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EISENSTEIN SERIES FOR REDUCTIVE GROUPS
OVER GLOBAL FUNCTION FIELDS II

The General Case
L. E. MORRIS

Introduction. This paper is a continuation of [5]. As stated there, the
problem is to explicitly decompose the space L? = L2(G(F)\G(A)) into
simpler invariant subspaces, and to deal with the associated continuous
spectrum in case G is a connected reductive algebraic group defined over
a global function field. In that paper the solution was begun by studying
Eisenstein series associated to cusp forms on Levi components of parabolic
subgroups; these Eisenstein series and the associated intertwining
operators were shown to be rational functions satisfying functional
equations. To go further it is necessary to consider more general Eisen-
stein series and intertwining operators, and to show that they have
similar properties. Such Eisenstein series arise from the cuspidal ones
by a residue taking process, which is detailed in a disguised form suitable
for induction in the first part of this paper: the main result is a pre-
liminary form of the spectral decomposition. In the second part these
results are used to show that the residual Eisenstein series and intertwin-
ing operators do possess all the requisite properties, including functional
equations; these properties are then exploited to transform the pre-
liminary spectral decomposition into a more explicit form. Elsewhere we
sketch some complements to the theory described above. Firstly a variant
of the theory is sketched which takes care of metaplectic coverings: this
is valid over global fields of arbitrary characteristic. Secondly we prove
a function field analogue of an induction theorem for automorphic
representations due, in the number field case, to Langlands [4]. The
present paper can also serve as an introduction to the number field ver-
sion of the same problem (carried out by Langlands ca. 1964, and
published in [3]): the analytic problems inherent in the latter case
evanesce for function fields, leaving the essential induction argument
untrammeled by technical analytical difficulties.

The ideas behind this paper are simple enough and are the same as
those employed in [3] and sketched intuitively in [1]; we recapitulate
them briefly.
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In [5] it was seen that . (&), which can be viewed as L? for argument’s
sake, is equal to

@(P} ﬂg({P}r é)

where {P} runs through the classes of associate standard parabolic
subgroups of G, including {G}; the space .Z ({ P}, £) is closed and G(A)-
invariant. For simplicity suppose P is the minimal standard parabolic
so that {P} consists of one element, and write P = NM, where M is the
Levi component associated to some fixed chosen maximal split torus 7.
There is then an associated complex manifold D, (£) of quasicharacters
on Zy (A), which we can think of as an infinite ‘“tube’”” whose axis in the
infinite direction consists of ‘‘real’’ quasicharacters, and whose axis in
the tubular direction is the imaginary axis: namely if ¢ € D, (¢) then
Re ¢ = |¢| with [¢](z) = [¢(2)], and Dy°(¢) = {¢| |¢| trivial} is the
imaginary axis.

The space £ ({ P}, £) can be thought of as a space of Poincare 8 series,
or as the closure of a space of holomorphic cross sections of a vector
bundle % on an open subset of Dy (£). Viewed in the latter way, it is
complete with respect to the inner product

0.1) (2, %) =fn 2 (M@, )@ (), ¥ (—wk))di

ef={0 wEw
where W is the relative Weyl group, M (w, {) is the intertwining operator
associated to the Eisenstein series in [5] and {o — 6, € Cp (the ‘‘small”
Weyl chamber), if § is the modular function for P. The symbol (,) re-
fers to a sesquilinear pairing that need not concern us here.

The space Dy°(£) lends itself to a natural Lebesgue measure; let &
denote the space of cross sections of 4 on D,°(f) which are square
integrable with respect to this measure, and consider the operator on ¥
given by

Q: @ = g #(W) 2 M@, wg) @wp).
The functional equations established in [5] for M (w, {) viz
M(st, ¢) = M(s, )M, ¢)
imply that Q is a projection with range consisting of those ® for which
®(s, &) = M(s, §) ().

Since M (w, {)* = M (w1, —w{), the operator Q is self adjoint and the
inner product (Q®, ¥) is given by (0.1) with ¢, replaced by 0.

Suppose in (0.1) that {, were 0 (at present it satisfies {o — dp € Cp).
The above would imply that . ({ P}, £) was isomorphic to the range of
Q. But ¢ is not 0, so we must perform a contour integration, picking
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up residues due to poles of the M(w, ¢). To avoid this, one considers
those ® in & ({ P}, £) whose zeroes cancel the polesof the M(w, {) in the
region over which the contour manipulations take place. Consequently
the subspace of . ({ P}, £) generated by such ® will be isomorphic to the
range of Q. The inner product of the projection of .Z ({P}, £) onto the
orthogonal complement of this subspace is given by the residues associ-
ated to the M(w, {) picked up as one moves the contour of integration.
The result is a sum of integrals of the same type as before, but taken over
“hyperplanes’’. Langland’s method is to repeat the argument and pro-
ceed by an intricate induction until nothing is left (c.f. Sections 5 and
4.14 of the present paper).

There are some unpleasant difficulties encountered in carrying out
this argument in detail, which are not merely notational. In the first
place, for number fields one must eventually integrate over regions
where one has little control of || M (w, ¢)|[; Dy (%) is not compact in the
imaginary direction in this case, and one eventually ends up in regions
where M (w, ¢) is not well understood. Langlands circumvents this by
an ingenious use of spectral theory (for unbounded self-adjoint operators).
This accounts for the analytic difficulties alluded to earlier; in the
function field version D,,(¢) is tubular and these problems do not arise.

In either case one must eventually compute residues of poles which
are not simple (see [3] appendix 111 for an example), and an appropriate
notation for handling this must be developed; this explains some of the
preliminaries of Section 2 of this paper. Another problem that arises
is that Res M (w, {) is not necessarily analytic on the final axis of integra-
tion (loc. cit.): one must live with a weaker statement (c.f. 4.14 (iii)
of this paper). Here we should point out that the intertwining operators
that one constructs for the final, explicit spectral decomposition are not
merely residues of the original intertwining operators. Their method of
construction is given in part II of this paper, and they themselves are
holomorphic on the imaginary axis.

Now for an apergu of this paper. We begin part I with a review of
standard parabolic subgroups, and the various complex manifolds as-
sociated to them; this section should be read carefully as it is the basis
for induction arguments. In Section 2 the necessary language for residue-
taking is set up, as well as some other preliminaries. Then in Section 3
we define the notion of an Eisenstein system; this is defined by conditions
tailor made for induction in Section 5. The first example is that of the
Eisenstein series and associated constant terms defined in [5]; the results
of [5] show that these satisfy the conditions for an Eisenstein system.
We then show how to construct the only other Eisenstein systems of
any interest to us: those obtained by taking residues of a known one.
Section 4 is largely concerned with properties of Eisenstein systems which
play a role in Section 5; in particular we show how to associate closed
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invariant subspaces of automorphic forms to appropriate collections of
Eisenstein systems. This sets the stage for Section 5 which is the heart
of the paper: here the spectral decomposition is initially obtained in
terms of subspaces associated to various Eisenstein systems obtained
by inductively taking residues. To transform this decomposition into
a more canonical and explicit one using only the recipe of inducing from
parabolic subgroups leads to part II.

Thus in Section 6 we return to Eisenstein series defined in a naive
way and show how part I implies that these have all the properties that
they should. The corresponding intertwining operators are constructed in
Section 7 and shown to possess all requisite properties, including func-
tional equations. These results are then used in Section 8 to put the
spectral decomposition into the desired form and describe it more
explicitly.

Part I is the means by which one proceeds to the final theorems of
part II, but perhaps the best way to proceed is to read enough of part I
to understand the statements of the results, and then move on to part II.

Two related results will appear elsewhere. Firstly, if Fis a global field
of any characteristic, G a reductive group defined over F and G is a
finite central covering of G(A) with a “‘splitting’”’ over G(F), then we
show how to adapt the usual theory to decompose L2(G(F)\G); this is
designed for metaplectic coverings. The second result says that auto-
morphic representations arise as constituents of representations induced
from cuspidal representations of parabolic subgroups; it is a function
field version of [4].

The paper is more or less self-contained with two exceptions. The first
and more serious is that no proof of Langlands’ ubiquitous Lemma 7.4
[3] is given. Langlands gives a proof in [3], and a more detailed proof is
presented in [7]. The function field account has nothing to add (or
subtract), so has been omitted. The second exception is minor: it is
concerned with square integrable automorphic forms, and does not
properly belong in the paper; in any event it will appear elsewhere.

Finally, I have made systematic use of the manifolds D (¥) as sug-
gested by Langlands in appendix II of [3]; this approach is necessary for
function fields and deserves to be better known in general.

Anyone who compares them will see that this paper owes its existence
to {3]; I only wish to add that I have found the forthcoming monograph
[7] by Osborne and Warner to be very helpful in many places, especially
in dealing with the induction step for the auxiliary spectral decomposi-
tion. I take this opportunity to thank them for providing me with a
preliminary version so expeditiously.

Conventions.
F . global field of char p > 0
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e(x) : exp (x log ¢), ¢ = # field of constants of F
6, : modular function associated to a parabolic subgroup P
A : the ring of adeles associated to F.

1. Parabolic subgroups and related complex manifolds.

1.1. Let G be a connected reductive group defined over F, 77 a maximal
torus, not necessarily defined over F. Let F be an algebraic closure for F
and suppose that a set of roots R’ and simple roots A’ has been given for
the pair (Gr, T7). Let T be a maximal F splt torus with Tz © T'# and
R the set of roots G with respect to 7. As remarked 1in [6] 1.2.1 we can
choose a set of simple roots A for G with respect to 7% in such a way that
if « € A’ then either a|r, is trivial or an element of A; if this is so then
there is a correspondence between subsets of A and Gal (F/F)-stable
subsets of Ay’, where A, consists of those elements of A’ not trivial on
To. The set A corresponds to a minimal parabolic subgroup P, defined
over F and there is a canonical Levi decomposition P, = NoM, where
Ny is the unipotent radical of Py, and My is Z¢(TY).

As explained in [5] 1.2.2 and elsewhere, there is a correspondence
between parabolic subgroups of G which contain P, and subsets of A; if
6 C A we write 1’ for the corresponding parabolic subgroup. Parabolics
obtained in this vay are said to be standard parabolic subgroups; they
form a set of representatives for the F-conjugacy classes of parabolic
subgroups of G. In particular P, = Py, P» = G, the standard maximal
parabolics correspond to sets of the form A — {a}, and we sometimes
denote them by P* rather than Pa_j,,.

In this paper, unless otherwise stated, we shall only work with standard
parabolic subgroups, and ‘“‘parabolic’’ will be taken to mean ‘‘standard
parabolic subgroup’’.

1.2. Let P be as above, then it has a canonical Levi decomposition
P = NM with N the unipotent radical, and M = Zy(7T); here T C T
is defined by

T =N (kera)
ac
if P = Po. By abuse of notation we shall usually refer to M as ‘“‘the”
Levi component of P, meaning it has been chosen as above.

Let X, be the group of rational characters of Z,\ M. If k is a field we
shall write X, (k) for X, & k. In particular we have the real (resp. com-
plex) finite dimensional vector space X,;(R) (resp. X, (Q)). Its elements
may be interpreted as homomorphisms

M(A) - R X (resp. CX)
which are trivial on Zg(A)M(F). It should be noted that X, (R) can
equally well be viewed as homomorphisms

Ze(A)Zy(F)\Zy(A) — RX
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Set X *(R) = Mor (X (R), R). There is a homomorphism H,, :
M(A) — X,*(R) which can be described as follows. If m € M(A), then
fOI‘ X E XM(R)v

x(m) = e(Hy(m), x ).

The image of Hy, is a lattice Ly ™ in X *(R). If we restrict Hy to Zy(A),
and denote it by Hy,,, then we obtain a lattice L,, * © L™ and these two
lattices are, in general, distinct. The kernel of Hy (resp. Hz,,) is denoted
by M°(resp. Zx°); it does not correspond to a reductive algebraic group
in general, but for many purposes it behaves like one: it contains M (F),
unipotent radicals, and any compact subgroup of 3 (A). In particular
one can define the notion of cusp form on M°.

1.3. Given P D P, one then has M 2O M, which gives rise to a natural
projection

X*(R) = Xu*(R)
and injection
Xy (R) = Xo(R)

where for brevity we set Xo*(R) = X,,*(R), etc. Let 7" be the split
component of Z,,, and Ap (resp. £p) the set of simple roots (resp. roots)
for the pair (P, 7). These last are elements of X,,(Q) hence elements
of X3 (R); any element « of Ap is the restriction of a unique root ap € A.
We shall write a” for the projection of the coroot @’ to X,;*(R), and call
it a stmple coroot.

More generally, suppose P, 2 P; with Levi decompositions P; =
N M, then there are maps X *(R) —-» X,*(R), X,(R) S X,;(R) coming
from M, C M,. The group P, M\ M. is a parabolic subgroup of M, with
unipotent radical N, = N; M\ M,; if A% is the set of simple roots for the
pair (P1 M\ M,, T:) then A2 € A, and in this way subsets of A; corre-
spond to parabolic subgroups containing P;. The map P, — P, M\ M.
is a bijection between parabolics contained in P, and parabolic subgroups
of M, and X,*(R) can be identified with the vector subspace of X ;*(R)

x| alx) =0,a€ A2

as follows easily from the definition of 7', and the alternative interpreta-
tion of X,(R) given in 1.2.
If (X,2)* is the subspace of X;*(R) annihilated by X,(R) then

X*(R) = X2*(R) @ (X,2)*

and the subspace of X;(R) spanned by A,?is in duality with (X2)*. We
denote it by X,? and then

XI(R) = Xz(R) @ XIZ‘

https://doi.org/10.4153/CJM-1982-080-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1982-080-6

1118 L. E. MORRIS

Similarly
(Xo®)* = (Xo)* @ (X:)*
and the set {a®: a € A%} is a basis for (X,2)*.

Finally, we note that if one identifies X¢*(R) with X,(R) by means
of a bilinear form invariant under the Weyl group, then the decomposi-
tions elaborated above can be viewed as orthogonal sums. This point of
view will often be taken, without comment.

In particular we can expand our definition of coroot: if ( , ) is such a

bilinear form then for each a € Zp we define (by restriction of the as-
sociated inner product) a® € X *(R) >~ X,,(R) by

a’ = 2a/(a, a).

The set of these coroots (resp. simple coroots) is denoted by Zp” (resp.
AP”).

1.4. In [5] 2.1 we defined a complex analytic manifold Dy (£); as it
plays a central role in all that is to follow, we may as well recall its
definition. Let ¢ be a character of Z(F)\Z(A), then as a set, Dy (§)
consists of those quasicharacters of Zy (F)\Z,(A) which prolong £ The
group X, (C) acts on Dy, (§) via

X—xe(Hz, (), w)

if x € Dy(§), € Xa(C), and the stabilizer of any x is simply tLz,,,
where

Loy = {0 € Xu(R)|  (Hu(2), ©) € 20Z/log g, 2 € Zu(A)}.

In this way Dy (£) acquires the structure of a complex analytic manifold,
characterized by the fact that each connected component can be (non
canonically) identified with the complex Lie group 'Lz, \ X, (C).

For each component of D, (¢), choose a character w as a basepoint
for that component; we write @(w) to indicate the relation.

If ¢ € Dy(#), define Re ¢ by Re ¢(z) = |¢(z)|; this is an element of
X3 (R). The set of characters Dy (%) is the set of { for which Re ¢ is
trivial: it is a disjoint sum of compact connected real manifolds, each
of which is diffeomorphic to Lz, \ X, (R).

1.5. Let H be an affine subspace of X, (C); in view of the map
Xu(C) — LLZM\XM(C) — U, Q(w) = Dy(§)

we see that H gives rise to a submanifold of Dy, (¢), which we shall call an
affine subspace of Dy (£); in particular an affine hyperplane will arise
from an affine subspace of codimension 1. The only affine subspaces of
interest to us in this paper will be defined by equations of the form

a’( ) =Na. ¢ € E
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where = C Zp. By a standard affine subspace we shall mean one for
Which E g AP.

In this paper the words “affine subspace’’, “affine hyperplane” will
always refer to one defined by equations as above with £ C Zp.

1.6. Unfortunately, for the induction that lies at the core of this
paper we shall have to operate at a degree of generality a little higher
than that expounded in 1.3-1.5. For this, let Z, be a closed subgroup of
Zy(A): in practice Z, will be Z«(A) where *P D P is some larger
parabolic, possibly G itself. In any case we assume that ZoZy(F) is
closed in Z,(A). Let ¢ be a quasicharacter on Z,, assumed trivial on
ZoyM Zy(F): note that £ is not necessarily assumed to be a character.
We now write X3 (R) for the (finite dimensional) real vector space
consisting of quasicharacters

X 1 ZoZy (F)\Zu (A) — R X

and X3 (C) for X (R) @ C.

Let D, (¢) denote the set of quasicharacters on Z, (F)\Zy (A) which
prolong £ The complex group X,,(C) acts on Dy (£) as before, and each
element of Dy (£) has the same stabilizer, namely 'Lz, where Lz, isa
lattice which can be defined analogously to that defined earlier. Thus
we see that Dy (£) can be given a natural structure of complex analytic
manifold, in which each connected component is holomorphically equi-
valent to Lz, \X»(C). Such a holomorphic equivalence depends on a
choice of base point in each connected component: we can always sup-
pose that these are chosen to be of the form wvy where v, 1s a fixed real
quasi character which prolongs || = Re £, and w is some character.

In particular suppose that Zy = Zu(A) where *P D P is some
larger parabolic, possibly G itself. Then one may certainly speak of
roots, coroots, weights etc. corresponding to X (R): in fact in this
situation X, (R) is precisely the X% of 1.3 where *P = P, D P = P,.

Henceforth when the symbol Dy, (£) appears, it will be with respect to
some (implicitly) defined Z, C Z,,(A). Two cases are of special interest:
£ = xd«p where *P D P, and x is a character on Z«,(A); secondly, ¢ a
character on Zg(A) € Zy(A). In general the meaning will be clear from
the context; in particular when roots etc. are mentioned, it is assumed
that Zo = Z«y(A) or Zg(A).

In general, if Zy = Zy,(A) we shall preface the object of interest with
a Q" thus 9Dy (%), 9X5(C) etc. Finally, we shall abuse notation and
write Zo(A) for Zy,(A) to avoid a proliferation of subscripts.

1.7. We shall also need to define various chambers which enter into
the picture later on. Firstly we shall frequently write 9a, (resp. 9ax (G))
for 49X, (R) (resp. X, (C)).

https://doi.org/10.4153/CJM-1982-080-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1982-080-6

1120 L. E. MORRIS

If x € ay, we shall write x > 0 if
a’(x) > 0 for each o’ € Ap'.
We then set
Cayt = {x € Yaplx > 0},
and define the (small) Weyl chamber ¢Cp by
QCp = ayt = {x|x > 9%p}.
We define the dual (large) chamber by

QC* = +eq,,

where
= {3 cioyy a5 € 9Ap, ¢; > 0}

It is always the case that *9a, D %ay,*.

More generally let ¢ C %a = g, be defined by equations

a’(x) =0, o’ € EC 92,

and let b be the orthogonal complement of ¢ in a, then we can define
= {Xcal € E C; >0}

Similarly b* can be defined and then *b 2 b*.

If ¢ is an affine subspace of ?a = “q,,, then let ?a(r) denote the ortho-
gonal complement of t*M a in a. From the above we can then define
+q(r). Similarly if b is the orthogonal complement of the largest standard
subspace of t? M “q, we can define *b. (See 2.4 for 1°.)

1.8. Let Lz, * be the image of Hy : Zy (A) — %ay™. By a trigonometric
polynomial on 'Lz, \%°a,(C) we shall mean an element of C[Lz,*]. Note
that this last always contains 9q,*(C).

Finally, if R > 1, the space a,(R) is defined as in [5] III.1.1, as is
H(R).

2. Preliminaries for Eisenstein systems.

2.1. Suppose P, Q are parabolics with Q 2D P, and let x be a character
of Z,(A) prolonging £ For much of part I we shall be interested, at least
implicitly, in the space ® %, (P, K’, x64) of functions

¢ : N(A)P(F)\G(A) —» C
satisfying the following conditions
(i) ¢ is right K’-invariant.
(i) (zg) = x3¢(2)0(g), 2 € Zo(A), g € G(A).
(iii) Let ¥M° denote the kernel of the homomorphism

‘pHM : M(A) — Mor (Q)(];,[(R)Y R).
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Then for each g, the function m — ¢(mg), m € M4(A) is to have com-
pact support mod ¥ M°.

(iv) For each g, the function on ¥M° given by m — ¢(mg) is to lie in
the space of cusp forms on ¥ M transforming according to xd .

A word is necessary concerning (iv), since we have not defined what
is meant by ‘‘cusp forms transforming according to xd," (the point is
that xd ¢ is not a character). The space of cusp forms on ¥ M° transforming
according to x84 is denoted by £ ({¥M°}, x6,) and is defined to be the
space of functions

¢ VM(F)\VM° — C

satisfying the following conditions
(i)’ For each z € Zg(A), ¢(sm) = xba(2)d(m).

(in)’ f [$()]’60" (e)de < ©.
Zg(A) M (F)\¥ 10

(iii)" If R = NgzMy is a parabolic subgroup of ¥M = M, then

f ¢(mm)dn = 0
NR(F)\Ng(A)

for each m € ¥M° (note that Nz(A) C ¥M").

Following [5] 1.5.7 one can show that the space of cusp forms trans-
forming according to xde, right invariant by K’ M ¥M?° is finite dimen-
sional; we denote this space by & ({* M}, K’, x8,).

Thus the definition of

Q(gO(Py XaQ) = U Q%O(P) K,» XaQ)
'

is a version tailor made for induction of that of that of [5] 2.1.

2.2. If ¢ € 9F (P, x84) then as in [5] 2. 2.3-4 the series
M) = D ¢(vg) = e(do, Holg)) 20 83 (vg) $(vg)

P(F)\Q(F)

is a finite sum and gives rise to a function on Ny (A)Q(F)\G(A) which has
compact support modulo Z,(A).
Let ©.% (x8,) be the space of functions

No(A)Q(FN\G(A) = G

transforming by x84 (i.e., ¢(2g) = x0o(2)¢(g)) and satisfying
f |6(e) 00" (@)dg < .
Ng(A) Zg(A) Q(F)\ G(A)

We shall denote the closure in ©% (x8,) of the space of such ¢~ by
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QL (P, x8q). Let ¢{ P} consist of those elements of { P} for which Q 2 P,
and set

Qg({P}, x8q) = @D Qg(})y x8q)-
Qpy
This space is invariant under right translations by G(A): indeed if
¢ € 2% (P, K', x64) then the function g — ¢(gg’) for fixed g’ is right
invariant by ¢’K’g’~1, hence by ¢’K’g’~! M K’, and an easy approximation
argument implies right invariance for the closure ¢.% (P, x6¢).

The aim of part I is to describe the decomposition of . ({P}, xd¢)
under the action of G(A) in terms of residues of Eisenstein systems. In
part II we shall see that this leads to an explicit description of the spectral
decomposition for the space £ (£).

2.3. The next thing we must do is define the notion of residue. Suppose
as in 1.5 that t is an affine subspace of 9X,,(C), giving rise to an affine
subspace of Lz, \°X;/(C); we denote the latter affine space also by r.
Let t be an affine hyperplane contained in R. Finally suppose that f
is a meromorphic function defined on r, all of whose singularities lie
along hyperplanes of the type described in 1.5. We are going to define a
new meromorphic function, Res; f, on t; to do this choose a real unit
normal to t, call it Hy, and let A € {. Choose § > 0 small enough so
that (i) f(A 4 zH,) has no singularities for 0 < |z < 26 (say) and (ii)

ALz, N {A 4 2Ho| 3| < 28} = {A}.
We define Res; f by

Res, f(A) = % fh[:af(A + 2Ho)ds

1
=45.27 f F(A + 86" °Hy)e™ ds.
0

Note that t is not supposed to be a singular hyperplane of f, but of
course in practice that is the case of interest. The singularities of Res; f
then lie on the intersections with t of the singular hyperplanes of f.
This definition can be carried over to 9Dy, (£).

2.4. Eventually we shall be concerned with residues arising from non-
simple poles, and for this one will need to take derivatives; thus to use
this definition of residue we must make several more.

First, suppose t is an affine subspace in 2X,,(C); then r can be written
in the form v = X(r) + t% where t° is a complex subspace of 9X,,(C)
defined by real linear equations of the form {H|a"(H) = 0}, and X (t) is
a vector orthogonal to t’. The (co) tangent space of 1Lz, \?X,(C) at 0
is just the (co) tangent space of 9X,,(C) at 0. Therefore if S(r) is the
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symmetric algebra on the orthogonal complement of t in 9X,,(C), then
there is a canonical isomorphism Z — D(Z) of S(r) with a subalgebra of
the algebra of holomorphic differential operators on 2X,,(C) such that

d .
D) = (L) (4 7).
if ¥ lies in the orthogonal complement of r?, and f is defined and analytic
in a neighborhood of A € 1Lz, \%X,(C).

2.5. Now suppose that A € 9X,,(C), and let V, V' be finite dimen-
sional complex vector spaces endowed with a non degenerate sesquilinear
pairing

(,): VXV —=C.
Let ® be a function analytic in a neighborhood (in X, (C)) of A, with

valuesin V. Let Hom (S(r), V) denote the space of linear transformations
from S(tr) to V, and define d®(A) € Hom (S(r), V) by

d®(A)(Y) = D(Y)®(nA).
In this way we obtain a map
d : 9y a — Hom (S(x), V)

where ¢y 4 is the space of germs of V-valued analytic functions at A.
Since Hom (S(r), V) may be viewed as the space of formal power
series over the orthogonal complement of %, we can obtain d®(A) by
expanding the function ® in a Taylor series about A.
In particular, if W is another finite dimensional complex vector space,
and T € duomywya we obtain the element d7°(A). If also F €
Hom (S(r), V), we define

dT(A)F € Hom (S(x), W)
by the composition

s sm e sy TN Ly v e vEw

where A is the diagonal map and E is evaluation.

2.6. Suppose t C t is also an affine subspace, so that S(r) C S(t); if
So(t) denotes the symmetric algebra on the orthogonal complement of t
in 1, then there is a natural isomorphism

So(t) ® S(r) ~S(t).

Suppose 1" € Hom (S(t), V), Xo € So(t), and define X, V I" to be
that element of Hom (S(r), V) given by

(Xo vV I(X) = T(Xo ® X).
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Moreover suppose that
F: U—-Hom (S(x), V), UC X,(C)

is defined in a neighborhood U of A, such that for each Z € S(r), the
function F(-)(Z) is analytic on U (we could describe this by saying that
F is weakly analytic). Then dF(A) € Hom (S(t), V) is defined by

dF(A)(Xo @ X) = D(Xo) (F(A)(X)).
In particular suppose that f = d®(A). Then

d(d®(A))(Xy @ X) = D(Xo)(d®(A) (X))
= D(X,)D(X)2(A)
=d®(4)(Xo ® X)

where now d®(A) is taken as an element of Hom (S(t), V). Bearing
this in mind, we see that

d(d®)(A) = do(A).

2.7. Adjoints. Let Y be an element of the orthogonal complement of
t?; The map ¥ — Y* = — ¥ then gives rise to a conjugate linear iso-
morphism * : S(r) — S(r). Define a pairing

(,)s:S() ® VX Hom (S(r), V) - C
by
(Y@ u, F)s = (1, F(Y*))vxv-

where (, )vxy’ denotes the pairing given a priori on V X V’. The
pairing (, )s is then sesquilinear.

When the context is clear we shall omit the subscript *“S” (or “V X
V.

Now suppose f is a functional on S(r) ® 1, then one may always
find F € Hom (S(r), V) so that f(w) = (w, F)sforallw € S(t) ® V":
this is a simple matter of applying the definitions. Suppose however that
we are given a functional f on Hom (S(x), V), then for there to be a
T € S(r) ® V' such that

(all F), the functional f must be restricted.
Indeed if F € Hom (S(r), V) define the order of F, O(F), to be the

lowest degree of the non zero terms occurring in the power series ex-
pansion of F. Now if

T:Hom (S(t), V) > W

is a linear map to the finite dimensional space W we say that 7T has
finite order » if 7" vanishes on all F with O(F) > =, but T(F) # 0 for
some F of order n.

https://doi.org/10.4153/CJM-1982-080-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1982-080-6

EISENSTEIN SERIES 1125

Returning to the functional f above, and taking W = G we see that
there is a unique T € S(r) ® V' with f(F) = (T, F)s if, and only if,
f has finite order #, for some #.

We shall apply this to the following situation. Suppose that

A : Hom (S(x), V) > W

is a linear transformation of finite order and suppose that
(Lw: WXW —>C

is also a sesquilinear pairing. Fixing w’ € W’ for the moment, we find that
F— (AF, w')w

is a functional on Hom (S(t), V) of finite order, hence there is a unique
T, € S(r) ® V' such that

(AF, W)y = (1, F) for all F.
The map w’ — T, is a linear transformation
A* : W - Sk) @ V.

In particular, suppose that t is an affine subspace of X, (C) where P,
is another parabolic, that W = S(t) ® V', W = Hom (S(t), V,) where
Vs, V4 are analogous to V, V' then

A*: Hom (S(t), V2) = S(r) ® V'

is a linear transformation, called the adjoint of A.
Since for each F € Hom (S(r), V) the linear functional

F'— (A*F', F)y = (AF, F')y

is of finite order, we see that A* is itself of finite order.

3. Eisenstein systems.

3.1. Fix a class of associated parabolic subgroups { P}, whose elements
we denote by P!, ..., P". Suppose R is some parabolic subgroup such
that R D P* R D P’ say. We write ®W(%a?, %a’) for the set of distinct
linear transformations from €a’ to ¢a’ fixing a pointwise; alternatively
one can view it as the set of linear transformations ®a? to *a’/, or again
as the set of distinct linear transformations M*— M7 arising from con-
jugation by Mz(F). In any event it is a subset of W(%a?, ¢a?). We shall
also write W(Ea?, £a’) for EW(%a?, %a’).

Suppose t is an affine subspace of “a?, then we shall let W (r) denote
the set of distinct linear transformations from t to ¢a’(C) obtained by
restricting the elements of #W(a? a’) to r C a?(C).
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Given s € EW/(t), we define
t, = {—sA|A € t}.
Thus 1, is an affine subspace of a7(C).

3.2. In the previous section we defined %% ({P}, x6¢); in this and
subsequent sections we shall also be considering % o({ P}, wdp).

We shall always suppose that if Q 2 P then wdp restricts to xdq on
Zo(A). Moreover, if P = P we frequently write V* for € 4(P, wép) or
Cgo(]), KI, wép).

3.3. With these observations in hand we now proceed to make the
central definition of this paper.

Fix t C %y, (C) = %(C) as before. We suppose that for each
Q 2 P witht’ D ao(Q) there is given a function E(g, F, A) transforming
by x6o on Z,(A) i.e.,

E(zg, F, A) = x80(z)E(g, F, A),
E(.,.,.): No(A)Q(F)\G(A) X Hom (S(x), V*) X % — C.

The space r together with the collection of functions E(g, F, A) is
called an Eisenstein system belonging to v if for some Q 2 P, some g,
some F the function E(g, F, A) # 0, and if the conditions (i)- (iii)
below are satisfied.

(i) Given Q D P, g € G(A), F, the function E(g, F, .) is rational,
and is a function on the image of ®r in Lz, \%a’: here Lz, denotes what
should properly be written L, . As a function of g it isright invariant by
some open compact K’ € K, and it is linear in the argument . Moreover
E(.,.,.) has finite order in the sense that for each g, A, the functional
E(g, ., A) is of order n, n an integer independent of g, A. Finally we can
find a trigonometric polynomial p(A) € G[*?Lz, ] such that forall g, F,
the function p(A)E(g, F, A) is analytic in A.

(ii) Suppose that P’ = P’ with Q 2 P’ as well. Then for each s €
QWi(x) there is a function N(s, A) on t with values in

Hom (Hom (S(x), V), S(r) ® V)
(Vj = %O(Plv K’y ws_lal") or %O(Ply wS——laP,))

such that for each F in Hom (S(r), V') and each F’ in S(r;) ® V7, the
function

(N(s, A)F, F) (cf. 2.7)
is rational in A on “r. Furthermore there is a positive integer # so that
(N(s, A)F, F') =0
if O(F) or O(F') > n.
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Define as usual

EP’(gy F; A) = v E(ng, i", A)dn
N’ (F)\YN' (A)

where ¥P' = P’ N M. Then we require that

E¥ (g, F, A) = 2. e(sA, Hu(2))N(s, A)F(g)
SEQWI (1)
where H),(g) is defined as in [5] 2.1.3, and N (s, A) F(g) is interpreted as
a function on G(A), c.f. 2.7.
On the other hand if P’ ¢ {P}, but P’ C Q then the cuspidal com-
ponent of E*'(g, F, A) is zero i.e., E¥' «~ 0 c.f. [5] 2.4.1.

(iii) Given Q 2 R D P we have the pairs Q D P and R D P with
corresponding functions E(g, F, A) and E;(g, F, A) respectively, with
g € No(A)Q(F)\G(A) in the first case, and g € Nz(A)R(F)\G(A) in the
second case.

According to [5] 4.2 there is a non empty connected open set &
such that the series

(3.3.1) 2. Ei(yg, F, A)

YER(F)\ Q(F)

converges uniformly on compact subsets w C &, with A € w (a fortiori
on compact subsets of G(A) since E, is, say, K’-invariant).

Then we require that E(g, F, A) be equal to (3.3.1) on &, and that
moreover if Q D RD P € {P}, P =P/, and s € EW'(r) then if
A€ D, N = A+ uwith ufixed by BEW(x), then N(s, A’) = Ni(s, A).

3.5. Remarks. (a) Axiom (iii) is a transitivity condition which is the
basis for induction arguments c.f. [5] Sections 2, 3, particularly the argu-
ment for analytic continuation.

(b) We point out that in digesting this set of conditions it might be
helpful to remember that 2D, (xd,) can be viewed equally well as a
manifold of quasicharacters

Dy (x80), YP = P N M,.
Indeed the reader should bear in mind the fibration diagram

QDM (\) = Dy (§)

A\ > Do(®)

3.6. The definition above is a ‘‘trivialized’”’ form of a vector bundle
definition which we shall outline in a moment. The first definition is useful
for many concrete arguments; the second should be borne in mind.
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Firstly it is more conceptual, and secondly it is inescapable especially in
Sections 67, since one ultimately relies upon Fourier transform argu-
ments. Moreover for function fields, there is no Langlands decomposition
R(A) = Ni(A)4 zM° as in the number field case, and one must resort
to fibration diagrams as above.

To give the alternate definition, we first recast some of our earlier de-
finitions of associated function spaces in terms of vector bundles on
manifolds, and consider affine spaces in these manifolds.

3.7. First, the spaces & (P, wdp), G o(P, x8¢). If ¢ € D (£) = 9Dy (8),
then the space % (P, ¢) has been defined earlier in (5] I1.1. It was shown
there that the collection % (P, ¢) fits together to form an analytic vector
bundle on D, (¢). This bundle trivializes along each connected com-
ponent, and then a holomorphic cross section can be regarded as a
holomorphic function

q>;- : LLZM\(IM(C) - (go(P, wép).

The space ?% (P, x8o) can also be recast in this vein as well: replace
x8¢ by a quasicharacter N € Dy (£), then 2% (P, \) is defined as before,
the only difference is that in 2.1, one replaces ‘“xé,"" by A\, and in 2.1 (ii)’,
one replaces ‘6,72 by ““|\|=?"". Similarly one has a definition of %% ()).

If we fix A € Dy(¢) for the moment, we then have 9D, ()\), and if
¢ € 9Dy () we have % (P, ¢); these spaces give rise to a vector bundle
on 2D, (N).

3.8. So far we have considered affine spaces r in a,(C); we now con-
sider them in Dy, (£), 9Dy (M) etc. For this, fix component representatives
in 2D, (\) of the form wyry, where w is a character, and v, is a fixed real
quasicharacter prolonging |\|. Each component of 2D, (\) is then holo-
morphically equivalent to %Lz, \?a,(C) and in this way we can view
% in 29D, (M) via

(3.8.1) 20y (C) — 9Lz, \ %, (C)
and

I—I LQLZA{\QGM(C) g QDM(X).
Similarly we obtain an v in D, (§).
Observe in passing that each component then has a universal covering
corresponding to (3.8.1). This will figure surreptitiously in analytic
continuation arguments later.

3.9. Now form the collection {Hom (S(r), V:%)} as { runs through
2D, (N). Here S(r) is just as before, and V;? = € 4(P, ¢) or €o(P, K', ¢)
(as the case may be), if P = P This is a bundle in the sense that
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Hom (S(x), V) (Vi = @ (P, wre)) translates to Hom (S(t), V;?) by the

translation map
P->Ti®=e < Hy()> &,

Fix t € %ay(C) = ¢ (C). We suppose that to each Q D P with
t 2 aqo(C) there is given a function E(g, F, {) transforming by \ on
Zqo(A)

E(.,.,¢0): No(A)Q(FH\G(A) X Hom (S(xr), V;) — C.

The space r and the collection { E(g, F, {)} is called an Eisenstein system
belonging to t if for some Q 2 P, some F; the function E(., F;) # 0,
and if the analogues of (i)—(iii), which we denote by (i)’—(iii)’, are
satisfied. Moreover, suppose wy, is chosen, then we ask that

E(gy ]}Fv ong') = E(ga F» g‘)v g‘ € o,

On the left we have the new Eisenstein system, on the right we have the
old one.

The conditions (i)'—(iii)’ are by and large the same as before up to a
trivial rephrasing. Of course in (i)’ the definition of rationality is taken
on each component, as is the notion of finite order. We do ask that the
trigonometric polynomial p( A) suffice for each component.

In (ii)’ we replace N(s, A) by M(s, ) subject to

EP’(gv ‘fv g-) = Z M(S, f)Ff(g)
S€QWI(r)
The relation between N(s, A) and M(s, ¢) is simply that with wy,
chosen,

N(s, wrof) = T'M(s, )Ty, ¢ € 1.

The transitivity condition (iii) is more or less as before: if {|Zg(A) = u,
then in one case we have a function on cross sections of a bundle on
EDy (), and in the other a function on cross sections on 2D, (\) C

‘

EDy(n). The transitivity condition asks that the former function ‘‘re-
stricts along the fibres’’ appropriately to the latter function.

3.10. Observe that the notions of Sections 2.3-2.7 carry over to the
vector bundle framework: they are local concepts.

3.11. Construction of Eisenstein systems. All Eisenstein systems of
interest to us will be constructed by an inductive process, by repeatedly
taking residues. We shall first consider the Eisenstein system at the basis
of the induction, and then show how taking residues of a given Eisenstein
system gives rise to another Eisenstein system.
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Example 3.11.1. (The standard example.) Suppose that v = “a(C) =
¢q(C). Then S(r) is none other than C, and F — F(1) defines an iso-
morphism

Hom (S(x), €o(P, K'wdp)) — € o(P, K, wbp).

Consider the function ® € € 4(P, K', wdp). On M,(A) it enjoys the

following properties, if we set ¥P = P (N M,
(i) It is right invariant by K'.

(i) ®(2g) = wdp(z)®(g) for z € Zy, (A) = Zy(A).

(iii) Let ¥M°® = ker (M(A) — 2a*). Then the space of functions on
VM, m — ®(mg) is a finite dimensional subspace of & ({¥M,}, x8¢)
where x = w|Zo(A). Indeed, let by, . . ., b, be a set of coset representa-
tives for K/K’, then this space of functions is a subspace of

LM}, K", x80), K" = N bK'b;.
1<isr

It follows that % (P, K’, wép) can be viewed as a similar space of
functions on M 4(A) with respect to the parabolic subgroup ¥P = P N
Mg, Let

(€ LQLZM\QXM(C)y

then the series

E(g, &)= 2, Je(Ha(re), £)2(ve)

P(F)\Q(F

which may be written as

e(Ho(e) b0), > , ¢H (), )% (ve)

F)\Mg(
with
P'(g) = e(Hq(g), —8q)®(2)

will converge absolutely for Re ¢ € 9Cp + 95, as follows immediately
from applying [5] 2.2.2. The results of [5] imply that this function may
be analytically continued to a rational function on ®L;, \°X,(C), as
can the associated intertwining operators N(w, {). Consequently if we
put ® = F(1) and define

E(g, F,¢) = E(g, ®,¢)

we see from the results of [5] 4 that this collection of functions satisfies
the conditions for an Eisenstein system.

Example 3.11.2 (residual Eisenstein systems). Suppose that E(.,.,.) is
an Eisenstein system belonging to t, with t an affine subspace of ¢a, (C).
Let t be an affine hyperplane of r; we shall define an Eisenstein system
belonging to t € %a(C), a = ay.
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First let ® € 9, with V = G (P, K, wbp). From Section 2.3,
Resq, E(g, d®(-), .) is defined in a neighbourhood of A in t.
Let

2

®(A + zA0) =l§:;“l—!d(D(Aol))q>(A)

where Ag is a real unit normal to t (thus A,* €S(t), c.f. 2.3).
Suppose that if ¥ € Hom (S(r), V), then

E(g, F, A+2A¢) = D, 2"En(g, F, A)

m=—co

where only a finite number of non zero terms in negative m actually
occur.
Then

Resq E(g d®(A), 4) = 3 51 Ea(e dD(A)2(4), 4)

provided that in the first definition of Reso, we choose the real unit
normal A, to t employed above.
From this we define a meromorphic function on

No(A)Q(F)\G(A) X Hom (S(t), V) X

which we denote by Resq, E(., ., .), as follows

ReSQtE(gr F, A) = Z lEm(g, Aol V F, A).

+m=—1 A

Let us show that this collection of functions gives rise to an Eisenstein

system belonging to t, when t is a singular hyperplane for some E(., ., .)
with respect to a given Q 2 P say (to ensure non triviality).
Condition (i) is automatic as it is inherited from E(. , ., .). Condition

(iii) can also be verified directly, once we have defined the functions
N(s, A), and verified condition (ii).

Suppose then that PP = P’ € {P} with Q D P’. From the definition
of Resg,, we have

f Resq, E(ng, F, A) = Z —%fEm(g, Al V F, A)
YN’ (F)\WN' (A) =1 !

where the second integral is also taken over YN’ (F)\*N’(A). Moreover

f E(ng, AdvF, A + 3A¢) = 2 z'"fEm(ng, AoV F,A).
YN (F)VAN' (A

m=—co

The expression on the left is, by definition, equal to

2. e(sA 4 zsAo, Hy (@))N(s, A+ 240) (A V F)(g).

sew (D @)
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Set

o

N(s, A+ 2zho) = 2 2Ni(s, A)

k=—c0

and write

e(sA + zs Ao, Har (g))

= e(s, B @) (51 Elog a0 B @))

h=0

On substituting and equating coefficients of z~!, one finds that

f E,(ng, AgvF, A)dn
YN (F)\¥N' (A)

is equal to the sum over s € WD (1) of e(sA, Hy(g) ) times

n;mi}' (log ¢)" (s Ao, Har (g) )" Nic(s, A) (Ao V F)(g).

Let t € @WY (1), then we define Resq, N(f, A) to be the linear trans-
formation which takes

F € Hom (S(t), V)
to
Resq N(t, A)F € S(t) ® V

where the latter element is defined to be the sum over those s € QWX (r)
whose restriction to t is equal to ¢, of

S L a0 @ NG, A) (A V ).

h+ 1Hk=—1 h'l'

Applying the definitions we find immediately that

f Resq E(ng, F, A)dn
YN ()N (A)
is equal to

2 elth Hy(2))(Resq, N(t, A)F)(g)
1€Q@w () ()

if P/ = PO ¢ P}
On the other hand if P’ ¢ ¢{P}, we find from condition (ii) satisfied
by the original Eisenstein system {E(. , ., .)} that

f Resq E(ng, F, A)dn = 0.
YN ()N (A)
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4. Properties of Eisenstein systems. In order to use Eisenstein
systems effectively, we shall have to develop relevant properties of those
Eisenstein systems which will ultimately be of interest to us. Naturally,
one can expect that some of these results will be of a technical nature.

The first technical lemma is related to a square integrability criterion
for automorphic forms; the latter result does not belong in this paper
and is proved elsewhere. The next lemma tells us what the adjoint (as
defined in 2.7) of the operator N(s, A) is, at least in those cases of interest
to us. The main result proved in this section is the construction of a
closed invariant subspace of 9% (P, x8,) associated to r and each
{E(.,.,.)} belonging to r; this plays a basic role in Section 5.

4.1. Suppose that t is affine in ag?, t is affine in ag?, that P,
P € @P} and “9qg lies in t?, and t’. Define W (r, t) C W@ (1) by

AW (r, t) = {s € WO (r)|r, = t}.
Note that if

t’ = span (X(r), ") and

¥ = {AX €

then the above set may also be viewed as a set of linear transformations
from t’ to T’ or from ¥ to t'.

Suppose that for each 1 < 7 < r there is given a finite collection S of
distinct affine subspaces of a given dimension m. We put

and assume that to each v € S there is given an Eisenstein system be-
longing to t. Since each t is defined by equations of the form a’(A) = C,
one can show that for each such t there is an element (unique) so €
W (x, r) fixing t’ pointwise. If Q is a parabolic we define

St = {y € SM|ay(C) C 1Y
QS — U Qs(i).

1<isr
If ¥W(x, t) # 0, then we say that r and t are equivalent: the remark
above says ®W (r, r) # 0. This is necessary for the proof of 4.2 below.

4.2. With S, @S as above, let r € S, and let b be the orthogonal com-
plement of the standard subspace of maximal dimension which is con-
tained in t® M a‘®. We shall say that r is geometric if Re X (r) € *b (i.e.,
is a sum of positive multiples of positive roots). If {(E.,.,.)} belongsto t
we shall say that {E(.,.,.)} is complete if v is geometric and if N(s, A) =0
unless s € W (r, 1) for some t in 95 (note that this condition is not
automatically satisfied by the definition of Eisenstein system).
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All Eisenstein systems of interest to us will be shown later to be
complete.

PROPOSITION. Suppose that t({E(., ., .)}) is geometric (complete), for
eacht € S. Then

(i) each X () is real, and

(ii) for any ao(QC) associated to Q, each equivalence class in S contains
an element v such that t° is standard.

To begin, observe that by definition we may write if P’ € {P} with
Q2 P,P,and¥P' = P! N\ My,

(4.2.1) EFP(g, F, A) =f E(ng, F, A)dn
YN (F)\WN' (A)

= Z e( A, Hy (g) )V i(g)
where the A; are distinct, and
0 #ZV,¢ CUL¥] Q@ €o(P, w'dp).
Here C[?L*'] denotes the group algebra of ¢L% .

The proof of 4.2 relies upon the following two results which follow
from more general assertions concerning automorphic forms.

4.3. Suppose that E(g, F, A) € ¥ ({P}, x6¢). Then for all P’ as in
(4.2.1) above, the A, appearing in (4.2.1) are all real.

4.4 Suppose that each A; appearing in (4.2.1) satisfies
—Re Ai € QC;'

(for each P’ as above). Then E(g, F, A) as a function of g is an element of

L ({ P}, x8a)-
Remark. A special case of 4.4 is proved in [5] 2.4.

4.5. Proof of 4.2. Suppose C is an equivalence class in ¢S, and lettr € C
be such that r° contains a standard subspace of maximal dimension. This
standard subspace corresponds to a parabolic Q 2 R D P. If we work
with R instead of Q then we may as well suppose that ag is the subspace
of maximal dimension: this may change C (by making it smaller), but
that does not matter. As usual % denotes the projection of t on “ac.
We pause for a definition.

4.5.1. Definition. A € “ris general if (i) A lies on no singular hyperplane
of those E(., ..) defined on 9, and
(ii) if s, ¢t € WD () with sA = tA then s = ¢.

Returning to the proof of 4.2, we observe that there is at least one Q
corresponding to ag such that for some F € Hom (S(r), V) the function
E(g, F, A) # 0; indeed this follows from the definition of Eisenstein
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system and the fact that 1° 2D ao(C). Let A = X(r) + H be general,
with H real, and P/ = P € (P}, so that

E" (g F,A) = 3, e(sA H(e))N(s, A)F(g)
se@w () (v)
where N(s, A) =0 unless s € *WI(x, t), for some t € 4SP, Thus
N(s, A) # 0 implies that t € C and 9S?, hence the largest standard
subspace in t” must be aq again. Now by choice if N(s, A)F # 0, then
—Re (sA) = Re X(t), and hence — Re (sA) € *9Cp,. Therefore, using
4.4 we conclude that

E(g, F, A) € 2L ({P}, x6q) where x = w|Zo(A).

But then 4.3 implies that each s A must be real. Suppose that tr’ were not
the complexification of ao(C): the definition of Eisenstein system
({E(., ., .)} # {0}) and the principle of analytic continuation would
imply then that we could choose a non real A so that E(g, F, A) & 0.
This however is a contradiction: if A = X(tr) 4+ «H is general as above
with H real, then sA = sX (r) + «H and it follows immediately that s A
must be non real as well (note that sX(r) is orthogonal to sH).

Therefore t° is standard, equal to ag(C), and thus 9 = {X(v)}.
Applying 4.4, then 4.3 again, we conclude that X (r) must itself be real,
and hence all X (t) are real for t € C. This finishes the proof.

4.6. The next thing to do is to find analytical conditions on the Eisen-
stein systems associated to the collection S = U ;S® which imply that
they are complete. In the induction argument of Section 5 the analytical
conditions will be verified to each step, for the Eisenstein systems of
interest to us. Before summarizing these conditions as a definition,
let us make some conventions.

First choose a set of base points {wdp} for the connected components
of 2D, (x8¢) where w runs through a countable set of characters. Then,
as remarked earlier, we may regard ¢ C 9D, (x04).

We define the axis U(%r) component wise on 2D, (x84) by defining it
on 9a,(C) as

{X(r) + H|H € %* N %a,y(R)}.

We shall often be interested in the space just defined, in its own right,
and shall again denote it by U(9r). This should cause no confusion since
the meaning will usually be clear from the content (it will usually occur
in “trivialized” definitions).

More generally, if one replaces X (r) by some point A, the resulting
axis is written

U(®, A).
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Finally, observe that if we take the Fourier transform &; of a function
¢ € Go(P, K’, £), then &; can be regarded as a function

®: U—- P, Fo(P, K'wsp) (algebraic direct sum)

with U as in 2.5 say. This is proved in [5] I11.1.7, and forms the basis for
setting

V(K,) = Vl(K') = @(w; %O(P, K,, wép)
V=TV = Ug VK.

We shall then write V,7 etc. for % ¢(P?, wép) etc., agreeing with an
earlier convention.

4.7. Definition. Let S = Ui~; S be a finite collection of distinct affine
subspaces, such that v € S is geometric. Suppose that for each r there
is an Eisenstein system belonging to t. We say that {E(g, F, A)} (be-
longing to 1) is spectral if it satisfies the following conditions:

() X(r) € X«(R) (R>1),cf 18

(ii) For each Q with ao(C) C 1%, if {P™, ..., PU)} is the set ¢{ P},
then there is an orthogonal projection 2 from 9% ({P}, x6,) onto a
closed subspace.

(iii) For each 1 < 2 < 7’ there is a trigonometric polynomial 7; de-
fined on °Lz,, \?ac® which is not identically zero on 9r if r € 5.

Gv) If PO, PO € Q{P},and & € SO (R)Q Vsetd(A) = 7,(A)® (A).

Then if ¥ € D (R) @ V', we require that (2", ¥") be equal to
the sum over v € 9S of

S @G aae(a),a(—sE)sia
s€Q@w () @) vV U (Qr)
where (, )sis asin 2.7.

4.8. PROPOSITION. Suppose that each Eisenstein system belonging to
each v in S = \U SO 15 spectral. Then each such Eisenstein system is com-
plete, and furthermore the adjoint of N(s, A) with respect to pairing (, )s 1s
given by

N*(s, A) = N(s~!, —sh).

The proof of this proposition is a triviality once we have pinpointed
some technicalities which had best be proved as well as stated if only to
make explicit some arguments which we later take for granted.

4.9. LEMMA. Let A be a general point in t. Suppose that

@u(s) e @D )Hom(S(rs), Vi)

SEQWI(r
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s such that
0= (B, uls), B, d¥.(—sA))s
for all P owicy ¥ (—sK) with ¥, € H (R) @ V.,'. Then P, u(s) = 0.
Proof. We can without loss suppose V. is one dimensional (take co-
ordinates), and then it must be shown that if
0 =@, D(u(s))¥;(—sA) for all ¥,

then each u(s) = 0.
This is trivial because if A is general then all s A are distinct, and then
we can choose ¥ so that the sum above does not vanish if some #(s) # 0.

i

We shall use this lemma to prove something more directly related to
Proposition 4.8.

4.10. LEMMA. Let M, (s, A) be a function on W (r) X 9 with values in
Hom (Hom (S(r), V.%), S(r) ® V.7). Suppose that (M,(s, A)d®(A),
d¥(—sA))s, with ® =7, ® as in 48, and ¥V EHDP(R) @ VP, is
holomorphic in a neighbourhood of U(9r), and that

(My(s, MF, F)s =0
if O(F) or O(F') 1is large enough. Put
M(s, A) = D, M,(s, A).
Suppose that
> (M(s, A)d®(A),d¥(—sA))sd A

s€Qw D m Y u@r)
s zero. Then M(s, A) = 0, for all s, and all A.

Proof. Argue by contradiction: suppose that M(s, A) # 0. Then for
some integer » = 0 there is a F,, s, A, so that M(s, A)F, # 0 but if
O(F') > n, then M(s, A)F’ = 0 for all 5, A.

We can pick an element & in

Cl°Ly,*] ® Vi
so that
O(F, — dh) > n.

For the moment, let f(A) be any scalar valued function holomorphic in
a neighbourhood of U(%), and set

®(A) = r.(A)f(A)R(A).

Then
0@d® — r,(A)f(A)F,) > n,

so that (M(s, A)d®(A), d¥(—sA))s is simply equal to
r(A)f(A) (M (s, A)F., d¥(—s4))s.
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Now put
g(0) = 2 ri(A)(M(s, AR, d¥ (=s]h))s.
s€Q@w (I (v)

Then

f f(A)g(A)dA = 0.
U(@r)

In particular the Fourier coefficients of g( A) are zero, hence g(A) is
zero. The preceding lemma implies that each M,(s, A)F, = 0, which
contradicts our assumption.

4.11. Proof of Proposition 4.8. By assumption (<Z¢", ¥") is

> (N(s, A)d®(A), d¥(—sh))sd A
seQw v v(@n
where ®(A) = 7,(A)® (A) with & (A) € F(R) ® Vi. Take ¥(A) =
r;(A)¥’'(A) in this expression, replace ¢ by j, interchange ® and ¥ and
take complex conjugates. Subtracting the result from the original ex-
pression and recalling that £ is orthogonal hence self adjoint, we find
that the sum over t € 95 of the sum over s € WP (r) of

f o (M(s, A)A®(A), d¥(—sA))dA
U (¥r)
is zero, where

d*r;(—sA)N(s, A) ifr,q °SY

(4.11.1) M(s, A) = {d*rj(——-sx){N@, A) — N*(S—l, —sA)} otherwise.

We are not quite in a position to apply the preceding lemma because
of the presence of the sum over all t € 25™; to fix this up we proceed as
follows. Choose a polynomial on 'Lz, \ac'?, denoted by ¢(A) with the
following properties.

(i) ¢(A) is non zero on 91y say, vanishing to a high enough order on
each 9t, ry # t € 9SO g0 that if s € WY (t) then

N(s, A) odg(A) =0 for A € ¢,

(ii) If t € @59, then ¢(A) vanishes to such a high order on each “t;,
s € W (t), that

d*q(—sk) o N(s, A) = 0.

Now in the preceding argument replace ®(A) by ¢(A)®(A), then the
result is that only the term involving r = r, remains, and the expression
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(4.11.1) is replaced by

d*r;(—sA)N(s, A) odg(A) ifr,¢ °SY
M(S! A) = % iy % [ —1 <
a*ri(—sA){N(s, A) — N*(s™, —sA)}dq(A)
if r, € 259,
Now we can apply Lemma 4.10 to conclude that

d*r,(—sK)N(s, A) odg(A) =0 if v, ¢ eSO
d*r;(—ak){Ns, A) — N*(s7!, —sh)} odg(A) = 0, if not

which implies

N(s, A) =0 ifr, ¢ 959
and
N(s, A) = N*(s7!, —sA)

as desired.

4.12. Remark. A similar kind of analytic argument implies that under
the above circumstances, eW (r) # 0.

4.13. Collections of spectral Eisenstein systems will provide us with a
spectral decomposition of ©¥ ({P}, x6o). The next definition tells us
how a collection of spectral Eisenstein systems as in 4.8 furnishes a
closed subspace of each 2% ({ P}, x8,), and the next proposition describes
this space in more detail.

Definition. Let S be a collection of distinct affine subspaces of ag(?,
and set

S=y s
Suppose that to each r € S there is associated a spectral Eisenstein
system. If Q is a parabolic subgroup such that ?{P} is non empty, we
define 2¥s({P}, x8o) to be the closed subspace of 2% ({P}, xdo)
generated by functions of the form D¢~ where ¢~ corresponds to
r:(A)®(A) for some %, with

®(A) € HD(R) Q@ Vb,

4.14. Fix S asin the definition, and let Cy, . . ., C, denote the equivalence
classes in @S and for each 1 £ k& £ u, choose 1, in C; so that 1 is standard
(Proposition 4.2). Define W (t;, C;) to be the union over t € Cj of the
QW (14, t). For each 1; we let ¢; denote the element in ¢W(t,) fixing each
element of 1; (c.f. 4.2). Set

CWO (1, C) = {s € *W(xs, Ck)ljs = 1}

if §, is defined to be such that (r;), C ag®.
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ProposITION. Let P = P ¢ 9P}, & ¢ HD(R) Q@ VO, and for
each ty, let wy denote the order of W (ty, tx).
() 2 E(gd®(seA), sed)
se@w () @r,o0)
is analytic on U(%ty).
(ii) The projection of ¢~ (g) (corresponding to ®(A)) onto °.L s({ P}, x6¢)
s equal to

> 1 > E(g, d®(sep A), sex A)dA.

k=1 Wg v U (@) seQ@wi) (tx,cr)

(iii) If P9 € ®(P}, ¥ € A D(R) @ VO, then
[@, \I/](k) —

1€Qw D (vr,Ck)
X > (N (teps™, sex A)d®(sex A), d¥ (—t1))s
s€@w ) i on)
is analytic on U(9t;).
(iv) The inner product of the projection of ¢"(g) on °Ls({ P}, xdo) (as
in (ii)) with ¢~ (g) (corresponding to W(A) in (iii)) s equal to

u

> — [®, ¥]*®dA.

k=1 W v y(@r)

Proof. To begin with, consider the inner product (Zs¢”, ¢"); it is
equal to the sum over t € 4S® of the sum over s € ¢W@ (r) of

f(q)N(s, A)d®(A), d¥(—sA))dA.

In turn we may rearrange this so that it is equal to the sum from £ = 1 to
k= uof

(4.14.1) > L

€Q@w ) ar,on) seQ@w D i 00 WrY U@rr)

(@, ¥, s, 1], Pd A

where
(@, ¥, s, t]a® = (N(ters™!, sex A)dP(sexA), d¥(—tA)).
Next, define the space Hom;, (V?) by

Hom, (V") = @ @ Hom(S((t),), Vu'?).

SEQW(Tk,Ck) ©

If F=@& F, € Hom, (V®), F/ =® F, € Hom, (V?®) we define
[F, F'14® to be equal to

> 2 (N(tes™, sexA)Fy, F/).

It follows, via another approximation argument, that if A € U(9r;) then
(4.14.2) [F, Fla® = 0, |[F, F'I®|2 < [F, FIA®[F’, F'],®.
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Finally, define the space.Z ,(V(?) to be the space of functions
F=@®F:U(v)— @  J]Hom(S((w),), )

SEQW(tk,Ck) @

satisfying the following conditions
(1) [F(A), F']a® is measurable for each F' € Hom; (V)
(11) Fsekw(A) = Fs(ekwA)v w E QW(rky rk)

(lll) wika(Qr) [F(A), F(A)]A(k)dA — ”F”2 < 0,

Property (iii) means in particular that, modulo the usual equivalence
relation, we can view.Z (V) as a Hilbert space, and then

V(z) @k k(v(z)

is also a Hilbert space. It contains as a subspace the space consisting of
sums

D @s d®(sex A)

where & = r;(A)®'(A). In fact this subspace is dense, c.f. the argument
in 4.8.
Consequently the map

®(A) — 2¢°
extends to an isometric map

F(A) —f°

T (V) = eZLs({ P}, xéq)
and then (f 7, ¢") is equal to

L[ e

Kk W,

On the other hand suppose that ® F; satisfies condition (ii) above,
but not necessarily (i) and (iii), but that if G = @ Gy lies in the afore-
mentioned dense subspace then

[Fi(A), G(A) L ®

is measurable (for each k), and

;wlk U(@Qr) [Fk(A)v Gk(A)]ALdA = C”G”

Then we can conclude that F = @ F; lies in 9 (V) with norm at
most c.
Apply this remark to F given by

Fi(A) = @ d®(sexA), ®(A) € HP(R) @ VO
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and ¢ = ||¢", ¢~ corresponding to ®. Consequently if P? € ¢{P},
¥ € A D(R) ® VP then using the second inequality of (4.14.2) and
the fact that always [F, Fly < ||F||2if F € 9 (V) we see that

Z Z [q>y \I,y S, t]A<k)
t

is integrable on U(%r;). But this is meromorphic on this axis, with
singularities of form a(X) = u. Therefore if it is integrable along the axis
U(9;) it must be analytic (i.e., regular) on that set. This proves part (iii)
of the proposition.

To prove part (iv), let ¢'(g) be that element of 2¥s({ P}, x8¢) corre-
sponding to F = @, @, d®(sexA) under the map F — f ". Let

Y() =r;()¥().

Then (Zy", ¢") is simply the expression (4.14.1) with the roles of ¥
and &, and the roles of 7 and j, interchanged. This however is simply
(2¢", ¢'). We conclude that the projection of ¢" in 2L s({P}, xb¢o) is
¢’ and this proves part (iv).

It remains to prove parts (i) and (ii). To prove the first we use the
fact that if ¢¥ ~ 0 for all P, then ¢ is itself zero. Indeed, suppose the
sum in the statement of part (i) is not analytic along U(%r); call this
sum E(-, A) for argument’s sake, and let t be a singular hyperplane of
E(-, A), meeting U(%r;).

Let ¢ € 9% (P, x8¢o), then ¢y — ¢" and ¢ has a Fourier transform

V(g ) = @) ¥ (20)dz

Zyp(F)\Zp(A)

for ¢ € 9Dy (x8¢). Let g( A) be any analytic function on 9r;. Then

f Resg g(A)E(x, A) Y (x)dx
QFING(A) Zg(A)\ G(A)

= Resqtfg(A)E(x, A) P (x)dx.

The integral is shown by a standard calculation, and rearrangement as
in (4.14.1) to be equal to

g(A)[@, ¥1,©.

The latter term has no singularities which meet U(%r;) by part (iii), so
the residue is zero. We conclude that the cuspidal component of
Resgq, (g(A)E(-, A))*' is zero for all P’ € ?{P}, and hence all P’. Thus

Resq, g(A)E(-, A) = 0.

This is a contradiction, because if f(A) is meromorphic and ¢t is a
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singular hyperplane then by taking Laurent expansions one sees that it
is easy to choose g(A) so that

Resg, g(A)f(A) 0.

As for part (ii), one knows from part (iv) that if ¢’ is the projection of
¢" onto 2% s({P}, x8¢) then for each 2y~ € °¥s({P}, x84) the inner
product (Z2y", ¢') is given by the expression in part (iv). But it is a
straightforward exercise to see that this is simply the expression in part
(ii) integrated against ¥ ", and this concludes the proof.

4.15. There is an important corollary to this proposition which will
be needed in Section 5. We shall not prove it here because the proof
is more or less the same as the number field case to which we refer the
reader. In [3] it occurs as the corollary to Lemma 7.6; a rather nice
proof is given in [7] Proposition 5.11. We do however take the liberty of
stating it.

COROLLARY. Suppose ?{P} is non empty, and let v € 9S?, F ¢
Hom (S(x), V). Let b be the largest standard subspace contained in t°.
Suppose that t is the inverse image in v of a singular hyperplane of E(-, F, A)
on t which meets U(°t). Then t D b.

Remarks. In particular if t is standard then the corollary implies that
E(-, F, A) has no singular hyperplanes which meet U(%r). In proving
the corollary one treats this case first, and then passes to the general
case by means of Langlands’ Lemma 7.4 (see Section 7).

4.16. This concludes the list of properties of Eisenstejn systems that
are of interest to us for Section 5. The reader may have wondered where
axiom (iii) of Section 3.3 was ever used; the truth is that it is used in
the proof of Langlands’ Lemma 7.4 (hence any results which use that
lemma), and since we need an analogue of Langlands’ Lemma 7.4 we
need axiom (iii). It will also be used later.

5. The main theorem. In this section we establish the main theorem
of this paper. The proof can be regarded almost as a simplified version
of the number field case, which is due to Langlands. In writing out the
proof, which is an induction argument, we have found the approach of
[7] to be very helpful in places, and have used it here.

5.1. We begin with some remarks on affine hyperplanes and subspaces
in LLZM\QM(C)'

LEMMA. Let t be a hyperplane in t, defined by the (additional) equation
a’(A) = c. Suppose that Ay € X () + t* N a'?. Then

tN U(I‘, Ao) #0
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if and only if
Re (¢ — a"(X(r))) = (Ao — X (v)).

Proof. Suppose t meets U(r, Ao), then there exists A € t such that
A= A¢+ Z, Z real. Then A — X(r) is equal to Ay — X (1) + Z,
so that Re a’(A — X (1)) is equal to a’( Ay — X (1)), i.e.,

(5.1.1)  Re (¢ — a’(X(x))) = a’(Ao — X(1)).
Conversely, suppose (5.1.1) holds. Then for any A € t, one has
Rea’(A — X (1)) = a’( Ay — X(1)).
Writing A — X(tr) = A + B one finds
Rea’(A — X (1)) = a*(4)
so that

a’(d — (Ay — X(¥)) = 0.
Thus
A=A—-X@)+C CEet"Na? and

A—X()=(Ao— X(r)) + C+ B

so A=A+ C+B,and A — C= A¢+ B. But A — C € t and we
are done.

5.2. COROLLARY. Suppose A1, As € X(r) + t° N a'? satisfy
tN U, Ay) #Dfore =1, 2.
Thent N U(x, A) £ @ forsome A € tA; + (1 —t) A (0 =t = 1) 1f and
only if
a’(Ay — X(r)) — Re (¢ — a’(X(x)) and
a’(A, — X (1)) — Re (¢ — a"(X (1))
have opposite signs.

Remark. We shall frequently make use of a segment of the form
tAr+ (1 — £) Ay for Ay, As € X(t) 4+ t* N a®. By definition, it con-
sists of points X (r) +¢tY; + (1 — )Y, 0 =t =<1, where

Ay=X@)+ Y, Yyerrnae?®, j=1,2

5.3. LEMMA. Suppose t C 1t as above. There is a unique point Ag(t) in
N a® such that if A € X(@) +t°Na? and t N U(x, A) # 0, then
A 4+ (Ag(t) is the element of t M U(x, A) closest to A.

Proof. Write X (t) = X(r) + Y(t), Y(t) € t% and suppose Y(t) =
RY () + JY(t). Then X(t) = Xz(t) + JYV(t) with Xz(t) = X(r) +
RY(r). Suppose A has the property stated in the lemma, A € X (r) +
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' N a® Then A= X(r)+ B, with B€t® € a?, and there is
Z €' N a so that

X@)+B+Z=X@)+RYW) + V() + 4, A€t

Thus B = RY(t) + RA, Z=1Y({)+ IA, R4 €t" N a®. Hence
A =Xg(t)+ R4, and Z = IY(t) + IA. Setting IV (t) = Ag(t), the
result follows.

5.4. CorOLLARY (of the proof). Let ty be the setof A € X (r) + r° N a®
with the property stated in Lemma 5.3. Then

tp = Xg(t) +t° N a®?
X(t) = Xe(t) + cAr(t)
X() +t"Na® = tg + Ax(t).
5.5. We now come to the main theorem of this section.

THEOREM. There are (¢ + 1) collections S,, = U1 Sp'? of affine spaces
of dimension m, such that to each element of S, there belongs a spectral
Eisenstein system, and if °{ P} is non-empty, then

—*q¢
Qg({P}y XaQ) = @0 ng
where 9L, is the space associated to S,, by Proposition 4.14 (i.e., °F,, =
QL s, ({P}, x8q)), with °%,, orthogonal to °%,, if m, = m,. Here
*q = dimension of a,(C).

The proof of this theorem is by induction, and to facilitate this we
shall break it into a sequence of lemmas and definitions. First we shall
construct the machinery by which the induction step is effected, and then
show how to start the induction. Assuming that the induction step can
be carried out, we shall prove the theorem. Finally, we show how to
carry out the induction step.

5.6. For the induction step, we are going to suppose that we are given
a finite collection S of distinct affine subspaces of ac(® of dimension
m such that each element of S® has a geometric Eisenstein system be-
longing to it for 1 < ¢ < . We are also going to suppose given a finite
collection 7», 1 < 7 < r, of not necessarily distinct affine subspaces of
dimension m — 1, such that each element of 7» has a geometric Eisen-
stein system belonging to it; furthermore the collection 7 will be
supposed divided into two disjoint classes

TO = TO(B)J TO(C).

To each element t of S or 779 (B) will be supposed given a non-empty
convex cone V(r); to each element t of 7»(C) will be supposed given a
non-empty convex open set W(t).
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We shall suppose that this collection of affine spaces and convex open
sets satisfies the following geometric conditions (bar denoting closure):
GI For each t € SO or T», Re X (r) € *a(r) where a(r) is the

orthogonal complement of t? M a(” in a(?.
GII For each t € S or T9(B), V(r) is a cone V(r, X(r)) with
vertex X (r).

Foreacht € T™((), Re W(t) is contained in the interior of the convex
hull of (a?)* and Fa(t).

We shall also make some assumptions concerning the location of the
singularities of the associated Eisenstein systems.

SIII Foreacht € S® and A € V(r, X(r)), no singular hyperplane
of the associated Eisenstein system meets U(r, A).
For each t € T, A € V(t) or W(t), no singular hyperplane of the
associated Eisenstein system meets U(t, A).
SIV For any r € S® or T™(B), any singular hyperplane of the
associated Eisenstein system which meets C(r, &) also meets
U(r, X(r)). Here
Ct,ye) = {A€1][||[Re (A — X)) < &}
Remark. By a cone V(r, X (r)), we mean the set of points
{tX(t) + 1 —t)A|0 <t <1, A € B}
where B is a ball (of say, radius &) on r (M) a(®.
SV (cf. 4.15) If t € TO(B) and r is a singular hyperplane (de-
fined on 9t) of the associated Eisenstein system which meets

U(t, X (t)), then the inverse image W in t of t is such that ®
contains the largest distinguished subspace in t°.

Finally, we make the following assumption:
AVI Suppose Q D P», PP ¢ P}, Then there exists an ortho-
gonal projection
2q: QL ({P}, xdq) — %L ({ P}, x8¢)
onto a closed subspace, such that if ® € P (R) ® VO,

¥ CHD(R) @ VD, and ¢”, ¢" are the associated elements
of @¥ ({ P}, x84), then

(QQ‘#A’ yh) = Z Z

r se@wl) ()

X e (N(s, A)d®(A),d¥(—sA))dA
+> > f (N(s, A)d®(A), d¥(—sA))dA
t seQ@w@ Y u@t,a

where v € 951, t € ¢TD, A € V(r), A € V(1).
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A collection (S, T (B), T(C)), together with associated Eisen-
stein systems and non-empty convex open sets, which satisfies the above
conditions will be called an amalgamation.

5.7. Our first example of an amalgamation will be the one which starts
the induction proof of the theorem. Put m = dim a(® 4+ 1, and let
S =g, TO(B) =0, TO(C) = {ag'?}1<:<,. The Eisenstein system as-
sociated to ag'? is that given as the first example of an Eisenstein system
(3.11.1). The non-empty convex open set for ac® will just be (Cpy +
dp(y) intersected with a¢?(R) for R suitably large, viz.

R > sup {||Re X (t)|| | t a singular hyperplane}.

The projection £, is the identity map. This set of data then defines an
amalgamation.

5.8. LEMMA. The Eisenstein systems associated to the S figuring in the
definition of an amalgamation are spectral.

Proof. The only thing to do is to choose trigonometric polynomials
r:(A) so that N(s, A)dr; vanishes identically on each ¢t for t € @7,
and s € W (1), but such that r; # 0 on % for v € 95, Once this is
done, the orthogonal projection £, figuring in the definition of amalgam-
ation will do as the projection £ o figuring in the definition of spectral
Eisenstein system. Indeed, choose 7;( A) satisfying these conditions, and
so that N (s, A)dr;(A) is holomorphic on 9, then replacing ® by 7,(-) ®(-)
in AVI, we see that the terms involving t € 7" disappear, and we are
left with

f (N (s, A)d(ri(A)B(A)), ¥ (—sK))dA.
1eQ8() eQw D )V p(@r, Ay

Since N(s, A)d(r;(A)®(A)) is holomorphic, a straightforward ap-
plication of the theory of residues (in the form of Cauchy’s theorem)
then implies the result. Since this type of argument will occur in more
detail later, we spare the reader the details for the present.

5.9. The induction step will be taken care of by the following

ProrosiTION. For each amalgamation (S, TW(B), TW(C)) of
dimension m there exists an amalgamation

Res (S@, T (B), T™W(C)) of dimension (m — 1)
with orthogonal projection
Res QQ = QQ - QQS

where 2 o Us the orthogonal projection associated to the (spectral) Eisen-
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stein system belonging to @S by Lemma 5.8 (we shall often write simply Dg
rather than 2 q).

Remark. The objects in the residual amalgamation will be denoted by
placing Res in front of the corresponding object in the original amalgama-
tion.

5.10. Before beginning the proof of 5.9, let us see how it implies the
main theorem.

First, for each positive integer m, define inductively an amalgamation
Amal (m) of dimension (¢ + 1) — m

Amal (o) is the standard amalgamation of 5.7.

Amal (m) is to be Res {Amal (m — 1)}.

In particular, Amal (m) will be trivial if m > dima® 4+ 1. We shall
denote the objects of Amal (m) by S,?, T,,", DLom, .« - . .

Secondly, the proposition says that

D, = Res o+ Ds
so that
Image £, = Image (Res Z,) ® °%,

where 9%, is as in the statement of the main theorem.
Let us show that

m—1
(P}, xb0) = Im(Zg.n) @ €l=90 &, (Proj(m))

where 2% ; is of course the closed subspace associated to \U S (9.

For m = 0, £, is the identity map, and the right hand sum is
empty.

In general, the remark above tells us that

Im (Z4n) = Im (Lou-1) @ %L,

so that Proj (m 4+ 1) is true if Proj (m) is true. On the other hand, the
sums in AVI are empty if m > ¢ — *q, so that

Qo,a—*q = {0},
and hence
a—*q
WP Y,

=0
(note: €%, = {0}) as claimed in the theorem.

5.11. We must now prove the proposition. The first thing to notice is
that Res £, must be equal to £, — ;. Given this, let ® € # D (R) @
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Vo, ¥ € #AD(R) ® VO, then
(Res QQ¢AY ‘bA) = (QQqSAy ‘p'\) - (QSd’AV ‘//A)

Now according to Proposition 4.14 the second expression on the right
side is equal to

G|
k=1 WV U (Quy)

Thus using AVI, we see that (Res £ 46", ¢") is equal to the sum of

[®, ¥],®dA.

f (N(s, A)d®(A),d¥(—sA))dA
reQs() seQw ) )Y v(Qr, A

and
f (N(¢t, A)d®(A), dV(—tA))dA
teQr( Qw1 v(Qt,A)
less

u

> if [®, ¥]Pd A.
k=1 Wk v U(Qry)

We can rewrite all this as

. c _1_f _ ®
(0.11.1) k=Zl°’k U (@, Atk) U (Qur) ([CI),‘I,]A )dA + fe;(i) I(t)
where

It = 2 (N(t, AYd®(A), d¥(—tR))dA.

wQw@ Y v@t,n
The point to notice here is that over U(®ry, Ar,) each of the summands
(N (ters™!, se, A)d®(sex A), d¥(—te,A))

is holomorphic (by the assumption S III).

On U(“r), however, this is not so; indeed by Proposition 4.14 it is
only [®, ¥]® which is holomorphic on U(%r). We emphasize that this is
a possibility which does occur in general, cf. the remarks in the introduc-
tion, and Langlands’ example on SL, in appendix III of [3].

The next thing for us to do, then, is to shift the region of integration
so that the summation signs may be interchanged with the integral
sign.

5.12. Let r € S and define F; to be the subset of the co-roots corre-
sponding to P» consisting of those co-roots which vanish on the largest
standard subspace of t°. Suppose that t C r is a hyperplane in t which
meets U(9): if 9t is a singular hyperplane for the Eisenstein system
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attached to t, then Corollary 4.15 implies that t” contains the largest
standard subspace of r° as well. (Remember: we now know that the
Eisenstein systems belonging to the r € S¢? are spectral, so that 4.15 is
applicable.) This implies that

t={A€tja’(A) =" (X ()}

for some o’ € F;.
Given a® € Ap’(2), and € > 0, let

RB.(a’) = RB.(X(x)) N (X(r) + ker a?)

provided ker «® 2 t?, and define RB.(r) to be the complement in
RB.(X(x)) of the union of the RB.(a") as a’ runs over Ap’(z). Here

RB.(X(r)) = {X(r) + AlA € v N a?, [[Al] < ¢}

We define RB(r, F;) the same way except that a? is constrained to lie
in fi.

Each of RB.(r) and RB.(r, F:) admits a decomposition into a finite
disjoint union of convex open sets which we shall call chambers, when
there is no danger of confusion with the usual chambers previously de-
fined. Thus we can write

RB.(t) = U Cil(e, 1)

where the number of ¢ is ¢(r) = ¢, say, a number which depends only on
Cyifr € G

5.13. For each equivalence class C; in %S fix a standard space 7, € Cy,
and for each C,(¢, 1), t € Cy, choose a general point A(e, t) € C,(e, 1).

LeEmMmA. (Res Zy¢", ¥") is equal to the sum of
1
sisee{f o 4
k CrlscSck t U@, At % U@, Ac(e,r)
(N, A)d®(A), d¥(—tA))dA

; It)

where t runs through S N Cy, and t runs through W (r).

of

plus

Proof. Consider the first term of the expression (5.11.1), and in
particular the part
1
k=1 Wx v U (Qry)
-1 33 (N(teas™, sex A)dd (sepA), ¥ (—te, X))

k=1 Wre y@) ¢

[®, ¥]%¥d A
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where
tECWI(ty, Cr), s € WO (1, Ci).

The expression inside the summation sign is equal to the integral of
U(Qrk) of

(5.13.1) 2D D > (N(ters™, sex A)d®(sep A), d¥ (—te, K))

where
t € CyNASD we G NS,

Now consider the expression

(5.13.2) . 2 fv(Qu-,A () Z IZ ; 2 N si A)

Cy, 1ScSck s
with A.(e, &) = Ac(e, 11).
The inner sums are the same as for (5.12.1) above, and we have written
(somewhat imprecisely) N(¢; s; A) for

(N (texs™, se, A)d®(sepA), AV (—terh)).

The integrand in (5.13.1) is holomorphic over U(%r;) by Corollary
4.15. In (5.13.2) each of the summands in the integrand is holomorphic
over the region of integration: this is by construction, and assumption
SIV.

On the other hand, the integral of (5.13.1) taken over U(“r;) is equal
to (5.13.2): this follows by the residue argument (Cauchy’s theorem)
of 5.8. Multiply (5.13.2) through by 1/w; and sum over k, 1 £ k < u.
On making the change of variable A’ = se, A we find the result to be
equal to the sum from 2 = 1 to 2 = u times 1/wyc; of

PIEDIDY Zf (N, 8)d2(4), d¥(—t1R))
1ScSck v ¢t U@, sekAc(e,k)

§

where now ¢ € ?W (r).

For s as above, a given chamber in RB(r) contains exactly one of the
points se; A,, so that the above expression becomes

iy s (N, A)d®(4), d¥ (1))

k=1 Ck 1ScScr vt ¢t Y U@Qr,Ac(en)

by the remark on holomorphicity above, and using the fact that
#(OW(tr, 1)) = #(CW(xi, 1)).

Putting all this together and using (5.11.1) again, we find the statement
of the lemma.

5.14. Next we look at RB(x, F;) = U ,C.(¢, F;), as before, except that
the number of components will now be a number (let us call it ¢(F;))
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which depends on v and not simply C;if v € C,. Suppose that the chamber
C.(¢, F¢) contains C, chambers of RB.(r), and choose general points
Ale, Fr) € Cole, Fy). If v € C; set ¢, = ¢(r). Then referring to Lemma
5.13 we see that (2 ,¢", ¥") is equal to

- \
2r: o) lgém Zz: {fwor,m —fuwr,Ac(e,r) (NG 4) - ')f

where r now runs over 9S(?, together with the sum

> I().

teQr(

The residue argument then implies that this in turn is equal to

(5.14.1) > c@®)™ Y G

1=cZ¢(Fr)

X };{fw@w) —wat'Mw) (N(, A) .. .)}

plus
Zt) I(t).

5.15. We are now in a position to begin defining the residuai amalgama-
tion. Let 71‘? be the following set: an element of 71(? is a triple (r, ¢, 1v)
with W a hyperplane in t so that A; and A (e, F;) are on opposite sides
of w N RB.(r, F;). To each such object we attach the residual Eisenstein
system

-C—%Resm E(,.,.).

If this is trivial, we remove the corresponding object from 7,(Y. There
is a unit normal implicit in this construction: we choose it to be the one
which points from v to A;.

To each element (t, ¢, w) € T,(? we shall associate a non-empty open
convex subset V" of X (1) + 1w M a'® as follows: Choose a polygonal
path in RB.(r) which starts at A.(¢, Fi) and stops at A, which crosses
Weyl hyperplanes and o’-hyperplanes in such a way that each hyperplane
is crossed orthogonally at most once, and then only if the two points
above are on opposite sides of it. Let 17,V be the connected component
in 0 Uyt RB(r) N t' determined by the crossing point of the path at
w. Here t’ runs through the Weyl hyperplanes and a’-hyperplanes.

5.16. Let v € 9S™; in the sum below we shall consider only those
(r, ¢, w) such that W contains the largest standard subspace of Cj,
t € (. We now come to a residue argument which will be dealt with in
more detail than has hitherto been the case.
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LEMMA. If Ay € VoV, then

> f —f (N, A)...)dA
1€Qw P )Y U(Qr, Ar) U(Qr, Ac (e, Fr))

1s equal to

f (N(t, A)dP(A), d¥(—tA))dA.
w €Qw (P () Y U(@Qu, Ap)

Proof. Observe that in the second expression the integrand is holo-
morphic over the region of integration. Denote the path in 5.15 by ¥,
and let A, A, be two points on v which are at either end of the straight
line segment which crosses v; we suppose that A; is the same side as
Acand As is the same side as A;. Then the first expression is equal to

>3 { —f (N(t, A) ...)dA.
[ U(Qr, A2 () U(Qr, A1 ()

Let H be a real unit normal pointing towards A»(w) from 1w and define
¢, €2 by Ai(W) = Ao + aH, A2(w) = Ao + ¢oH where A, is the crossing
point of v with w and ¢; < 0, ¢, > 0 (of course everything here depends
on ). From the definition of Vi, we only have to prove the result with
Ap € Vi@ replaced by Ao Applying Fubini's theorem we see that the
difference above is equal to

- 2;, fU(Qm,Ao)fI‘ (N(t, A)...)dA

where T' is the contour (in the fundamental domain picture) depicted
below.

y

A

C1 Co

Y
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By periodicity, of course, all the values of the functions on the top
horizontal line are equal to corresponding values on the bottom hori-
zontal line, and we can always arrange for both horizontal lines to
contain no singularities of N(f{, A). Summation is still over ¢W® (r).
Taking into account the residue theorem and the definition of Res N (¢, A),
the lemma follows.

5.17. Taking into account the definitions of the Eisenstein systems
associated to 0 € T;(?, we may now say that (Z4¢", ") is equal to

G17.1) XX (N(t, AYd®(A), d¥(—tA))dA
w ¢ Y U@, Ap)
where v runs over 7¢?\U 719 and ¢ runs over ?W® (), with Aw € V (),
W(w), or VpV as the case may be.
We now start to define Res S : S,,.1‘? will be the set of all distinct
affine subspaces t of dimension m — 1 such that there isa w € T U
719 with r = w. We associate an Eisenstein system to t by

quj=;&hwj

where 1 runs over those v = 1. The Eisenstein systems in the sum are,
of course, different in general. If the resulting E; is trivial, we omit t
from S,,11¢? = Res S9.

5.18. The next thing to do is to show that the elements of Res S(¥
satisfy the conditions of the induction step. That the associated Eisen-
stein systems are geometric is clear: the only case in doubt is an element
coming from 77(?, and that follows immediately because if w € T,(9,
then v meets a U(%), t € SO so that Re X (Iv) = X (r) (which is real in
fact by Proposition 4.2). Furthermore, the conditions of GI are satisfied
except again if T,(9. In this case we know that Re X (1) € *a(r) by the
above argument, hence

ReX(w) = X car, ¢ =0

with @ € Ap(7) and a’(x?) = 0. Since t° 2 w°’, the result follows.

The remaining conditions depend on the existence of ¢ and Res V(r)
which we now construct. For ¢ observe that the number of singular
hyperplanes of the Eisenstein system attached to r is finite, so we can
find ¢ with the property stated in SIV. For Res V(r) take a connected
component of RB.(r) with e = ¢, then GII is satisfied. If A; € Res V (),
suppose 0 (a singular hyperplane of the associated Eisenstein system)
meets U(r, Ar). Then v is of the form

X () + (kera® N t’) for some a®
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and, from 5.1,

0 # a’(Ar — X (1))

It

Re (en — (X (1))
Re cw — Rea’(X (1)).

Il

Thus
le’(Ar = X ()| = [’ [ Ae = X @) < [ [lex(x)

< o o= X )

by construction, which is impossible. Thus SIII holds for Res S,

= fla"(Ae = X (x)) ]

5.19. Our next task is to reexamine (Res Z4¢", ¢") so as to push it
into the form AVI. The expression (5.17.1) can be written (tautologically)
as

}r: > (NG, A)...)dA

1 U(Qr, Ay)

plus

lzn: z,: {fv(gm_A,) - uwm.A,,,)(N(t' A).. .)dA},

In the first expression t € Res S, ¢t € W (r); in the second expression
weTHOUT,D teWh(w); if we TH(C), then A" € W(w) (con-
vex open set), if v € T¢D(B), then A’ € V() (cone), and if w € T,(?,
then A’ € VpW. Moreover, A; € Res V(r) in the first expression, while
in the second Ap € Res V(r) if w = r € Res SO,

Let us now proceed to define Res 79 (B): the objects will consist of
those singular hyperplanes u of the Eisenstein systems associated to
elements o of 7P (B) \JU T, which meet U(%w) such thatu M (X (o) +
w® M al?) separates A and Ayp. To each such hyperplane one associates
the corresponding residual Eisenstein system: if this is trivial omit u.

One can now argue as before to find ¢, Res Vz(u) for Res 79 (B),
and to see that Res (Z4¢", ¥") is equal to

(5.19.1) ;Z )(N(s, )...)dA

s U(Qr, Ar

+ ‘u‘_“, > )(N(s, A)...)dA

s U(Qu, A’

T ; Zs: { fU(Ql’D,A”) B U (Qw, Ap) (N(s, A) o .)dA}

where t € Res S, u € Res T (B), u € T'P(C), and s € °WU(r),
QWD (u) or WD (w) as the case may be, and A € Res V(zr), A’ €
Res Vp(u) (in the second expression), while A’ € W(w) and Ap €
Res V(w). One point to remark here is that obtaining this result one
uses condition SV in place of Corollary 4.15; this is why we need SV.

https://doi.org/10.4153/CJM-1982-080-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1982-080-6

1156 L. E. MORRIS

In (5.19.1) the first two expressions are in the form suitable for in-
duction: it remains to deal with the last expression and to construct the
elements of Res 7P (C). This will be done more or less simultaneously.
We also remark in passing that in starting the induction in practice, this
is the natural point of departure, because one starts with elements of
T (C) and shifts the contour of integration to the imaginary axis.

5.20. Let v be an element of 7P (C); by assumption there is an as-
sociated non-empty convex open set W(w). We have also constructed
the cone Res V(in) as well. Suppose u is a singular hyperplane of the
Eisenstein system associated to v and let A;, A, be two points: A; €
W(w), As € Res V(). Then S III implies that u does not meet U(%u, A,)
for 7 = 1 or 2. It follows from Corollary 5.2 that u meets U(%w, A) for
some A on the line segment joining A; and A, if and only if

a’(A; — X(w)) — Re (¢ — a”(X ()

have opposite signs (a’ corresponding to 1u). On the other hand, S III
implies that

a’(A — X(w)) — Re (¢ — a"(X(W)) #0

for A € Res V(w) or A € W(): each of these two sets is connected, so
this number is of constant sign. This implies the following

LEmMMA. Let w € T(C), u a singular hyperplane of the Eisenstein
system belonging to w. If for some A, € W(w), A € Res V(W) it is true
that u meets U(%w, A) for some A on the line segment joining A, to A,
then u meets U(%w, A) for some A on the line segment joining A, to As for
any such Ay € W(w), A, € Res (V(0)).

We denote by Sing v the set of such u in Lemma 5.20.

5.21. We take Res T¢?(C) to be the set of all Sing w for w € T (C)
(note that the W are not necessarily distinct). If u € Res TP (C), we
attach to it the residual Eisenstein system coming from io: if this is
trivial, we omit u from Res 7?(C). The real unit normal in this con-
struction is chosen to point from uy to W() where uy is in Corollary 5.4.
The next step is to construct the non-empty convex open set W(u) for
u € Res T2 (C). Unfortunately this is not so easy as before and we have
to be a bit more careful.

5.22. First, let Singy (w) denote the set of all ug as u runs through
Sing (), and let Singr = Uy Singg (10). Let Int () denote the set

(g N V|V, Ur € Singz (0)}.
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Thus Int (W) consists of affine subspaces of codimension 2. Write

Int () = X Int () U G Int ()
X Int () = {u € Int (w)|X () € u}
G Int () = {u € Int ()| X (W) ¢ u} (G = good).

Let A* be any point in W(), and let G Int (10)* be the set of elements
of G Int (w) which meet the line segment joining X () to A*. We choose
RB(w), RB(w)* to be real balls with centres X (W), A* respectively such
that the only u € G Int (w) which meet the convex hull of RB(mw) and
RB(W)* are those in G Int (w)*. If u € G Int (w)*, then X (w) ¢ u so
X (), u determine a hyperplane in X (w) 4+ w°* M a” passing through
A*, because u meets the line segment joining X (w) and A*. In this way
RB(w)* is cut up into ‘‘chambers’’, each of which meets W(w) non-
trivally. We pick one of these chambers and write W(in)* for its inter-
section with W (o).

Next we adjust Res V/(w) by asking that Re (Res V()) lie in the
interior of the convex hull H of a‘®+ and *a(w). This is possible: first,
the convex hull meets X (1v) + w® M a‘® because each contains W(w) by
G II. Secondly, Re X (v) € *a(w) by GI. Thusif Aisin H N (W(w) +
w’ N a?), then X(w) + (A — X (W)) liesin H N (X () + w N a?)
again for 0 < ¢ = 1. Consequently we can choose Res V(w) (a chamber
of RB.(v)) as desired.

5.23. There is still X Int (1) to deal with. Choose Ap* € V(w) N H
(H as above), not lying in any u € X Int (w) U G Int (w)*. Then
An*, U1 generate a hyperplane in X () + w° N a® for u € X Int ().
The collection of these divides W(w)* into ‘“‘components’’. We fix one
such and denote it by W(mw)* as well. In what follows we write

Aw*(1) = (1 — )X () + £ An*.

LEMMA. Let Q be a compact subset of W(w)*. We can choose v > 0 such
that if 0 < t < 7, then the line segment joining Aw*(t) to A misses each
u € Int (), every A € Q.

Proof. Choose 7’ so small that Ap*(¢) € RB(n) for 0 < ¢ < 7/.

Now suppose u € X Int (w): the pair Ap*(f), u generates the same
hyperplane as the pair Ap*, 1, so this hyperplane must miss W (w)*, and
thus u cannot meet the line segment joining Ap*(¢{) and A (any A €
W(w)*).

If u € GInt (w)\G Int (w)*, then u cannot meet the line segment
joining Aw*(¢#) and A, by the choice of RB(w) and RB(w)*, provided
t < 7.

Finally, if u € G Int (w)*, the definition of W(w)* implies that the
line segment joining X (W) to A must miss u. I claim there is a small
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ball B with centre X (w) contained in RB(W) such that A’ € B implies
the line segment joining A’ to A misses each u € G Int (m)*, each
A€ Q.

Indeed suppose not, then there is a sequence A,” — X () such that
for each A, there is a line segment to some A, € € and that line segment
cuts some 1,. Because the collection G Int (10)* is finite, one of the u, is
cut infinitely often: say the sequence (1 — f,) A,/ + ¢, A, meets u for
0 = t, £ 1. Because Q is compact, the set of A, has a limit point A, € Q.
Similarly the set of ¢, has a limit point 0 = ¢ < 1. Consider

X = (1 —0HX) + t Ao

it is the limit of a sequence of points on 1, hence belongs to u. Hence
t # 0, t % 1 by the definition of u and A, respectively, and X lies on
the line segment joining A¢ and X () and X € u. This is a contradiction,
and completes the proof of the lemma, because all we need to do is make
sure that 7’ is less than the radius of B as well.

5.24. Given A; € W(w)*, choose 7, > 0 as in Lemma 5.23. We can
suppose that Ap*(t) € Res V() N RB(Ww) for 0 < ¢t < 7. If we fix
any such ¢, the line segment joining Ap*(f) to A; meetsugif u € Sing (1)
because by definition uy separates W(w) and Res V().

Hence by the lemma the point of intersection determines a connected
path component of ug\\J ugr M vz where the union is over all v €
Sing (W), u # v, and this path component does not depend on the choice
of Aj, 71 or t. Indeed suppose A, 7o, t’ are also given. Then A;, A, deter-
mine a compact line segment L, so choose 7, as in Lemma 5.23. We let
(x, ¥ ) denote the line joining x, y. Then the following union determines
a path connecting the respective crossing points in ug\\J up M vg:

{(Am*(t), A1> m uRi‘rL/Q é t < tl}
{ (Aw*(72/2), AL) NuglAL € L}
{(An™(8), A2) Nuglre/2 St < b}

where we make sure 7, < 24, 2fs.
Let W(u) be the intersection of a‘®(R) with this path component;
this is a non-empty convex open subset of uz. To obtain Res W(u), we

simply take
VAr(u) + W) N Hy

where Hy is the interior of the convex hull of a‘®*+ and +a(u).

The intersection in this definition is non-empty; indeed Ap*(t) €
Res V(w) M H and we can choose A; in the definition of the component
above to lie in Hy, from the definition of W (). The result follows.
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5.25. Our final job is to verify that the relevant conditions are satisfied
for Res T (C): we must verify that the associated Eisenstein systems
are geometric as well as GI, GII, SIII (the other conditions are empty).
When we have done this, we shall then verify AVI for the entire residual
amalgamation and this will finish the induction step (i.e., the proof of
Proposition 5.9).

We first verify that Re X (u) € *a‘® and the conditions GI, GII. In
fact, GII is clear from the definition of Res W(u).

As for GI, observe that the interior of the convex hull of a(®*+ and
+a(u) (i.e., Hy) meets Re uin a non-empty open set, by the construction
of W(u). If A belongs to this intersection, then the projection of Re A
to +a(u) is just Re X (u) so that Re X (u) must belong to the interior
of the convex hull of the projection of (a(?)* to a(u) and +a(u).

On the other hand, the projection of a‘®* to a(u) is contained in +a(u);
indeed it is contained in a(u)* C +a(u), as is well known. Thus Re X (u)
lies in *a(u) and this is GI.

5.26. LEMMA. ta(u) € *b where b is the orthogonal complement of the
largest distinguished subspace contained in u’.

Assuming the lemma we see that Re X (u) lies in *a(u) from 5.25,
and hence in b by the lemma. This implies that the collection Res T? (C)
is geometric.

Proof of 5.26. Let {e;} be the basis dual to the simple roots a € Ap (1),
then (e; a;) = &;;. Each element of *a(u) can be written as a non-
negative linear combination of the a;, and the coefficient of «; is zero if
and only if ¢; € (u” N a‘®)*. The space spanned by these ¢; is the dual
of the largest standard subspace contained in u’, so that by definition
of b we see that Ta(u) C +b.

5.27. We now check SIII: we want to show that if A € Res W(u),
then no singular hyperplane of Res, E(., ., .) meets U(%u, A); we are
implicitly assuming u is a hyperplane in u € 7 (C).

Suppose Res (1) € u is such a singular hyperplane: there is a hyper-
plane v in w meeting U(%u, A), A = tAx(u) + Z,Z € W(u),andvisa
singular hyperplane of the Eisenstein system associated to . Hence b
meets U(%, A’) with A’ € W(u). But W(u) is contained in ug\\J uz N
bg- the union being taken over all singular hyperplanes v of the Eisen-
stein system associated to W (u # v). This is a contradiction, as follows
from the definitions.

5.28. We now deal with AVI. Recall that (Res Z4¢", ¢") is equal
to the expression (5.19.1). In this expression we note that A” and Ay
may be chosen anywhere in W (), and Res V' (Iv) respectively. We shall
choose A" to be in W(w)* M Hy; let B be a small ball about A’”’. Choose
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r > 0 so that if 0 < ¢ < 7 the line joining Ap* to any point in B misses
each § € Int (v) (Lemma 5.23). We suppose 7 is chosen so that 0 <
¢t < 7 implies that

Aw*(t) € Res V(1) N RB(w)

(where RB(W) is as in 5.22). Fix such a ¢ and take Ap = Ap*(f). Let v
be a polygonal path from Ay to A” lying in the convex hull of Ay and B
such that vy crosses each ug (u € Sing (1)) orthogonally. For each such
ugr let A%, A" be the points at the ends of the straight line segment
crossing Uy, numbered so that A; lies on the same side of ug as Ay, and
A, on the same side as A”. Let Ay be the crossing point of v and ug.
Then

(5.28.1) —f (N(s, A)...)dA
U(Qw,A’’) U(@w, Ap)

= g}; {fu<0m,A2u) _fU(Qm,Alu) (N(s, A) .. .)dA} .

In the sum u is supposed to contain the largest standard subspace in
’: otherwise u is not a singular hyperplane by assumption SV, and this
difference is zero.

5.29. LEMMA.

f —f (N(s, A) .. .)d A}
sEQW(J) () l U(@w, Aat) U@, A1t

is equal to
f (N(s, A)...)dA
v se@w )Y U@u, Ao+ iAR )

where the first sum in the second expression runs over all ' in Res T (C)
such that ug' = ug, W containing the largest standard subspace of Ww°.

Assume the lemma for the moment: then
Aow + tAr(1') € Res W(u')

for a given 1’ in the sum above, and this point is as good as any other in
Res W(u’). Hence we find the sum over s of the left side of (5.28.1) is
equal to

> > f (N(s, A) ...)dA
ueresT () () sc@w D ay VY U(@u,Ay)

with Ay € Res W(u).
Substituting this into the expression for (Res Z4¢", ¢") we see that
we have the condition AVI, and this completes the induction step.
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Proof of 5.29. We proceed in a fashion similar to that of Lemma 5.16.
Choose a real unit normal H from u pointing to A%, and let ¢, > 0,
¢; < 0 be so that

A" Ao + a1H
A = Aou + coH.

Applying Fubini's theorem, we find the difference in the lemma is

—, qu<ouR.A0,u>fr (N(s, A) .. .)dA

s

with T' depicted below.

y y
< . @
Jr\ ()
@

a G X X
@
Y ®

where
U = Xp(u) + uz®, uz’ =1 Na®, anyu =u

Put Ax(w") = ¢’H. Then the integral above over I is equal to the inte-
gral over the contour depicted on the right, where the circles are centred
about the various ¢/, taken anticlockwise.

Using the definition of Res N(s, A), this last can be put in the form
stated in the lemma. As in 5.16 we can always arrange for I' to miss any
singularities.

PART II

6. Eisenstein series.
6.1. In [5] 2.3.4 we gave an orthogonal decomposition
L@ = (61?1 Z({P}, 9).
Our eventual aim (Section 8) is to decompose & ({P}, ¢) further. For

this we first set £ (G, {P}, £) to be the closure of the sum of the irre-
ducible invariant subspaces of & ({ P}, §).
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Suppose that {R} is another association class, and write {R} 2 {P}
if ®{P} is non empty for some R € {R}. For purposes of induction we
need an ‘“‘R-analogue”’ of the space £ (G, {P}, £). To this end let
Bz = {P(Mz)} denote an association class of parabolics in My of the
form BP = P N\ Mg, P € {P}. We let

(go({P(MR)}) E) =@ %O(P(MR)r E)

where the sum is over the elements of {P (M)}, and where by definition
the space % (P (M), £) consists of those functions

¢: EP(F)EN(A)\Mr(A) — C

satisfying the conditions analogous to those of [5] 2.1.5. The only point
here is that Z¢(A) transform by £, and that in particular such a ¢
satisfies

f |¢(m)|2dm < 00,
Z(A)RP(F)EN(A)\MR(A)

We can then define the space & ({ P}, £) which will be the closure in
&Ly (£) (see [5]2.1.4, for the definition of this space) of functions of type
¢hm) = > ¢(ym)

Rp(F)\\MR(F)

where ¢ € G o(P(Mg), £).
It then follows from the Fourier transform that we can write
L ({BP}, £) as a direct integral

>
G

. DOaR(®)
or again as

®
f £ ({"P}, §)ds.

Ref{={0

The “R analogue’’ referred to above will then be the closure in & . ({)
of the sum of the irreducible invariant subspaces of .Z ({£P}, ¢); we
denote it by & (Mg, {£P}, ¢).

Finally, set

®
&0t 1720 = [

DOR(

o &L (Mg, {"P}, £)d5).

6.2. Reminder. The space £ 5, ({) consists of measurable functions
¢ : Mr(F)\Mzr(A) — C,

transforming by ¢, for which

f €72 (m) | ¢ (m)|"dm < .
ZM R(AYMR(F)\M R (A)
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6.3. With these minor inductive details out of the way, the first space
we shall want to consider will consist of functions

¢ : Ne(A)R(F\G(A) = C

satisfying the following conditions:
(i) ¢ is K-finite (on the right).

(ii) For each g € G(A), the function m — ¢(mg) has compact support
modulo M g°.

(iii) There is an invariant subspace V C . (M, {#P}, £) such that
for each g, m — ¢(mg) € V.

(iv) ¢(zg) = £(2)9(g), z € Z(A).
We write this space as % (R, {ZP}, £), so that as before

@
@, %P0 - [ oy, Co®A"PY 0.

6.4. Let ® € (R, {EP}, ¢6z), where as usual 85 is the modular func-
tion associated to R. We can formally define

(641) E(@g®) = >, ().

YER(F)\ G(F)

From [5] 2.2.2 we see that this series converges absolutely for Re { > dp,
and uniformly on subsets of G(A) which are compact modulo Z(A). The
first question of importance to us is whether £(g, ®) can be analytically
continued to a meromorphic function. We already know this in case
{R} = {P} for then we are simply dealing with Eisenstein series arising
from cusp forms. To carry out the analytic continuation in general will
be a simple matter once we have related our present framework to that
of the preceding sections.

6.5. According to Theorem 5.9 of Section 5 (the main theorem) there
is a collection of affine spaces S, = \U S,,(? so that if ¢{ P} is non empty
then

Qg({P}r XaQ) =® ng({P}r XsQ)

where the direct sum is over those m for which rk Q < m < rk P, and,
for each m, @¥,, is the closed subspace associated with ©S,,.

LEMMA. Let ¢ = rank Q. Then
L 2 Co(Q, (9P}, x0q)-

To see this, one argues as follows: pick a finite dimensional representa-
tion (irreducible) ¢ of K, and an irreducible invariant subspace V of
L (Mg, {9P}, x64). The space

(gO(Qy {QP}y Xan Vr U) g (gO(Q) {QP}y XBQ)
consisting of those ¢ such that for each g € G(A)
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(i) m—¢(mg) € V,m € Mg(A)

(i1) & — ¢(kg) is a matrix coefficient of ¢, € K, is then finite dimen-
sional, cf. [2] 5.8.

Now pick a prime v such that ¢, is trivial, and consider the local
Hecke algebra 5, with respect to the reductive group My ,. It acts on
the space

(gO(Qv KQP}y XBQy Vr U)
as well as the space
L ({P}, xba)

and one sees easily that €%, corresponds to the discrete part of the spec-
trum of J,. Hence

%O(Qy {QP}? XaQy Vy 0') C_: ng
and since

kVJ SJ (gO(Qv {Qp}r X‘sor V, ‘7) = (go(Q’ {QP}V XBQ)

the result follows.

6.6. We are now ready to analytically continue our Eisenstein series.
First, observe that the space 2¢, (r = rkR) can be described in terms
of Eisenstein systems: this was used implicitly in the proof of Lemma 6.5;
indeed ® € B, can be written as

2() = L E@ FX@)
where g runs through £S,. Consequently
E(g &) =2 > E(vg F,X®))el, Hur(rg))

8 R(F)\G(F)
where as usual ®&; = T:®, ® € % o(Q, {%P}, xd¢), x is a character.
According to assumption (iii) for Eisenstein systems each

2 ) E(vg, F, X (8))e(s, Hur (v8))

R(F)\G(F
(c.f. 3.9) is also an Eisenstein system with respect to G 2 P. The result

then follows from what we know about Eisenstein systems. We sum-
marize this as a lemma.

LEMMA. The function E(g, ®) tnitially defined by (6.4.1) can be analyti-
cally continued to a rational function, whose singularities all lie on hyper-
planes.

We remark that the continued function E(g, ®) is invariant by the
lattice «Lz,: indeed the series (6.4.1) is so, hence by the principle of
analytic continuation so is the continued function.
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7. Intertwining operators.

7.1. The next step is to define intertwining operators M (w, A) for
w € W(Mpgp Mg)if Rand R’ are associate, to analytically continue them
and to show that they satisfy functional equations. For this it will be
necessary to remind ourselves of Langlands’ Lemma 7.4, which plays
a key role in what follows.

Suppose Q with Lie algebra ao(C) is given such that ¢{P} = ¢. Let
S = U SO be a collection of affine spaces as in 4.1-4.2. Suppose that
€ 9SO t € 95D ands € 9W(x, t), then there is a linear transformation,

N(s, A): Hom (S(r), V@) = S(t) ® V.

As explained in 4.1 the collection S breaks into equivalence classes,
and as proved in 4.2, each equivalence class C, possesses at least one
standard subspace 1;. As before we set

QW(rk, G)=U QW(Tkv t)

teck

and define, in addition,
AWo(ri, Cr) = {s € W(ry, Cy)|s fixes r,° pointwise}.

We let e, be the unique element of W (1, r;) which is the identity on 1;".
Given t;, t, in C; we observe that every element of ?W (1, t;) can be
written in the form te,s™! with s € QW (g, t;) and ¢t € W (ry, t2).

7.2. Let us consider “r; as a submanifold 9r;(x) of Dy (x84). Fix a
component of the submanifold with base point wép, say. Then we have
the function N(w, A) which we can view as a (meromorphic) operator-
valued function on the component

{wdp) X Ot (1 C 0y (C)).

Let P, be the standard parabolic corresponding to r;. There are then
projection maps

®Di(x80) Ty ®Dy(xd0)

\/

Do(8)

For A € % C “q,(C) form the matrices
Mo(A) = (N(texs™, sexA); s, t € *W(ry, ().
AMQk(A) = (N(teks"l, SekA); S, IS QW(](rk, C))
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If s € QWD (1y, 8) and ¢ € 9Wy(ry, t) say, then
8= —sXp+mn, t=—tX +1

and fe,s7! takes 8 to t, fixing 1;° in the process. Applying the transitivity
axiom (iii) for Eisenstein systems, we have immediately the following
result:

LEMMA. The matrix M " (A) is a function only of mA. It is even holo-
morphic in w A, in an obvious sense.

7.3. If s € *W(xy, C), let j(s) be the unique integer for which (rz), €
957 Then the matrix M 4( A) can be regarded as a linear transformation

Mq(A): @ Hom(S((ty),), V')
s€QW (tk,C) )
- & Ss@)e
s€QW (tk,C)

which is a meromorphic function in A.

The matrix M *(A) can also be interpreted in a similar fashion; each
of these matrices has a finite dimensional range: we define the rank of
Mo(A) or MF(A) to be the dimension of its range. In [3] Langlands
proves the following remarkable fact:

7.4. THEOREM (Langlands [3], Lemma 7.4). Suppose that the collection S
satisfies the following property:

N(s, A) = N*(s~!, —sA)

for any Q and P, P’ € P} (this is so if S is spectral, by Proposition 4.8).
Then rank M o(A) = rank M *(A) whenever M 4(A) is defined at A.

The proof of this is long and relies ultimately on the transitivity axiom
(iii) for Eisenstein systems and the fact that an element s can be written
as a product of simple “reflections” (see e.g. [5], 1.3.4); a proof is also
given in [7] Proposition 5.4. The proof in the function field case is
essentially the same and we feel justified in omitting it.

In the applications we shall want to consider submatrices of M 4(A),
determined by subsets of W (), C). Let 4, B be sets of W (x;, C). We
shall write M (A4, B; A) for the submatrix of M 4(A) whose domain is

® Hom (S((r),), V')
SEA
and whose range lies in

% S(w) ) ® V.

In case 4 = B = ®W (1, C) we recover M 4(A), and in case 4 = B =
eW (1, C) we recover M " (A).
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7.5. In the above, take Q to be G, so that C will be an equivalence
class in 9S; if we wish to emphasize the subscript k and (or) G we shall
write Cx(G).

Let Q, Q' be associate parabolic subgroups with {Q} = {P}. A subset
of ¢W(ry, C) of particular interest to us can be constructed as follows:
Let w € W(%, 9a) and consider those s € ¢W(r;, C) for which (tx),
is standard with

(rk)xv = Q’(IC
slee’ = w (thus t,° = “ag).

We write |w| for the set of such s. The next lemma is a straightforward

consequence of decomposing w into a product of elementary reflections
([5] 1.3.4).

LEMMA. |w| s non-emply.

7.6. Let R be a parabolic subgroup of rank r for which #{P} # #; we
then have the collection .S from the main theorem of Section 5. For the
parabolic Q we shall take G itself. We want to apply Proposition 7.4
to the collection S’ = §,, with respect to the equivalence relation induced
by G. Thus ¢S’ breaks into equivalence classes C’, where t, t are equi-
valent if there is an element s of W (x, t) for which r, = t.

To each equivalence class C’ there is canonically associated an as-
sociation class of parabolic subgroups {C’}: one takes the association
class determined by any standard element of C’. Because each C’ con-
sists of affine subspaces it is possible that distinct C’ will give the same
association class.

Accordingly if we set ¥, ({P}, xdz, t) to consist of the functions
E(g, F, X(t)) where F € Hom (S(1), V) with P ¢ E{P}, then with
r = rank R,

Rgf({P}r X‘SR) = te?i Rgr({P}v XaRr t)
Set, for C’ as above,
L (P) xom ) = @ (1P, xb )
so that
Rgf({P}) X6R) = @ Rgr({P}: XOr, C,)
The only C’ which can occur in this sum are those for which {C’} = {R},
and t € (' contributes if and only if t* < R.

We want to apply Propoposition 7.4: for the collection .S we shall take
S’ = S, (as in the main theorem, Section 5). For Q we shall take G
itself, for C we shall take an equivalence class C’ such that {C'} = {R}.
According to 7.4 the rank of M ¢( A) is equal to the rank of Mg = M¢" (xdo),
whenever M4 (A) is defined.
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7.7. Remark. We pointed out that distinct C’ can give the same {C’}.
Equally one could have r, 8 in (’, both distinct and standard, corre-
sponding to the same element in {C’}. Lemma 7.5 implies that at least
each element of {C’} does correspond to a standard subspace in C’.

7.8. Now let R, R’ € {R}; we are going to construct a linear trans-
formation M(w, A), for each w € W(az agr'), and A € ar(C)

% o(R, {FP}, xér) C @ 2. ({P}, xbr, C")

we shall construct a transformation M (w, A)
M(w, A): "L, ({P}, x8p, C') = ' &, ({P}, x*'6p", C').

Let ¢’ = Cg¢ be an equivalence class, as in 7.6, with respect to G. Let
C,; be the set of standard elements in Cg; if v € Cy, then t° corresponds
to a standard parabolic R for which #{P} @, and then t lies in an
equivalence class {r}r with respect to R: if t € {r}g, then t* = 1’ and
t € C,,. In this way

CG 2 Csl = U CR
where each Cy is an equivalence class {t} ; as above.

Reminder. If v € C; is a member of £S,, then r? must be of the form
X (%) 4+ ax(C).

We may then write, with Cr <> R in each case

Rgr({P}y X‘sRv CG) = j‘e Rgr({P}r XaRy CR)

(cf. Remark 7.7) where the spaces on the right are defined in the obvious
way, we see that we need only define M (w, A) on each space on the right.

7.9. Now suppose that t € Cr as above, and let R’ € {R},
w € W(agag ). Choose wy € |w| asin 7.5 and set t = 1,,. Then t will be
a member of Cy say, another equivalence class {t} - in Cq.

We then have matrices

Me(®W(x, Cg), |w|; A+ X(r)), A€’
MG(|w_1|r R,W(tr CR'); Al + X(t))
with domains and ranges denoted respectively by

Hompg , Sk
HOmR’ , SR'

There are natural isomorphisms, defined component wise,
Ty(A): Homy — Homp:
T's(A"): Sg— Sk
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such that the diagram

Mo(*W(r, Cr), [w|; A + X(®) | s,

>

Hompg

(7.9.1) Tyu(4p) Ts(wA)
MG(Iw—lLR,W(tv CR’)y wA + X(t))

N
—> R’

Hompg:

is commutative.
Thus

Image (T's(wA) . Me(BW(x, Cg) ....))
= Image (Ma(|Jw™!|, #W(t, Cr/) ....)) C Image Ms(t)

by Proposition 7.4 (we are writing M ¢(t) to denote the dependence on t).
There are surjective (by definition) maps

E:: Domain (M¢(t)) — ¥ . ({ P}, x6g, Cr)
E.: Domain Mg(t) — 2%, ({P}, x*6g, Cr’)

given by the following rule: if, for example
F=®F, ¢ ®Hom(S(,), ")

s € BW(r, Cr) (C “Wy(r, Cs)!) then
E(F) = Q; E(, F, X (ry)).

7.10. We now tentatively define M (w, A). Suppose that
P ¢ Rgr({P}» X0r, Cr).

Choose Fg in Domain Me(r) such that E.(Fs) = ®. From the com-
mutativity of (7.9.1) we see that

Go = Ts(wA) - Mag(EW(r, Cg), |w|, A + X (1)) Fe

is an element of Image (M4(t)). Choose a ®; in Domain (M¢(t)) so
that M 4(t) ®: is this element, and set

M(w, A)qJ = Et(q)t).

Of course we must verify that the left side really is independent of the
choices made above.

711. If ® € 2¥ ,({ P}, xbz, Cr) we know that
= ) E(g Fe X(9))

3e¢CR

so that £(g, ®, A) then makes sense by axiom (iii) for Eisenstein systems
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and is, in fact, a rational function; c.f. the proof of Lemma 6.6. This is
the sense in which the following lemma is to be interpreted.

LEMMA. Let ® € BY . ({ P}, x6r, Cr). Then always
E(gY ¢’ A) = E(gY M(wY A‘)QY wA)'

Proof. By a well-known theorem of Langlands (see [5] 2.2.9 for
example) it is enough to compare the constant terms of each side for
P’ = PO ¢ {P}, and show them to be equal. Writing out the definitions
of E*'(g, &, A) and E¥'(g, M(w, A)®, wA) respectively, and making
the appropriate change of variables with respect to Weyl group elements,
we see that this amounts to showing that the elements T4 (A) Fp and &,
(notation of 7.10) have the same images under the matrices

Me(|Jw™], *W(t, Co); wA + X (1))
and
Me(®W(t, Crr), “W(t, Co); wA + X (1))

respectively.
Now ®; and Tx(A)Fs can obviously be regarded as elements in the
domain of the matrix

Me(wA + X (1))

and then we simply have to show that their difference lies in the kernel
of this latter matrix.
On the other hand, ®; is such that

Mq(t)®: = G (notation of 7.10)
= Mg(®*W(t, Cr), ‘W(t, Co); wA + X (1)) Py,
hence & — Tx(A)Fy lies in the kernel of
Me(*'W(t, Cr), W(t, Co); wA + X(t))
by the commutativity of the diagram (7.9.1). The result follows, because
Me(wA 4+ X(t))
and
Mg(®'W(t, Cgr), W, C¢); wA + X(t))
have the same rank by 7.4 and hence the same kernel.

7.12. Suppose now that M (w, A)® and M’(w, A)® are constructed as
in 7.10 but corresponding to different choices. By Lemma 7.11 we find
that

E(g, M(w, A)®, wA) = E(g, M'(w, A)®, wA).

The result we seek now follows from
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7.13. LEMMA. Let ®(A) be meromorphic with values in
Y ({P}, Cr, vér').
If E(g, ®(A), A) = 0, then ®(A) = 0.
Proof. We have
E(g, ®(A), A) = E(g Fe(A), A) =0
and this implies that
Me(®W(t, Cr), “W(t, Ca), A+ X(1))Fa =0
so that Fg € ker (Mg(t)). But by construction
®(A) = Ei(Fe)
and taking constant terms as in Lemma 7.11, the claim follows.

7.14. The arguments of 7.11-7.13 show also that M (w, A) is a function
on Lz \az(C). We leave to the reader to show that the M (w, A) really
do give rise to

M(wy A) %O(Rr {RP}y XBR) - Cg()(R’r {R’P}r Xw_laR’)'

In any case, one way of doing this is by 8.7 below.
The next item for us is to show that the M (w, A) satisfy the expected
functional equations.

PROPOSITION. Let wy, € W(ag, ag), w2 € W(ag:, ag:'). Then
M(w2wly A) = M(w21 wIA)M(wly A)
Proof. Indeed, let ® ¢ 2%, ({P}, Cg, x8z), and consider

E(g, M(wawi, A)®, wow,A)
and
E(g, M(’ZUQ, wlA)M(wl, A) ®, wow, A)

According to Lemma 7.11, these are equal, and applying 7.13 the result
follows.

7.15. The next few remarks are pertinent for the lemma that will follow.
Consider the map

Me(r): Homg — Skg.

This is the composition (by definition) of the map
E:: Homy — B ({ P}, x8z, Cr)

with the constant term map

Ce: Rgr({P}, x0r, Cr) = Sk.
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On the other hand, E; is a map of finite order, hence from Section 2
it has an adjoint E.*

"L, ({P}, x8r, Cr) = Sk
Proposition 4.14 implies that if ¥, H € Sg, then
(Ee(F), Ec(H))e = (Mq(r)F, H)sy

where ( , )¢ denotes the inner product in 2% ,.({P}, x6gr, Cr). But
this inner product is also equal to

(G- Ec(F), H)sp,
Take E.(F) = ®; we then have
(®, Ex(H)) = (G2, H)
and since E; is surjective, this implies that
E* = C..
7.16. LEMMA. The adjoint of M (w, A) is M(w™', —wA).
Proof. We only need to check this for
M@, A): %L ({P}, X0r, Cx) = *L, (1P}, x*6nr, Cps),
Let F € Hompg; then
Ci- M(w, A)E:(F)
= Ts(wA) - Mg(EW(x, Cgr), |w|, A + X (x))F.

Indeed Ci- M (w, A)E:(F) is equal to Ci- E{(T") where M(t)T is equal
to
TS(wA) : MG(RW(rr CR)! |w|v A + X(r))F'

Thus it is equal to Mg(t) T (since M(t) = Ci- Ey), ie., to
TS(wA) : M(;(RW(I‘, CR)! I‘ZD|, A + X(l‘))F

(We know that M(w, A)® is independent of the choice of Fy such that
Ei(F3) = ®, so for ® = E,(F), we choose F = Fj.)
Taking adjoints we find that

Ce+ M(w, A)*- E;

= Me(lw|, *W(r, Cr), —A + X (v)) - Tu(—wA)

= Ts(—=4) - Ma(jw™!], *W(t, Crr), —wh + X(1)).
By the same argument as above, this is equal to

Cy- M(w!, —wA) - E.

Since C; is injective and E is surjective, the lemma follows.
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7.17. CorOLLARY. M (w, A) is holomorphic for Re A = 0, and hence
E(g, ®, A) is as well.

The first assertion is obvious, the second follows from 4.14.

7.18. Remark. We saw in 4.14 that the matrix Mg(A) may have
singularities along the axis U(r) and that one must be content with a
weaker statement, viz. that of 4.14 (iii). The results above imply that
certain submatrices of M¢(A) are however analytic along this axis.

8. The spectral decomposition.

8.1. We employ the same notation as that of Section 7. In particular
C¢ denotes an equivalence class under G in S,, and r is a standard element
in Cg; we suppose that {Ce} = {R}.

LEMMA. Suppose Fg: Lz\tag — U is a continuous function, U a
finite dimensional subspace of 2L ,({ P}, x6x, Cs). Then

ReA=0
exists, and lies in L (£).
Proof. The first assertion is clear because E(-, Fg(A), A) is regular
on the (compact) imaginary axis.
To prove the second assertion, argue as follows: Firstly, we can replace
the Cg = UL Cgin BZ,({P}, x6r, C¢) by a Cg. Secondly, writing
Fr(A)(g) = 22 ®:(A)Fi(g)

where { F;} is a finite basis for U, we can reduce the problem to showing
that

f B F 8@ (a)dA

is an element of ¥ (¢) when &: Lz \targ — C is continuous. Finally,
we may suppose F = E.(F’).
Set
Hom (CG) = @w Hom (S(rw)r V({P}))
where

V({P}) = @p) Do Go(P, wbp) and w € W(r, Cq),
and define a function

Fegy: U(r) = Hom (Cg)
by setting Fo, = @, F,, where

dwAF if we ‘W)
0 otherwise.

Fp(A+ X () = {
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Consider

(8.1.1) fv() (Me(A)Feg Feg)sd A

By definition this is equal to

S RN )R(sA) (Ng(ters™, sex A)F', F')d A

U) t s

where
A= A—X() and ¢ s € “W(r, 1)
so that everything comes down to the behaviour of
(Ng(ters™, sex A)F', F')

on U(r). Now tegs™ € |w| where w = fes~!|r? and then Ng (ters™!, sexA)
forms an entry in the matrix

Me("W(r, Cr), |w], A)

which we know to be holomorphic on U(r) (cf. remark 7.18). Thus the
integral (8.1.1) exists.
On the other hand, up to a constant of integration,

1 o ’ ’
fe o E(gv FR<A)r A)dA = ?EZ;S E(gv I'Ccv A )dA

ReA= U(r)

where #(C¢) = |*W(r, 1)|, and the fact that (8.1.1) exists amounts to
saying that F¢, is an element of the space @ ;7 (V) (cf. the proof of
Proposition 4.14). But then the function

fu(r) E(g, Feyy A)d A
is an element of . (£) (ibid), which is what we want.
8.2. Let F be as in Lemma 8.1, and suppose in addition that
H: Lz \wag — V
is a continuous function where

V g @ R;g?‘({P}; Xw—lal?,’y CG’)

wEW (R,R')
is a finite dimensional subspace, and R, R’ € {R}.

LeMMA. The inner product in £ (£) of

f Bl F(8), 1)da
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and

f E(g, H(A'), A)dN'
ReA’=0

s equal to
2 f (M(w, A)F(A), HwA))d A.
wEW@gr.ap) Y ReA=0

Proof. As before, we can replace C¢(C¢’) by a Cr(Cg/’) as the case may
be, and reduce to the case where
F(A) = q’( N Fpg
H(A) = Y(A)Hpg:
where ®(A), Fr(resp. Y(A), Hg/) are as in 8.1 (resp. the analogues of
the corresponding objects in 8.1). Define F¢, as in 8.1, and the function
HCG = ® H, by
_Jo if w ¢ ‘Wi
Ho(A +X @) = {\I/(w’A)H’ it w e W, §)
where f is a standard element for Cg.’.

Using the proof of Proposition 4.14 again, we see that the inner
product in question is equal to

1
(8.2.1) mfwr) (MG(A)ch,HCG)dA

where #(Cg) is as before. The integrand is a sum over the various s, ¢
as before, and each summand is holomorphic on the axis U(r). Con-
sequently (8.2.1) is equal to (up to a constant of integration)

622 > f S(MTGA) (Ts(sA)Na(s, A + X (1) Fe', Ha').
seGw, ReA=0
Let

W, §) = Llwl N W, )

with w running through W(apg, ag’): the sets on the right have 1 or 0
elements in them. Let W(r, {; R, R’) be the subset of W(ag, ag’) con-
sisting of w for which the corresponding term on the right is non-empty,
and let s, be the corresponding element in |w| N *W(r, f).

Then (Ts(spyA)Ne(sy, A + X(x))Fr'’Hpg') is simply

(Ts(su M) Mo(RW(x, Cr), |w|, A + X (v))Fr', Hr')
so (8.2.2) becomes (cf. 7.10, and proof of 7.16)

GW(;R R,)f(Cf "M, A) - Ei(Fr'), He') 2(A)¥ (wA)d A

- ZfReA=0 (M(w’ A) ) E‘(FR’)’ Ef(HR"))(b(A)\I’(WA)

https://doi.org/10.4153/CJM-1982-080-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1982-080-6

1176 L. E. MORRIS

(remember that Cy is the adjoint of Ey, cf. Section 7.15)

=2 f _, (M(w, A)Fa, He ) (A)¥ @A)d A

we WG, f, R R). Now

‘W, §, R, R') © W(ag, ar'),
so to complete the proof we only need to show that if

wd¢ ‘W, f, R, R),
then it contributes nothing to the integral, i.e.,

(M(w, A)F(A), HwA)) =0
but this follows because then M (w, A)F(A) lies in

mZ (P}, x* g, Cr'')
where Cg/’ <> 1, and this is orthogonal to

@D, * L (P}, x*%r, Crr),
by construction, since then Cz’ # Cgs as a moment’s reflection shows.

8.3. Our final task is to exhibit the spectral decomposition of . ({ P}, §)
using the results on Eisenstein series and intertwining operators. For
this, we introduce the space

%({R}r {P}y C(;, K/)
consisting of collections { Fr} of measurable functions
Fpg: ‘LZR\"aR _’@(x) Rgf({P}v x0z, Ca, K')

(where x runs through a set of (unitary) representatives for the com-
ponents of Dy ,(£), and 2, ({P}, xéx, Cs K') is defined in the usual
way; the direct sum above is then finite, cf. [5] II, 1.2, II, 1.7) which
satisfy the following conditions:

(i) Frr(wA) = M(w, A)Fr(A), w€ W(ag, ag).
Here M (w, A) is viewed as an operator

® "L, ({P}, xbz, C, K') > D ) * L, ({P}, x'br", Ca, K')
in the obvious manner.

. 1
Oy ; fReA:O (Fr(A), Fr(A))dA <

where #{R} is the number of elements in W(ag, ag/) (any R’ € {R})
multiplied by the number of elements in { R}. Note that (ii) then furnishes
an inner product for ##({R}, { P}, Cq, K').

Our previous results imply
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8.4. LEMMA. If F = {Fg} € #({R}, | P}, Cg, K'), then

T(F) = ) 2 , E(g, Fr(Ag), Ag)dAg

P ReAp=

is an element of £ (£), and |T(F)| = ||F|.

Proof. We showed square integrability in 8.1 in case the Fp were con-
tinuous; the general case follows by a density argument. As for the
statement about norms, set Fr(g) to be equal to the integral above,
then (8.2) implies that (Fg, Fg:) is equal to

S G MR, Faloanan
wEW(aR.GR:) ReA=0

=2 (M(w, A)Fgr(A), M(w, A)Fr(A))dA

w ReA=0

- me:o (Fa(A), Fa(A))dA

(M (w, A) is unitary on Re A = 0)

= #(W(az, aR’))fReA=O (Fr(A), Fr(A))dA
and from this the result follows.
8.5. We now have an injective isometry
H (R}, |P}, Co, K') = &L (%)
On the other hand, we also have the space
“L,({P}, 8 = @ °Z,.(1P}, & C),

the sum taken over all equivalence classes Cg in .S, (under G).

LeEMMA. The image of Ug: H ({R}, { P}, Cg, K') in € (£) is precisely the
space

L (1P}, & Co).
Remarks. (i) Note that {Cg} = {R}.
(i) “Z,({P}, & Co) = °ZLs, (1P}, & Co)
is a closed subspace of & ({ P}, £).
Proof. We need only consider elements in ¥ ,({ P}, ¢, Cg) of the form

f - E.(g, F(A), A)dA
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where
F(A): Lz, \apy(C)— @ Hom(S(ty) . ..)

wew (D ,0 )

is at least analytic in some tube containing the imaginary axis and
(8.5.1)  E.(g F(A), A) = 2. E(g, F(weA), wer A)

w € WO (x, Cg), v = 1y, etc. (cf. the statement of Proposition 4.14).
Let us show that such an element lies in the image of the isometry
above. It is primarily a matter of going back to the definitions, and for
this we had better be careful.
Let {Fz} be a collection satisfying the definition of J#({R}, {P},
Cg, K'); each such Fpg is a measurable function

]"RI LLZR\LQRﬁ% Rgr({P}y XBRv CG) K’)
X

(it is enough to consider only Fy which are continuous). Then each
Fr(A) = E.(g, F&'(4), X(r)), and
E(g, Fr(A), A) = E(g, F&'(A), X(v) + A)

by axiom (iii) for Eisenstein systems, and analytic continuation. Here
F (8): L\itp — @ Hom(S(x,), V(IP})) and
w € \J EW(x, Cg) ’

where the union runs over R € {R} (remember that {Cgs} = {R}).

We now see that the difference between the two spaces comes from the
non-standard elements 7, w € *W(r, Cs). To fix this up we turn to
Langlands’ Proposition 7.4 once again.

Consider FE:(g, F(A), A) in (8.5.1) with F(A) € Domain Mg(A).
Then Proposition 7.4 implies that

Mc(°W(x, Cg), *W(r, Cgr), A)F(A) € Image Mg(r).
Choose H, such that Mg(r)H, is this element, and form
E(, Hy, X(r))
which is an element of
"L (P}, xbr, Cr, K')
where Cg <> 1. Then
E(g, Hy, A+ X(v))
(cf. axiom (iii) again) is, we claim, equal to

E(g, F(A), A + X(¥)).
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To see this, we shall apply the usual constant term argument and then
it is sufficient to show that

Hy — F(A) € kernel Mg(A)

but this follows exactly as in the proof of Lemma 7.11.
Now define

F‘R’(AR') = E A[(wr A)AlEr('y HwA)y
wEW (R, R')

which gives a collection { Fr.} in ' ({R}, {P}, Cg, K’). Then

| mem, stxe)

is equal to

2

(at least to within a constant), so we are done.

E(g, Fr (A7), A)dA
0

ReA’=

8.6. Now put
H (R}, (P}, K') = Doy £ (UR}, { P}, Cg, K'), {R} = {Cg)
LR}, (P}, K, &) = Bey L, (1P}, £ Cs, K'), {R} = {Cq}.

The two spaces on the left can be identified with each other, by means
of an isometry.

Now by the main theorem of Section 5, % ({ P}, K’, £) is equal to
Y (P}, K, §) =@, L. ({P}, K\ §)
= @irzrn LUR}, (P}, K, §).
Using the definitions and the results obtained we then find the
TueorREM. & ({1 P}, §) = @ rizie L (R}, {P}, §).

8.7. Each of the spaces & ({R}, {P}, £) has been defined in terms of
residues of Eisenstein systems. The theory of Eisenstein series and as-
sociated intertwining operators furnishes us with an alternative explicit
description of these spaces, which we now describe.

In the first place, let us return to Section 6.2 where we had spaces

L (7P}, x6r) 2L (Mg, {RP}, x8r).

It is apparent after a moment’s thought that 2%, ({ P}, x8z) is a subspace
of

Iﬂdgl(,:()A)(g(Mm {RP}r XBR) = %(Rr {RP}v XaR)y

(the definition of this latter space). Indeed for this to be so we need to
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show that 2%, ({P}, x8z) is an invariant subspace, and this follows from
the definitions.

Consequently (cf. 6.5) the space =¥ ,({P}, x8z) contains % (R,
{EP}, x0r) as a dense subspace.

Suppose that U is some subset of «L; \ar(C) (or «Lz,\tar), supposed
open. A holomorphic map

P U'_) (gO(Rv {RP}Y XaR)

can be regarded as an analytic family of cross sections { @}, with each
q)f € %O(Ry {RP}, XfaR)v

cf. the discussion in [5] II. 1.7-1.8. The function
E(g, ) = E(g, %)

initially defined for Re (x{) = Re { > 6z, was then analytically con-
tinued to a rational function over the corresponding component of
Dy p(¢). In particular, if @ is as above and U is 1Lz \taz then

1] E(g, ®())ds

is an element of £ (£) by 8.1; we need only consider ®({) taking values
in finite dimensional invariant subspaces of 2% ,({P}, x8z), cf. the
discussion in Lemma 6.5.

In particular, if

@
s - e
DMRO(D

is an element of
%O(Rr {RP}) E)v

then

¢ ~>fU E(g, ®())de
is a linear transformation ¢ — 7'®
Co({R}, {2P}, §) = L (8),

and it extends naturally to a G(A)-equivariant map

T @ D Fo(R (P}, &) — L)

Re(R} (EP)

In fact, the image of this map is none other than . ({R}, {P}, &).
Indeed, suppose ¢ = @ ¢5 is an element of the space on the left hand
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side above. Then

T'¢(g) = @fE(g’ 22(¢), §)

by definition. The functional equations for E(g, ®(¢), ¢) imply that this
is also equal to

b f E (g, ; Z M@w, ) (), ws“) dg

where the sum is over all w € Ug¢(r; W(ag, az/), and # is the number
of terms in the sum: # = #{R} in the notation of 8.3). The map

1
U:® o) — @ #_{E}—Z M(w, £)®()

sends ® ®x(¢) into S (R, {P}, ¢6z) where this latter space is the
“non-trivial”’ K-finite version of the space (R, {P}, x6r, K'). For this
one only has to check that the image U (® ®5(()) satisfies the con-
ditions defining J# (R, {P}, ¢6z) which follows from the functional
equations for M (w, ¢). Indeed the functional equations and 8.4 tell us
that this map

U: G (R, (P}, 6r) > H (R, { P}, (6r)

is an orthogonal projection onto the right subspace. Thus 7" factors
through U, and the claim is established.
Let us put all this together as a theorem:

THEOREM. The space & ({ P}, £) is a direct sum of invariant spaces

ZL({rLy= @ )3({1{},{?},5).

(R)Z(P
The space £ ({ R}, { P}, &) is the image of the G(A) equivariant map
T: @ D FoR, {°P}, &) > L (&)

RE(R) (EP)

© =@ | B et
B Y Darp0)
1t is a subspace of

@ @ Indgl(ng) (g(ﬂ[b’.r {RP}v S)

RE(R) p=[Ep)

and the map T factors through the orthogonal projection U.
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