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Abstract

In this note we introduce a self-centralizing characteristic subgroup, associated with quasinil-
potent injectors, of a finite group.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 20 D 10.

All groups in this paper are assumed to be finite. Most of our notation is standard
and may be found in [9] and [10]. Let d(G), doo(G) denote, respectively, the
maximum of the orders of the abelian and nilpotent subgroups of G. Further,
A(G) [Aoo(G)] denotes the set of all abelian [nilpotent] subgroups of order d(G)
Moo(G)] in G and J{G) = (A(G)) is the Thompson subgroup of G.

Let p be a prime and let P be a Sylow p-subgroup of a group G. In [8]
Glauberman introduces the characteristic subgroup ZJ*(P), and proves that
ZJ*(P) has some analogous properties to ZJ(P) = Z(J(P)), and moreover
that it is self-centralizing, that is, CG(ZJ*(P)) < ZJ*(P). Some related results
were obtained by Ezquerro in [6], where Glauberman's definition of ZJ* is set
forth for an arbitrary finite group G (instead of P).

DEFINITIONS. For any group K define two sequences of characteristic sub-
groups of K as follows. Let ZJ°{K) = 1 and Ko = K. Given ZJ{{K) and Kt,
i > 0, let ZJi+1{K) and Ki+i be the subgroups of K that contain ZJi{K) and
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satisfy

ZJi+1(K)/Zr{K) =
Ki+1/ZJ*(K) = CKt

Let n be the smallest integer such that ZJn(K) = ZJn+1{K); then ZJn(K)
= ZJn+r{K) and Kn = Kn+r, for every r > 0. Set ZJ*(K) = ZJn(X) and
K* — Kn.

The main aim of this paper is to prove the following

THEOREM. Let G be a group such that for every odd p in H(G/Z(G)), the
special affine group SA(2, p) is not involved in G. Let K be an N* -injector ofG
and assume that \F(G)\ ^ 1 is odd. Then

(i) Z / 1 (if) char G, for every i > 0; in particular, ZJ*(K)chaxG;
(ii) CG{K») <Kt= E(G)ZJ*{K)\ indeed, CG(K.) = Z{ZJ*(K)).

Here II denotes a set of primes and N, Nn and N* denote the classes of
nilpotent, nilpotent II-groups and quasinilpotent groups, respectively. It is well
known that all groups have a unique conjugacy class of N*-injectors, and these
are the maximal N*-subgroups containing the quasinilpotent radical of the group
[5].

The following simple observations are due to L. M. Ezquerro [6].

LEMMA 1. (i) // tp: K —> H is an isomorphism, then for every i > 0,
ZJi{H)=iP(ZJi{K)).

(ii) ZJi+l{K)/ZJl(K) = ZJ^Ki/ZJ^K)) for every i > 0.
(iii) CK(ZJ*(K)) < Ki for every i > 0.

LEMMA 2. Let K be an N* -injector of the group G.
(i) For every i > 0, ZJl(K) is nilpotent.
(ii) Ki = E(G)F(Ki) and FiKt/ZJ^K)) = F^K^/ZJ^K), for every i > 0.
(iii) ZJi+1{K) = ZJ{(K) if and only if F{Ki) = ZJ{{K). Thus, K. =

E{G)Zr(K).

PROOF, (i) By induction on i we may assume that for some i, ZJ'(K) is
nilpotent. Then ZJ%+1(K) e N* is soluble and hence nilpotent.

(ii) Notice that for every i > 0, E{G) < Kt < K = E(G)F{K), so K{ =
E{G)F{Ki). For each i > 0, put F/ZJ{(K) = F^i/ZJ^K)). Then, since
ZJ*{K) € N , F G N * is soluble. Consequently, F is ni lpotent an
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(iii) For each i > o, we obtained from (ii) t h a t

Ki/ZFiK) = {E{G)ZJi{K)lZJi{K)){F{Ki)IZJi{K))

= (E(G)ZJi(K)/ZJi(K))(F(Ki/ZJi(K))).

Thus our claim is clear from ZJ^/ZJ^K)) / 1 <- FiKJZJ^K)) / 1.

DEFINITION [14, Definition 1]. Let F be a Fitting class. A group G is said
to be F-stable if whenever A is an F-subgroup of G and B is an F-subgroup of
NG{A) such that [A,B,B] = 1, then BCG(A)/CG(A) < (NG(A)/CG(A))F.

LEMMA 3 [15]. The class NJj = (G = F{G)E{G) such that F{G) is a II-
group) is a Fitting class.

LEMMA 4 [15]. If G is an Nu-stable group, then G is N^-stable, and if
A and B are N^-subgroups such that B normalizes A and [A,B,B] = 1, then
BCG(A)/CG(A) < OU(F(NG(A)/CG(A))).

LEMMA 5. Let G be an N2> -stable group. Let K be a subgroup of G which
contains F*(G). Then O2.(ZJ(K)) « G. Moreover, if \F(G)\ is odd, then
ZJ{K)« G.

PROOF. Using Lemma 4 on F = E{G)O2'{F{G)) and Z = 02>{ZJ{K))
we obtain ZCG{F)/CG{F) < F{G/CG{F)). Hence ZCG(F*{G)) = ZCG{F) n
CG{O2{F{G))) «G. Since CG{F*{G)) < F*{G), Z«G. Moreover if \F{G)\ is
odd, then O2(ZJ{K)) < CG{F*{G)) < F{G) and O2{ZJ(K)) = 1.

Now, arguing like in the proof of [14, Theorem A], with small changes, we
obtain

PROPOSITION 1. Let G be an N2< -stable group such that F{G) ̂  1 is not a
2-group. If K is an N*-injector of G, then 1 ̂  O2>(ZJ(K)) <G. In particular
if\F{G)\ is odd, then ZJ(K)<G.

PROOF OF THE THEOREM, (i) Assume that the result is false. Let G
be counterexample of least order and put T = ZJ{K), T* = ZJ^K), T* =
ZJ*(K). By [7, Theorem A] G is N2'-stable. Therefore, because of Proposition
1 we have 1^T<G. Thus, C = CG{T) ^ 1. Assume that C <G.

By our minimal choice of G, we have that for each i > 0, ZJX{K ("I C) char C.
Since J(K) <KnC,it follows that J{K) = J{K n C) and T = ZJ{K nC).
Moreover, Kx = CK{T) = CKnc{ZJ{K n G)).

By induction on i, it is clear that for each i > 0, T* = ZJi{K n C ) . Thus, for
every i > 0, T* < G. But Lemma 1 (i) and the conjugacy of all N*-injectors of
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G imply tha t for every i > 0, T* char G, contrary to our choice of G. Therefore

we can assume tha t G = C, ( that is, Z(G) — T ) , and tha t G/Z(G) satisfies the

hypothesis of the theorem. By our minimal choice of G, we obtain tha t for every

t > 0, ZJi(/f/Z(G))char G/Z{G). Since Kx = CK{T) = K, and by Lemma 1
(ii), it follows that for each i > 0, Ti+1/Z{G) = ZJi{K/Z{G)). Thus for every
i > 0, Tl+1 charG, contrary to our choice of G.

(ii) By Lemma 2 (iii) we know that K* = E(G)T*. Now, in view of Lemma
1 (iii), it is clear that for every i > 0, CK(K*) < CK(T*) < Ki. In particular,
CK{K.) < K.. Thus, CK(K.) = Z(K.) = Z{T*).

Part (i) and Lemma 2 (iii) imply that CG{K») < G. Hence Z{K*) = K D
CG{K.) in an N*-injector of CG{Kt). Moreover, since Z(K*) < Z{CG{K.)), we
get that Z(ff.) = Z(CG{K.)) = F{CG{Kt)). But from CG{K.) < CG{E{G))
we get that CG(K*) is N-constrained in the sense of [12]; see [11], [13]. Therefore,
CG{K.) = CC o ( i

If G is an N-constrained group, then E(G) = 1 and the N-injectors are the
N*-injectors (see [12], [13] and [11]). So, we obtain immediately

COROLLARY 1. Under the same assumptions as in the theorem and if more-
over G is N-constrained, then K is an ~N-injector of G, ZJ*(K)chaiG and

CG{ZJ*{K))<ZJ*{K).

Next we shall consider an analogue of our Theorem for arbitrary Fitting classes
F.

PROPOSITION 2 [6, THEOREM II.3.10]. Assume that 2 £ II andG is a U-
soluble group whose Sylow 2-subgroups are abelian and such that Orr(G) — 1. If
KisaHallU-subgroupofG, then ZJ*(K) charG andCG{ZJ*{K)) <ZJ*(K).

LEMMA 6. Assume that 2 ^ II and G is a U-soluble group and H is a
subgroup ofG contained in a HallU-subgroup K ofG such thatdoo(H) = doo(K).
Let A e Aoo(ff). Then ZJ*(A) = ZJ*(H) = ZJ\K), for every i > 0. In
particular, ZJ{H) = ZJ{K) and ZJ*{H) = ZJ*(K).

PROOF. Notice first that if G is a group of odd order, then Aoo(G) is the set
of N-injectors ofG. (See [4, Corollary 5] and [12, Theorem 1].)

We proceed by induction on t. Because of [3, Proposition (1.3)], it follows
that ZJ{H) = ZJ{A) = ZJ(K). Assume now that for some i > 1, ZP{H) =
Zr{A) = ZJ*(K). Set Z = ZJ{A) = ZJ{H) = ZJ{K). Note that Aj. =
CA{Z) = A n Hi = A D Ki is an N-injector of Hi = CH(Z) and Kx = CK{Z),
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and obviously Z < A\. Hence, from [12, Theorem 1] we get that A\/Z is an
N-injector of Hx/Z and oiKt/Z. Therefore, AJZ e A^Hx/Z) C A.OO{K1/Z).

The group CG{Z)/Z satisfies the hypothesis concerning G. Thus,

ZJ\AXIZ) = ZFiHxlZ) = ZJ\KXIZ).

Now, from Lemma 1 (ii) we have

ZJi+1{A) = ZJi+1(H) = ZJi

In what follows let II (F) denote the set of all primes dividing the order of
some F-group. The next lemma and proposition are proved following a process
analogous to the proofs of Lemma IV.2.3 and Theorem IV.2.4 in [13]. We denote
by F a Fitting class.

LEMMA 7. Let G be a II(F) -soluble group and N <G such that G/N € N. //
Vi and V2 are ¥-maximal subgroups ofG which contain an ¥-maximal subgroup
W of N, then there exists g € G such that Vf = Vj.

PROPOSITION 3. If G is a II(F)-soluble group, then G has a unique conju-
gacy class of F -injectors.

REMARK. If 2 £ II = II(F) and H is an F-injector of the II-soluble group G
contained in the Hall n-subgroup K of G such that doo(H) = d<x,(K), then by
Lemma 6, for every i > 0 and A e Aoo(ff),

ZJ\A) = ZJ\H) = ZJ\K)

and in particular, ZJ(H) = ZJ(K) and ZJ*{H) = ZJ'(K).
From Proposition 2 and the preceding remark we obtain the following

COROLLARY 2. Assume that 2 ^ n = n ( F ) and G is a U-soluble group urith
abelian Sylow 2-subgroups and On>(G) = 1. If H is an F-injector ofG contained
in the Hall Il-subgroup K ofG such that <*«,(#) = d^K), then ZJ*{H) char G
and CG(ZJ*{H)) < ZJ*{H).
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