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Abstract

Let P ∈ F2[z] be such that P(0) = 1 and degree (P) ≥ 1. Nicolas et al. [‘On the parity of additive
representation functions’, J. Number Theory 73 (1998), 292–317] proved that there exists a unique subset
A = A(P) of N such that

∑
n≥0 p(A, n)zn ≡ P(z) mod 2, where p(A, n) is the number of partitions of n

with parts in A. Let m be an odd positive integer and let χ(A, .) be the characteristic function of the
set A. Finding the elements of the set A of the form 2km, k ≥ 0, is closely related to the 2-adic integer
S (A,m) = χ(A,m) + 2χ(A, 2m) + 4χ(A, 4m) + · · · =

∑∞
k=0 2kχ(A, 2km), which has been shown to be an

algebraic number. Let Gm be the minimal polynomial of S (A,m). In precedent works there were treated
the case P irreducible of odd prime order p. In this setting, taking p = 1 + e f , where f is the order of 2
modulo p, explicit determinations of the coefficients of Gm have been made for e = 2 and 3. In this paper,
we treat the case e = 4 and use the cyclotomic numbers to make explicit Gm.
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1. Introduction

Let N and Q denote the sets of the integers and the rational numbers, respectively.
ForA = {a1 < a2 < · · · } a nonempty subset of positive integers and for n ∈ N, p(A, n)
denotes the number of partitions of n into parts fromA; that is, the number of solutions
of the diophantine equation

a1x1 + a2x2 + · · · = n

in nonnegative integers x1, x2, . . . .
We set p(A, 0) = 1 and let FA denote the generating series of p(A, n), which is

known to equal the following product:

FA(z) =
∏
a∈A

1
1 − za .
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The set A is called an even partition set if the sequence (p(A, n))n≥0 is even from a
certain point on.

Let N be a positive integer and let F2 be the field with two elements. In [10], Nicolas
et al. proved that there exist 2N−1 even partition sets A such that p(A,N) is odd and
p(A, n) is even for all n ≥ N + 1. More precisely, for each of these sets there exists a
unique polynomial P(z) = PA(z) ∈ F2[z] of degree N satisfying

FA(z) ≡ P(z) mod 2. (1.1)

We shall also denote the set A by A(P). As an example, take P(z) = 1 + zq; then
A(P) = {q, 2q, 4q, . . .}, since

1 + zq ≡
∏
j≥0

1
1 − z2 jq

mod 2.

LetA be an even partition set and let m be an odd positive integer. To get a complete
description of the elements of the set A of the form 2km, it is convenient to consider
the 2-adic integer S (A,m) defined by

S (A,m) = χ(A,m) + 2χ(A, 2m) + 4χ(A, 4m) + · · · =

∞∑
k=0

2kχ(A, 2km), (1.2)

where χ(A, d) is the characteristic function of the setA,

χ(A, d) =

{
1 if d ∈ A,
0 otherwise.

In [2] (see also [1]), it is proved that S (A,m) is an algebraic number. Moreover, if P
and Q are two polynomials of F2[z], we have (cf. [2, Section 3.2])

S (A(PQ),m) = S (A(P),m) + S (A(Q),m),

which implies that

S (A(P2t
),m) = χ(A(P2t

),m) + 2χ(A(P2t
), 2m) + 4χ(A(P2t

), 4m) + · · ·

= 2tχ(A(P),m) + 2t+1χ(A(P), 2m) + 2t+2χ(A(P), 4m) + · · · .

This means that
A(P2t

) = 2t · A(P) := {2tn, n ∈ A(P)}.

This formula follows easily from (1.1).
Let p be an odd prime and let f be the order of 2 modulo p; that is, f is the smallest

positive integer such that 2 f ≡ 1 mod p. Hence, one can write

p = 1 + e f ,

where e is a positive integer. Let P(z) ∈ F2[z] be irreducible of order p (see [9,
Definition 3.2]); that is, p is the smallest positive integer such that P(z) divides 1 + zp

in F2[z]. Let Gm denote the minimal polynomial of the algebraic number S (A,m),

https://doi.org/10.1017/S1446788715000439 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788715000439


[3] Sets with even partition functions and cyclotomic numbers 291

where A =A(P) is the even partition set satisfying (1.1). In [1] (see also [3]), using
Gauss sums, the polynomial Gm was obtained explicitly for the case e = 2. The case
e = 3 was treated in [5], where the authors made explicit the polynomial Gm by using
the number of points of the elliptic curve x3 + ay3 = 1 modulo p. In the present paper,
we shall give explicitly the polynomial Gm in the case e = 4. For that, we will use
cyclotomic numbers and the Gaussian periods.

In this paper, we first recall some properties of Gm. Thereafter, we give some
background on cyclotomic numbers and Gaussian periods. Finally, we shall give our
main result.

2. Properties of the polynomial Gm

Throughout this paper, we assume that p is an odd prime and g is a primitive root
mod p. Let f be the order of 2 modulo p and write p = 1 + e f , where e is a positive
integer. Then the cyclotomic classes of degree e and conductor p are given by

C
(g)
i = {gi+e j mod p, j = 0, . . . , f − 1}, i = 0, . . . , e − 1.

Such classes are defined as parts of (Z/pZ)∗; however, by extension, they are also
considered as parts of N. Moreover, we can extend the definition of the C(g)

i to all
values of i ∈ Z by

C
(g)
i = C

(g)
i mod e.

For i ∈ {0, 1, 2, . . . , e − 1}, we denote by ωi(n) the arithmetic function which counts the
number of distinct prime divisors of n belonging to C(g)

i ; that is,

ωi(n) =
∑

q prime, q|n
q∈C(g)

i

1. (2.1)

Let P0 be the set of odd positive integers defined by

m ∈ P0 ⇐⇒ gcd(m, p) = 1 and ω0(m) = 0. (2.2)

Let φp(z) = (1 − zp)/(1 − z) = 1 + z + · · · + zp−1 be the cyclotomic polynomial over
F2 of index p. Using the elementary theory of finite fields, φp factors in F2 into e
irreducible polynomials P1, P2, . . . , Pe, each of degree f and of order p. For all `,
1 ≤ ` ≤ e, letA` =A(P`) be the even partition set obtained from (1.1).

A necessary condition (see [4, Theorem 1]) for an integer n to be inA` is that

n = 2kmpc,

where k is a nonnegative integer, c ∈ {0, 1} and m ∈ P0. From now on, we consider m
to be in P0 and let

δ = δ(m) (2.3)

be the unique integer in {0, 1, . . . , e − 1} such that m ∈ C(g)
δ .

https://doi.org/10.1017/S1446788715000439 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788715000439


292 N. Baccar [4]

For all `, 1 ≤ ` ≤ e, let S (A`,m) be the 2-adic integer given by (1.2) and letMm be
the monic polynomial whose roots are the S (A`,m):

Mm(y) = (y − S (A1,m))(y − S (A2,m)) · · · (y − S (Ae,m)).

Let µ denote, as customary, the Möbius function and denote by m̃ the squarefree kernel
of m; that is, m̃ is the product of the distinct primes dividing m. Let Rm(y) be the
polynomial with integer coefficients defined by the resultant,

Rm(y) = resz

(
φp(z),my +

e−1∑
h=0

αh

f−1∑
j=0

z(2 jg(δ−h) mod e) mod p
)
,

where, for all h, 0 ≤ h ≤ e − 1,

αh = αh(m) =
∑

d|m̃,d∈C(g)
h

µ(d). (2.4)

In [1], it is proved that

Rm(y) = mp−1
e∏
`=1

(y − S (A`,m)) f ,

which means that

Mm(y) =
1

me (Rm(y))1/ f ∈ Q[y].

Let Gm be the minimal polynomial of the algebraic number S (Ae,m). In fact,Mm is
a multiple of the polynomial Gm and the S (A`,m) could be conjugates.

Let ζ be a pth root of unity and define the periods ηi by

ηi =
∑

u∈C(g)
i

ζu; i ∈ Z. (2.5)

Since for all i ∈ Z, ηi+e = ηi, one can consider the ηi to be indexed with Z/eZ. Here,
η0, η1, . . . , ηe−1 are the so-called Gaussian periods of degree e in the algebraic number
fields Q(ζ); they are known to be Galois conjugates and the period polynomial

Fe(y) = (y − η0)(y − η1) · · · (y − ηe−1) (2.6)

is their common minimal polynomial over Q. One can also note (see [12]) that Q(η0)
is the unique subfield of Q(ζ) of degree e over Q and the set {η0, η1, . . . , ηe−1} is an
integral basis of Q(η0).

For i ∈ {0, 1, . . . , e − 1}, we define θi = θi(m) as follows:

θi =

e−1∑
h=0

αhηδ−h+i, (2.7)
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where αh has been defined in (2.4) and δ = δ(m) in (2.3). In [1, formula (3.32)], it is
shown that for all `, 0 ≤ ` ≤ e − 1, there exists some i` ∈ {0, 1, . . . , e − 1} such that

mS (A`,m) = −θi` .

Moreover, it turns out that

Mm(y) =
1

me (my + θ0)(my + θ1) · · · (my + θe−1). (2.8)

On the other hand, also in [1, page 188], it is shown that the elements of the form
2k pm of the sets A` are given by the 2-adic expansion of the roots of the polynomial
Rm(−py − ε f ), where ε = 1 if m = 1, else ε = 0. More precisely,

(y − S (A1, pm))(y − S (A2, pm)) · · · (y − S (Ae, pm)) =
1

(−p)eMm(−py − ε f ).

In the cases e = 2 (see [1] or [3]) and e = 3 (see [5]), it turns out that Mm = Gm.
Moreover, we have the following explicit formulas:

e = 2 [1, formula (4.5)]:

G1(y) = y2 − y +
1 − (−1) f p

4
and, for m ≥ 3,

Gm(y) = y2 −
(−1) f 22ω1−2 p

m2 . (2.9)

e = 3 [5, Theorems 7 and 11]:

G1(y) = y3 − y2 − f y +
p(L + 3) − 1

27
and, for m ≥ 3,

Gm(y) = y3 −

3
4 pu2

m2 y +
v

m3 , (2.10)

with u = u(m) = 2.3((ω1+ω2)/2)−1 and

v = v(m) =


1
8

(−1)(ω2−ω1)/2 pu3L if ω2 − ω1 is even,

3
√

3
8

(−1)(ω2−ω1−1)/2 pu3M if ω2 − ω1 is odd,

where L and M are the unique integers satisfying 4p = L2 + 27M2, L ≡ 1 mod 3 and
(L + 9M)/(L − 9M) ≡ (g2)(p−1)/3 mod p.

3. Some results on cyclotomic numbers and Gaussian periods

Let p be an odd prime and let e and f be positive integers such that p = 1 + e f . Let
g be a primitive root modulo p. Gauss introduced (see [6]) the cyclotomic numbers of
order e given by

(i, j)e = #{u ∈ (Z/pZ)∗, u ∈ C(g)
i and 1 + u ∈ C(g)

j }, 0 ≤ i, j ≤ e − 1.
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For i, j ∈ Z, define (i, j)e by

(i, j)e = (i mod e, j mod e)e.

We start by listing some properties of the cyclotomic numbers (see [12]). For all
i, j ∈ Z,

(i, j)e =

{
( j, i)e if f is even,
( j + 1

2 e, i + 1
2 e)e if f is odd,

(i, j)e = (−i, j − i)e,
e−1∑
k=0

(i, k)e = f − δi,s, (3.1)

and
e−1∑
k=0

(k, j)e = f − δ0, j,

where δ is Kronecker’s delta and s := s( f ) = 0 or e/2 according as f is even or odd.
Let η0, η1, . . . , ηe−1 be the Gaussian periods of degree e as defined in (2.5) and let Fe

(cf. (2.6)) be their common minimal polynomial. It is well known that determining the
coefficients of the polynomial Fe is intimately connected to the cyclotomic numbers
of order e. Here is a property that characterizes Gaussian periods and cyclotomic
numbers (see [6, formula (7)]):

ηiηi+k =

e−1∑
h=0

(k, h)eηi+h + f δk,s. (3.2)

In the sequel, we need the following lemma.

Lemma 3.1. For i, j, k ∈ Z, let Θi, j,k be the quantity defined by

Θi, j,k =

e−1∑
`=0

η`η`+iη`+ jη`+k.

Then

Θi, j,k =


p f δk,sδ j−i,s − f 3 + p

e−1∑
h=0

(k, h)e(i − h, j − h)e if f is even,

p f δk,sδ j−i,s − f 3 + p
e−1∑
h=0

(k, h)e(i − h, j − h + 1
2 e)e if f is odd.

(3.3)

Proof. For k, k′ ∈ Z, we define ∆k and Ωk,k′ as follows:

∆k =

e−1∑
i=0

ηiηi+k (3.4)
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and

Ωk,k′ =

e−1∑
i=0

ηiηi+kηi+k′ . (3.5)

Hence (cf. [6, formula (20)]),
∆k = pδk,s − f (3.6)

and (cf. [12, formula (15)])

Ωk,k′ =

{
− f 2 + (k, k′)e p if f is even,
− f 2 + (k, k′ + 1

2 e)e p if f is odd. (3.7)

In view of the fact that ηd = ηd mod e, it is clear that for all u ∈ Z,
∑u+e−1

i=u ηiηi+kηi+k′ =∑e−1
i=0 ηiηi+kηi+k′ . Consequently,

Ωk,k′ =

e−1∑
i=0

ηiηi−kηi+k′−k = Ω−k,k′−k. (3.8)

For v, k, k′ ∈ Z, let Ev,k and Hv,k,k′ be the quantities defined by

Ev,k =

e−1∑
i=0

ηi+vηi+k,

Hv,k,k′ =

e−1∑
i=0

ηi+vηi+kηi+k′ .

Arguing as in (3.8),
Ev,k = ∆k−v

and
Hv,k,k′ = Ωk−v,k′−v.

Using (3.2),

Θi, j,k =

e−1∑
`=0

η`+iη`+ j

( e−1∑
h=0

(k, h)eη`+h + f δk,s

)
=

e−1∑
h=0

(k, h)eHh,i, j + f δk,sEi, j

=

e−1∑
h=0

(k, h)eΩi−h, j−h + f δk,s∆ j−i.

Thus, to obtain (3.3), one just uses (3.7), (3.6) and (3.1). �
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4. Computation of the polynomial Gm(y) in the case e = 4

Let p be an odd prime, let f be the order of 2 modulo p and write p = 1 + e f , where
e is a positive integer. Let P1, P2, . . . , Pe be all irreducible polynomials of order p and
degree f over F2. For all `, 1 ≤ ` ≤ e, let A` be the even partition set satisfying (1.1)
and S (A`,m) be the 2-adic integer defined by (1.2). Recall that Gm (cf. Section 2)
denotes the minimal polynomial of S (Ae,m). As will be seen, one of the key tools
to get our main result is the classical theory of cyclotomy. In particular, one can wish
to look at a special application of this theory with the intention of finding explicit
formulas of the polynomial Gm(y) for different values of e. Indeed, from (2.5)–(2.7)
and (2.8), it is clear that

G1(y) = (−1)eFe(−y).

For m ≥ 3, as was already mentioned in (2.9) and (2.10), a formula was found for
the polynomial Gm(y) in the cases e = 2 and e = 3. In what follows, we assume that
the prime p is such that e = 4 (for example, p = 113, 281, 353, 577, 593, 617, 1033, . . .)
and construct the polynomial Gm(y). For that, we use cyclotomic numbers of order 4
and Gaussian periods.

Hence, by using the formula of F4(y) obtained by Gauss (see [8]),

G1(y) = y4 − y3 − 1
8 (3p − 3)y2 − 1

16 [(2a − 3)p + 1]y + 1
256 [p2 − (4a2 − 8a + 6)p + 1],

where a is the unique integer such that

p = a2 + 4b2, a ≡ 1 mod 4.

The last conditions determine a uniquely, and b up to sign. Note that the ambiguity of
the sign b is solved in [7, Theorem 2] by

g(p−1)/4 ≡
a
2b

mod p.

Let g be a primitive root modulo p and recall that

(Z/pZ)∗ = C
(g)
0 ∪ C

(g)
1 ∪ C

(g)
2 ∪ C

(g)
3 ,

where the C(g)
i are the cyclotomic classes of degree 4 and conductor p. By observing

that the class C(g)
0 contains all the 4th-power residues and that f = (p − 1)/4 is the

order of 2 modulo p, one can conclude that 2 belongs to C(g)
0 , which leads to the fact

that 2 is square modulo p. Since 2 is a quadratic residue of primes of the form 1 + 8k
and 7 + 8k, it follows that f must be even.

For a positive integer n and any integer r, let us define

J(n, r) =

n∑
k=0

k≡r mod 4

(
n
k

)
(−1)k. (4.1)

Then we can state the following result.
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Lemme 4.1. For n fixed, the sequence (J(n, r))r≥0 is periodic with period 4. Moreover,

J(n, r) = 2n/2−1 cos
(
r
π

2
+ n

π

4

)
+ (−1)r2n−2. (4.2)

Proof. The statement follows from the formula (see [11, page 41])
n∑

k=0
k≡r mod c

(
n
k

)
=

1
c

c−1∑
j=0

(
2 cos

(
j
π

c

))n
cos

(
j(n − 2r)

π

c

)
applied for c = 4. �

Before giving the formula of Gm, we need the following result.

Corollary 4.2. Let P0 be the set defined by (2.2), let m ≥ 3 be an element of P0 and
assume that m̃ has the following complete factorization:

m̃ = q1,1q1,2 · · · q1,ω1 q2,1q2,2 · · · q2,ω2 q3,1q3,2 · · · q3,ω3 , (4.3)

where, for i, 1 ≤ i ≤ 3, ωi = ωi(m) is the integer defined by (2.1) and qi, j ∈ C
(g)
i . Let αh

be the integer given by (2.4). Then, for all h, 0 ≤ h ≤ 3,

αh = (−1)hρ + γ cos
(
λπ

4
+ h

π

2

)
, (4.4)

with

λ = λ(m) = ω1 − ω3, (4.5)
γ = γ(m) = 2((ω1+ω3+2ω2)/2)−1 (4.6)

and
ρ = ρ(m) = 2ω1+ω3−2κ(ω2), (4.7)

where

κ(ω2) =

{
1 if ω2 = 0,
0 otherwise.

Proof. First let us suppose that ω1 , 0, ω2 , 0 and ω3 , 0. From (2.4), (4.3) and (4.1),

αh =

ω1∑
i1=0

(−1)i1

(
ω1

i1

) ω2∑
i2=0

(−1)i2

(
ω2

i2

) ω3∑
i3=0

i1+2i2+3i3≡h mod 4

(−1)i3

(
ω3

i3

)

=

ω1∑
i1=0

(−1)i1

(
ω1

i1

) ω2∑
i2=0

(−1)i2

(
ω2

i2

)
J(ω3, i1 + 2i2 − h). (4.8)

Denote the inner sum in (4.8) by K(i1, ω2, ω3, h). Then

K(i1, ω2, ω3, h) =

3∑
r=0

ω2∑
i2=0

i2≡r mod 4

(−1)i2

(
ω2

i2

)
J(ω3, i1 + 2i2 − h)

=

3∑
r=0

J(ω2, r)J(ω3, i1 + 2r − h).
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Using (4.2) and after simplifications,

K(i1, ω2, ω3, h) = 2((ω3+2ω2)/2)−1 cos
(
(i1 − h)

π

2
+ ω3

π

4

)
. (4.9)

Since

αh =

ω1∑
i1=0

(−1)i1

(
ω1

i1

)
K(i1, ω2, ω3, h) =

3∑
r=0

K(r, ω2, ω3, h)J(ω1, r),

arguing as above and using (4.9),

αh = 2((ω1+2ω2+ω3)/2)−2
3∑

r=0

cos
(
(r − h)

π

2
+ ω3

π

4

)
cos

(
r
π

2
+ ω1

π

4

)
.

By transforming the cosine product in the sum, we get (4.4). This proves Lemma 4.2
when ω1ω2ω3 , 0. Now, when ω1ω2ω3 = 0, by following exactly the same arguments
as above with suitable modifications, we obtain (4.4). �

Theorem 4.3. Let m ≥ 3 be an element of P0 and let Gm(y) be the minimal polynomial
of S (A4,m). Let λ, ρ and γ be the quantities, respectively, defined by (4.5), (4.7) and
(4.6). Then

Gm(y) =
1

m4 (m4y4 + m2ν2y2 + mν3y + ν4),

with

ν2 = −(2ρ2 + γ2)p, (4.10)

ν3 =

{
(−1)(λ/2)+12ργ2 pa if λ is even,
(−1)(λ−1)/24ργ2 pb if λ is odd, (4.11)

ν4 =

{
p2ρ2(ρ2 − γ2) + pb2γ4 if λ is even,
p2ρ2(ρ2 − γ2) + 1

4 pa2γ4 if λ is odd, (4.12)

where the integers a and b are given by

p = a2 + 4b2, a ≡ 1 mod 4 and g(p−1)/4 ≡
a

2b
mod p.

Moreover, S (A1,m), S (A2,m), S (A3,m) and S (A4,m) are the roots of the polynomial
Gm(y).

Proof. Recall that Mm(y) is the polynomial of Q[y] whose roots are S (A1,m),
S (A2,m), S (A3,m) and S (A4,m). We claim that Gm(y) =Mm(y). For that, let σ
be the automorphism of Q(η0) over Q given by σ(ηi) = ηi+1. Then σ maps θ0 onto θ1,
θ1 onto θ2, θ2 onto θ3 and θ3 onto θ0, which means that the θi (0 ≤ i ≤ 3) are conjugates.
Furthermore, to prove thatMm(y) is the minimal polynomial of S (Ae,m), it suffices to
prove that the θi (0 ≤ i ≤ 3) are distinct. For that, first note that θ0 , θ1, since otherwise
σ(θ0) = θ0, which is impossible because of the fact that θ0 < Q. Now suppose that
θ0 = θ2. Using the fact that η0, η1, η2 and η3 are linearly independent, it follows that
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α0 = α2 and α1 = α3, which is impossible (this can be easily seen by observing the
formula giving αh (cf. (2.4))). Finally, the equality θ0 = θ3 is also impossible, since,
by applying σ, we obtain θ0 = θ1.

We denote byσk, 1 ≤ k ≤ 4, the elementary symmetric polynomials in four variables
of degree k. Now, using (2.8), we can write

Gm(y) =
1

m4

3∏
i=0

(my + θi) =
1

m4 (m4y4 + m3ν1y3 + m2ν2y2 + mν3y + ν4),

with
νk = σk(θ0, θ1, θ2, θ3); 1 ≤ k ≤ 4 (4.13)

and (cf. (2.7))

θi =

3∑
h=0

αhηδ−h+i; 0 ≤ i ≤ 3. (4.14)

Computation of ν1: from (4.13) and (4.14),

ν1 =

3∑
h=0

αh

3∑
i=0

ηδ−h+i.

Since ηδ−h+i = ηδ−h+i mod 4, it follows that for a fixed h,
∑3

i=0 ηδ−h+i =
∑3

i=0 ηi. On the
other hand from (2.4),

∑3
h=0 αh =

∑
d|m̃, µ(d). Hence,

ν1 =

(∑
d|m̃

µ(d)
)( 3∑

i=0

ηi

)
= 0,

since the first sum vanishes for m̃ , 1.
Computation of ν2: using (4.14) and (4.4), expanding in (4.13) and by grouping the

product of the form ηiηi+k,

ν2 =

2∑
k=0

Vk∆k,

where the ∆k are defined by (3.4), V0 = −2ρ2 − γ2, V1 = 4ρ2 and V2 = −V0 − V1 =

−2ρ2 + γ2. Hence, by using (3.6), we get (4.10).
Computation of ν3: the same calculation as in ν2 gives

ν3 =

3∑
k=0

UkΩ0,k + UΩ1,2,

where the Ω`,k are defined by (3.5) and U0,U1,U2,U3,U are quantities depending
solely upon the αh, which can be simplified by (4.4) to find that

U0 =

{
(−1)λ/22ργ2 if λ is even,
0 if λ is odd,
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U1 =

{
−(−1)λ/22ργ2 if λ is even,
(−1)(λ−1)/24ργ2 if λ is odd,

U2 =

{
−(−1)λ/22ργ2 if λ is even,
0 if λ is odd,

U3 =

{
−(−1)λ/22ργ2 if λ is even,
−(−1)(λ−1)/24ργ2 if λ is odd,

U =

{
(−1)λ/24ργ2 if λ is even,
0 if λ is odd.

Hence, (4.11) follows from (3.7) and the fact that for f even (cf. [6] and [7]),

(1, 3)4 = (2, 3)4 = (1, 2)4, (1, 1)4 = (0, 3)4,

(2, 2)4 = (0, 2)4, (3, 3)4 = (0, 1)4,

16(0, 0)4 = p − 11 − 6a, 16(0, 1)4 = p − 3 + 2a + 8b, 16(0, 2)4 = p − 3 + 2a,

16(0, 3)4 = p − 3 + 2a − 8b, 16(1, 2)4 = p + 1 − 2a.

Computation of ν4: doing as above, the calculation yields

ν4 =

2∑
j=0

3∑
k= j

U j,kΘ0, j,k + VΘ1,2,3,

where the U j,k and V are quantities depending solely upon the αh, which, with the use
of (4.4), can be written as follows:

U0,0 =

{
ρ4 − ρ2γ2 if λ is even,
ρ4 − ρ2γ2 + 1

4γ
4 if λ is odd,

U0,1 = −4ρ4 + 2ρ2γ2

U0,2 =

{
4ρ4 if λ is even,
4ρ4 − γ4 if λ is odd,

U0,3 = −4ρ4 + 2ρ2γ2,

U1,1 =

{
6ρ4 − 2ρ2γ2 + γ4 if λ is even,
6ρ4 − 2ρ2γ2 − 1

2γ
4 if λ is odd,

U1,2 = −12ρ4 − 2ρ2γ2,

U1,3 =

{
12ρ4 − 2γ4 if λ is even,
12ρ4 + γ4 if λ is odd,

U2,2 =

{
3ρ4 + ρ2γ2 if λ is even,
3ρ4 + ρ2γ2 + 3

4γ
4 if λ is odd,

U2,3 = −12ρ4 − 2ρ2γ2,

V =

{
6ρ4 + 2ρ2γ2 + γ4 if λ is even,
6ρ4 + 2ρ2γ2 − 1

2γ
4 if λ is odd.
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Hence, from (3.3),

ν4 =


(− 3

8 p − 5
2 b2 − 5

8 a2)pρ2γ2

+ ( 3
8 p + 5

2 b2 + 5
8 a2)pρ4 + pb2γ4 if λ is even,

(− 3
8 p − 5

2 b2 − 5
8 a2)pρ2γ2 + ( 3

8 p + 5
2 b2 + 5

8 a2)pρ4

+ ( 3
32 p − 3

8 b2 + 5
32 a2)pγ4 if λ is odd,

which, by using the fact that p = a2 + 4b2, gives (4.12). �

Remark 4.4. To show the irreducibility over Q of the polynomial Mm(y), one also
could simply use Eisenstein’s criterion, since in

m4Mm(y) = m4y4 + m3ν1y3 + m2ν2y2 + mν3y + ν4 ∈ Z[y]

all of the coefficients except m4 are divisible by the prime p, but ν4 is not divisible
by p2.

Example p = 113. In this case e = 4, f = 28 and we can take g = 3. The four
irreducible polynomials over F2[z] of order 113 are

P1(z) = z28 + z25 + z24 + z22 + z21 + z15 + z14 + z13 + z7 + z6 + z4 + z3 + 1,
P2(z) = z28 + z26 + z22 + z20 + z19 + z18 + z14 + z10 + z9 + z8 + z6 + z2 + 1,
P3(z) = z28 + z23 + z22 + z20 + z17 + z16 + z15 + z14 + z13 + z12 + z11 + z8 + z6 + z5 + 1,
P4(z) = z28 + z27 + z25 + z24 + z23 + z22 + z20 + z19 + z18 + z15 + z14 + z13

+ z10 + z9 + z8 + z6 + z5 + z4 + z3 + z + 1.

For `, 1 ≤ ` ≤ 3, let A` = A(P`) be the set defined by (1.1). Since p = a2 + 4b2,
a ≡ 1 mod 4, where the sign of b is chosen so that g(p−1)/4 ≡ a/2b mod p, we find that
a = −7 and b = 4.

• m = 1

Gm(y) y4 − y3 − 42y2 + 120y − 64
The elements of the form 2km ofA1 4, 8, . . . , 2998, 2999, . . .

The elements of the form 2km ofA2 2, 4, 8, 32 . . . , 2996, . . .

The elements of the form 2km ofA3 8, 32, . . . , 2996, . . .

The elements of the form 2km ofA4 1, 2, 4, 8, 16 . . . , 2998, 2999, . . .

• m = 11

Gm(y) 1
14 641 (14 641y4 − 13 673y2 + 1808)

The elements of the form 2km ofA1 44, 176, 1408, . . . , 2997 · 11, 2998 · 11,
2999 · 11, . . .

The elements of the form 2km ofA2 11, 22, 176, 352, . . . , 2998 · 11, . . .
The elements of the form 2km ofA3 44, 88, 352, 704, . . . , 2996 · 11, . . .
The elements of the form 2km ofA4 11, 44, 88, 704, 1408, . . . , 2997 · 11,

2 · 11999 · 11, . . .
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• m = 165 = 3 · 5 · 11

Gm(y) 1
741 200 625 (741 200 625y4 − 12 305 700y2 + 28 928)

The elements of the form 2km ofA1 1320, 2640, 10 560, . . . , 2997 · 165, 2998 · 165, . . .
The elements of the form 2km ofA2 330, 1320, 2640, 5280, . . . , 2997 · 165,

2998 · 165, 2999 · 165, . . .
The elements of the form 2km ofA3 1320, 5280, . . . , 2999 · 165, . . .
The elements of the form 2km ofA4 330, 660, 10 560, . . . , 2996 · 165, . . .
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