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Abstract. Let Jµ denote the Bessel function of order µ. The functions
x−α−1 Jα+2n+1(x), n = 0, 1, 2, . . . , form an orthogonal system in the space L2((0,∞),
x2α+1dx) when α > −1. In this paper we prove that the Fourier series associated to this
system is of restricted weak type for the endpoints of the interval of mean convergence,
while it is not of weak type if α ≥ 0.

2000 Mathematics Subject Classification. 42C10, 44A05.

1. Introduction and results. Given a positive measure σ on some space and an
orthonormal system {ϕn}n≥0 in L2(σ ), the Fourier series associated to {ϕn}n≥0 is the
sequence of operators Sn defined by

Snf =
n∑

k=0

ck(f )ϕk, f ∈ L2(σ ),

where ck(f ) = ∫
f ϕk dσ . The elementary property that ‖Snf − f ‖L2(σ ) −→ 0 for every

f ∈ span {ϕn}n≥0 raises the same question with the L2(σ ) norm replaced by the Lp(σ )
norm, 1 ≤ p ≤ ∞. By the Banach–Steinhaus theorem, this is equivalent to the uniform
boundedness

‖Snf ‖Lp(σ )≤C‖f ‖Lp(σ ), f ∈ Lp(σ ), n ≥ 0.

Needless to say, the most important case is the trigonometric system on the unit
circle �, for which the boundedness holds if 1 < p < ∞ [19]. For p = ∞ the answer is
definitely negative, while for p = 1 the boundedness fails but there is a weak substitute
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in terms of the Lorentz space L1,∞(�, dθ ):

‖Snf ‖L1,∞(�,dθ) ≤ C‖f ‖L1(�,dθ), f ∈ L1(�, dθ ), n ≥ 0.

Here,

‖f ‖Lp,∞(σ ) = sup
y>0

yλ(y)1/p =‖t1/pf ∗(t)‖L∞(R+,dt), 1 ≤ p < ∞,

‖f ‖Lp,r(σ ) =
(

r
p

∫ ∞

0

[
t1/pf ∗(t)

]r dt
t

)1/r

, 1 ≤ p < ∞, 1 ≤ r < ∞,

where λ is the distribution function and f ∗ the nonincreasing rearrangement
of f . There is a Hölder’s inequality ‖f ‖p1,p2 ≤ C‖f ‖q1,q2‖f ‖r1,r2 , 1/pi = 1/qi + 1/ri.
Also,‖f ‖p,∞≤C‖f ‖p,p = C‖f ‖p≤C1‖f ‖p,1. The reader is referred to [12] or [21] for
further details on Lp,r spaces.

After the trigonometric system, the convergence of Fourier series has been studied
for a number of orthonormal systems, including Jacobi polynomials [17, 18, 14, 4, 10],
Hermite and Laguerre polynomials [15, 16], generalized Jacobi polynomials [1] and
Bessel functions on (0, 1) [9].

In [23, 11] the authors characterized the Lp convergence for the Fourier-Neumann
series; i.e., the Fourier expansion associated to the functions

jαn (x) = √
4n + 2α + 2Jα+2n+1(x)x−α−1, n = 0, 1, . . .

which are orthonormal on L2((0,∞), x2α+1 dx) [L2(x2α+1), from now on]. See [24,
§ 13.41 (7), p. 404] and [24, § 13.42 (1), p. 405]. Here, α > −1 and Jν is the Bessel
function of order ν.

For each suitable function f , let Snf be the n-th partial sum of its Fourier series
with respect to the system {jαn }∞n=0; i.e.,

Sn(f, x) =
∫ ∞

0
f (t)Kn(x, t)t2α+1 dt, Kn(x, t) =

n∑
k=0

jαk (x)jαk (t).

In this paper, we study the weak and restricted weak behaviour of these series; i.e., the
uniform boundedness

‖Snf ‖Lp,∞(x2α+1) ≤ C‖f ‖Lp(x2α+1), f ∈ Lp(x2α+1), n ≥ 0

or

‖Snf ‖Lp,∞(x2α+1) ≤ C‖f ‖Lp,1(x2α+1), f ∈ Lp,1(x2α+1), n ≥ 0.

Let us focus on the weak boundedness. The a priori assumption that jαn ∈ Lq(x2α+1)
(n = 0, 1, . . . , 1/p + 1/q = 1) should be made so as to guarantee the existence of the
Fourier coefficients for any f ∈ Lp(x2α+1). Also, we must assume that jαn ∈ Lp,∞(x2α+1)
if we want Snf to be in Lp,∞(x2α+1). By Lemmas 1 and 2 below, these assumptions
hold if and only if p1 ≤ p < p2, where p1 = 4(α + 1)/(2α + 3), p2 = 4(α + 1)/(2α + 1)
if α ≥ 0, and p1 = 4/3, p2 = 4 if −1 < α < 0. For the restricted weak boundedness,
the same arguments lead to the a priori assumptions that p1 ≤ p ≤ p2. Since the Lp-Lp

boundedness holds if and only if p1 < p < p2, and it implies the Lp-Lp,∞ and Lp,1-Lp,∞
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boundedness, the real interest is in both endpoints. We obtain a negative answer for
the weak type in the case α ≥ 0, and a positive answer for the restricted weak type.

THEOREM. Let α ≥ 0, p1 = 4(α + 1)/(2α + 3), p2 = 4(α + 1)/(2α + 1). Then the
partial sum operators Sn, n = 0, 1, . . . , are not uniformly bounded as operators from
Lpi,1(x2α+1) into Lpi,∞(x2α+1), i = 1, 2. In the case −1 < α < 0 the second statement
holds with p1 = 4/3 and p2 = 4.

There is a close connection between Sn and the Hankel transform Hα given by

Hαf (x) =
∫ ∞

0

Jα(xy)
(xy)α

f (y)y2α+1 dy. (1)

It turns out from [24, § 5.1 (8), p. 134] and [7, proof of Lemma 4] that Snf =
Hα(χ[0,1]Hαf ) − Hα,n(χ[0,1]Hα,nf ) ≡ Mαf − Mα,nf, where Hα,n is given by (1) with
Jα+2n+2 in place of Jα. Now, Kenig and Tomas [13] proved that the multiplier
Mα is not bounded from Lp(x2α+1) into Lp,∞(x2α+1) when p = 4(α + 1)/(2α + 3).
Chanillo [5] proved that Mα is bounded from Lp,1(x2α+1) into Lp,∞(x2α+1) with
p = 4(α + 1)/(2α + 3). Some related uniform estimates were obtained by Carbery,
Romera and Soria [20, 3] in the context of the disc multiplier.

Throughout this paper, unless otherwise stated, we use C, C1 to denote positive
constants independent of n (and all other variables), that can assume different values
in different occurrences. As usual, we write f = O(g) in a given domain if |f |≤Cg.
Finally, the standard notation a+ = max{a, 0} will be used.

2. Auxiliary results. Some appropriate estimates for Bessel functions will be
needed. For instance,

Jν(x) = xν

2ν�(ν + 1)
+ O(xν+2), x → 0+, (2)

Jν(x) =
√

2
πx

[
cos

(
x − νπ

2
− π

4

)
+ O(x−1)

]
, x → ∞, (3)

where the O terms depend on ν. See [24, § 3.1 (8), p. 40] and [24 § 7.21 (1), p. 199].
Some bounds for Jν and J ′

ν with constants independent of ν are also available. If
ν > 0, 0 < x ≤ ν/2 and a ≥ −ν, then there exists some constant Ca depending only on
a, such that

|Jν(x)|xa ≤ Caν
a−1/2

(
e
4

)ν

(4)

(see [24, § 3.31, p. 49]). The formula 2J ′
ν = Jν−1 − Jν+1 proves the same bound for J ′

ν(x),
as well as the analogs to (2) and (3):

J ′
ν(x) = xν−1

2ν�(ν)
+ O(xν+1), x → 0+,

J ′
ν(x) =

√
2

πx

[
−sin

(
x − νπ

2
− π

4

)
+ O(x−1)

]
, x → ∞.
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It is easy to deduce from (4) and bounds done by Barceló and Córdoba (see [2, p. 661],
[8, p. 24]) that

|Jν(x)| ≤ Cx−1/4(|x − ν| + ν1/3)−1/4, x ∈ (0,∞), ν > 1 (5)

|J ′
ν(x)| ≤ Cx−3/4(|x − ν| + ν1/3)1/4, x ∈ (0,∞), ν > 1 (6)

with some constant C independent of ν. As a consequence, the following estimate for
the norm of xbJν(x) and xbJ ′

ν(x) in Lp(x2α+1) and Lp,∞(x2α+1) can be given.

LEMMA 1. Let 1 ≤ p < ∞, α > − 1, b ∈ R and ν > 1. Let λ(4, ν) = (log ν)1/4,
λ(p, ν) = 1 if p �= 4.

(a) xbJν(x) ∈ Lp(x2α+1) if and only if p(b + ν) + 2α + 2 > 0 and p(b − 1
2 ) + 2α +

2 < 0. In this case, ‖xbJν(x)‖Lp(x2α+1) ≤ Cλ(p, ν)ν2 α+1
p + b − 1

2 + 2
3 ( 1

4 − 1
p )+.

(b) xbJν(x) ∈ Lp,∞(x2α+1) if and only if p(b + ν) + 2α + 2 ≥ 0 and p(b − 1
2 ) + 2α +

2 ≤ 0. In this case, ‖xbJν(x)‖Lp,∞(x2α+1) ≤ Cν
2 α+1

p + b − 1
2 + 2

3 ( 1
4 − 1

p )+.
(c) xbJ ′

ν(x) ∈ Lp(x2α+1) if and only if p(b + ν − 1) + 2α + 2 > 0 and p(b − 1
2 ) +

2α + 2 < 0. In this case, ‖xbJ ′
ν(x)‖Lp(x2α+1) ≤ Cν

2 α+1
p + b − 1

2 .

(d) xbJ ′
ν(x) ∈ Lp,∞(x2α+1) if and only if p(b + ν − 1) + 2α + 2 ≥ 0 and p(b − 1

2 ) +
2α + 2 ≤ 0. In this case, ‖xbJ ′

ν(x)‖Lp,∞(x2α+1) ≤ Cν
2 α+1

p + b − 1
2 .

Similar results can be found in [2, 22] and so we shall omit the proof. Details
are given in [6, Chapter 2].) Let us just mention that the Lp and Lp,∞ conditions
follow easily from (2), (3) and the analogs for J ′

ν(x), while the norm estimates are a
consequence of (4), (5) and the analogs for J ′

ν(x).
Our next lemma is the main step in the proof of the uniform restricted weak type.

LEMMA 2. Let ν > 1, 1 < p < ∞, and Lν(f, x) = Jν(x1/2)H(t1/2J ′
ν(t1/2)f (t), x), where

H denotes the Hilbert transform. There exists a constant C, independent of ν, such that
(a) ‖Lνf ‖Lp(dx) ≤ C‖f ‖Lp(dx), f ∈ Lp(dx), if p < 4,
(b) ‖Lνf ‖L4,∞(dx) ≤ C‖f ‖L4,1(dx), f ∈ L4,1(dx).

Proof. (a) It follows from (5) that

‖Lνf ‖Lp(dx) ≤ C
∥∥H

(
t1/2J ′

ν

(
t1/2)f (t), x

)∥∥
Lp(x−p/8(|x1/2−ν|+ν1/3)−p/4).

Now, x−p/8(|x1/2 − ν| + ν1/3)−p/4 ∈ Ap uniformly in ν if p < 4. (See [7], [11] or [23].)
Thus, H is a bounded operator on Lp(x−p/8(|x1/2 − ν| + ν1/3)−p/4) and this, together
with (6), proves (a).

(b) Let us write Lν(f, x) = Lν,1(f, x) + Lν,2(f, x), where

Lν,1(f, x) = Jν

(
x1/2)(|x1/2 − ν| + ν1/3)1/4H

(
t1/2J ′

ν(t1/2)f (t)
(|t1/2 − ν| + ν1/3)1/4

, x
)

,

Lν,2(f, x) = Jν

(
x

1
2
)
H

(
t

1
2 J ′

ν

(
t

1
2
)
f (t)

[(∣∣t 1
2 − ν

∣∣ + ν
1
3
) 1

4 − (∣∣x 1
2 − ν

∣∣ + ν
1
3
) 1

4
]

(∣∣t 1
2 − ν

∣∣ + ν
1
3
) 1

4

, x

)
.

The term Lν,1(f, x) is easy to handle: we have

∣∣Jν

(
x1/2)∣∣(∣∣x1/2 − ν

∣∣ + ν1/3)1/4 ≤ Cx−1/8
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and x−1/2 ∈ A4(0,∞), so that

‖Lν,1f ‖L4,∞(dx) ≤ C
∥∥∥∥H

(
t1/2J ′

ν(t1/2)f (t)
(|t1/2 − ν| + ν1/3)1/4

, x
)∥∥∥∥

L4(x−1/2)

≤ C
∥∥∥∥ x1/2J ′

ν(x1/2)f (x)
(|x1/2 − ν| + ν1/3)1/4

∥∥∥∥
L4(x−1/2)

≤ C‖f ‖L4,1(dx).

Let us consider now Lν,2f . The elementary inequality |a1/4 − b1/4| ≤ a−3/4|a − b|, which
holds for every a, b > 0, gives

∣∣(∣∣t 1
2 − ν

∣∣ + ν
1
3
) 1

4 − (∣∣x 1
2 − ν

∣∣ + ν
1
3
) 1

4
∣∣≤ t−1/2(∣∣t 1

2 − ν
∣∣ + ν

1
3
)− 3

4 |t − x|.

Thus,

|Lν,2(f, x)| ≤ ∣∣Jν

(
x1/2)∣∣ ∫ ∞

0

∣∣J ′
ν

(
t1/2)∣∣(∣∣t 1

2 − ν
∣∣ + ν

1
3
)−1|f (t)| dt

≤ ∣∣Jν

(
x1/2)∣∣∥∥J ′

ν

(
t1/2)(∣∣t 1

2 − ν
∣∣ + ν

1
3
)−1∥∥

L4/3,∞(dt)‖f ‖L4,1(dt).

Finally, Lemma 1(b) and a small change in Lemma 1(d) give ‖Jν(x
1
2 )‖L4,∞(dx) ≤ C and

‖J ′
ν(x

1
2 )(|x 1

2 − ν| + ν
1
3 )−1‖L4/3,∞(dx) ≤ C. �

3. Weak boundedness. Using the fact that, for α > −1, we have

n∑
k=0

2(α + 2k + 1)Jα+2k+1(x)Jα+2k+1(t) = xt
x2 − t2

[
xJα+1(x)Jα(t) − tJα(x)Jα+1(t)

+ xJ ′
α+2n+2(x)Jα+2n+2(t)

− tJα+2n+2(x)J ′
α+2n+2(t)

]
(see [11, 23]), we deduce that

Snf = W1f − W2f + W3,nf − W4,nf,

where

W1(f, x) = 1
2 x−α+1Jα+1(x)H

(
tα/2Jα

(
t1/2

)
f
(
t1/2

)
, x2

)
,

W2(f, x) = 1
2 x−αJα(x)H

(
tα/2+1/2Jα+1

(
t1/2

)
f
(
t1/2

)
, x2

)
,

W3,n(f, x) = 1
2 x−α+1J ′

ν(x)H
(
tα/2Jν

(
t1/2

)
f
(
t1/2

)
, x2

)
,

W4,n(f, x) = 1
2 x−αJν(x)H

(
tα/2+1/2J ′

ν

(
t1/2

)
f
(
t1/2

)
, x2

)
,

and ν = α + 2n + 2. Here, H denotes the Hilbert transform on (0,∞). The following
formulae were proved in [11, Theorem 1]:

‖W1f ‖Lp(x2α+1) ≤ C‖f ‖Lp(x2α+1),
2α − 1

4(α + 1)
<

1
p

<
2α + 3

4(α + 1)
; (7)

‖W2f ‖Lp(x2α+1) ≤ C‖f ‖Lp(x2α+1),
2α + 1

4(α + 1)
<

1
p

<
2α + 5

4(α + 1)
; (8)

https://doi.org/10.1017/S0017089502001039 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089502001039
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‖W3,nf ‖Lp(x2α+1) ≤ C‖f ‖Lp(x2α+1),
2α − 1

2

4(α + 1)
<

1
p

< min
{

2α + 3
4(α + 1)

,
3
4

}
; (9)

‖W4,nf ‖Lp(x2α+1) ≤ C‖f ‖Lp(x2α+1), max
{

2α + 1
4(α + 1)

,
1
4

}
<

1
p

<
2α + 9

2

4(α + 1)
. (10)

Now, let α ≥ 0. As mentioned in the introduction, the Sn are not bounded operators
from Lp(x2α+1) into Lp,∞(x2α+1) if p = 4(α + 1)/(2α + 1), so we only need to prove here
that the uniform weak boundedness fails for p = 4(α + 1)/(2α + 3).

It follows from (8) and (10) that W2 and W4,n are uniformly bounded from
Lp(x2α+1) into itself when p = 4(α + 1)/(2α + 3). Thus, it will be enough to find a
sequence of functions {fn} such that the inequality

‖W1fn + W3,nfn‖Lp,∞(x2α+1) ≤ C‖fn‖Lp(x2α+1) (11)

fails for every constant C. Let fn(t) = sgn(Jα(t))t−
2α+3

2 χ[1,n](t). Then,

‖fn‖Lp(x2α+1) = C(log n)
1
p , p = 4(α + 1)/(2α + 3).

Now, for ν = α + 2n + 2 and x > 2ν we have

|W3,n(fn, x)| ≤ Cx−α−1|J ′
ν(x)|

∫ n2

1
t−

3
4
∣∣Jν

(
t

1
2
)∣∣dt ≤ Cx−α− 3

2

(
e
4

)2n

,

where the last step follows from (6) and (4). Thus,

‖χ(2ν,∞)W3,nfn‖Lp,∞(x2α+1) ≤ C
(

e
4

)2n

, p = 4(α + 1)/(2α + 3). (12)

On the other hand, for x > 2ν we have

|W1(fn, x)| ≥ Cx−α−1|Jα+1(x)|
∫ n2

1
t−

3
4
∣∣Jα

(
t

1
2
)∣∣ dt ≥ C(log n)x−α−1|Jα+1(x)|,

the last step following from (3). Therefore,

‖χ(2ν,∞)(x)W1(fn, x)‖Lp,∞(x2α+1) ≥ C log n. (13)

Putting (12) and (13) together, we get

‖W1fn + W3,nfn‖Lp,∞(x2α+1) ≥ C log n, p = 4(α + 1)/(2α + 3)

and (11) indeed fails.

4. Restricted weak boundedness. By duality, we only need to prove that the
self adjoint operators Sn are uniformly of restricted weak type in two cases:
α ≥ 0, p = 4(α+1)

2α+1 , and −1 < α < 0, p = 4.

Case α ≥ 0 and p = 4(α+1)
2α+1 . From (7) and (9), we conclude that W1 and W3,n are

uniformly bounded from Lp(x2α+1) into itself. Therefore, it is enough to prove that W2

and W4,n are uniformly bounded from Lp,1(x2α+1) into Lp,∞(x2α+1); i.e.,

‖W4,nf ‖Lp,∞(x2α+1) ≤ C‖f ‖Lp,1(x2α+1), f ∈ Lp,1(x2α+1)
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and a similar inequality for W2. We shall consider only W4,n, since the boundedness
of W2 is completely analogous. Let f ∈ Lp,1(x2α+1) and, for each k ∈ �,

Ik = [2k, 2k+1), f k
1 = f χ(0,2k−1)∪[2k+2,∞), f k

2 = f χ[2k−1,2k+2).

Thus, f = f k
1 + f k

2 for each k ∈ � and

|W4,n(f, x)| ≤
∑
k∈�

∣∣W4,n
(
f k
1 , x

)∣∣χIk (x) +
∑
k∈�

∣∣W4,n
(
f k
2 , x

)∣∣χIk (x). (14)

Let x ∈ Ik. Then, it is easy to check that |x2 − y2| ≥ 3
2 y2 if y ∈ (0, 2k−1) ∪ [2k+2,∞). Hence,

after a change of variable we get

∣∣W4,n
(
f k
1 , x

)∣∣ ≤ Cx−α|Jν(x)|
∫ ∞

0
yα|J ′

ν(y)||f (y)| dy

and ∑
k∈�

∣∣W4,n
(
f k
1 , x

)∣∣χIk (x) ≤ Cx−α|Jν(x)|‖x−α−1J ′
ν(x)‖Lq,∞(x2α+1)‖f ‖Lp,1(x2α+1),

where 1
p + 1

q = 1. Therefore, the first term in (14) is bounded:

∥∥∥∥∥
∑
k∈�

∣∣W4,n
(
f k
1 , x

)∣∣χIk (x)

∥∥∥∥∥
Lp,∞(x2α+1)

≤ C‖f ‖Lp,1(x2α+1),

by Lemma 1(b) and (d). Let us consider now the second term. If x ∈ Ik,∣∣W4,n
(
f k
2 , x

)∣∣≤ C2−αk
∣∣Lν

(
t

α
2 f 2

k

(
t1/2), x2)∣∣.

From Lemma 2 it follows that∥∥W4,n
(
f k
2 , x

)
χIk (x)

∥∥
Lp,∞(x2α+1) ≤ C2−αk+ 2αk

p
∥∥χIk (x)Lν

(
t

α
2 f 2

k

(
t1/2), x2)∥∥

Lp,∞(x dx)

≤ C2−αk+ 2αk
p

∥∥x
α
2 f 2

k

(
x1/2)∥∥

Lp,1(dx) ≤ C
∥∥f χ[2k−2,2k+2)

∥∥
Lp,1(x2α+1).

Then, ∥∥∥∥∥
∑
k∈�

∣∣W4,n
(
f k
2 , x

)∣∣χIk (x)

∥∥∥∥∥
Lp,∞(x2α+1)

≤ C‖f ‖Lp,1(x2α+1). (15)

Case −1 < α < 0 and p = 4. Now, W1, W2, and W3,n are uniformly bounded from
L4(x2α+1) into itself (see (7), (8), (9)) and so we only need to prove that

‖W4,nf ‖L4,∞(x2α+1) ≤ C‖f ‖L4,1(x2α+1), f ∈ L4,1(x2α+1).

The above proof of (15) remains valid, while only minor changes are necessary for the
first term in (14): it is not difficult to check that

y2+ α
2 x− α

2

|x2 − y2| ≤ 4
3
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if x ∈ Ik and y ∈ (0, 2k−1) ∪ [2k+2,∞). Then, it follows that

∣∣W4,n
(
f k
1 , x

)∣∣≤ Cx− α
2 |Jν(x)|

∫ ∞

0
y

α
2 |J ′

ν(y)||f (y)| dy.
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