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TORSION POINTS OF DRINFELD MODULES

SUNGHAN BAE AND JAKYUNG KOO

ABSTRACT.  The finiteness of K-rational torsion points of a Drinfeld module of
rank 2 over a locally compact complete field K with a discrete valuation is proved.

0. Introduction. In this note we show the finiteness of the K-rational torsion points
of a Drinfeld module of rank 2 over K where K is a locally compact complete field with
a discrete valuation. Then as an easy consequence, we get the finiteness of torsion points
when X is a global function field, which is the analogue of the finiteness of the K-rational
torsion points of an elliptic curve defined over a number field K.

Throughout the paper we fix the following notations unless otherwise stated;

A =[F,[T], g apower of a prime p.
K = complete field with respect to a discrete valuation v.
R = the ring of integers of K
m = the maximal ideal of R
m = a uniformizer of n.

k = R/m, the residue field.

1. Preliminary. In this note we mean by a Drinfeld module over K a Drinfeld A-
module of rank 2, unless otherwise stated. Thus a Drinfeld module ¢ is completely de-
termined by

¢y =T +gT+ AT,

We call A the discriminant of ¢ and j = g*! /A the j-invariant of ¢. We say that a
Drinfeld module ¢ is minimal if v(A) is minimal among the Drinfeld modules which are
K-isomorphic to ¢ with g and A integral. Then it can be easily verified that a Drinfeld
module ¢ is minimal if and only if ¢ is defined over R and v(A) < g*> — 1 or v(g) < g— 1.

For a Drinfeld module ¢ over R, we denote by ¢ the reduction of ¢ modulo m. We
say that ¢ has nondegenerate reduction if ¢ is a Drinfeld module of rank 2 over k. For a
Drinfeld module ¢ over K, we say that ¢ has stable reduction if there exists a Drinfeld
module ¢’ over R which is K-isomorphic to ¢ so that ¢’ is a Drinfeld module of rank at
least 1, ¢ has good reduction if, in addition, rank of ¢’ is 2, and bad reduction otherwise.
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We say that ¢ has potential stable (resp. good) reduction if there exists a finite extension
L of K so that ¢, as a Drinfeld module over L, has stable (resp. good) reduction. The
followings are easy to verify.

PROPOSITION 1.1.  Let ¢ be a Drinfeld module over K.
a) Let L be an unramified extension of K. Then the reduction type of ¢ over K is the
same as the reduction type of ¢ over L.
b) ¢ always has potential stable reduction.

PROPOSITION 1.2. A Drinfeld module ¢ over K has potential good reduction if and
only if its j-invariant is integral.

For a Drinfeld module ¢ we set
Tory(K) = {x € K : ¢po(x) = 0 for some a € A}

Tory(R) = {x € R: ¢,(x) = 0 for somea € A}
Torg(m) = {x € m : ¢,(x) = 0 for some a € A}.

When ¢ is defined over R, then Tory(R) and Torg(im) are also A-modules via ¢. From
now on we always assume that ¢ is defined over R unless otherwise stated. Put

p = Ker(A — R— R/m).

We say that p is the divisorial characteristic of k. Let ¢ denote the reduction of ¢ with
respect to m.

PROPOSITION 1.3.  Let ¢ be a Drinfeld module over R and a € A be relatively prime
to p.
(a) Torg(m) has no nontrivial points of order a.
(b) The reduction map
Torg(R)[a] — Tor&)(k)[a]

is an isomorphism, where Tors(R)[a] = {x ER: ¢.(x) = 0}.
PROOF. Let x € m be nonzero. Then v(x) > 0. Since ¢ is defined over R,
v(a(x)) = v(ax) = v(x) > 0.
Therefore ¢,(x) # 0 and this proves a), and b) follows from a) and Hensel’s lemma.

REMARK 1.4. In view of Proposition 1.3 one might think Tor,(K), Tors(R) and
Tor,(m) as the analogues of E(K), Eo(K) and E|(K), respectively, of an elliptic curve
E over K. For precise definitions of E(K), Ey(K) and E|(K), we refer to [S], Chapter VIIL.
However, unlike the classical case the reduction map

Toryg(R) — Torg(k)
is not surjective. For example, let R = F,[T] and ¢ is defined by

¢T=T—7‘+T2.
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Then all the elements of k = F, are the roots of E = 0, but there exist no nonzero
torsion points of ¢ in R.

If ¢ has nondegenerate reduction, then it is easy to see that Tor,(K) = Tors(R) C R.
Let O be an irreducible polynomial in A. Define the Tate-module

To(¢) = lim(Tor,(K)[Q"]).

Let G = Gal(K*%®P / K) where K*% is the separable closure of K, and let / be the inertia
group. For a set £ on which G acts, we say that X is unramified if the action of the inertia
group / on X is trivial.

PROPOSITION 1.5.  Suppose that ¢ has good reduction.
a) Let a € A be relatively prime to p. Then Torz(K*P)[a] is unramified.
b) Let Q ¢ p be an irreducible polynomial. Then To(@) is unramified.

PROOF. Exactly the same method as in the classical case gives the result. (See [S]
VII, §4).

REMARK 1.6. The converse of Proposition 1.5 is also true. For its proof we refer
to [T].

2. Finiteness of Torsion points. In this section we will prove that Tor,(K) is finite
if K is locally compact. Let p(T) be the monic generator of p with d = deg(p(?)).

LEMMA 2.1.  For any A-algebra S, let ¢ be a Drinfeld module over S. Write

2d
¢])(T) = p(T) +a T+ v ayT.

Then p(T) divides a; in Sfor 1 <i<d— 1.

PROOF. LetS = A[g,A] with gand A two independent transcendental elements over
A. Then we know from the general theory that p(T) divides a; in § = F,[g, A, T] for
1 <i < d. Then by specializing g and A, we get the result.

LEMMA 2.2.  Let ¢ be a Drinfeld module over R. If a nonzero element x in Toryz(m)
has the exact order p(T)", n > 1, then

vmsjwm

qn — qd(n—l)'

PROOF. 'We will use the induction on n. By Lemma 2.1

dprX) = p(DXFX) + X7 g(X),

with degf(X) < ¢?~! — 1 and f(0) = 1. Suppose that ¢,7(x) = 0 with x € m — {0}.
Then
0 = p(T)xf(x) +x7 g(x).
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Thus /
V(P () = v(x¥ g() > v(x).
Since f(0) = 1 and v(x) > 0, v(p(T)xf(x)) = v(p(T)x). Therefore

(p( ))

v(x) < =1
Now suppose that x has the exact order p(T)"*'. Then
V(Spm () = v(p(Taf(x) +x7 g(x)
> min{v(p(Mx), v(x?)} > 0.

Thus ¢,)(x) lies in m and has exact order p(T)". Hence by the induction hypothesis,

v(p(T)
V(¢p(T)(x)> < %
Therefore

T d
q—(—p(q—‘))) > min{v(p(T)x). v(&)}.

v(p(D))

g 2 VpTx).

But we cannot have

Hence ( )
vp(T) ,
e 9y — 4
g4 — gdn=h 2 v(x?) = g v(x).
So we get
v(p(D))
V) S i g
q q

EXAMPLE. Let ¢ be a Drinfeld module defined over A. Let x be a nonzero element
in A of order a. If a is not a prime power, then x is a unit in Ay, for every prime ideal p of
A by Proposition 1.3. If a = p(T)", then

v(p(D))

qdn _ qd(nAl) < 1

unless degp(T) = 1, ¢ = 2 and n = 1. Thus, for g > 3,
Tory(A) C (A" = IF*) u{0} =F,.

Let a(T) be a polynomial in A with degree d. Then we can write

2d

¢(1(T)(X) Z a[XtI

Then a, is a polynomial in g and A with coefficients in A.
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PROPOSITION 2.3.  If ¢ has integral j-invariant, then for x € Tors(K)

v(A)
q°—1

v(x) > —

In particular, if ¢ is minimal, then

Tory(K) = Torg(R).

PROOE. The case that j = 0 is easy, thus we assume that j # 0. Suppose that x # 0
is a root of ¢,()(x) = 0 for some a(T) in A. Then it is easy to see that

14

v(ag) = q2 - lv(A) if £ is even
g —1

and

q'—q

v(ag) = o V(@A) +v(g) if £ is odd
because 0 < v(j) = v(5) = (g + 1v(g) — v(A). Also
2d __ 1
v(ay) = g v(A).

Because 3 agxq[ = 0, we must have
v(ax®) > vagx?)

for some ¢. Hence from the above discussion, if £ is even,

2d t_1
L)+ v = L) + ")
q q
and if £ is odd
2d __ 1 e _
v + ) > ZZ —10() + v(g) + 4"v(x)
For ¢ even,
> — .
v(x) = prp V&)
For ¢ odd,
v(g) q—
v(x) > — v(A) + — v(A
B R P M
3 1 1 V(A))
- qz _ IV(A)+ qu_qe (V(g) q+ 1
> s 1v(A).
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If ¢ is minimal, then v(A) < g* — 1, and so v(x) > 0.

PROPOSITION 2.4.  Suppose that ¢ has nonintegral j-invariant. If x € K is a torsion
point of ¢, then

v(x) 2 —

i (A).

PROOF. Let x # 0 be a root of ¢,y(X) = 0. As in the proof of Proposition 2.3, put

2 ,
ParX) = > asX? .
=0

Since v(A) > (g + 1)v(g) > 0, we have

¢

—1
V(ae)ZZI_lv(g)ZO ife<d
and
2 _ i1 2
V(az>2q2 v+ v(g)zq2 vA) ife=d+i, i<d.
g-—1 qg—1 qg-—1

But v(az) = L1 v(A). Hence

q2d_1

T +q7v(x) > vlag) + " v().

for some 0 < ¢ < 2d. Thus

qu_l
v(x) > — v(A) if £ <d,
Oz - s
and
¢4 —
v(x) > — v(A) ifl=d+i, i<d.

(@ —q™)(g* = 1)
However, it is not hard to see that
24 _ +1 2d __ 20 +1
q2d 7 < E and qu qd+i < ¢ ’
qg= —q q q= —q q

if ] < d and i < d. Therefore we get the result.

THEOREM 2.5.  Suppose that a Drinfeld module ¢ has a nonintegral torsion point.
Let x be a torsion element with minimal v(x). Then q2 — g divides v(A) — v(g) and

vix) =

pr (v(g) — V().
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PROOF. Assume first that ¢ is minimal. Note that (g + 1)v(g) < v(A) by Proposi-
tion 2.3, and v(g) < g — 1 since ¢ is minimal. Choose x in Tor4(K) with minimal v(x) so
that

V(@) < v(¢r() = v(x) +v(T+gx?~" + AT,

Assume first that v(x) > ;zviAl), then v(Ax?'~1) > 0. Thus

v(g) + (g — Hv(x) = v(gx ") >0,

since v(x) is minimal. Then v(x) > ;—"_(f—) > —1. Hence v(x) > 0, which is a contradiction.

Therefore we must have v(Ax"z") < 0. Since v(x) is minimal, we must have
V(A 1y = (gt .

Hence

v(x) =

e (v(g) — v()),

as desired. Now suppose that ¢ is not necessarily minimal. Pick ¢ € K such that ¢’ =

c¢c™! is minimal. Let g’, A’ correspond to ¢’. Then

v(g") = v(g) + (1 — g)v(c)

and
v(A") = v(A) + (1 — g*)v(c).

For a torsion element x of ¢ with minimal valuation cx is a torsion element of ¢’ with
minimal valuation. Thus

v(ex) = ! (v(gh —va))
—q

1
= 7—q (v(g) +(1 —g@)v(c) —v(A) — (1 — qz)v(c)).

Hence

(v(g) — v(d).

v(x) =
7 —q

THEOREM 2.6.  Suppose that K is locally compact. Then for a Drinfeld module ¢
over K, Tory(K) is finite.

PROOF. We may assume that ¢ is minimal. By Proposition 2.4 Tor4(K) is a bounded
set. Hence Tor4(K), the closure of Tor,(K), is compact in K. Since m is both open and
closed in K, Torg(m) = Torg(K) N m is open in Tory(K). But Proposition 1.3 and
Lemma 2.2 imply that Tor,(m) is a finite set. Hence

Torg(m) = Torg(m).
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Thus Tor,(K)/ Torg(m) = Tor,(K)/Torg(m) is a finite set. Hence Tor,(K) is a finite set.

COROLLARY.  Let ¢ be a Drinfeld module defined over a global function field K.
Then Tory(K) is finite.

REMARK 2.7. In the proof of Theorem 2.6, we showed that Tor,(K)/ Tor,(m) is
finite, thus Tors(K)/ Tors(R) is finite. One can ask

‘Is Tory(K) / Tory(R) finite without the assumption that K is locally compact?’
This might be thought as an analogous statement of the theorem of Kodaira and Neron
([S], Chapter VII, Theorem 6.1) in view of Remark 1.4.
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