscos?. (2.11)
Since s < n/2, we find from (2.10) and (2.11) that
cos/sin’s > 0, (2.12)

which contradicts to the fact that / > n/2. Thus s > 7/2. This completes the proof of
Theorem 1.4. ]
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