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Abstract

Let M be a regular map of genus g > 1 and X be the underlying Riemann surface. A reflection of M
fixes some simple closed curves on X, which we call mirrors. Each mirror passes through at least two of
the geometric points (vertices, face-centers and edge-centers) of M. In this paper we study the surfaces
which contain mirrors passing through just two geometric points, and show that only Wiman surfaces
have this property.
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1. Introduction

A compact Riemann surface X of genus g > 1 is called symmetric if it admits an
anti-conformal involution o : X — X, which is called a symmetry of X. The fixed-
point set of o consists of k disjoint simple closed curves on X, and these curves are
called the mirrors of o. Here k is an integer and by a classical theorem of Harnack
0<k<g+1. Let M be aregular map on X. (Maps and regular maps are described
in the next section.) A reflection of M is a symmetry of X that leaves M invariant and
fixes some mirrors. It follows from [8] that each mirror of a reflection of M passes
through at least two of the geometric points of M. By geometric points we mean
the vertices, face-centers and edge-centers of M. In this paper we study the surfaces
which contain mirrors passing through just two geometric points, and show that only
Wiman surfaces have this property. (We briefly describe these surfaces in the next
section.) This result is, in fact, a new characterization of these surfaces.

2. Preliminaries

2.1. NEC groups A discrete subgroup of PSL(2, R), the group of conformal
isometries of the hyperbolic plane H, is called a Fuchsian group. A discrete subgroup
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of PGL(2, R), the group of isometries of H, with compact quotient space is called a
non-Euclidean crystallographic (NEC) group.

Let T be a hyperbolic triangle with angles 7/, w/m and 7 /n, where each of [, m
and 7 is a positive integer greater than one and 1// + 1/m + 1/n < 1. Such a triangle
is called a (I, m, n)-triangle. The group I'* generated by the reflections in the sides
of T is a NEC group and is called the NEC triangle group I'*(l, m, n), which has a
presentation

(p.g. 1 pP=q*=r*=(pg) = (@r)" = (rp)" = 1).

The subgroup I' of I'* consisting of conformal isometries is called the Fuchsian
triangle group T'[l, m, n], and it has a presentation

n

x,y,z|xl=y"=7"=xyz=1).

See [7, 10] for details.

2.2. Automorphisms of Riemann surfaces A compact Riemann surface X of genus
g > 1 can be expressed in the form H/ €2, where €2 is a torsion-free Fuchsian group.
An automorphism of X is a conformal or anti-conformal homeomorphism f: X — X.
All automorphisms of X form a group under composition of maps and we denote it
by Aut* X and the subgroup consisting of conformal automorphisms by Aut™ X. The
groups Aut™ X and Aut* X are isomorphic to N1 (£2)/ 2 and N*(€)/ €, respectively.
Here N1 (€2) and N*(2) denote the normalizers of Q in PSL(2, R) and PGL(2, R),
respectively. Any group G of automorphisms of X may be lifted to an NEC group
A acting on H. If G does not contain sense-reversing automorphisms, then A is
Fuchsian. In either case there is an epimorphism from A to G with kernel 2. Such an
epimorphism is called smooth.

2.3. Maps and regular maps A map M on a Riemann surface X is an embedding of
a finite connected graph G into X such that the components of X — G, which are called
the faces of M, are each homeomorphic to an open disc. In our maps we require X to
be orientable, compact, connected and without boundary. The genus of M is defined
to be the genus of the underlying surface X. If M has genus g and consists of F faces,
E edges and V vertices, then we have

V+F—E=2-2g,

which is known as the Euler—Poincaré formula. A dart of M is a pair, consisting of a
vertex v and an edge directed towards v. In our case an edge will be homeomorphic to
either a closed interval or a circle. In the latter case it will be called a loop. In either
case an edge will give two darts. However, we sometimes require an edge to have just
one vertex and one dart. Such an edge is called a free edge. In Figure 1, (a) is an edge
with two darts, (b) is a loop and (c) is a free edge. Here M is said to be of type (m, n)
if every face of M has n sides and m darts meet at every vertex. An automorphism of
M is an automorphism of X that leaves M invariant and preserves incidence. If M
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(a) (0) ()

FIGURE 1. (a) An edge with two darts. (b) A loop. (c) A free edge.

admits an involution o that fixes the midpoint of an edge and interchanges the two darts
without interchanging the two neighboring faces, then M is called reflexible and o is
called a reflection of M. All automorphisms of M form a group under composition.
We denote this group and its subgroup consisting of conformal automorphisms by
Autt™ M and Aut™ M, respectively. Here M is said to be regular if Aut™ M is
transitive on the darts. It is clear that if M is regular, then the number of the darts is
equal to |Aut™ M|. So, if M is of type (m, n) and regular, then M has |Aut™ M|/2
edges, |Aut™ M|/m vertices and |Aut™ M|/n faces.

In [4], it was shown that if M is a regular map of type (m, n) on a Riemann surface
X =Hy/ <, then €2 is normal in the Fuchsian triangle group I'[2, m, n]. If T is the
normalizer of © in PSL(2, R), then Aut™ M is isomorphic to Autt X, otherwise
Aut™ M is a proper subgroup of Aut* X.

A Fuchsian group is called maximal if it is not contained in any other Fuchsian
group. A regular map M of type (m, n) is called maximal if the Fuchsian triangle
group I'[2, m, n] is maximal. A complete list of nonmaximal Fuchsian groups is given
in [9].

A map M™ on the sphere is called an m-star map if it consists of a single vertex
v and m free edges incident to v. It is clear that M™ has a single face which can
be regarded as an m-gon. We assume that Aut™ M* is isomorphic to C,, whose
generators fix the unique vertex and the face-center, and cyclically permute the free
edges, where C,, denotes the cyclic group of order m.

For more details on maps and regular maps, the reader might consult [4].

2.4. Wiman surfaces According to a classical theorem of Wiman [13], the largest
possible order of an automorphism of a Riemann surface of genus g > 1 is 4g + 2
and the second largest possible order is 4g. (Also, see [3].) It is known that the
corresponding surfaces are obtained as kernels of smooth homomorphisms of the
Fuchsian triangle groups I'(2, 2g + 1, 4g + 2] and I'[2, 4g, 4g] onto C4g42 and Cy,,
respectively. Following Kulkarni [5, 6] we call these surfaces Wiman surfaces of
types I and II, respectively. Thus, these surfaces underly regular maps of types
(2g +1,4g 4+ 2) and (4g, 4g), respectively. The Wiman surface of type II of genus
g also underlies a regular map of type (4, 4g). This follows from the inclusion
relationship I'[2, m, m] < T'[2, 4, m] given in [9].

3. Patterns and rotary automorphisms

Let M be a reflexible regular map of type (m, n) of genus g > 1 and X =H/Q
be the underlying Riemann surface. By [11], €2 is normal in the NEC triangle group

https://doi.org/10.1017/5S0004972709000598 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972709000598

[4] A new characterization of Wiman surfaces 363

(2, m, n) and we have a triangulation of X with |[Aut™ M| (2, m, n)-triangles. If
Aut® M is isomorphic to Aut™ X, then the union of the sides of these triangles gives
us all of the mirrors of the symmetries of X. If Aut™ M is a proper subgroup of
Aut* X, then M is not maximal and the sides of the triangles give us only those
mirrors fixed by the reflections of M.

Following Coxeter [2], let us label the vertices, edge-centers and face-centers of M
with 0, 1 and 2, respectively. Then we see that each corner of a (2, m, n)-triangle T
on X is either 0, 1 or 2. It follows that each side of T corresponds to one of the pairs
01, 02 and 12. We call the side of T joining the corners 0 and 1 the 01-side. We call
the other sides of 7' the 02-side and the 12-side in the same manner. Let P, Q and R
denote the reflections in the sides of 7', and let them satisfy

PP=0*=R*=(PQ)*=(QR)" =(RP)"=1. 3.1)

The reflections P, Q and R generate Autt M.  Since 1/m+1/n <1/2,
Equation (3.1) is not a presentation for Aut* M and hence to obtain a presentation
we need at least one more relation.

A mirror M on X passes through some geometric points of M and these geometric
points form a periodic sequence which we call the pattern of M. For example, each
mirror on the sphere fixed by a reflection of the map (3, 5) has pattern 010212010212
which we abbreviate to (010212)2 (see [2]). Each repeated part of a pattern is called a
link, and the number of links is called the order of the pattern. In the above example,
010212 is a link and the pattern has order two.

Now let M be a mirror on X and let the order of the pattern of M be greater than one.
As shown in [8], there exist two conformal automorphisms of M, each of which fixes
M setwise and cyclically permutes the links of the pattern of M. These automorphisms
are inverses of each other and they rotate M in opposite directions. They are called
the rotary automorphisms of M. If the order of the pattern of M is one, that is, the
pattern of M consists of one link, then M has only one rotary automorphism, which is
the identity.

If a mirror passes through only two geometric points, then we call it a mirror with
a short pattern. Clearly, a short pattern is either 01, 02 or 12 (or in reverse order).

4. The main result

In this section, we work out the mirrors on surfaces with short patterns. First, we
begin with those lying on the sphere and tori.

Let M* be an m-star map on the sphere. It can easily be seen that if m is odd, then
each reflection of M* fixes a mirror with pattern 021. If m is even, then the pattern of
the mirror of each reflection of M™* is either 02, which is a short pattern, or 1012. The
other regular maps on the sphere are well known and it is not difficult to see that they
do not admit reflections fixing mirrors with short patterns.

It is known that there are two regular maps of genus one (up to duality), which are
of types (4, 4) and (3, 6). The underlying surfaces are known as the square and the

https://doi.org/10.1017/5S0004972709000598 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972709000598

364 A. Melekoglu [5]

rhombic tori and they can be obtained by identifying the opposite sides of a square
and a regular hexagon in the Euclidean plane, respectively. Clearly, the square torus
underlies a regular map M, which is of type (4, 4) and has one face, one vertex and
two edges. Since M has a single vertex, its edges are loops. By examining the picture
of M it can be seen that M admits six reflections whose mirrors have patterns 01,
02 and 12 such that each pattern is shared by two mirrors. Similarly, the rhombic torus
underlies a regular map M of type (3, 6) with one face, two vertices and three edges.
The map M5 admits six reflections whose mirrors have patterns 12 and 0102. In this
case each pattern is shared by three mirrors.

On the square torus we can find infinitely many regular maps of types (4, 4) which
do not admit reflections fixing mirrors with short patterns. This is because in the
Euclidean plane there exist similar polygons of different sizes. As is well known, this
situation does not occur in the sphere and the hyperbolic plane. A similar discussion
applies to the rhombic torus.

THEOREM 4.1. For every g > 1, only the Wiman surfaces of genus g contain mirrors
with short patterns.

PROOF. Let M be a regular map of type (m, n) of genus g > 1 and let X = H/ Q2 be
the underlying Riemann surface. Suppose that M is a mirror on X with a short pattern.
Then the pattern of M is either 01, 02 or 12.

CASE 1 (M has pattern 01). It follows from [8] that m is even. Let T be a (2, m, n)-
triangle on X whose 01-side lies on M. Let P, Q and R be the reflections of M in
the sides of T, and let them satisfy (3.1). They generate Autt M and by [8] M has
a rotary automorphism (RQ)"™/>~DRP. Since the order of the pattern of M is one,
(RQ)"™/2=D R P is the identity. From this we have (R Q)"/>~D R = P and this means
that P is redundant. Thus, Aut™ M is generated by Q and R, and is isomorphic to
D,,, the dihedral group of order 2m. Obviously, QR generates the group Aut™ M,
which is isomorphic to C,. Since |Autt M| =m, M has one vertex, m/n faces and
m/2 edges. It follows from the Euler—Poincaré formula that m cannot be greater than
2n, otherwise we would have m > 4g 4 2. However, this is not possible as the order
of an automorphism of a compact Riemann surface of genus g > 1 cannot exceed
4g + 2 (see [3, 13]). Now if m = 2n, then by the Euler—Poincaré formula we find that
m =4g +2andn = 2g + 1. This implies that M is of type (4g + 2, 2g + 1) and X is
the Wiman surface of type 1. Similarly, if m = n, then by the Euler—Poincaré formula
we find that m = n = 4g. Clearly, M is of type (4g, 4g) and X is the Wiman surface
of type II.

CASE 2 (M has pattern 12). According to [8], n is even and hence every face of M is
an even-sided polygon. We may suppose that M is a geodesic arc joining the midpoints
of a pair of opposite edges of a face, say F, of M. Itis clear that every pair of opposite
edges of F are congruent under 2. Thus, M has a single face and so |Autt M| =n. It
follows from the Euler—Poincaré formula that » cannot be greater than 2m, otherwise
we would have n > 4g + 2 and this is not possible as we pointed out above. Now
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FIGURE 2. Illustration showing mirror M, orthogonal to M at the corner 0 of 7" and fixed by the reflection
(QR)(/H/’_’fl) Q

following the same discussion as in Case 1, we can see that X is the Wiman surface of
type I if n = 2m and the Wiman surface of type Il if n = m.

CASE 3 (M has pattern 02). It follows from [8] that m and n are both even. We may
suppose that M is a diagonal of a face F' of M joining two opposite vertices. Let T
be a (2, m, n)-triangle whose 02-side lies on M. Let P, Q and R be the reflections of
M in the sides of 7', and let them satisfy (3.1). As we pointed out in Section 3, these
reflections generate Aut™ M. Since n is even, there is a mirror M; that intersects
M orthogonally at the corner 2 of T and is fixed by the reflection (PR)"/2~Dp,
Similarly, there is a mirror M; that is orthogonal to M at the corner 0 of 7 and
is fixed by the reflection (OR)™/2=D 0 (see Figure 2). By [8], the automorphism
(PRY"2=Dp(QR)™/?>~DQ is a rotary automorphism for M. Clearly, it is a
product of the reflections (PR)™/2=D P and (QR)™/2=D Q. which fix M; and M>,
respectively. Since the order of the pattern of M is one, (P R)"2=Dp(QR)™/2=D g
is the identity and, hence, (RP)"/>~D = P(QR)™/>~D Q. Obviously, (RP)"/?>~D
is a rotation and so is P(QR)™/2=D Q. Let M3 be the mirror containing the 12-side
of T, which is fixed by P. As M5 is fixed by (QR)™/>~DQ, and P(QR)"™/>~D 0 is
a rotation, M> and M3 intersect at a point A. Since M3 has pattern (12)]‘, the point A
is either 1 (edge-center) or 2 (face-center), where k is a positive integer. It is clear that
the internal angle of a (2, m, n)-triangle at an edge-center is 77 /2 and so A cannot be
an edge-center. Thus, A is a face-center and by elementary hyperbolic geometry we
can show that m = 4.

If we repeat this process, we obtain a fundamental polygon F* for . It is a regular
hyperbolic n-gon and has twice the area of F. It is clear that the opposite sides of F*
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FIGURE 3. The face of M divided into 8g (2, 4g, 4g)-triangles.

are congruent under 2. So M has n edges, n/2 vertices and two faces. By the Euler—
Poincaré formula we obtain n = 4g and, hence, M has type (4, 4g). This means that
X is the Wiman surface of type II. O

REMARK 4.2. Let S =H/ Q2 be the Wiman surface of type II of genus g > 1. It is
known that S can be obtained by identifying the opposite sides of a regular hyperbolic
4g-gon whose angles equal to 7w /2g. All of the corners of the polygon become a single
point on S under this identification. We can easily observe that S underlies a regular
map M whose edges and vertices correspond to the sides and corners of the polygon,
respectively. Clearly, M has one face, one vertex and 2g edges. The face of M can
be divided into 8g (2, 4g, 4g)-triangles as shown in Figure 3, where g = 3. So, M/
has type (4g, 4g). From Figure 3, it can be deduced that M| admits 6g reflections
whose mirrors have patterns 01, 02 and 12 such that each pattern is shared by 2g
mirrors. Here § also underlies a regular map M> of type (4, 4g) and this follows
from the inclusion relationship I'[2, 4g, 4g] < I'[2, 4, 4g] given in [9] (see Figure 4).
Note that the edges of M and M are illustrated by thick line segments. It is not
difficult to see that M> has two faces, 2¢ vertices and 4g edges. As shown in Figure 4,
each face of M; can be divided into 8g (2, 4, 4g)-triangles and so S contains 16g
such triangles. It can be deduced from Figure 4 that M admits 8g reflections whose
mirrors have patterns 02, (01)2 and (12)? such that these patterns are shared by 4g, 2g
and 2g mirrors, respectively. It follows from [9] that in the cases where g > 2 the group
I'[2, 4, 4¢] is maximal and so is M. For g = 2 the group I'[2, 4, 8] is contained in
I'[2, 3, 8] with index three and €2 is normal in I'[2, 3, 8] (see [1] and [9]). Thus, S
underlies a regular map M3 of type (3, 8). According to [9], the group I'[2, 3, 8] is
maximal and so is M3. It follows from [8] that the reflections of M3 fix mirrors with
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FIGURE 4. The inclusion relationship I'[2, 4g, 4g] < I'[2, 4, 4g] given in [9].

patterns (12)¢ and (0102)”, where a and b are positive integers. Here a # 1, otherwise
M3 would have just one face. Clearly, M3 has more than one face and so the mirrors
fixed by the reflections of M3 do not have short patterns.

The following results follow immediately from Theorem 4.1 and Remark 4.2.
Corollary 4.4 is also given in [12]. See [12, Theorem 4.1].

COROLLARY 4.3. Let M be a regular map of genus g > 1 on a Riemann surface X
and let M has a loop. Then either M is of type (4g + 2, 2g + 1) and X is the Wiman
surface of type I, or M is of type (4g, 4g) and X is the Wiman surface of type II.

COROLLARY 4.4. Let M be a regular map of genus g > 1 and X be the underlying
Riemann surface. Suppose that M has a single face. Then:

(1)  if Mismaximal, then M is of type (2g + 1, 4g + 2) and X is the Wiman surface
of type I;

(i) if M is nonmaximal, then M is of type (4g, 4g) and X is the Wiman surface of
type I1.
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