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Introduction

In the study of differential equations from the standpoint of the
automorphism pseudogroups, the differential invariants of the pseudogroups
play an important role.

A general study of pseudogroups and their differential invariants
originated with Sophus Lie. He applied his study to the classification
of ordinary and partial differential equations. So as to study differential
equations from his point of view, it is very important to write the given
differential equation by the differential invariants of the automorphism
pseudogroup. That is to say, the geometric structure of a differential
equation is contained in the expression of the equation by its differential
invariants.

In this paper we shall deal with elliptic systems of differential equa-
tions which admit the automorphism pseudogroup generated by the maximal
subgroup G of the affine transformation group of the m-dimensional linear
space R™ whose linear part is the center of GL(m, R).

These systems of differential equations will be proved to admit
projective structures of some type. Thus elliptic systems of differential
equations whose automorphism pseudogroups are generated by G will be
called projective.

In Section 1 we study the automorphism pseudogroups of elliptic
differential equations of second order. There we shall show that they
are generated by subgroups of the affine transformation group of R™
(Proposition 3.1).

In Section 2 we investigate canonical generators of projective elliptic
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differential equations (Theorem 4.5). These generators are families of
differential invariants of the automorphism psuedogroups and involve the
geometric structures of the differential equations.

In Section 3 we deal with equivalence problem of projective elliptic
differential equations (Theorem 5.2, Corollary 6.2). We shall see that these
equivalence problems are reduced to those of a kind of projective geometry
(Remark 5.1).

In Section 4 we state propositions which present examples of projective
elliptic differential operators of second order (Proposition 8.1, Proposition
8.2). In the calculation of the automorphism pseudogroups of these differ-
ential operators, the pseudoinvolutiveness (Definition 2.1) will play an
important role.

§1. Automorphism pseudogroups of elliptic differential operators

1. Let N be the set of non-negative integers and denote by p =

(py, + -+, p,) € N* (n>2) a multi-index. For the canonical coordinate system
{x;, -+, x,} on R", we set

Dr — (i)”‘(_a_)“. . ( g )1’"
ox, dax, ox,

and denote by |p| = p,+--- + p, the order of D*. A differential operator
is an expression

P(x, D) :lplZS:m a(x)D?,

where the coefficients a,(x) are R-valued C~-functions on R". To this opera-
tor, for a fixed x, there corresponds a polynomial P(x, §) = 3, <@, (%)&?

where ¢ = (&, ---, &,) € R and &7 = &Pgl2 ... £2». The principal part of
P(x, D) is defined by

P(x, D) = 3 a’(x)D".

Ipl=m

and P (%, &) = 2] ,-na(x)&” is called the symbol of P(x, D).

Let E be a vector space over R and denote by I'(R*, E) the set of
local C~-maps of R" to E. Let F be another vector space over R and
denote by Hom (E, F) the set of linear maps. Then a differential operator
of I'(R", E) to I'(R", F') is an expression

P(x, D) = Ipénap(x)DF
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where the a,(x) are Hom(E, F)-valued C=-functions on R". To this
differential operators, there corresponds the principal part P,.(x, D) =
2in=m @(%)D? of P(x, D) or the symbol P,(x, &) = 3 ,-»a,(x)” of P(x, D).

DerFiniTION 1.1. A differential operator P(x, D) = >, .n@,(x)D* of
I'(R*, E) to I'(R*, F) is called elliptic if dimE = dim F and P,(%, &) =
2 ip-n@,(X)€" is an invertible element of Hom (E, F) for any x € R* and
any non-zero vector & € R~

2. Let P(x, D) = 3 ,<na,(x)D? be a differential operator of I'(R", E)
to I'(R*, F). Denote by J*(R", E) the space of k-jets of local maps of R"
to E. Then it is easy to see that there exists a unique map o: J¥R", E)
—I'(R*, F) such that P(x, D)o = a(j¥(¢)) for any element ¢ € I'(R", E).

Denote by 0 € I'(R", F) the zero map of R" to F and set I(P) = ¢7*(0)
c J¥R", E). Let #(P) c I'(R", E) denote the set of local solutions of
P(x, D) and set S(P) = {j%(¢); x¢ the domain of ¢, ¢ € #(P)} C J¥R", E).
Then, in general, we have S(P) c I(P).

DerintTION 2.1. A differential operator P(x, D) = 3, <n@,(x)D? is
called pseudoinvolutive if S(P) = I(P).

If P(x, D) is elliptic, then the system of differential equations
> a(x)DPp =0

Ipl<m

can be rewritten by a system of Cauchy-Kowalewski type Therefore if
P(x, D) is elliptic and analytic, we get I(P) = S(P).
For an open subset 0 of E, we set #(P)|0 = {se #(P); Im s C 0}.

DerFiniTION 2.2, Two differential operators P,(x, D) and Py(x, D) are
said to be locally isomorphic at (2,2, € E X E if there exists a C~-
diffeomorphism ¢ of a neighbourhood # of z, to a neighbourhood 7~ of 2,
such that ¢(#(P)|%) = L (P,)|?". ¢ is called a local isomorphism of P,(x, D)
to Pyx, D) at (2, z,). If P(x, D) = P(x, D) = P(x, D) and 2, = 2z, = 2, then
a local isomorphism of P(x, D) to P(x, D) at (2, 2) is called a local auto-
morphism of P(x, D) at z. Denote by «/,(P) the set of local automorphisms
of P(x, D) at z. If there is no confusion, «,(P) is denoted simply by «/(P).
o (P) is called the automorphism pseudogroup of P(x, D).

3. Assume that a differential operator P(x, D) = 3, ;a”(x)D? of
I'(R*, E) to I'(R", F) is elliptic and pseudoinvolutive. Choose a coordinate
system {u,, -- -, u,} (vesp. {v,, - - -, U,}) on E (resp. F). Then for ue I'(R", E)
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and v € I'(R", F), the relation v = P(x, D)u can be written by

= 5 2@ T 4 5 S T+ 3w
FELE =1 0x,0x,  7=1k=1
(l =1, .-, m) .

If u: R > #— E belongs to #(P) and ¢: w(%)— E belongs to .«7/(P), then

3.1) in] ‘Z‘ alj f:ugz + i} Zn"__, bii(x) aul + Z c(x)u;, =0

J=1k,0=1 j=1k=1
(l = lv : ’ m)
and
LR 0¢; ou, & Py () OU 8u>
3.2 J ( J J B
3.2 ;kéla“(x) aZl ou, O oy 0x,0x, + ﬂzrjl ou,0u, (u )axk ox,

+ 35 o) (5 2@ 2 + 3 estwpt) =

(7':1’ ""m)'

Since P(x, D) is elliptic, det (a%}(x))i<s,;<m # 0. Therefore from (3.1) and (3.2),
we get as the system of defining equations of «/(P)

(3.3) 33 ai(x) (i T4, ()8u56u>
J=1 k=1 Br=1 auﬂau ox;, 0x,
—|—,}{"(x’u, ...’%, ceey azu“d,’ > =0
0x, 0,0,
G=1---,m

on S(P) = I(P) where &' is linear with respect to ou;/0x,(6 =1, ---, m;
h=1,-..,n) and o°u,/ox0x,(c =1, ---, m; k, £ =1, ---, n) and independ-
ent of ¢°u,/ox} (e =1, ----, m). Furthermore ou,/ox, 6 =1, ---,m;h =1,

-,n) and Fu,foxdx, (¢ =1, ---,m;k £=1,---,n and k or £ x 1) are
independent on I(P) = S(P). Therefore we get X7, aij(x)(0°¢,/ou0u,) = 0
@ =1,---,m). The ellipticity of P(x, D) means that 0°¢,/0u,0u, = 0 (j, B,
T =1,--.,m). This has proved

ProrositioN 3.1. For any elliptic pseudoinvolutive differential operator

P(x, D) = Y, c:a,(x)D?, o/(P) is generated by a subgroup of the affine
transformation group on E.

We denote by 7 (P) the set of elements of /(P) which are defined
globally on E. Then «/(P) is a group and «/(P) is generated by 7 ,(P).
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DerintTION 3.1. Let P(x, D) be any differential operator of I'(R", E)
to I'(R", F). If the automorphism pseudogroup .«,(P) is generated by the
maximal subgroup G of the affine transformation group on E whose linear
part is the center of GL(E), P(x, D) is said to be projective at z. Since
G is transitive on E, it is clear that, if P(x, D) is projective at a point
z, then it is projective at any point of E. Therefore P(x, D) is then
simply said to be projective.

Note that, from (8.1) and (3.2), the projectivity of P(x, D) implies
cix)=0(@G,j=1, ---, m).

§2. Canonical generators of projective elliptic differential operators

4. Let N and @ be any two C~-manifolds and denote by J*(N, @)
the space of k-jets of local maps of N to . Let I" be a pseudogroup on
Q and let ¢ € I'. Define a local transformation ¢ on J*(N, @) by ¢*(j4(f))
= j¥¢of) and denote by I'® the pseudogroup on J*(N, @) generated by
{¢"; 6 € I'}. I'™ is called the k-th prolongation of I" to J*(IV, @).

Let % be a weak Lie algebra sheaf on @ ([1]). Then, by the pro-
longation of the pseudogroup #(%) generated by %, % is prolonged to a
sheaf of vector fields #* on J*IV, @). Let #{° denote the isotropy of
the stalk Z® and set D¥ = #P/FEr0,

DEFINITION 4.1. ¥ is said to be N-regular at (x, f) if, for any integer
k, the correspondence D®: J*N, @) > p— D c T (J*(N, Q) defines an
involutive distribution on a neighbourhood of j(f).

Denote by E the vector space R™ and let {z,, - - -, 2,,} be the canonical
coordinate system on E. Also denote by {x,, - - -, x,} the canonical coordi-
nate system on R". Then we have the coordinate system

{xl, e Xy By vy By ot .’p]?’ .. '9p;1jz’ . .}

on j¥(R", E) such that

PGl =% (G<icmil<a<k 1<j,<n).
ale‘ M ‘axja

For any vector field X on E, denote by X® the k-th prolongation of X
to JY(R", E).

LemMA 4.1. Let X be such a vector field on E that X = > ,(az;+b,)
X 0/02; where a and b, ¢ R. Then
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m a m n i a m n : a
X("):a<ZZi + > > p! i +ZZ Pl ——
i=1 azi i=1 j=1 ap; i=1 j1,je=1 apjljz

m n s ) m a
to B e ) + Bben

t=1 gt Ik 0 J1eeie =1 0z,

Proof. For a function ¢ defined on a neighbourhood of ji(f) €
J*(R", E), we can define the function 3y by

o k3 a & i 3
dlo =20 4 Spi % 4 35 py, 2
ij i=1 0z, i=1j1=

n

m ; P
+-+ 2 20 _Piges :go

=1 j1,eee, Jk

Then we have 3'X = X®3% and 9!X® = X*+Vg% (j=1, ---, n; k>1) for
any vector field X on E ([2], Lemma 2.3). In particular from #Xz, =
X*hgtz, @G=1, ---, m; j=1, ---, n) and FX®pi ., = X*p% .,
@G=1---,m; j, --,jr=1---, n; k>1), for the vector field X = >,
(az; + b,)9/0z, we inductively obtain

m P m n 0
X(k) — a( 2, 1 .
& 02, 2 :Z=:1p’ op:
+ i i: p;l Ik 9 ) + A{—n_u‘ bi 9
i=1 j1yeee, Jr= 0, ;’1 i i=1 0z

This completes the proof.

Denote by ¢ the Lie algebra of all affine vector fields X on E of the
form X = >_™,(az;, + b,)9/0z;, where a and b, ¢ R. A function y locally
defined at j%(f) € J*(R", E) is called a differential invariant of ¢ at ji(f)
if X®y =0 for any X ¢ 9.

LemmMmA 4.2. Let y be a function defined on a neighbourhood of jX(f)
e JYR", E). Then y is a differential invariant of ¥ at jiX(f) for k>1 if
and only if

fip}i

inni=1  opl

(3
y X '—ijlha B + .-
t=1 j1,je= p]-]h

ayz + oy
P

m n ; a
+ Z ) Z Djijn —z’y—“ =0
i=1 j1,e0,jx=1 apjl":jk

and dy/oz;, =0 (@ =1, ---,m).
Proof. By Lemma 4.1, X®®y = 0 for any X ¢ ¢ if and only if
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m a m n ) m n ]
(Fn 2+ SEn Y a5 e P )
i=1 azi i=1j=1 ap] _ ]

38,2 —o
i1 0z

for any a and b, ¢ R. This implies Lemma 4.2.

LEmMMA 4.3. Let f be a local map of R" to E such that ph(j2(f))+O0.
Then the sheaf of vector fields ¥ generated by % is a weak Lie algebra sheaf
which is R"-regular at (x,, f).

Proof. Choose a sufficiently small neighbourhood #* of p, = j*(f), set
G® = {X®; X e ¢} and denote by 9%, p ¢ #*, the isotropy algebra of
4™ at p. Then by Lemma 4.1 ¢% = 0 and dim ¥ = m + 1. Since ¥®
is generated by %, we get (¥)!° =0 and dim(¥)® = dim%"® on a
neighbourhood of p,. Therefore % is R*-regular at (x,, f). This completes
the proof.

If # is Rr-regular at (x,, f), then it induces an involutive distribution
D™ on a neighbourhood of j%(f) € J¥R", E). A fundamental system of
1-st integrals of D*® on a neighbourhood of j%(f) is called a fundamental
system of differential invariants of % at j&(f).

LeEMMA 4.4. Let % be as in Lemma 4.3 and let f be a local map of
R" to E such that p},(j2(f))#0. Then a family of functions

{xl’ cey Xy "',p]z:/p%b .."pj'ljz/p}l’ ”'}

locally defined at ji(f) is a fundamental system of differential invariants
of £ at ji(f).

Proof. From Lemma 4.2 we can easily see that pi/p, (=1, ---, m;
J=1---,n) and pi.lph (G=1,---,m; j,j.=1,---,n;j, or j,#1) are
differential invariants of ¥ at j2(f). Furthermore they are linearly
independent at j2(f). They are s functions where s = mn + mn(n + 1)/2
— 1. On the other hand dim J*R", E) = n+ m + mn + mn(n + 1)/2 and, for
p = ji(f), dim (L)P/(L)P° = m + 1. Therefore dim J*(R", E) — dim (¥)}’/
(L) =n + mn + mn(n + 1)/2 — 1. This completes the proof.

For any differential operator P(x, D) = 3, <, a,(x)D?, we denote by
Z(P) the sheaf of vector fields on E induced from the automorphism
pseudogroup /(P) of P(x, D) and denote by P the differential equation
P(x, D)z = 0. If the differential equation
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F,=0,---,F, =0

given by a family of functions {F;};_, locally defined at j:(f) € J*(R", E)
admits the same space of local solutions as the differential equation P,
the family {F,};_, is called a generator of P(x, D) at j:(f).

THEOREM 4.5. Let f be a map of a neighbourhood of x, to E such that
phGE)#0(E =1, -.., m). Assume that P(x, D) = 3., ,a,(x)D? is a pro-
Jjective elliptic differential operator. Then

1) ZL(P) is a weak Lie algebra sheaf which is R -regular at (x,,f).

(2) P(x, D) is generated at j;(f) by a family of functions {#}}., such
that ;= Ffx,, ---,%,, 05, ---, 0y) where {x,, ---, x,, 0;, ---, 0y} is @
fundamental system of differential invariants of £(P) at j:(f).

Proof. Since P(x, D) is projective, Z(P) is the sheaf of vector fields
& generated by ¢. Therefore by Lemma 4.3, (1) has been proved.

On a neighbourhood of ji(f), we set 6,; = pi/pl and 6, = pi/ph
By the ellipticity of P(x, D), the differential equation P is written by

@D ph=3 3 Mi@pL + 5 S NY@pE (=1, e m).
k#1
l‘;rl

Then on a neighbourhood of j%(f), (4.1) is written by

n

(42) 3335 ME@ldph) + 23 2, Ne@(piipl) — 1= 0
Ié:;:l =1¢=1

Gt=1,---, m).

Since pi,/pi = (pi/pl)/(Pi/p1) and pilpi = (pipW/(Ph/pl), (4.2) is written
by

43 35 MU@O,l0.0) + 2 3 NY@O,d0,) — 1 =0

J=1k,2=1 1i=

i=1,---,m).

Then also by the projectivity of P(x, D) and by Lemma 4.4, (2) has been
proved. This completes the proof.

§3. Equivalence problems of projective elliptic differential operators

5. Let G be the Lie subgroup of the affine transformation group on
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E generated by ¢ = {37~ (az, + b,)d/0z;; a and b, e R}. Let I" denote the
pseudogroup on E generated by G and let A°(I") be the normalizer of I”
in the pseudogroup of all local transformations of E. Denote by Aff(E)
the affine transformation group on E.

LEmMma 5.1. A(I") is generated by Aff(E).

Proof. Let X be a local infinitesimal transformation such that the
local 1-parameter group of local transformations generated by X is con-
tained in I'. Then X is written by

X=3(az + )0
i=1 0z,

where « and j; are some constants. For any ¢e A'(["), we set ¢, = 2,0 ¢.
Then ¢,X is written by

(6.1) 6. X = 2 (g + ) 2
i=1 a¢l
where 7 and ¢; are some constants. If we use the Jacobi matrix of ¢ with
respect to the coordinate system {z, ---, z,}, (5.1) is written by
D, g (BTN _ [T
.2) D(z, ---, 2, . - : :
v \az, + B Thn + 2m |
Therefore we get the relation
(5.3) T¢l+ez-a<2 99 ) i @G=1---,m.
1 le p=1 2,
Differentiating (5.3), we obtain
0d; __ {m ( 9°¢; 0¢: 5 )} & 0%p;
5.4 = —rt L
(5.4) 92, P 92,02, 2t 9z, + p;‘ap 02,02,
("’k:]-)"', )°

Now assume that (3¢,/02,) = 0. Then rewriting (5.4) by

6 1= () (B2 )+ () T

02, 8zkaz,, 02, 02,02,

and differentiating (5.5), we get
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B )

azhazk ¢ az,cazg 0z,
& ¢, 0" g, ))
5.6 ( P 5y P ;
6.6) ,; zhazkaz,,, 02,02, " 02,02, *
Bo (L P T 0 P, ) o
+ g ‘8”( 02,02, 020z, * 02, 02,0202,
Gh k=1 -.--,m).

Since « and j, are arbitrary, we obtain

(5.7 g 0 _ T¢ 0
0z, azhazkaz 02,02, 02,02,
and
m aa ¢ a2 ¢ a2 ¢ )
. Z -z i 5 R <2 5
; (azhazkaz,, e 02,02, " + 02,02, "
(5.8) == S az¢ ( aQSbZ z, /@ﬁg )
eZl 02,02, \ 02,02, + 0%, "

(l,h,k:l,---,m)

which are reduced to the relations

69 5 Th sy T, ) 5 T o
a:z,c

= 02,02, 02,02, =1 02,02, 0z,
(i,h,k:l, ""m)'

Then we get

0 06 _ 0 G hk=1---,m) ie.
0z, 02,02,

04,/0z, is constant for any i and k. Therefore in any case 9¢;/9z, is con-
stant and so ¢ is an affine transformation. Conversely it is clear that
Aff (E) is contained in A4°(I"). This completes the proof of Lemma 5.1.

Let o (resp. f°) denote the source projection (resp. the target pro-
jection) of J*R", E) onto R" (resp. E). If we set J?, = {pecJ*R" E);
«’(p) = x, F(p) = 2z}, then J:, admits the globally defined coordinate
system {.--,pi, ---,pi, ---} and is diffeomorphic to RY where N =
m(n + n(n + 1)/2). Therefore we can consider that the family of functions
{---,p% -+, D%, ---} is the homogeneous coordinate system of the pro-
jective space PY(R) where N = N — 1.
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THEOREM 5.2. Assume that pi(j2(f) *0(E =1, ---,m). Let P,(x, D)
(o = 1, 2) be projective elliptic differential operators of order 2. Then P,(x, D)
is locally isomorphic to PSx, D) at (f(x,),f(x,)) by a local isomorphism
near to the identity if and only if there exists a generator {F,(x,, - -, x,,
0, -+, 0}y of PJx,D) at ji(f) satisfying the following property: By
considering F%,,, defined by F¢{,.(0, ---,0x) = Fy(xy, -+, %,,0,, ---,0y),
as a local function on the projective space PY(R), there is a local projective
transformation ¢ near to the identity of P¥(R) such that

SD*Fﬁ)r:F(fl)‘r (rzl""ym),
90*01‘,1 = (Z qikok,j>/(2 Q1k0k,11>
#=1 %=1

and

¢*0i,je = <Z qikﬁk,je>/<2 qlkﬁk,u)
k=1 k=1

where (q.;) is an mXm regular matrix.

Proof. Let ¢: % — v be a local isomorphism of P(x, D) to Py(x, D)
at (f(x,), f(x,)). Then ¢(L(P)|%) = F(P,)|% and so we have ¢ (< (P,)| 7 )p
= (P)|%. Since P(x,D) (« =1,2) is projective, this means that
pe N (). Then by Lemma 5.1 we get

¢*z; = :Zlquzk +d,,

¢(1)*p§ — ki:l qlkpl:
and

¢O* il = k;i QD% -

Since ¢® maps a sufficiently small neighbourhood #* of ji(f) to an open
subset of J*R", E) such that ¢®*pi(p) == 0 for any p e #*, we get

V¥, , = ($V*pHN$®* p1r)
- (B /(o)

and
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(5.11) $9*0y,50 = (V* D5 * p1)

= (Z qikﬁk,ﬂ>/<2 kaak,u) .
&=1 k=1

If {Fo) (xy, -+, x,,0, - -+, 0,)}™, is a generator of Pyx, D), then, by setting
Fooy (%1, « oy %ny 01 -+, 0y) = ¢OFF iy (%3, « -+, Xy 05, -+, O)y {Fi(®s, - -+, Xy
0, - -+, 0y)}™, is a generator of P,(x, D). (5.10) and (5.11) mean that ¢
induces a local projective transformation ¢ of P¥(R) because {---,6,;, -,
0, - - -} can be considered as a local coordinate system of the projective
space PY(R).

Conversely if there exists a local projective transformation ¢ of PY(R)
satisfying the stated property, then the affine transformation ¢ = (¢,, - - -, ¢,,)
on E defined by ¢, = > ™, 9,2, + d;, where d; ( =1, ---,m) is any con-
stant satisfles ¢®*F,,, = F,,, and ¢ is a local isomorphism of P(x, D) to
Py(x, D) at (f(x,), f(x,)). This completes the proof of Theorem 5.2.

Let us consider regular submanifolds M of P¥(R) satisfying the fol-
lowing conditions:

(1) codim M = m.

(2) At any point p € M, there exists a system of local defining equa-
tions of M

7]120""377m=0
such that the automorphism pseudogroup .7 of the differential equation

7)1(019 "'56‘V) == Oa : "977m(01> ""6‘V) = O

is equal to I'.
Denote by %(I") the set of such regular submanifolds of PY(R).

Remark 5.1. Theorem 5.2 implies that the local equivalence of pseudo-
involutive projective elliptic differential operators of order 2 can be
reduced to that of elements in %(I") smoothly parametrized by x =

(%, - - -, x,) under the group
[g 0 ]| The center
H= l g |: g € GL(m, R) of
0o - GL(N + 1, R).
4 8

6. TFor a projective elliptic differential operator P(x, D) of order 2
(4.1) is called the normal form of P and (4.2) is called the canonical form
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of P. The left hand side of (4.2) is called the canonical generator of
P(x, D).

Let P,(x, D) (« = 1, 2) be a pseudoinvolutive projective elliptic differ-
ential operator. Denote the canonical form of P, by

6D, 35 3 MA@@LPY + 3 3 NA @Y —1=0

i=1 k;] j=1k=1

Z%:l

AG=1,---,m).

LEmMmA 6.1. y(P) = PP, if and only if Mii(x) = M¥,(x) (2 j=
1,""m; k:g_ly N, kO"g#l) and N{,ﬁ(x):Ng,"(x)(l,]_l, M,
k=1,-..,n) for each x.

Proof. The relation (6.1), holds on S(P,) and if P(x, D) = Py(x, D),
then S(P) = S(P,) = I and codim I = m. From (6.1), and (6.1),, we get

A2 5 > (M) — MUDRL + 2 2 (Vi@ — Ni@)pt = 0

onlI A=1,---,m).

Since pi, j=1,---,m; k4 =1,---,n; kor {xD andp] (=1, ---,m;
k=1, .--,n) are independent on I, from (6.2) we have M (x) = M; ()
Aj=1---,m; kL=1---,n; kor £x1) and Ni(x) = Njx) 1,j=
1,---,m; k=1,...,n). The converse assertion obviously holds. This
has proved Lemma 6.1.

CoroLLARY 6.2, Let P,(x, D) (« = 1, 2) be a pseudoinvolutive projective
elliptic differential operator of order 2 and assume that pi(ji(f)) =0
G=1,---,m). Then P(x, D) is locally isomorphic to P,(x, D) at (f(x,), f(x,))
by a local isomorphism near to the identity if and only if there exists a
regular m X m matrix @ = (q,;) near to the unit such that Q 'M3YQ = M)
k,4=1,---,n; kor £x1) and Q@ 'NPQ =N (=1, -.--,n) where
M@ (resp. N{™) is a function defined on a neighbourhood of x, such that
the value MP(x) (resp. N{"(x)) at x is the m X m matrix whose (i, j)-
component is M (x) (resp. NU(x)).

Proof. By Lemma 5.1 P,(x, D) is locally isomorphic to Py(x, D) at
(f(xy), f(x,)) by a local isomorphism near to the identity if and only if
there exists an affine transformation ¢ = (¢,, - - -, ¢n), 6:(2) = D1 Qi + 14,
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such that ¢ is near to the identity and §(F(P)|%) = F(P,)|+" where %
and 7~ are neighbourhoods of f(x,). Then for any ue #(P)|%, we have

(6.3) Aﬁ)() AL z AR(x) 2% 4 3 Bp(x) %
8 axg k=1 0x;
/-\1
and
6 —Aar@(Q7) = 3 Ar@ (0% )+ 1 Br@ (@)
ox? K1 ax,ﬁx,z k= 0x;,
a1

where 37, A(x)(0°u/ox0x,) + D¢ B{(x)(dufox,) = 0 is the coordinate
expression of the differential equation P and @ = (¢;;). The solution
space of (6.3) is the same as that of (6.4) and therefore by considering
the canonical forms of (6.3) and (6.4), Lemma 6.1 shows that @ 'M2Q =
MYk, 6=1---,n;kor { 1) and @ 'NPQ = N (k=1,---,n). This
completes the proof.

§4. Existence of projective elliptic differential operators

7. Define the subset G C GL(n, R) by G5 X = (x;;) if and only if
DX = D p1Xy (0>1) and consider the map c:G3X = (x;;) —
>w 1%y € R and set R, = R — {0}.

LemmA 7.1. G is a subgroup of GL(n, R) and c¢ is a homomorphism
of G onto R,.

Proof. If Go> X = (x;;) and GL(n, R) > Y = (y,;) such that XY = I where
I is the unit matrix € GL(n, R), we have 7, >t %u¥i, = Dr10y = L.
On the other hand Zf:l ZZ:x X Yi; = ZZ:x(Zgll xik)ykj = Z;cL:l (Z:Lx xil)ykj =
ot 2ok i) Thus (7 x)(Xk-1 k) = 1. This means that 37, y,,
is independent of j i.e. > 7., ¥, = D1 ¥ which proves Y = X"1eG. If
G>X = (x;) and Y = (y;y), then 3%, x,; = > 7., %, and 2ok1Ye = 2one1Va
(j=1,---,n). Then by setting XY = (2;)), > 7.1 2i; = D pe1 Clpes Xin¥ny) =
Dk xkh)yh] = ZZ;x(ZLxxm)ym =oha xm)(Znym) = Zﬁ:l(ZZ:lxkl)yhl
= > (O ta1 XpnYn1) = D e-12r- This proves XY e G. Therefore G is a
subgroup of GL(n, R).

If G> X = (x,)), it is clear that >};_, x;, % 0. Furthermore for X = (x,))
and Y = (y,;) € G, we have > 7., (O 51 %uyi) = ooy 20021 ¥).  There-
fore ¢ is a homomorphism of G onto R,. The proof is completed.
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8. Let P(x,D) = ), <. a,(x)D” be an elliptic differential operator of
I'(R*, E) to I'(R*, F) where dim E = dim F = m.

For some j, P(x, D) is said to satisfy the condition C(j) if m = n and
det (¢,(x)) == 0 where ?,(x) = bi/(x) and bi/(x) is the coefficient appearing
in (3.1).

ProrposiTioN 8.1. Let P(x, D) = 3, <;a,(x)D? be an elliptic pseudo-
involutive differential operator such that bi(x) = b (x) (=1, - --,m;
j=2 -+ m;k=1---,n), ¢c(x)=0(G,j=1,- ---,m) and the condition
C(1) is satisfied. Then P(x, D) is projective.

Proof. Since ¢(x) =0 (i,j =1, ---,m), by Proposition 3.1, (3.2) is
reduced to

(8.1) il(k}n: aii( ) Fu, -+ Z b”(x) ou, )a¢f =0 G=1,---,m)

7=1 0x,0x, = ou,

on S(P) = I(P).
Furthermore since P(x, D) satisfies the condition C(1), solving (3.1)
with respect to ou,/ox, (R =1, ---, m), we get

ou & u; 2y I vkigay Uy
8.2 —L = F¥% - GYi(x) =i E=1,..,
®2) 0%y, j,§=1 )3 0% JZ= ; @) 0x, ( )

on S(P) = I(P).

Since o%u,[ox0x, (j,, f=1,---,m) and ou,fox, (j=2,---,m; 7 =
1,..-,m) are independent on I(P), from (8.1) and (8.2), we get as the
system of defining equations of .«/(P),

)3 (aif; (%) + 33 b(x) F;;(x))% =0

j=t r=1 ou,

(a’,ﬁ,i: 1 -..’m)’
(8.3) jﬁ;l <i bii(x) Fr (x) a¢j + aii(x) a¢j)

(a,ﬁ,i:l--. ;6:2’-..’ ),

5 (Gor@erm® + @) -0

J=1 \r=1 5
(g,l-— 1, e, My 5_.2’ -..’m).

We define m X m matrices by

H,y(x) = (H(x)) where HYj(x) = aii(x) + Z b (x) Fi(x)
(a,‘Bz 1, "'7m)’
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Ko@) = (Kux) where Kx) = 53 50 Fii)
(“9;3219 AR U 5=29 "',m),

Si(x) = (Sii(x)) where Sf(x) = 3 bi/(x) G}(x)

i1
¢=1---m;é6=2,---,m),
Ay(®) = (@4(x)) (@, p=1---,m)
and
B(x) = (bi/(x)) ¢=1--m.
Then (8.3) is written by

Haﬂ(x)wl =0 (C(,‘BZ 1""9m)5
(84) Knﬂb(x)wl + Aaﬁ(x)wb =0 ((1, ‘8 = 19' s, My 0= 2, Tty m) ’
S&t(x)wl+Bd(x)w6=0 (521,””;5:2:”")

where w, = “(0¢,/duy, - - -, 9¢,./0u;).

By the condition b¥(x) = bi(x) (i, k=1, ---,m; j=2, ---,m), an easy
calculation shows that Hé(x) = a¥(x) — a¥(x) (G, j, e, =1, - - -, m), K¥},(x)
= —ai(x) G, j,e, f=1,---,m; d=2,---,m) and Si(x) = — bi'(x) (i,], ¢
=1-.--,m;d=2,-.-.,m). Therefore (8.4) is reduced to

;7; (@(x) — at(xDwy =0 G, f=1,---,m),

(8.5) 3, a@we — azg(x)(’;l w“) -0
(i’a’ﬁ=1, 9m;6=2’ "'am)7
iwu—-}:wmzo b6=2---,m)

where

o = oy 0 = (B, o, D).

ou, " du,

From the second and the third relations of (8.5), we get
S (0% — a4(wa =0 (e f=1---,m;8=2 -, m).
k=1

Therefore the system of defining equations (8.5) of «/(P) is equivalent to
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af,’;(x) _ aife(x))wkﬁ = 0 (l3 «a, 187 0= 1’ ) m) ’
(8.6)

2 (
k=1
D Wi = D, Wiy @6=1---,m.

k=1 k=1

Since ¢ = (¢y, - - -, ¢») is an affine transformation of E, the second relation
of (8.6) means that the matrix (d4,/0u,;) belongs to the group G given in
Lemma 7.1. Define the map r;: GL(m, R) — R™ by the 4-th column pro-
jection. Then from (8.6) we get

@®.7) A()m(w) = cWIn(Ap(x)) @ =1,---,m)

where w = (w,, - -+, w,) and c¢ is the homomorphism of G onto R, given
in Lemma 7.1.

From (8.7) if c(w) =1, then we have A, (®)r(w) = m(A,(x) (0=
1, - - -, m) which mean that w = I. Therefore ¢: Lo/ (P)— R, is an iso-
morphism and this proves that Ls/(P) is the center of GL(m, R). Con-
versely if Lo/ (P) is the center of GL(m, R), then each element ¢ of «/(P)
satisfies (8.6). Since c¢(x) =0 (i,j =1, ---, m), this completes the proof
of Proposition 8.1.

ProposiTiON 8.2. For an elliptic pseudoinvolutive differential operator
P(x, D) = 3 ,<: a,(x)D” satisfying the condition C(1), assume that bi/(x) = 0
GGk=1---mj=2---,mandc(x)=0(,j=1,---,m). Then P(x, D)
is projective.

Proof. From the conditions bi/(x) =0 (i, k=1,---,m; j=2,.-., m),
we can easily see that HU(x) =0 (i,a,B=1,---,m), Hi(x) = ali(x)
Ga,fp=1,---,m; j=2,---,m), Kix)=0 (G a p=1,---,m;4,j=
2,---,m), Ki(x) = — a¥y(x) G,a,f=1,---,m; 0 =2,---,m) and S¥(x) =0
G,j,=1,---,m;6=2,---,m). Then (8.4) is reduced to

37 ai(Rw, = 0 Goa,8=1,--,m),
=2
8.8) S G@w, = ab@ws Gaf=1 -, mid=2 -, m),
=1
bﬁlww:O (ia‘g=1i""m;5=2a"',m)'

The third relation of (8.8) and the condition C(1) mean that w, =0
(0 =2,---,m). Therefore (8.8) is equivalent to
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w15:0 (522""’"7'))
Aaﬁ(x)w5 = wuﬂa(Aa,a(x)) (e, Bo=1,..-, m)

8.9

where

Wy = Wiy =+, Wy -

Denote by G’ the subgroup of GL(m, R) defined by G'3 X = (x,,) if
and only if x;; =0 (j =2, .-+, m) and denote by ¢’ the homomorphism of
G to R, defined by ¢’(X) = x,;. Then (8.9) is written by

(8.10) w, =0 (5 = 2’ ) m) ’
Aaﬂ(x)wa = c,(w)ﬂ'a(Aap(x)) (¢,8,6=1,---,m)

where

w:(wlr""wm)'

If ¢/(w) = 1, then (8.10) means that w = I i.e. ¢’ is an isomorphism of
Lo/ (P) onto R,. Therefore L/ (P) is the center of GL(E). This com-
pletes the proof.

9. Finally we shall refer, in the case m < n, to the existence of a
projective elliptic differential operator of order 2.

An elliptic differential operator P(x, D) of order 2 is said to satisfy
the condition C’(j) if m < n and det B’(x) = 0 where B/(x) is the m X m
matrix whose (i, k)-component is bi/(x)

ProrosiTioN 9.1. For an elliptic pseudoinvolutive differential operator
P(x, D) of order 2 satisfying the conditions C'(1) and c¢(x) =0 (i,j =
1,.--,m), assume that b(x)=bi(x) (i=1,---,m; j=2,---,m; k=
1,--,n) or b%(x)=0 i=1,---,m; j=2,---,m; k=1,.--.,n). Then
P(x, D) is projective if and only if bi(x)=0 G=1,---,m; h=m+
1, .-, n).

Proof. By the condition C’(1), (8.2) is replaced by

(9.1) axk =1 a,
+ 5 H@ M k=1-,m)
h=m+1 axh

on S(P) = I(P). Then from (8.1) and (9.1) as the system of defining
equations of .«7(P), we get the following systems of differential equations
(9.2) and (9.3):
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-

<.

2 (afzfa(x) - T:}i’l b;'j(x)F{}ﬂ(x)> g% -0

G=1---,m; e,=1,.---,n),
(©.2) % (S0 @FB@ ™ 1 oy 1) = 0
=1 \r=1 ou, ou;
G=1,---,m; a,f=1,---,n; 6 =2, cee,m),
3 (m bii(x) Gri(x) 91 bgf(x)%) —0
=1 \i=1 ou, ou;
G=1,---,m; £=1---,n; 0 =2, cee,m)
and
h pid k() 0P1 —
(9.3) 2 () Hi(x) = =0
7=1 ou,

ky,j=
G=1,---,m;h=m+1,---,n).

If we set Hi/(x) = >, bi/(x)Hi(x) and denote by H,(x) the m X m matrix
whose (i, j)-component is Hi/(x), then (9.3) is written by

(9'4) Hh(x)wl =0 (h =m + 17 T n)

where

wjzl(%,...,éqsi).
ou; ou,

Now by the condition C’(1) we can set bi(x) = >, ci(x)bi(x) for
i=1---,mand h=m+ 1, ...,n. Then it is easy to see that

Since w = (w,, - - -, w,,) satisfies (9.2), as is proved in Proposition 8.1 or
8.2, w belongs to the center of GL(m, R). In particular, w, is of the form
“(x,0, ---,0). Therefore any such w, satisfies (9.4) if and only if the 1-st
column of H,(x) is zero i.e. Hi(x) = 0. Since Hi(x) = >.m, bi(x)Hj(x)
and the condition C’(1) is satisfied, H¥(x) =0 (=1,---,m; h=m +
1,...,n) if and only if Hi(x) =0(k=1,---,m;h=m+ 1, ---,n). Then
by (9.5), w, satisfies (9.4) if and only if c*(x) =0 (k =1, ---,m; h=m +
L,.--,n)ie b(x)=0@=1,.-.--,m; h=m+1,---,n). This prove that
the solution space of the system of differential equations (9.2) is equal to
that of the system (9.2) with (9.3) if and only if bi(x) =0 (i=1, - -, m;
h=m+1,..-,n). This completes the proof of Proposition 9.1.
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