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Abstract

The inadequacy of the traditional sliding mode variable structure (SMVS) control
method for cruise missiles is addressed. An improved SMVS control method is
developed, in which the reaching mode segment of the SMVS control is decomposed
into an acceleration accessing segment, a speed keeping segment, and a deceleration
buffer segment. A time-fuel optimal control problem is formulated as an optimal control
problem involving a switched system with unknown switching times and subject to
a continuous state inequality constraint. The new design method is developed based
on a control parametrization, a time scaling transform and the constraint transcription
method. A sequence of approximate optimal parameter selection problems is obtained
with fixed switching time points and a canonical state inequality constraint. Each
approximate optimal parameter selection problem can be solved effectively by using
existing gradient-based optimization techniques. The convergence of these approximate
optimal solutions to the true optimal solution is assured. Simulation results show that the
proposed method is highly effective. The response speed of the missile under the control
law obtained by the proposed method is improved significantly, while the elevator of the
missile is constrained to operate within its permitted range.

2000 Mathematics subject classification: primary 49N90; secondary 93B12, 93C95.

Keywords and phrases: cruise missile, optimal control theory, control parametrization,
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1. Introduction

A cruise missile is a tactical missile with flight trajectory governed by aerodynamics.
Examples are the Tomahawk [5] and the conventional air-launched cruise missiles
(CALCMs) [1]. They have been widely used in actual combat [2]. Due to the important

1School of Automation, University of Electronic Science and Technology of China, Chengdu 611731,
PR China; e-mail: hitlirui@gmail.com.
2Institute of Astronautics & Aeronautics, University of Electronic Science and Technology of China,
Chengdu 611731, PR China; e-mail: Yingjing.Shi@gmail.com.
c© Australian Mathematical Society 2010, Serial-fee code 1446-1811/2010 $16.00

261

https://doi.org/10.1017/S1446181110000088 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181110000088


262 R. Li and Y. J. Shi [2]

nature of tactical missiles, many design methods have been investigated and developed
in the literature [6, 9, 20, 21].

In flight, the actuator system parameters do not remain constant. Their values
will change in response to, for example, the variations in the missile flight altitude,
speed and elevator deflection angle. In particular, changes in flight altitude and
speed can be huge. There is no known method for predicting such changes. If a
traditional control method is used for the design of a controller, each flight state must
be taken into account in the design process so that the controller can adjust rapidly
enough to avoid performing badly when the values of the parameters are changed.
In practice, the desired control law should be robust with respect to uncertainty
in the system dynamics. Thus, variable structure control, which is known to be
robust against uncertainties in system dynamics, is widely used in missile control
design [4, 7, 8, 15, 22]. It is applicable to both linear and nonlinear systems with
uncertainties.

With ever increasing complexity in a modern combat environment, the flight
trajectory of a missile occurs in a large air space. As the height of the flight trajectory
is increased, the air density is decreased. Consequently, a larger elevator deflection is
called for. However, the largest allowable deflection angle of an elevator is determined
by its mechanical structure, and hence is a hard constraint. Thus, designing a controller
for a missile operating in a large air space without violating the allowable limit of the
deflection angle is difficult.

In this paper, we propose an improved sliding mode variable structure (SMVS)
method for the design of a controller for a cruise missile operating in a large air
space with a time-fuel performance index. First, by using a traditional variable
structure method, we show that violation of the deflection angle of the actuator from
the maximum allowable range cannot be avoided. Then we propose a multiple-
stage SMVS method that divides the original system into several subsystems forming
a switched system with a continuous inequality constraint. The switching times
between these subsystems are to be obtained optimally. Thus, by virtue of the
control parametrization technique [16], a time scaling transform method [17] and the
constraint transcription method [16], we show that the optimization problem involving
this switched system and the continuous inequality constraint can be approximated by
a sequence of standard constrained optimal parameter selection problems. Each such
problem can be solved by any efficient gradient-based optimization technique. The
control parametrization technique detailed in [16] used in conjunction with the time
scaling transform introduced in [17] and the constraint transcription method developed
in [16] is now known to be an effective approach to developing efficient computational
methods for solving various practically significant optimal control problems. See, for
example, [3, 10–12, 18, 19]. To deal with the hard constraints on the elevator deflection
angle, a linear recursive sliding mode control method is proposed in [14]. However, it
does not make use of the time-fuel performance index.

The rest of the paper is organized as follows. Section 2 describes the design of a
traditional SMVS controller for a cruise missile and its limitations when the missile
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is operating in a large air space. Section 3 proposes a design method for improving
the design of the SMVS controller. It is formulated as an optimal control problem
involving a switched system. In Section 4 a solution procedure is developed for
solving this optimal control problem. In Section 5 simulation results are presented,
showing the efficiency and effectiveness of the improved variable structure control
method proposed.

2. Traditional variable structure control in flight applications

2.1. Difficulties encountered in a large air space To ensure a smooth flight
trajectory for a cruise missile in the air space, the axial thrust and resistance balance
condition must be satisfied. The thrust, P , generated by the engine is given by

P = 1
2 CFDρv

2S, (2.1)

where CFD is the thrust coefficient of the ramjet, ρ is the air density under the current
flight condition, v is the flight velocity of the missile, and S is the characteristic area of
the missile. The mass loss mc (mass second-flow) is proportional to the engine thrust,
satisfying

mc =
P

IRY
, (2.2)

where IRY is the specific impulse. On the one hand, a higher flight speed is desired for
a missile. On the other, a missile is required to carry more payload so that a larger flight
radius can be realized. Achieving these two tasks is equivalent to requiring a missile to
fly farther and faster with less thrust. From (2.1), we see that it is necessary to increase
the flight height so that the air density ρ of the flight environment is reduced. Thus,
the design of a controller for a cruise missile operating in a large air space should be
considered.

The actuator of a missile is the elevator, installed in the tail of the missile body. By
deflecting the elevator, an angle between the elevator and the approaching airflow is
formed, producing a rotary moment about the centroid. Due to the existence of the
angle between the missile body and the approaching airflow, the missile is subject to
the normal aerodynamics. This normal force is usually called the normal overload,
denoted by ny . The composite force of all the external forces (except gravity) is
referred to as the control force, denoted by F . The ratio of F to the missile mass
is referred to as the overload, which is a vector n. The normal overload ny is the
component of n along the longitude of the missile body coordinate system. The
transfer function of the elevator deflection angle δz to ny is [13]

W
ny
δz
(s)=

(v/g)KM

T 2
M s2 + 2TMξM s + 1

, (2.3)

where TM (seconds) is the time constant of the missile, ξM is called the relative
damping coefficient of the missile, KM (proportional to the air density) is the transfer
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coefficient with units s−1, v is the flight velocity of the missile, and g is the acceleration
due to gravity. In view of (2.3), it follows that during the smooth flight of the missile,
the relationship between δz and ny is ny = (v/g)KMδz . When the flight height is
increased, the air density will be decreased. To maintain the same normal overload, a
larger elevator deflection angle is needed. However, the maximum permitted deflection
angle of the elevator is limited by its mechanical structure. The maximal permitted
elevator deflection angle is denoted by δ̂z . In this paper, the elevator deflection angle
is allowed to range between ±6 degrees, that is, −6≤ δz ≤ 6.

2.2. Traditional SMVS control In the flight course of a missile, the aerodynamic
parameters of the missile will change in accordance with change in the external
environment. Moreover, the data obtained from a wind tunnel test may not be
completely accurate. Thus, the control law that we obtain needs to be robust against
unexpected disturbance. For this, the variable structure control method has been used
in the design of the missile control law.

Let the normal overload deflection1ny be denoted by x1 and let its derivative 1ṅy
be denoted by x2. Define x = [x1 x2]

T, which is referred to as the state. Furthermore,
let 1δz be the control input, denoting the elevator deflection angle. From the transfer
function between 1δz and ny given by (2.3), we obtain{

ẋ = Ax + Bu

y = C x,
(2.4)

where

A =

 0 1

−1

T 2
M

−2ξM

TM

, B =

 0

vKM

gT 2
M

, C =
[
1 0

]
. (2.5)

For System (2.4), we choose a hyperplane

S(x)= Gx = 0

where G = [Cs 1] and Cs is referred to as the sliding mode parameter. Clearly, for an
arbitrary state x̄ = [x̄1 x̄2]

T on the hyperplane, if Cs > 0, then the state starting from x̄1
and moving on the hyperplane will converge to the origin of the state space. On this
basis, we only need to find a control ū such that the condition Ṡ(x)= 0 is satisfied for
the state x(t) starting from any state x̄ on the surface S(x)= 0 under the control ū. To
obtain such a ū, we recall the definition of S(x)= Gx = 0 and make use of (2.4) to
obtain Ṡ(x)= GAx + GBū = 0, where S(x)= 0. Since

GB =
[
Cs 1

]  0

vKM

gT 2
M

= vKM

gT 2
M

6= 0, (2.6)

GB is invertible. Consequently, we obtain ū =−(GB)−1GAx, where S(x)= 0.
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Consider the case when the state of the system is outside the sliding surface, that is,
S(x) 6= 0. In this case, we choose

Ṡ(x)=−Cr sgn(S(x)), (2.7)

where the reaching parameter Cr > 0, and

sgn(S(x))=


1 if S(x) > 0,

0 if S(x)= 0,

−1 if S(x) < 0.

Therefore, given a state x̃ outside the sliding surface, that is, S(x̃) 6= 0, the state
starting from x̃ will approach the sliding surface S(x)= 0 at a rate Cr .

On the basis of what has been discussed, we know that (2.7) is a sufficient condition
for sliding mode convergence. It is necessary to find a control ũ such that (2.7) is
satisfied. Suppose that (2.7) holds. From the fact that S(x)= Gx,

Ṡ(x)= G(Ax + Bũ)=−Cr sgn(S(x)) where S(x) 6= 0. (2.8)

Thus,
GBũ =−GAx − Cr sgn(S(x)) where S(x) 6= 0. (2.9)

Since GB is invertible, by (2.9) we obtain

ũ =−(GB)−1GAx − (GB)−1Cr sgn(S(x)) where S(x) 6= 0. (2.10)

This implies that during the reaching phase when the state is moving outside the sliding
surface, the control law given by (2.10) will ensure that the sufficient condition (2.7)
is satisfied. To conclude, the control law for the whole state space is given by{

ū =−(GB)−1GAx, S(x)= 0

ũ =−(GB)−1GAx − (GB)−1Cr sgn(S(x)), S(x) 6= 0
(2.11)

and the control law can be condensed to

u =−(GB)−1GAx − (GB)−1Cr sgn(S(x)). (2.12)

Since A and B are given, and G = [Cs 1], it follows from (2.12) that the control law is
specified by Cs and Cr .

During flight under the sliding mode control, the missile movement can be classified
into two motion phases: the sliding mode phase when the state is moving on the sliding
surface; and the reaching phase when the state is moving outside the sliding surface.
The convergence rate analysis for both mode phases is given in [14].

THEOREM 2.1 ([14]). In the sliding mode phase when the state is moving on the
sliding surface, the convergence rate is determined by the sliding parameter Cs .
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FIGURE 1. The elevator deflection angle obtained by the traditional variable structure method.

In the reaching mode phase when the state is moving outside the sliding surface, with
unit overload imposed such that

S(x0)= [Cs 1]
[

1
0

]
= Cs > 0,

the time taken to reach the sliding surface is equal to the ratio Cs/Cr .

From Theorem 2.1, we see that the response speed is directly related to the sliding
mode parameter Cs . That is, if the value of Cs is larger, then the system response is
quicker. On the other hand, during the reaching mode phase if Cs is increased, the
reaching parameter Cr will also need to be increased such that the system state is able
to enter into the sliding surface quickly. However, by virtue of (2.12), we note that it
is difficult to eliminate chattering as Cr is increased. Thus, Cs should be appropriately
chosen.

2.3. Actuator deflection angle We now apply the SMVS law given in Section 2.2
to the cruise missile. The trajectory of the elevator deflection angle obtained with
this control law is given in Figure 1, which shows that the maximal deflection angle
of the elevator at tc is −8.91 degrees. This exceeds the maximum permitted elevator
deflection angle. Thus, the control law of Section 2.2 cannot be used in practice.

It is known that the maximal deflection angle of the elevator occurs at the cut-in
time tc when the system enters the sliding mode phase from the reaching mode phase,
defined by tc =min{t | S(x(t))= 0}. The state at the cut-in time, x(tc), is called the
cut-in point.

Clearly, it is of critical importance that a missile control system has a high system
response speed so that the system state can reach the sliding mode phase quickly. Thus,
the reaching mode phase should be as short as possible. However, when the system
is transferred from the reaching mode phase to the sliding mode phase, the deflection
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angle of the elevator at tc needs to be reduced to −6. However, the transition period
of the system state will become much too long. From Section 2.1, we see that to
adapt for the change in the flight environment, the flight height of the missile should
be raised. However, with the increase in the flight height, the air density is decreased,
resulting in saturation of the elevator. In this paper, we propose a multi-stage SMVS
control method for the cruise missile which will overcome the issue relating to the
saturation of the actuator. The control law obtained is optimal with respect to the
time-fuel performance index.

3. An improved SMVS optimal control method

3.1. Reaching mode motion separation Consider the unit overload tracking.
From (2.8), the reaching mode movement outside the sliding mode surface, but moving
towards the sliding mode surface, should satisfy Ṡ(x)=−Cr . Since S(x)= Gx and
G = [Cs 1], it follows that the state equations become{

ẋ1(t)= x2(t),

ẋ2(t)=−Cs x2(t)− Cr .

To achieve a rapid response speed of the system state when it is required to be
transferred from reaching mode to sliding mode phase so that the transition period is
short, we propose a multi-stage SMVS method for the design of such a control law.
This decomposes the reaching mode phase into an acceleration accessing segment, a
speed keeping segment and a deceleration buffer segment.

(i) Acceleration accessing segment [t0, t1): the reaching law in this segment is
varied with time, and is denoted by C1

r (t). During this segment, the value of
the reaching law parameter Cr is increased so that the system state will reach the
sliding surface S(x)= 0 with a higher speed. Correspondingly, the sliding mode
parameter Cs in this segment is denoted by C1

s .
(ii) Speed keeping segment [t1, t2): the reaching law in this segment is constant,

denoted by C2
r . This is because a continuous increase in the reaching law will

result in consumption of more fuel. Correspondingly, the sliding mode parameter
Cs in this segment is denoted by C2

s .
(iii) Deceleration buffer segment [t2, t3): as in the acceleration accessing segment,

the reaching law of this segment is also varied with time, denoted by C3
r (t). The

purpose of this segment is to ensure the stability of the system, such that at the
cut-in time tc, the absolute value of the elevator deflection angle |δz| is less than
or equal to the maximal allowable elevator deflection angle δ̂z . Correspondingly,
the sliding mode parameter Cs in this segment is denoted by C3

s .

With the separation of the reaching mode motion, the original system becomes a
switched system consisting of four subsystems, corresponding to the three intervals
above followed by an interval [t3, t4] with movement on the sliding surface S(x)= 0.
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For the first three{
ẋ1(t)= x2(t),

ẋ2(t)=−C i
s x2(t)− C i

r (t),
t ∈ [ti−1, ti ), i = 1, 2, 3, (3.1)

while in the last {
ẋ1(t)= x2(t),

ẋ2(t)=−C4
s x2(t),

t ∈ [t3, t f ]. (3.2)

Here, t0 = 0, ti , i = 1, 2, 3, are to be determined and t4 = t f .
Clearly, the trajectory of the missile on the sliding surface is totally determined by

the sliding mode parameter C4
s .

3.2. Formulation as an optimal control problem During the flight course of a
missile, an admissible control must satisfy the constraint,

|u(t)| ≤ 6. (3.3)

For the unit overload tracking, the initial state is

x1(0)= 1, x2(0)= 0. (3.4)

Our task may now be formulated as a time-fuel optimal control problem: given
System (3.1)–(3.2) and the initial state (3.4), find an admissible control u such that the
time-fuel performance index

J = t f + K
∫ t f

t0
mc dt (3.5)

is minimized, where K is the weighting coefficient, t0 = 0 and mc is proportional to the
thrust P . In flight, the missile must satisfy the thrust and resistance balance condition.
Thus (3.5) becomes

J = t f + K
∫ t f

t0

Q

IRY
dt . (3.6)

Here, Q is the resistance experienced by the missile during the flight course of the
missile, satisfying

Q = q SCx0 + q SCxi (δz)δz,

where q is the flow dynamic head, S is the characteristic area of the missile, Cx0 is the
zero lift drag coefficient, and Cxi is the induced drag coefficient, which is a function
of the elevator deflection angle δz .

In flight, q , S and Cx0 are all regarded as known constants. The relationship
between Cxi and δz can be obtained from tables. Usually, Cxi is approximately
proportional to the square of δz . We may set Cxi = `δz , where ` is a known constant.
Now (3.6) can be written as

J = t f + K
∫ t f

t0

(
Kx0 + Kxiδ

2
z

)
dt, (3.7)
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where

Kx0 =
q SCx0

IRY
and Kxi =

q S`

IRY
.

As δz is denoted by u(t), (3.7) can be rearranged as

J = t f (1+ KKx0)+ KKxi

∫ t f

t0
(u(t))2 dt . (3.8)

Since KKx0 is greater than zero we may divide through by 1+ KKx0 to obtain a new
performance index J and constant K for which

J = t f + K
∫ t f

t0
(u(t))2 dt, (3.9)

where t0 = 0.
Let ui (t), t ∈ [ti−1, ti ), i = 1, 2, 3, 4, denote the deflection angle of the elevator for

each subsystem. Recall that:

(i) S(x) > 0, that is, sgn(S(x))= 1, during the course of the reaching segment;
(ii) S(x)= 0, that is, sgn(S(x))= 0, during the course of the sliding segment.

From (2.11) and the fact that Gi
= [C i

s 1] for t ∈ [ti−1, ti ), the constraint (3.3) can
be rewritten as

−6≤ ui (t)=

{
−
(
[C i

s 1]B
)−1(
[C i

s 1]Ax + C i
r (t)

)
, i = 1, 2, 3

−
(
[C i

s 1]B
)−1
[C i

s 1]Ax, i = 4

}
≤ 6. (3.10)

Similarly, the performance index (3.9) can be written as

J = t f + K
3∑

i=1

∫ ti

ti−1

{(
[C i

s 1]B
)−1(
[C i

s 1]Ax(t)+ C i
r (t)

)}2

dt

+ K
∫ t f

t3

{(
[C4

s 1]B
)−1
[C4

s 1]Ax(t)
}2

dt . (3.11)

Define

ρ =
[
C1

s C2
s C3

s C4
s

]T
, µ(t)=

[
C1

r C2
r C3

r C4
r

]T
,

3=
{
ϑ = [t1 t2 t3 t4]T

∈ R4
: 0= t0 ≤ t1 ≤ t2 ≤ t3 ≤ t4 = t f

}
.

Let4 be the set of all vectors ρ. Clearly, µ(t) is vector-valued function from [0, T ]
into R4. For the moment, any piecewise continuous function from [0, T ] into R4 can
be taken as an admissible choice for µ(t). Let � be the class of all such admissible
functions.

We may now state the problem as an optimal control problem.

PROBLEM 1. Given System (3.1)–(3.2) and the initial condition (3.4), find a combined
element (ρ, µ, ϑ) ∈4×�×3 such that the performance index (3.11) is minimized
over 4×�×3 subject to the constraint (3.10).
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4. Optimal solution computation

4.1. Problem transformation Problem 1 is a combined optimal control and optimal
parameter selection problem involving a switched system with unknown switching
times and subject to a continuous state inequality constraint. The switching instants,
sliding mode parameter and parameters associated with the reaching mode phase all
need to be chosen such that a time-fuel performance index is minimized. In addition,
this optimal control problem is subject to a continuous state inequality constraint.
Since the variable switching times are decision variables and the continuous state
inequality condition must be satisfied for all t ∈ [0, T ], this optimal problem cannot
be solved effectively by classical optimal control methods. In this section, we will
present an effective method for solving Problem 1.

We first apply the classical control parametrization scheme [16]. That is, the
reaching parameters C i

r , i = 1, 2, 3, 4, are approximated as piecewise constant
functions with possible discontinuity points at {t i

j }
mi
j=1, where

t0 = t1
0 < · · ·< t1

m1
= t1 = t2

0 < t2
m2
= t2 = t3

0 < · · ·< t3
m3
= t3 = t4

0 < t4
m4
= t4

(4.1)
and m2 = m4 = 1, m1, m3 ∈ R+. More specifically, for each i = 1, 2, 3, 4, the
approximate function is expressed as

C i
r (t)=

mi∑
j=1

σ i
j χ[t i

j−1,t
i
j )
(t), (4.2)

with σ 4
1 = 0, where σ i

j ∈ R+, j = 1, . . . , mi , i = 1, 2, 3, are decision parameters and
χI (t) denotes the indicator function of I defined by

χI (t)=

{
1 t ∈ I,

0 elsewhere.

Substituting (4.2) into (3.1), (3.2) yields
ẋ1(t)= x2(t),

ẋ2(t)=−C i
s x2(t)−

mi∑
j=1

σ i
jχ[t i

j−1,t
i
j )
(t), t ∈ [ti−1, ti ), i = 1, 2, 3, 4, (4.3)

where the switching times {t i
j }

mi
j=1 are chosen such that (4.1) is satisfied.

The constraint (3.10) can be written as

|ūi (t)| ≤ 6, ∀t ∈ [ti−1, ti ), i = 1, 2, 3, 4, (4.4)

where

ūi (t)=−
([

C i
s 1

]
B
)−1

[[
C i

s 1
]
Ax(t)+

mi∑
j=1

σ i
jχ[t i

j−1,t
i
j )
(t)

]
, t ∈ [ti−1, ti ).

(4.5)
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Similarly, the performance index (3.11) can be transformed into

J = t f +

4∑
i=1

∫ ti

ti−1

ū2
i (t) dt . (4.6)

To obtain an approximate optimal control, the parameters σ i
j , C i

s and the

switching times {t i
j }

mi
j=1 are to be chosen such that the performance index (4.6) is

minimized. However, gradient-based optimization algorithms are not effective for
the determination of the optimal switching times. We employ the time scaling
transformation introduced in [17] to map these switching times into fixed time points
on a new time horizon.

We define a monotonic transformation from t ∈ [t0, t4] into s ∈ [0, 4]:

dt i (s)

ds
= vi (s)

with initial condition t (0)= t0, and

vi (s)=
mi∑
j=1

δi
jχ
[
i−1+ j−1

mi
,i−1+ j

mi

)(s) (4.7)

where vi has possible discontinuity points at s = i − 1+ j/mi , j = 1, . . . , mi , i =
1, . . . , 4, and

δi
j ≥ 0, j = 1, . . . , mi , i = 1, . . . , 4.

Clearly, t f =
∑4

i=1
∑mi

j=1 δ
i
j . Define

σ = [σ 1
1 · · · σ

1
m1
σ 2

1 · · · σ
3
1 · · · σ

3
m3
σ 4

1 ]
T

and
δ = [δ1

1 · · · δ
1
m1
δ2

1 · · · δ
3
1 · · · δ

3
m3
δ4

1]
T.

Let 6 be the set of all those vectors σ , and let 1 be the set of all those vectors δ such
that (4.7) is satisfied.

Define x̃1(s)= x1(t (s)), x̃2(s)= x2(t (s)) and x̃3(s)= t (s). Then, by applying the
time scaling transformation to the dynamics (4.3), we obtain

˙̃x1(s)= x̃2(s)vi (s),

˙̃x2(s)=

(
−C i

s x̃2(s)−
mi∑
j=1

σ i
jχ
[
i−1+ j−1

mi
,i−1+ j

mi

)(s)
)
vi (s),

˙̃x3(s)= vi (s),

(4.8)

where s ∈ [i − 1, i), i = 1, 2, 3, 4, m2 = m4 = 1, σ 4
1 = 0. The initial condition (3.4)

is changed to
x̃1(0)= 1, x̃2(0)= 0, x̃3(0)= 0. (4.9)
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The constraint (4.4) is equivalent to

φ(s, x̃(s))= V 2
i (s)− 36≤ 0, s ∈ [i − 1, i), i = 1, 2, 3, 4, (4.10)

where x̃(s)= [x̃1(s), x̃2(s)]T and, for i = 1, 2, 3, 4,

Vi (s)=−
(
[C i

s 1]B
)−1

{
[C i

s 1]Ax̃(s)+
mi∑
j=1

σ i
j χ

[
i−1+ j−1

mi
,i−1+ j

mi

)(s)
}
.

Similarly, the performance index (4.6) is transformed into

J =
4∑

i=1

mi∑
j=1

δi
j +

4∑
i=1

∫ i

i−1
V 2

i (τ )vi (τ ) dτ. (4.11)

The continuous state inequality constraint (4.10) must be satisfied for all s. By
virtue of [16, Chapter 8.3], the continuous state inequality constraint (4.10) is
approximated by

Gε(σ, δ)=−γ +

∫ N

0
Lε(s, x̃(s)) ds ≤ 0, (4.12)

where γ > 0, ε > 0, N = 4 and

Lε(s, x̃(s))=


0 if φ(s, x̃(s)) <−ε,
(φ(s, x̃(s))+ ε)2

4ε
if −ε ≤ φ(s, x̃(s))≤ ε,

φ(s, x̃(s)) if φ(s, x̃(s)) > ε.

REMARK 1. Under appropriate conditions, it is known (see [16, Lemma 8.3.3]) that
for any ε > 0 there exists a γ (ε) > 0 such that if (σ , δ) ∈6 ×1 satisfies (4.11)
with γ such that 0< γ < γ (ε), then it satisfies the continuous state inequality
constraint (4.10).

Problem 1 is now approximated by Problem 2 below.

PROBLEM 2. For ε > 0 and γ > 0, given System (4.8) with initial condition (4.9), find
a combined control parameter vector and switching vector (ρ, σ , δ) ∈4×6 ×1 to
minimize the performance index (4.11) subject to the inequality constraint (4.12).

To solve Problem 1, we will solve a sequence of approximate problems in the form
of Problem 2 as follows.

We first choose an ε > 0 and a γ > 0. Then, we solve Problem 2 with such ε and γ .
Let (σ ε,γ,∗, δε,γ,∗) be the solution obtained. Then we check whether the continuous
state inequality constraint (4.10) is satisfied or not. If it is not satisfied, we will reduce
the value of γ to γ /2 and return to solve Problem 2 with γ taken as γ /2. By virtue of
Remark 1, we see that this reduction step will only be required a finite number of times
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FIGURE 2. The trajectory of the reaching parameter Cr .

before the continuous state inequality constraint (4.10) is satisfied. We then reduce the
value of ε and repeat the process until a satisfactory approximate optimal solution is
obtained.

It is known that the approximate optimal cost will converge to the true optimal cost
as ε→ 0.

5. Numerical simulation

We now return to Problem 1. The approximate Problem 2 is a standard optimal
parameter selection problem, which is solved by using a program written in Matlab.

Figure 2 shows the trajectory of the reaching parameter Cr . For clarity, we only
draw the trajectory of the reaching parameter during the reaching segment. After the
system state enters into the sliding surface S(x)= 0, the reaching parameter is required
to be larger than zero. Thus, we choose the terminal value of the reaching segment as
the reaching parameter in our simulation.

Figure 3 shows the state trajectory of System (3.1)–(3.2), where the dots are used to
label the optimal switching instants of the system state. The optimal switching instants
obtained are t1 = 0.06 s, t2 = 0.078 s, and t3 = 0.174 s.

The first graph of Figure 4 depicts the trajectory of the elevator deflection angle δz .
We can see that δz is less than the maximal permitted value δ̂z . Thus, the problem of
violation of the maximal permitted range of the actuator is overcome effectively.

The second graph of Figure 4 shows trajectories of the real overload ny simulated
with the recursive and multi-stage SMVS methods. The time taken by the missile to
adjust for the unit overload is 0.36 s for the recursive SMVS method and 0.27 s for
the multi-stage SMVS method proposed in this paper. This shows that the system
response speed is improved significantly for the control law obtained by using the
proposed method.
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FIGURE 4. The trajectory of (left) the elevator deflection angle δz and (right) of the real overload ny .

For the simulation study, the time constant of the missile, TM , is 0.1427 s; the
relative damping coefficient of the missile, ξM , is 0.049; the transfer coefficient of the
missile, KM , is−0.128 s−1; the flight speed of the missile, v, is 3 Ma; the gravitational
acceleration, g, is 9.8 m s−2; the chattering eliminating parameter, δ, is 0.1; and the
simulation step is taken to be 0.001 s.

6. Conclusions

In this paper, we considered the control of a cruise missile operating in a large air
space using an improved SMVS method. The main feature of our method is that the
reaching mode segment of the sliding mode variable structure control is decomposed
into three segments. Then the task of achieving the optimal time-fuel performance
of a cruise missile in a large air space was reformulated as an optimal control
problem involving a switched system and subject to a continuous state inequality
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constraint where the switching times between the subsystems and several parameters
are to be determined optimally with reference to a time-fuel performance index.
An efficient gradient-based computation method based on the control parametrization,
a time scaling transform and the constraint transcription method was developed. The
simulation results show that the response speed of the missile is much improved when
compared with the result obtained by existing method. The improved variable structure
controller obtained is robust against load disturbance and is insensitive to parameter
variation. Furthermore, the flight trajectory of the system at the cut-in time is smooth
and does not violate the permitted range of the actuator deflection angle.
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