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Bubble–particle collisions in turbulence are key to the froth flotation process that is widely
employed industrially to separate hydrophobic from hydrophilic materials. In our previous
study (Chan et al., 2023 J. Fluid Mech. 959, A6), we elucidated the collision mechanisms
and critically reviewed the collision models in the no-gravity limit. In reality, gravity may
play a role since, ultimately, separation is achieved through buoyancy-induced rising of the
bubbles. This effect has been included in several collision models, which have remained
without a proper validation thus far due to a scarcity of available data. We therefore
conduct direct numerical simulations of bubbles and particles in homogeneous isotropic
turbulence with various Stokes, Froude and Reynolds numbers, and particle density
ratios using the point-particle approximation. Generally, turbulence enhances the collision
rate compared with the pure relative settling case by increasing the collision velocity.
Surprisingly, however, for certain parameters the collision rate is lower with turbulence
compared with without, independent of the history force. This is due to turbulence-induced
bubble–particle spatial segregation, which is most prevalent at weak relative gravity and
decreases as gravitational effects become more dominant, and reduced bubble slip velocity
in turbulence. The existing bubble–particle collision models only qualitatively capture
the trends in our numerical data. To improve on this, we extend the model by Dodin &
Elperin (2002 Phys. Fluids 14, 2921–2924) to the bubble–particle case and found excellent
quantitative agreement for small Stokes numbers when the history force is negligible and
segregation is accounted for.
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1. Introduction
Bubble–particle collisions in turbulence are central to froth flotation, which is an industrial
process widely used in different contexts such as mineral extraction and wastepaper
deinking. In this process, the hydrophobic target particles, which are originally suspended
in a turbulent liquid mixture, are separated through colliding with bubbles, attaching to
them and being floated to the surface by the bubbles’ buoyancy. It is estimated that flotation
has been used to treat 2 billion tons of ore and 130 million tons of paper annually in 2004
(Nguyen & Schulze 2004). Given the vast scale at which flotation is employed, there is
a strong incentive to understand the underlying physics, model the system and improve
efficiency.

Considering the multiscale nature of the problem, the bubble–particle interaction
process is typically decomposed into the geometric collision rate, the collision efficiency
and the attachment efficiency. These refer to the bubble–particle collision rate without
accounting for the local flow disturbance caused by the bubble/particle, the correction
to the collision rate due to the local flow disturbance and the probability of the particle
attaching to the bubble, respectively. Since the geometric collision rate provides the
baseline estimate of the bubble–particle collision rate, it will be our focus in this paper. In
the literature (Pumir & Wilkinson 2016), the geometric collision rate is typically measured
by the collision kernel Γ , which is related to the collision rate per unit volume by
Z12 = Γ12n1n2, where the subscripts 1 and 2 refer to the two colliding species and n is
the number density. The collision kernel can also be expressed as a normalised particle
influx across a shell whose radius is the collision distance rc = r1 + r2 (r1,2 are the radii
of the colliding species). This shows that Γ12 is proportional to both the local particle
density and the average approach velocity of the particles at collision distance. The former
is characterised by the radial distribution function (RDF) at collision distance

g12(rc)= Npair (rc)/(4πr2
c�r)

N1 N2/Vbox
, (1.1)

where Npair (rc) is the number of pairs within a distance of rc ±�r/2, N1,2 is the number
of particles and Vbox is the volume of the domain; while the latter is given by the effective
radial approach velocity

S12− (rc)= −
∫ 0

−∞
�vr p.d. f.(�vr |rc)d(�vr ), (1.2)

where�vr is the radial component of the relative velocity, which is positive when the pair
separates, and p.d. f.(�vr |rc) is the probability density function of �vr conditioned on a
pair separated by rc. The collision kernel is then

Γ12 = 4πr2
c g12(rc)S

12− (rc). (1.3)

The value of the collision kernel can vary significantly within a real flotation cell since
the turbulent flow field is highly inhomogeneous (Koh, Manickam & Schwarz 2000),
which precludes the use of one simple expression to predict the overall collision rate.
Typically, the flow is highly turbulent near the bottom of the flotation cell, where an
impeller agitates the flow with the aim of promoting collisions between bubbles and
particles. This is the region we focus on in the present study. Within this region, industrial-
scale simulations divide the flow field into grids wherein subgrid-scale models are applied
to determine the local bubble–particle collision rate (Koh & Schwarz 2006). These
models are developed exclusively in the context of homogeneous isotropic turbulence
(HIT), which has the advantage of having well-defined turbulence properties. We hence
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investigated bubble–particle collisions in HIT without gravity using the point-particle
approximation in our previous study (Chan, Ng & Krug 2023). Under these conditions,
the most relevant parameter is the Stokes number

Sti = τi

τη
= r2

i (2ρi/ρ f + 1)
9ντη

; (1.4)

i = 1, 2 throughout this article and represents the colliding species. Here,
τi = r2

i (2ρi/ρ f + 1)/(9ν) is the particle response time (Mathai, Lohse & Sun 2020), ρi

is the particle density, ρ f is the fluid density, ν is the kinematic viscosity, τη = (ν/ε)1/2 is
the Kolmogorov time scale and ε is the average rate of turbulent dissipation. Depending
on the range of St , Chan et al. (2023) conceptualised several collision mechanisms: at
small St , collisions occur due to local fluid shear and the ‘local turnstile’ effect, i.e.
bubbles and particles attain opposite slip velocities in an accelerating fluid element purely
due to their density differences. For collisions due to shear, Saffman & Turner (1956)
estimated the collision kernel to be Γ (ST ) = √

8π/15r3
c /τη. At intermediate St , non-local

effects set in as the instantaneous slip velocity is increasingly determined by the path
history (Voßkuhle et al. 2014). Over both small and intermediate St , the collision rate is
reduced by the spatial segregation between bubbles and particles. Evidently, the fact that
bubbles and particles have different densities causes the problem to be fundamentally
different from particle–particle collisions in turbulence. Therefore, although theories of
single-density particle collisions in turbulence can be a useful reference, they must be
carefully considered before being extended to the bubble–particle case.

In this study, we focus on the effect of gravity, which has to be accounted for in most
realistic situations and introduces an additional non-dimensional parameter to the problem,
namely the Froude number

Fr = aη
g
, (1.5)

where aη = η/τ 2
η and g are the turbulence and gravitational accelerations, respectively,

while η is the Kolmogorov length scale. To investigate the effect of varying Fr , we
conduct direct numerical simulations of bubbles and particles in HIT using the point-
particle approach (Gatignol 1983; Maxey & Riley 1983; Auton 1987; Auton, Hunt &
Prud’Homme 1988) and systematically vary the strength of gravity. Details on this
approach will be given in § 3. As the existing bubble–particle models for the geometric
collision rate are entirely based on concepts developed for the particle–particle case,
we first review how gravity affects particle collisions in turbulence and then discuss the
situation for bubble–particle collision in § 2. Finally, results and conclusions are presented
in § 4 and § 5, respectively.

2. Theoretical framework

2.1. The effect of gravity on collisions between monodispersed particles
Even for collisions between particles with the same properties (and hence the same settling
velocities), gravity is known to affect the collision rate by introducing anisotropy into the
system as it only acts along the vertical direction. This has implications for the preferential
sampling exhibited by the particles in turbulence. Without gravity, particles with small
or moderate St deviate from the fluid pathlines and form clusters (Voßkuhle et al. 2014;
Ireland, Bragg & Collins 2016a). This is most intuitively understood for heavy particles
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using the ‘centrifuge picture’ (Maxey 1987), which suggests that the particles get expelled
from regions of high rotation rate and cluster in low rotation rate and high strain rate
regions. Gravity introduces an additional element to this picture by causing these particles
to settle, such that they are swept by local vortical flows to preferentially sample the
downward branches of vortices as they remain in the low rotation regions. As a result, their
clusters are elongated in the vertical direction (Wang & Maxey 1993; Bec, Homann & Ray
2014). To be precise, this picture holds only for low St particles and other mechanisms
that explain the elongation of particle clusters at higher St have been proposed (Falkinhoff
et al. 2020). Depending on the exact St , the RDF at collision distance can either increase
or decrease (Ireland et al. 2016b) relative to the no-gravity case.

Apart from changing the local particle concentration, gravity affects the collision
velocity. With gravity, light and heavy particles rise and settle, respectively, which
increases the particle slip velocity and reduces the time available for the particle to interact
with the turbulent structures. For particles with St � 1, this effect reduces S− as the
path-history effect is weakened (Ireland et al. 2016b).

2.2. The effect of gravity on collisions between particles with different response times
When the colliding particles no longer have the same response time (but still have the
same density), they collide even in quiescent liquid (Fr → 0) by virtue of their different
settling velocities vT 1 and vT 2, which are obtained by balancing drag with buoyancy in the
vertical direction. In this ‘relative settling’ limit, the collision kernel is given by (Pumir &
Wilkinson 2016)

Γ
(G)

12 = 4πr2
c S(G)− = πr2

c |vT 1 − vT 2|, (2.1)

where the prefactor in the last equality results from the facts that collisions only occur on
a hemisphere (contributing a 1/2 prefactor to S(G)− ) and that only the radial component of
the relative velocity is considered (contributing the other 1/2 prefactor to S(G)− ).

In the intermediate Fr regime, the relative settling mechanism and turbulence are active
at the same time. Several models which originally consider the no-gravity case in the very
small or very large St limits (refer to Chan et al. (2023) for details) have been developed to
incorporate relative settling. In the small St limit, Saffman & Turner (1956) approximated
the probability density function (p.d.f.) of the relative velocity by a Gaussian distribution
and assumed that relative settling changed the variance of the p.d.f.; however, the resulting
expression fails to converge to their no-gravity limit, as acknowledged by the original
authors, and gravity is included in all directions since the variance was incorrectly assumed
to be isotropic. Dodin & Elperin (2002) resolved these issues by rigorously deriving the
collision kernel in the small St limit to give

Γ
(DE)

12 = √
8πr2

c σ

[√
π

2

(
c + 1

2c

)
erfc + exp(−c2)

2

]
, (2.2)

where c = |τ2 − τ1|g/(
√

2σ) and σ 2 = r2
c ε/(15ν)+ 1.3(τ2 − τ1)

2ε3/2/ν1/2. Crucially,
they assumed that relative settling is captured by a shift in the mean vertical velocity
while the variance remains unaffected. Consequently, their expression is consistent with
Saffman & Turner (1956) in the no-gravity limit. In the very large St limit, where
particles can be modelled as kinetic gases with normally distributed velocity components,
Abrahamson (1975) similarly accounted for gravity by shifting the vertical velocity p.d.f.
of each species by the mean settling velocity so that
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Γ12 = πr2
c vc

= πr2
c

(2πv′2
1 )

3/2(2πv′2
2 )

3/2

∫ ∫ ∫ ∫ ∫ ∫
all space

√
(v1x − v2x )2 + (v1y − v2y)2 + (v1z − v2z)2

× exp

[ 2∑
i=1

−v
2
i x + v2

iy + (vi z − vT i )
2

2v′2
i

]
dv1x dv1ydv1zdv2x dv2ydv2z, (2.3)

where vx,y and vz are the horizontal and the vertical particle velocity components,
respectively. Abrahamson (1975) evaluated the integral in (2.3) analytically and reported
that

vc

χ
= 23/2

√
π

exp
(

−α
2

2

)
+
(
α+ 1

α

)
erf
(
α√
2

)
, (2.4)

where

α = vT 2 − vT 1

χ
, χ =

√
v′2

1 + v′2
2 , (2.5)

and v′2
i is the mean-square single-component particle velocity. Unfortunately, the

integration was not performed correctly so (2.4) does not reduce to the no-gravity case

(Γ12 = √
8πr2

c

√
v′2

1 + v′2
2 ) when α→ 0 because limα→0 erf(α)/α does not converge to 0,

as has already been pointed out by Kostoglou, Karapantsios & Evgenidis (2020a) and
Kostoglou, Karapantsios & Oikonomidou (2020b). Instead, we integrate (2.3) numerically
and obtain the best-fit result

Γ12 = πr2
c vc, (2.6)

where

vc

χ
=
⎧⎨
⎩

1.6, for α < 0.1

−0.0188α3 + 0.2174α2 + 0.1073α + 1.5552, for 0.1 � α � 5
α+ (1/α), for α > 5

(2.7)

and α and χ are given by (2.5). Note that the coefficients for the α ∈ [0.1, 5] case of (2.7)
are slightly different from the ones reported in Kostoglou et al. (2020a), presumably due
to a typographical error (see Appendix A).

None of the above models account for the intricate interactions between the effects
of turbulence and gravity, as pointed out by Woittiez, Jonker & Portela (2009). This is
particularly important for bidispersed particles whose motions are correlated. Essentially,
the different settling speeds means that the two species do not have the same amount
of time to interact with the fluid locally. This leads to a further decorrelation of their
concentration fields (Woittiez et al. 2009; Dhariwal & Bragg 2018), as well as increased
collision velocity as particles attain high values of acceleration in the horizontal direction
(Parishani et al. 2015; Dhariwal & Bragg 2018), both of which affect the collision rate.
Despite the limitations of the above models, we introduce them here as they form the basis
for the existing bubble–particle collision models.

2.3. The effect of gravity on bubble–particle collisions
With gravity, bubbles rise and particles settle due to their relative density, meaning vT 1
and vT 2 have opposite signs in (2.1) so relative settling is enhanced. Existing models
for bubble–particle collisions are almost all direct extensions of those discussed in § 2.2.
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In the high St , ‘kinetic gas-like’ limit, Bloom & Heindel (2002) adapted (2.3)–(2.5) by
simply replacing the settling velocities with the bubble (particle) rising (settling) velocity,
meaning

α(B H) = |vT b| + |vT p|
χ(B H)

and χ(B H) =
√
v′2

b + v′2
p , (2.8)

where the subscripts b and p denote ‘bubble’ and ‘particle’, respectively. Since Bloom &
Heindel (2002) incorrectly used expressions for slip velocities in lieu of v′

b and v′
p, as

pointed out in Chan et al. (2023), in this work we employ the expression given by
Abrahamson (1975) in (2.8) for both v′

b and v′
p. For intermediate St , Ngo-Cong, Nguyen &

Tran-Cong (2018) first modelled the zero-gravity bubble–particle velocity correlation
following the approach of Yuu (1984), such that the root mean square (r.m.s.) of the
single-component bubble–particle relative velocity without gravity is σ (NC)

�v = [(Ab +
Ap − 2B)u′2 + (Abr2

b + Apr2
p + 2Brprb)ε/(9ν)]1/2, where u′ is the single-component

r.m.s. fluid velocity fluctuation, and Ai and B are coefficients that depend on particle
properties and the fluid Lagrangian integral time scale. They then included gravity using
(2.4) with

α(NC) = |vT b| + |vT p|
χ(NC)

and χ(NC) = σ
(NC)
�v . (2.9)

We point out that (2.4) is derived from (2.3), which assumes uncorrelated particle
velocities. The use of (2.4) at intermediate St , where the correlation between particle
velocities remains finite, is therefore inconsistent. In addition, both Bloom & Heindel
(2002) and Ngo-Cong et al. (2018) use the wrong integration result (2.4), such that these
models also do not converge to the correct no-gravity limit. Expressions that have been
corrected for this error are given by (2.6) and (2.7), along with (2.8) for Bloom & Heindel
(2002) and (2.9) for Ngo-Cong et al. (2018). For small St , a consistent model for bubble–
particle collisions in turbulence with gravity is missing to date. We extend the theory
by Dodin & Elperin (2002) to the bubble–particle case (see Appendix B for details) and
include a drag correction fi ( fi = 1 for Stokes drag) to obtain

Γ
(DE X)

bp = √
8πr2

c σ
(DE X)
�vr

[√
π

2

(
c + 1

2c

)
erfc + exp(−c2)

2

]
, (2.10)

where

σ
(DE X)
�vr =

√
r2

c ε

15ν
+ 1.3

(
βbτb

〈 fb〉 − βpτp

〈 f p〉
)2

ε3/2

ν1/2 (2.11)

is the r.m.s. of �vr in zero gravity, βi = 2(ρ f − ρi )/(ρ f + 2ρi ),

c = |βbτb/〈 fb〉 − βpτp/〈 f p〉|g√
2σ (DE X)
�vr

(2.12)

is the ratio of the relative settling velocity to the turbulence-induced radial collision
velocity (up to a constant) and 〈·〉 denotes averaging. This expression incorporates
three collision mechanisms at small St : collision due to local fluid shear, local turnstile
mechanism and relative settling. We note that Kostoglou et al. (2020a) proposed a model
which considers a bubble in a swarm of tracers. However, since it does not decompose the
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Reλ N ε η kmaxη uη u′/uη u′
x/u

′
y TL/τη Nb,p

69 2563 51.9 0.0042 3.4 0.60 4.2 0.99 18 10 000
167 5123 356 0.0013 2.1 0.77 6.6 0.95 43 77 700 − 140 000

Table 1. Statistics of HIT: the grid size (N), pseudo-dissipation (ε), Kolmogorov length scale (η), maximum
wavenumber (kmax ), Kolmogorov velocity (uη) scale, r.m.s. velocity fluctuations (u′), large-scale isotropy
(u′

x/u
′
y) and the large eddy turnover time (TL ) relative to the Kolmogorov time scale (τη). Here, Nb,p are

the numbers of bubbles and particles, respectively. The simulations including the history force have the same
parameters as the Reλ = 167 case except for a lower number of bubbles and particles Nb,p = 50 000.

collision process into the geometric collision rate and the collision efficiency, we do not
further consider it in this study.

While several models for bubble–particle collisions in turbulence that account for
gravity are available, none of them have been directly tested. Even in zero gravity, the
model predictions are hugely different from simulation results, which underscores the
lack of understanding and the richness of the physics of bubble–particle collisions (Chan
et al. 2023). The only direct numerical study on bubble–particle geometric collisions with
gravity in HIT that we are aware of does not vary St , Fr and Reλ independently (Wan et al.
2020). The goal this work is therefore to systematically investigate the effect of St , Fr and
Reλ for bubble–particle collisions through simulations in order to reveal the underlying
physical picture and assess the available models.

3. Methods
The simulations are performed using the same fluid and particle solvers as Chan
et al. (2023). Hence, we only provide a brief summary here for completeness. For
the background turbulence, we run direct numerical simulations of HIT using a finite-
difference solver (second order in space, third order in time) to solve the incompressible
Navier–Stokes and continuity equations

Du
Dt

= − 1
ρ f

∇ P + ν∇2u + fΨ , (3.1a)

∇ · u = 0, (3.1b)
where D/Dt is the material derivative following a fluid element, u is the fluid velocity,
t is the time and P is the pressure. The fluid is forced randomly at the largest scales fΨ
using the scheme by Eswaran & Pope (1988) to generate turbulence with Reλ = 69 and
167. Other turbulence statistics are displayed in table 1. We also show in figure 1 that the
power spectrum agrees excellently with that of Jiménez et al. (1993).

For the bubbles and particles, we approximate them using the point-particle approach
(for a historical overview of this approach, see Michaelides 2003) which implies that both
species are modelled as rigid spheres. This is reasonable even for the bubbles since the
Weber number based on their rise velocity at (Stb, 1/Fr, Reλ)= (11, 4.4, 64) is O(0.1)
(Jiang & Krug 2025). As described later in this section, this work focuses on bubbles with
lower values of Stb, such that the bubble radii and rise velocities are smaller at comparable
values of 1/Fr , thus bubble deformation is even less significant. Under the point-particle
approach (Gatignol 1983; Maxey & Riley 1983; Auton et al. 1988), the net force on
the particle is the sum of the drag force, the pressure gradient force, the added mass
force, buoyancy, lift (Auton 1987), the history force and Faxén terms. We initially neglect
the history force and Faxén terms to allow fair comparison with the models introduced
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Figure 1. The (a) longitudinal and (b) transverse energy spectra. The dashed lines show data from Jiménez
et al. (1993) for Reλ = 62.7 (in blue) and 170.2 (in brown).

in § 2.3. A finite-difference solver is used to solve
4
3
πr3

i ρi
dvi

dt
= 6πμri fi (u − vi )+ 4

3
πr3

i ρ f
Du
Dt

+ 2
3
πr3

i ρ f

(
Du
Dt

− dvi

dt

)

+ 4
3
πr3

i (ρ f − ρi )gez − 2
3
ρ f πr3

i (vi − u)×ω, (3.2)

where vi is the particle velocity, μ= νρ f is the absolute viscosity, ez is the unit vector
pointing vertically upwards, ω is the vorticity vector and fi = 1 + 0.169Re2/3

i is the
correction factor that accounts for nonlinear drag due to finite bubble or particle Reynolds
number Rei = 2ri |u − vi |/ν and implies a no-slip boundary condition (Nguyen & Schulze
2004). Here, ri is determined from (1.4), while u, Du/Dt and ω at the particle positions
are evaluated using tri-cubic Hermite spline interpolation with a stencil of four points per
direction (van Hinsberg et al. 2013). We employ a lift coefficient CL of 1/2, which strictly
speaking is only valid for clean bubbles with very large Reb in simple shear flows (Auton
1987; Legendre & Magnaudet 1998), and acknowledge that the actual value depends
on the type of flow and Reb (Legendre & Magnaudet 1998; Magnaudet & Legendre
1998). Nonetheless, we use CL = 1/2 following Mazzitelli & Lohse (2004), who simulated
similar bubbles in HIT. Although we initially neglect the history force, we recognise that
it may play a noticeable role in reality for our tested bubble and particle density ratios
(Olivieri et al. 2014; Daitche 2015). We therefore run additional cases in § 4.5 with the
history force

Fhi st = 6r2
i ρ f

√
πν

∫ t

0

d(u(τ )−vi (τ ))
dτ√
t − τ

dτ (3.3)

added to the right-hand side of (3.2). The value of Fhi st is computed using the semi-
implicit scheme by van Hinsberg, ten Thije Boonkkamp & Clercx (2011), where a window
length of 5 time steps is chosen and the tail of the integrand is modelled with 10 exponen-
tial functions. Hence, the results are comparable to a simple window method (Dorgan &
Loth 2007) where the integration is truncated to the last 500 time steps (van Hinsberg
et al. 2011). This corresponds to approximately 9τη, which Calzavarini et al. (2012) found
is long enough for the integrand to decay to negligible values in HIT for their parameters.

In all our simulations, the collisions are treated using the ‘ghost collision’ scheme as
it is consistent with the models described in § 2 (Wang, Wexler & Zhou 1998). This
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means particles can overlap and a collision is registered every time an approaching pair
of particles reaches the collision distance rc, which is set to rb + rp for all species.
We eliminate wall effects by implementing periodic boundary conditions in all directions
and verified that the domain size Lbox = 1 is sufficiently large to minimise periodicity
effects (see Appendix C). The time step �t � τη/55 is sufficiently small such that the
Courant–Friedrichs–Lewy (CFL) number � 1 (apart from a few time steps for the cases
in §§ 4.4 and 4.5) and the point-particle statistics are no longer sensitive to �t (Ruth et al.
2021). We refer the reader to Chan et al. (2023) for details of the solvers and the collision
detection algorithm.

We investigate bubbles (ρb/ρ f = 1/1000) and particles (ρp/ρ f = 5) with St of 0.1,
0.5, 1, 2 and 3, and 1/Fr ranging from 0.01 to 10. For the bubbles, these values of
St correspond to rb/η= 0.9, 2.2, 3.0, 4.2 and 5.2, respectively; and it should be noted
that finite-size effects, that are not represented in our computations, may become relevant
in particular at the larger values of St . Nonetheless, we believe that our approach still
allows us to examine the general trend with increasing St and to assess the collision
models introduced in § 2.3, which also do not include these effects. We consider only
Stb = Stp to limit the parameter space. While this is not the most general case, it is
physically relevant, especially in the context of flotation of fine particles, where small
bubbles are preferred (Ahmed & Jameson 1985; Miettinen, Ralston & Fornasiero 2010;
Farrokhpay, Filippov & Fornasiero 2021). The simulation is conducted as follows: bubbles
and particles, 10 000−140 000 per species, are injected in the simulation domain at random
positions after the flow has reached statistical stationarity. We then monitor the particle
position p.d.f., particle velocity p.d.f. and the ensemble-average rise/settling velocities
to identify transients. Once the transient states have passed, we collect statistics over at
least 12.4 large eddy turnover times (TL ) at a minimum sampling frequency of once per
0.06TL .

4. Results

4.1. Collision kernel
Figure 2(a) presents results for the bubble–particle collision kernel normalised by the
relative settling case in still fluid Γ (G), wherein the terminal velocities vT i are obtained
by balancing buoyancy with the nonlinear drag term as shown by (3.2). At small 1/Fr
(weak gravity), Γ/Γ (G) is large since bubbles and particles rise and settle very slowly
such that Γ (G) is small and the collision rate is dominated by turbulence mechanisms. In
this regime, Γ/Γ (G) reduces with increasing St primarily because the rise and settling
speeds |vT i | are proportional to St . As 1/Fr increases, bubbles and particles rise and
settle faster, enhancing the role of relative settling in the overall collision rate as reflected
by a decreasing Γ/Γ (G) such that, at large 1/Fr , Γ ≈ Γ (G). At close inspection, however,
Γ <Γ (G) when 1/Fr � 5 for St = 0.1 and 1/Fr � 1 for St � 0.5, as shown in the inset.
This implies that, counter-intuitively, the presence of turbulence decreases the collision
rate below the relative settling case in this regime. This is attributed to the non-uniform
bubble–particle spatial distribution and their resulting segregation, and to the reduced
bubble slip velocity due to nonlinear drag, as will be discussed further in §§ 4.2 and 4.3.
As the segregation does not monotonically depend on St , there is no simple dependence
between Γ/Γ (G) and St in this regime. Throughout the tested range of 1/Fr and Reλ,
Γ/Γ (G) is not sensitive to Reλ.

All the models considered successfully capture the general decreasing trend of Γ/Γ (G)
and the relative settling limit Γ → Γ (G) at 1/Fr → ∞. However, the model predictions
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Figure 2. (a) The bubble–particle collision kernel normalised by the result for the relative settling case in still
fluid. The inset shows a close-up view of the region where 1/Fr � 1. (b) The bubble–particle collision kernel
normalised by r3

c /τη. Here, Γ (B H) and Γ (NC) (only shown for St = 3) are computed using the corrected best-fit
(2.7). The model predictions are for Reλ = 167.

remain above Γ (G) over the entire range of 1/Fr even though the nonlinear drag
expression has already been included. This is because they assume a uniform bubble–
particle distribution and employ the bubble rise velocity in still fluid. As mentioned at the
end of the last paragraph, this is not true from the simulations and will be elaborated on in
§§ 4.2 and 4.3.

We now normalise the collision kernel by τη/r3
c , i.e. the scaling of Γ (ST ), in figure 2(b)

to better examine the turbulence-to-relative settling transition. When 1/Fr � 0.1, bubble
and particle dynamics is turbulence dominated and the results are consistent with Chan
et al. (2023): the collision kernel coincides with Γ (ST ) at small St and Γ (NC) and Γ (B H)

overpredict the collision kernel. We stress, however, that the agreement with Γ (ST ) is
merely a coincidence since the model does not account for bubble–particle segregation, as
discussed in Chan et al. (2023). When 1/Fr increases, the effect of gravity on the collision
kernel becomes noticeable and causes it to increase towards Γ (G). In the tested parameter
range, Γ is only weakly sensitive to Reλ. Among the models, Γ (DE X) best matches the
data for the parameters investigated. This is expected since it has been developed for
the small St limit and has been extended to the bubble–particle case to also incorporate
the local turnstile mechanism. On the other hand, Bloom & Heindel (2002) is applicable
for the large St kinetic gas limit which is inaccessible with the point-particle approach.
Nonetheless, even for the St = 0.1 case Γ (DE X) does not quantitatively agree with the
data, presumably due to preferential sampling, as will be examined in the following
section.

4.2. Bubble–particle distribution
In zero gravity, bubbles and particles with small or moderate St preferentially sample
different flow regions in HIT due to different relative densities and form respective clusters
at regions of high and low rotation rates, meaning they segregate (Calzavarini et al. 2008).
This effect has been shown to be most pronounced at St = 1 (Chan et al. 2023). To examine
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1/Fr = 0.1 1/Fr = 1 1/Fr = 5 1/Fr = 10

(a) (b) (c) (d )

Figure 3. Instantaneous snapshots of bubbles (blue) and particles (red) in a slice with width × height ×
depth = Lbox × Lbox × 20η with Reλ = 167, St = 1 and (a) 1/Fr = 0.1, (b) 1/Fr = 1, (c) 1/Fr = 5 and
(d) 1/Fr = 10. Gravity is directed vertically downwards. The sizes of the bubbles and particles are not to scale.

the effect of gravity on the spatial distribution of bubbles and particles, figure 3 displays
the instantaneous snapshots of the simulation with St = 1 over a range of 1/Fr . As 1/Fr
becomes larger, the overlap between bubble and particle positions increases. However,
we do not observe a clear elongation of the bubble and particle clusters in the vertical
direction, in contrast to other studies of heavy particles in turbulence (Bec et al. 2014;
Ireland et al. 2016b; Falkinhoff et al. 2020). This is because these studies employed a
higher ρp, which enhances the overall effect of gravity. To more quantitatively investigate
the locations sampled by bubbles and particles, we consider the theory by Bec et al.
(2014), which predicts that a negative horizontal divergence of v p occurs on average in
downward flows when particles are settling in turbulence, i.e. ‘preferentially sweeping’
(Wang & Maxey 1993). Extending this reasoning to buoyant bubbles would mean that
bubbles also cluster in downflow regions. Furthermore, the lift force pulls rising bubbles
toward the downward branches of vortices (Mazzitelli, Lohse & Toschi 2003). Collectively,
this implies bubbles and particles sample downward flows in turbulence due to gravity.
We test this hypothesis by plotting the mean vertical fluid velocity at bubble and particle
positions in figure 4(a) and show that this is indeed the case for St/Fr � 10−1, with
bubbles sampling regions with stronger downflow than particles. Additionally, the figure
shows that 〈uz〉i collapses especially for St � 0.5 when plotted against St/Fr , which
echoes the finding by Good et al. (2014) that St/Fr is a key indicator of different particle
settling regimes. To single out the colliding bubbles and particles, we condition the fluid
velocity on pairs that are close to the collision distance in figure 4(b). We observe that the
colliding pairs also preferentially sample downflow regions, and 〈uz〉i |col essentially takes
the unconditioned bubble values 〈uz〉b. This suggests that the bubble–particle collisions
occur mainly at the unconditioned bubble positions such that the collision rate depends
on the location of the particle clusters relative to the bubbles. To further examine this,
we plot the norm of the rotation rate 〈R2〉 at bubble and particle positions in figure 4(c).
When gravity is weak, bubbles and particles preferentially sample regions with high and
low 〈R2〉 values, respectively. As gravity becomes stronger, the values of both particle and
(to a lesser extent) bubble 〈R2〉 begin to return to the tracer limit of 0.5, which indicates a
change in the clustering location and/or bubbles and particles cluster less.

To directly measure the overall effect of preferential sampling on the collision kernel,
we compute the RDF at collision distance g(rc), which reflects the probability of finding
a particle at a distance rc from another particle relative to a uniform distribution. In
short, g(rc) < 1 and >1 indicate segregation and clustering, which respectively either
decreases or increases the collision rate based on (1.3). Figure 5(a) shows g(rc) as a
function of St/Fr . Focusing on the lowest 1/Fr case when gravity is still weak, bubbles
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Figure 4. (a) Mean vertical fluid velocity at bubble and particle positions plotted against St/Fr . (b) Same as
(a) but conditioned on pairs with r ∈ [rc − 0.1η, rc + 0.1η]. (c) The norm of the rotation rate of the flow at
bubble and particle positions. The lines are guides for the eye.

and particles form their own clusters so gbb(rc) and gpp(rc) > 1. However, since bubbles
and particles individually cluster at different regions of the flow owing to their different
relative densities, they segregate and gbp(rc) < 1. The segregation is strongest at St = 1
when gbp(rc) reaches its lowest value, which is consistent with the no-gravity case (Chan
et al. 2023). As 1/Fr increases, the extent of segregation reduces and eventually reaches
gbp(rc)= 1. We note that gbp(rc) for St � 0.5 collapses when plotted against St/Fr as
shown in figure 5(a). This may be because particle clusters are affected by preferential
sampling (Wang & Maxey 1993), which scales as St/Fr as shown in figure 4(a).
Curiously, neither gbb(rc) nor gpp(rc) reaches 1 even at the largest tested value of St/Fr ,
which indicates that reduced bubble or particle clustering is not the primary cause of the
reduced segregation. On closer inspection, gbp(rc) for St � 0.5 already deviates noticeably
from the 1/Fr → 0 limit in the range 10−1 � St/Fr � 100 despite gpp(rc) and gbb(rc)

remaining mostly constant, i.e. bubbles and particles still cluster as strongly as before.
From figure 4(c), in this range of St/Fr , the value of the bubble 〈R2〉 already decreases for
St = 0.5 and the value of the particle 〈R2〉 already increases for St � 1. This suggests the
bubbles and particle clusters migrate closer together, which would increase gbp(rc). For the
tested parameters, gbp(rc) is not sensitive to Reλ. To account for segregation in the model
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Figure 5. (a) The RDF at collision distance g(rc). Only 25 % of all the bubbles were considered when
computing gbb(rc). (b) The collision kernel and the prediction of the extended Dodin & Elperin (2002) model
after compensating for g(rc) plotted against 1/Fr for Reλ = 167. The lines are guides for the eye. The symbols
and colour scheme follow figures 2 and 4.

by Dodin & Elperin (2002), we multiply gbp(rc) to Γ (DE X) to obtain Γ (DE Xc), which is
plotted in figure 5(b). As anticipated, Γ (DE Xc) agrees excellently with the simulation data
at the lowest St , indicating that the model correctly represents the relevant physics when
corrected for the effect of segregation.

As gravity introduces anisotropy in the vertical direction, we further quantitatively
examine the bubble–particle spatial distribution by binning the RDF by the polar angle to
obtain the angular distribution function (ADF) (Gualtieri, Picano & Casciola 2009; Ireland
et al. 2016b), which is normalised by the RDF in figure 6. We have ADF/gbp(r) �= 1
everywhere when gravity is included, as expected (Ireland et al. 2016b). Intriguingly,
particles preferentially sample the regions directly above bubbles, especially when St/Fr
becomes sufficiently large. To understand this, we consider figure 4(a), which showed
that bubbles and particles preferentially sample downflows, and examine the local flow
structure by overlaying the ADF on top of the azimuthally averaged flow field around the
bubble in a reference frame where the mean vertical flow velocity in the sampled region
is zero in figure 6. The results show that there are vortices with their downward branches
passing the bubble and the region where the flow converges horizontally corresponds to the
locations with higher particle concentration, suggesting that the convergent flow influences
the particle trajectories such that they are concentrated above bubbles. In the cases with
appreciable anisotropic particle distributions (i.e. St = 1, 3 and 1/Fr � 1), the vertical
component of the flow velocity vector at the bubble position, as displayed in figure 6,
amounts to 60 %–80 % of 〈uz〉b and decreases very slightly as 1/Fr increases. Despite the
local flow field contributing less to 〈uz〉b with increasing 1/Fr , the particle distribution
is most anisotropic at intermediate 1/Fr since the particles settle faster at large 1/Fr ,
meaning they will have less time to interact with the background turbulence such that they
will be more isotropically distributed. For the tested parameters, this anisotropy increases
with St . Nonetheless, we expect that it is strongest for some finite St and weakens as St
becomes very large when the particles no longer respond to the background flow. Overall,
this means that collisions will occur more frequently on top of a bubble at intermediate
1/Fr and St even without considering the azimuthal variation of the collision velocity
due to gravity.
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Figure 6. The ADF at different distances and the azimuthally averaged local flow field in a reference frame
where the mean vertical flow velocity in the sampled region is zero. Here, Reλ = 167. The semicircle and the
reference arrow on the bottom row indicate the bubble and uη, respectively. The axis labels are in units of η.
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Figure 7. (a) Value of S−(rc) at different 1/Fr . The model predictions are displayed only for Reλ = 167. The
colour scheme and symbols follow figure 2(a). (b) The non-dimensionalised distribution of Sθ− along the polar
angle θ for Reλ = 167. The colour scheme follows figure 2(a).

4.3. Collision velocity
Besides the bubble–particle distribution, the collision kernel is determined by the effective
radial approach velocity at collision distance S−(rc) according to (1.3). Figure 7(a) shows
S−(rc) as a function of 1/Fr . Here, S− increases significantly with 1/Fr when 1/Fr > 1
for all St and almost recovers the relative settling limit S(G)− at 1/Fr ∼ 10 – a point
which we will return to. At low 1/Fr where turbulence dominates, S− differs across St
because of the different collision mechanisms involved. At small St , collisions occur due
to local fluid shear and the local turnstile effect, as introduced in § 1. As St increases,
local effects become less important since the bubbles and particles interact with larger and
more energetic eddies. Due to the different physical properties of bubbles and particles,
the interaction is different between bubbles and particles, which contributes to S−, i.e. the
‘non-local turnstile effect’. The local shear and local turnstile effects, as well as the relative
settling effect of gravity, are properly represented in the extended Dodin & Elperin (2002)
prediction S(DE X)

− , which explains its excellent agreement with the data throughout the
entire 1/Fr range at St = 0.1. However, it increasingly overpredicts S− at larger St as
it does not model any non-local effects. These non-local effects do not directly increase
S− by improving the alignment between the relative velocity vector and the separation
vector, in contrast to the local turnstile effect. Considering only local effects at higher
St regimes can therefore lead to the overprediction. At higher 1/Fr , the overprediction
decreases since the contribution of the turbulence collision mechanisms decreases and
relative settling plays an increasingly dominant role. Another approach to quantify the
gravity effect is to consider the angular distribution of S−(rc) with respect to gravity,
where S−(rc) is binned using the polar angle θ around the bubble to obtain Sθ−. This is
plotted in figure 7(b) with θ = −90◦ corresponding to the direction of gravity. In the no-
gravity (1/Fr = 0) limit, there is no preferred direction and accordingly Sθ− is uniformly
distributed across all θ (grey line). As 1/Fr increases, more and more collisions occur on
the top half of a bubble where the approach velocity is enhanced due to gravitational
settling and vice versa for the lower half. Consequently, the top hemisphere (θ > 0◦)
contributes more to S−(rc) than the bottom one. This anisotropy is still very weak at
1/Fr = 0.1 and becomes significant at 1/Fr = 1, even though at this value S−(rc) still has
not increased significantly from the turbulence-dominated limit, as shown in figure 7(a).
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Figure 8. (a) The ratio of S−(rc) to the relative settling case S(G)− at Reλ = 167. Inset shows an enlarged version
of the region where S−(rc) < S(G)− . (b) The ratio of the average bubble and particle vertical slip velocity to the
terminal velocity in still fluid accounting for nonlinear drag vT i , whose magnitude is shown in the inset (solid
line for bubbles and dashed lines for particles), at Reλ = 167. The lines in the main figure are guides for the eye.
(c) The ratio of the modelled drag correction to the measured drag correction at Reλ = 167. The open symbols
indicate the drag correction based solely on the vertical slip velocity. (d) The collision kernel normalised by
the relative settling case in still fluid at Reλ = 167. Also shown are the relative settling collision kernel in
turbulence Γ (Gtrb) and the effect of segregation. The cases with different St have been laterally displaced for
clarity and the associated labels indicate the corresponding 1/Fr . The symbols and the colour scheme in all
the panels follow figures 2(a) and 4(a).

At 1/Fr = 10, only a small fraction of the collisions occur in the bottom hemisphere
due to turbulence, and the distribution is close to the relative settling limit (purple line)
where collisions exclusively occur on the top hemisphere. Furthermore, in the range
1 � 1/Fr < 10, Sθ− is not sensitive to St for St � 0.5, suggesting the transition from
turbulence to relative settling for the collision velocity is similar at different values of St .

Similar to our analysis of the collision kernel, we normalise S−(rc) with the relative
settling case in still fluid S(G)− = (|vT b| + |vT p|)/4, where vT i are the terminal velocities
obtained by balancing the drag and buoyancy terms in (3.2) taking u = 0, and plot the
result in figure 8(a). Although we only show the data for the Reλ = 167 case, the results
are not sensitive to Reλ so the following discussion also applies to Reλ = 69. Generally,
S−(rc)/S(G)− decreases as 1/Fr increases, reflecting the growing contribution of gravity.
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Upon closer inspection, we observe that S−(rc) for St > 0.5 dips below S(G)− , instead
of simply approaching S(G)− as is the case for St = 0.1. Note that this is not due to
preferential sampling as the fluid velocities sampled by the colliding bubbles and particles
are almost the same, as already shown in figure 4(b). To investigate why S− < S(G)− , we
compare the mean vertical slip velocity of the bubbles and particles 〈vz〉i − 〈uz〉i with the
theoretical terminal velocity in still fluid vT i , on which S(G)− in figure 8(b) is based. For
St = 0.1, (〈vz〉i − 〈uz〉i )/vT i is very close to 1 throughout, which is consistent with the
fact that S− � S(G)− . For higher St , however, the mean vertical slip velocity in turbulence
is smaller than vT i . This effect is generally stronger for bubbles, more pronounced at
high St and overall the ratio (〈vz〉i − 〈uz〉i )/vT i trends back up towards 1 as buoyancy
becomes stronger. To understand its origin, we focus on the bubbles and consider the
fact that turbulence induces additional horizontal slip velocities. As Rei depends on
magnitude of the total slip velocity, the horizontal slip increases the value of Rei and
the drag force, which can explain the slowdown (Ruth et al. 2021). To test this hypothesis,
we model the slip velocity vector as (vb − u)(mdl) = (vbx − ubx )

′ex + (vbx − ubx )
′ey +

(〈vz〉b − 〈uz〉b)ez, where (vbx − ubx )
′ is the measured r.m.s. of the horizontal bubble slip

velocity and ex, y,z are unit vectors along x-, y- and the vertical directions, respectively.
Based on the magnitude of the slip velocity vector, we then calculate the resulting Rei and
the corresponding drag correction term f (mdl)

b . Figure 8(c) shows that f (mdl)
b is indeed

close to the measured mean drag correction 〈 fb〉. For reference, we also include the drag
correction based on the vertical slip velocity only (vb − u)(z) = (〈vz〉b − 〈uz〉b)ez as open
symbols. As expected, f (z)b < f (mdl)

b and the difference reduces at larger 1/Fr , consistent
with the trend of (〈vz〉b − 〈uz〉b)/vT b in figure 8(b). This is because the mean vertical
slip velocity becomes larger relative to the horizontal slip velocities with increasing 1/Fr ,
such that |〈vz〉b − 〈uz〉b| increasingly dominates |vb − u|. We therefore conclude that the
observed reduction in the rise velocity is indeed due to enhanced nonlinear drag caused by
the horizontal slip velocity components in turbulence.

Combining these insights, we re-examine the unexpected result that turbulence can
reduce the collision rate (i.e. Γ <Γ (G)), as seen in figure 2(a). Our analysis shows that
this can be attributed to bubble–particle spatial segregation and the reduced bubble slip
velocity in turbulence. To evaluate their respective importance, we again show Γ/Γ (G)

in figure 8(d), this time focusing only on the parameter range where Γ <Γ (G). To
quantify the effect of the nonlinear drag, we plot the relative settling collision kernel
in turbulence Γ (Gtrb) = πr2

c [〈vz〉b − 〈uz〉b − (〈vz〉p − 〈uz〉p)], i.e. based on the measured
vertical slip velocities of bubbles and particles. Here, Γ (Gtrb)/Γ (G) � 1 as the nonlinear
drag reduces the bubble slip velocity. As 1/Fr increases, Γ (Gtrb)/Γ (G) increases since
the magnitude of the slip velocity is increasingly dominated by the vertical component,
whereas Γ (Gtrb)/Γ (G) decreases for increasing St as the effect of nonlinear drag becomes
more pronounced. Since bubbles and particles segregate in turbulence, we also show
Γ (GtrbC) = Γ (Gtrb) · g(rc) in the figure. The difference between Γ (GtrbC) and Γ (Gtrb)

decreases with increasing 1/Fr , reflecting the fact that gravity reduces segregation.
Finally, the difference between Γ (GtrbC) and Γ indicates the enhancement of the collision
velocity due to turbulence mechanisms. This is larger at lower 1/Fr and by 1/Fr = 10,
Γ ≈ Γ (GtrbC).

4.4. Effect of the particle density
In the previous sections, we fixed ρp/ρ f = 5 and varied St and 1/Fr . Nevertheless,
ρp/ρ f , which sets rp hence rc, can have an explicit effect on the particle dynamics
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Figure 9. (a) The collision kernel Γ normalised by the relative settling limit, (b) the RDF g(rc) and (c) S−(rc)

normalised by the relative settling limit for both ρp/ρb = 5 (filled triangles) and ρp/ρb = ∞ (open squares) at
Reλ = 167. The insets in (a) and (c) are zooms in on the 1 � 1/Fr � 10 region.

beyond determining the collision distance according to (3.2). We therefore additionally
simulate ρp/ρ f = ∞ with 1/Fr = 0.1, 1, 3, 5 and 10 for all the tested values of St at
Reλ = 167, while retaining the same rc as the ρp/ρ f = 5 case. Figure 9 plots the collision
kernel Γ , the RDF g(rc) and the effective radial approach velocity S−(rc), in which Γ
and S−(rc) have been normalised by the relative settling limit to account for the different
particle settling velocities. These data show that for the bubble–particle case neither the
overall collision kernel Γ/Γ (G), nor the factors gbp(rc) and S−(rc)/S(G)− , individually are
sensitive to ρp. This is in contrast to the particle–particle case where gpp(rc) remains
constant or even increases slightly with 1/Fr , which is shown in figure 9(b) and is
also observed by Woittiez et al. (2009). Despite gpp(rc) remaining above 1, gbp(rc)

approaches unity similar to the ρp/ρ f = 5 case, which is consistent with our interpretation
of figure 5(a) in § 4.2 that the trend in gbp(rc) with 1/Fr is not principally due to a change
in bubble or particle clustering strength. We furthermore note that, even for ρp/ρ f = ∞,
S−(rc) < S(G)− and Γ <Γ (G) at intermediate values of 1/Fr . This demonstrates that the
reduction of the bubble–particle collision rate below the pure gravity case by turbulence
is not specific to particles with ρp/ρ f = 5.

1015 A4-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
16

3 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10163


Journal of Fluid Mechanics

0.7

0.8

0.9

1.0

1.1

0.8

1.0

1.2

1.4

bb ppbp

No Fhist

Γ
/
Γ

(G
)

100 101

1/Fr

10–1 100 101

1/Fr

100

101

102

Γ
/
Γ

(G
)

St
0.1

1

3

With Fhist

S –
(r

c)
/
S –(G

)

1/Fr
100 101

100

101

102

S –
(r

c)
/
S –(G

)

10–1 100 101

1/Fr
10–2 10–1 100 101

St/Fr

100

101

g 
(r

c)
(a)

(b) (c)

Figure 10. (a) The collision kernel Γ normalised by the relative settling limit, (b) the RDF g(rc) and (c) S−(rc)

normalised by the relative settling limit for the cases with and without the history force Fhi st at Reλ = 167.
The insets in (a) and (c) are zooms in on the 1 � 1/Fr � 10 region.

4.5. Effect of the history force
In addition to testing ρp/ρ f = ∞, we examine the effect of the history force by including
(3.3) in (3.2) and simulating St = 0.1, 1 and 3 for 1/Fr = 0.1, 1, 3, 5, 10 at Reλ = 167.
The measured Γ/Γ (G), g(rc) and S−(rc)/S(G)− are plotted in figure 10. These results
show that the history force does not qualitatively change the bubble–particle collision
statistics, insofar as the general trends with 1/Fr remain the same, the reduction of Γ
and S−(rc) below the relative settling limit is still observed in figures 10(a) and 10(c), and
gbp(rc) still lies below 1 at low to intermediate values of 1/Fr , as shown by figure 10(b).
Quantitatively, the history force does not significantly affect the collision kernel, since
it tends to reduce S−(rc) and increase the value of gbp(rc). This increase in the value
of gbp(rc) towards 1 corresponds to reduced bubble–particle segregation. It is hence
consistent with the lower values of gbb(rc) and gpp(rc) observed when the history force
is included in figure 10(b), which indicate weaker bubble and particle clusters and have
already been reported in the literature (Olivieri et al. 2014; Daitche 2015). In summary,
our results show that the history force does not play a role in determining the qualitative
trends of the bubble–particle collision statistics and only a minor one for the value of the
collision kernel.
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5. Discussion and conclusion
We studied the effect of gravity on bubble–particle collisions in HIT by conducting direct
numerical simulations using the point-particle approach (Gatignol 1983; Maxey & Riley
1983; Auton 1987; Auton et al. 1988). From our simulations, we find that gravity is
negligible and turbulence mechanisms determine the collision kernel up to 1/Fr = 0.1.
For instance, bubbles and particles form individual clusters and segregate in this regime.
When 1 � 1/Fr < 10, gravity noticeably influences the collision kernel even though the
effects of turbulence are still significant. Gravity increases the collision kernel by reducing
the extent of segregation and increasing the collision velocity since bubbles rise and
particles settle. Notably, the collision kernel dips below the still fluid case when 1/Fr � 5
for St = 0.1 and 1/Fr � 1 for St � 0.5, meaning turbulence reduces the collision rate
in this regime. This is due to preferential sampling and additionally for St > 0.5 a
reduction in the bubble slip velocity due to nonlinear drag. Since both effects weaken
as 1/Fr increases, turbulence effects become negligible and the collision kernel is well
approximated by the still fluid case when 1/Fr � 10. For our tested parameters, additional
simulations reveal that the observed trends of the bubble–particle collision statistics are not
sensitive to particle density and the history force. Quantitatively, the history force tends
to reduce bubble–particle segregation and the effective bubble–particle radial approach
velocity. These two phenomena have opposite effects on the collision kernel, such that
the net effect of the history force on the collision kernel is weak. Although the existing
bubble–particle collision models qualitatively capture the increasing trend in the collision
velocity with 1/Fr over the tested range, none of them achieve quantitative agreement
with the simulation data in terms of the collision kernel even when the predictions are
appropriately compared with simulations without the history force. We extended the model
by Dodin & Elperin (2002) to the bubble–particle case and found excellent agreement with
our simulations over all 1/Fr for small St if segregation is accounted for and when the
history force is neglected. Note that none of these models capture S− < S(G)− , which occurs
at higher St due to the effect of nonlinear drag. This leads to a discrepancy of up to 20 %
in S− in the tested regime.

Throughout this paper, we have used both 1/Fr and St/Fr in order to parameterise
the turbulence-to-gravity transition and the gravity-dominated limit. As discussed, gravity
starts to play a noticeable role when 1/Fr � 1. To understand why 1/Fr is the relevant
parameter, first take �v as a proxy for S− and consider the following heuristic argument:
at small St , the bubble–particle relative velocity �v is given by the shear mechanism
which is ∝ √

St , the local turnstile mechanism which is ∝ St , and the relative settling
contribution which is ∝ St/Fr (see (B2)). Assuming the shear mechanism is weaker than
the local turnstile mechanism, �v ∝ St + St/Fr . As (�v)/(�v|1/Fr=0)∝ 1 + 1/Fr , we
consider 1/Fr when examining the turbulence-to-gravity transition. On the other hand,
St/Fr is the appropriate non-dimensional number for the gravity-dominant limit as
relative settling is governed by St/Fr (Good et al. 2014).

Multiple questions still remain to be addressed. Our simulations are conducted using
the point-particle approximation, which helps to provide a first-order appreciation of
bubble–particle collisions and enables one-to-one comparison with the geometric collision
models. As a trade-off for its relative simplicity, this approach limits access to the
large-St regime and inherently neglects finite-size effects. For the largest values of St
tested rb/η∼ 5, which is beyond the commonly adopted bounds of the point-particle
approximation (Homann & Bec 2010). Therefore, our results at these values should
be interpreted with caution as finite-size effects may be relevant. Performing interface-
resolved simulation using for example the immersed boundary method (Verzicco 2023)
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can provide additional insights as the bubble distorts the local flow field and can further
modify the bubble–particle distribution (Tiedemann & Fröhlich 2023; Jiang & Krug
2025), although the extra complexity would make it harder to distinguish whether the
trends in the collision statistics are due to the locally deformed flow field or due to the
background turbulence. Furthermore, we considered the more straightforward case of
bubbles and particles with the same St . While this has provided much understanding into
the collision process, unravelling the collision mechanisms for bubbles and particles with
different St would prove invaluable for real life applications, where particles in flotation
cells are usually far from monodispersed. In terms of modelling, a theoretical model of
segregation will greatly enhance the predictive capabilities of the existing models.
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Appendix A. Consistent inclusion of gravity following Abrahamson (1975)
The original expression of the collision kernel including gravity as given in Abrahamson
(1975) has an integration error which has been partly resolved by Kostoglou et al. (2020a)
using a comparable expression. However, the equivalence between the expressions in
Abrahamson (1975) and Kostoglou et al. (2020a) was not directly shown. We provide
this additional detail in this appendix. Furthermore, we show the difference between (2.7)
and the best-fit expressions reported in figure 2 and (10) in Kostoglou et al. (2020a).

According to Abrahamson (1975), the collision kernel between two types of particles in
the presence of gravity is given by

Γ12 = πr2
c vc

= πr2
c

(2πv′2
1 )

3/2(2πv′2
2 )

3/2

∫ ∫ ∫ ∫ ∫ ∫
all space

√
(v1x − v2x )2 + (v1y − v2y)2 + (v1z − v2z)2

× exp

[ 2∑
i=1

−v
2
i x + v2

iy + (vi z − vT i )
2

2v′2
i

]
dv1x dv1ydv1zdv2x dv2ydv2z, (A1)

where the numerical subscripts 1, 2 denote the colliding particles, and the alphabetical
subscripts x, y, z denote the corresponding velocity components. Changing variables such
that vi N = vi z − vT i for i = 1, 2 and further taking

vxm = v1x + v2x

2
, vym = v1y + v2y

2
, vzm = v1N + v2N

2
, (A2a)

vxd = v1x − v2x , vyd = v1y − v2y, vzd = v1N − v2N , (A2b)
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yields

vc = 1
(2πv′2

1 )
3/2(2πv′2

2 )
3/2

∫∫∫
all space

√
v2

xd + v2
yd + [vzd + (vT 1 − vT 2)]2

× Ix · Iy · Iz · dvxddvyddvzd , (A3)

where

I j =
∫ +∞

−∞
exp

⎡
⎣−v′2

1 + v′2
2

2v′2
1 v

′2
2

(
v jm − v′2

2 − v′2
1

2(v′2
1 + v′2

2 )
v jd

)2
⎤
⎦ exp

[
− v2

jd

2(v′2
1 + v′2

2 )

]
dv jm,

(A4)
and j = x, y, z. Using

∫ +∞
−∞ exp[−a(x − b)2]dx = √

π/a where a, b are constants to
evaluate Ix , Iy and Iz

vc = 1
[2π(v′2

1 + v′2
2 )]3/2

∫∫∫
all space

√
v2

xd + v2
yd + [vzd + (vT 1 − vT 2)]2

× exp

[
−v

2
xd + v2

yd + v2
zd

2(v′2
1 + v′2

2 )

]
dvxddvyddvzd , (A5)

which is the same as (8) in Kostoglou et al. (2020a) with the following mapping:√
v′2

1 + v′2
2 → V, vT 2 − vT 1 → UB, vc → UT ,

vT 2 − vT 1√
v′2

1 + v′2
2

→ α,
vc√

v′2
1 + v′2

2

→Ψ.

(A6)

Kostoglou et al. (2020a) numerically integrated (A5), showed a best-fit result in their
figure 2 and stated in their (10) that the corresponding equation is

vc

χ
=
⎧⎨
⎩

1.6, for α < 0.1

−0.0181α3 + 0.213α2 − 0.1096α + 1.584, for 0.1 � α � 5
α + (1/α), for α > 5

(A7)

where α = (vT 2 − vT 1)/χ and χ =
√
v′2

1 + v′2
2 . Both the curve shown in their figure 2

and (A7) are plotted in figure 11, which clearly indicates their difference. We additionally
include our best-fit expression (2.7), which shows excellent agreement with the numerical
integration result as displayed in figure 2 of Kostoglou et al. (2020a).

Appendix B. Extension of the Dodin & Elperin (2002) model to particles with
different densities
The Dodin & Elperin (2002) model is applicable for infinitely heavy inertial particles with
a uniform spatial distribution in HIT. Here, we extend it to particles with different densities
by incorporating the density ratio βi = 2(ρ f − ρi )/(ρ f + 2ρi ).

We start from (3.2) in the small St limit without lift (Fouxon 2012)

vi = u + βiτi

fi
ψ + βiτi

fi
gez, (B1)
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Numerical integration

(2.7)

[vc/χ = –0.0188α3 + 0.2174α2 + 0.1073α + 1.5552]

Numerical integration as shown

in figure 2 of Kostoglou et al. (2020a)

(10) in Kostoglou et al. (2020a) (i.e. (A7))

[vc/χ = –0.0181α3 + 0.213α2 – 0.1096α + 1.584]

α

v
c/
χ

Figure 11. Plot of vc/χ as a function of α. Note that (2.7) differs from (A7) as the fitting coefficients are
different for 0.1 � α � 5. The respective fits in this range are displayed in the legend.

where ψ = Du/Dt . Consider the case where two particles located at positions A and B
are at collision distance such that their separation is small. Here, ψ |A ≈ψ |B and

�v = v2 − v1 = (u|B − u|A)+
(
β2τ2

f2
− β1τ1

f1

)
ψ |A︸ ︷︷ ︸

�v f

+
(
β2τ2

f2
− β1τ1

f1

)
gez︸ ︷︷ ︸

�vg

, (B2)

in which �v has been split into fluid �v f and gravity contributions �vg . Projecting (B2)
along the separation vector, of which er is the corresponding unit vector, gives

�vr (θ)= (�v f +�vg) · er := ξ + h(θ)= ξ +
(
β2τ2

f2
− β1τ1

f1

)
g cos θ. (B3)

As the background flow is HIT, ξ is isotropic so it is assumed to be normally distributed.
Furthermore, since h(θ) has a sign ambiguity originating from the possibility of labelling
either particle as number 1, we introduce

h+(θ)=
∣∣∣∣β2τ2

f2
− β1τ1

f1

∣∣∣∣ g cos θ, (B4)

and write

〈|�vr (θ)|〉 =
∫ +∞

−∞
|α|

σ
√

2π
exp

(
−(α − h+)2

2σ 2

)
dα

= σ
√

2κerfκ + σ

√
2
π

exp (−κ2), (B5)

where 〈·〉 denotes averaging, κ = h+/(σ
√

2) and σ =√〈ξ2〉 = σ
(DE X)
�vr is the r.m.s. of ξ

(we drop the subscript and superscript of σ (DE X)
�vr in this appendix to reduce clutter). For

σ , we use the isotropy of the background flow and place particle 2 along the x-axis at
position C. Similar to before, we consider particles at collision distance so ψ |A ≈ψ |C ,
meaning
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σ 2 = 〈ξ2〉 = 〈(�v f · ex)
2〉

= 〈(ux |C − ux |A)
2〉 +

(
β2τ2

〈 f2〉 − β1τ1

〈 f1〉
)2

〈ψ2
x |A〉

+ 2
(
β2τ2

〈 f2〉 − β1τ1

〈 f1〉
)

〈(ux |C − ux |A)ψx |A〉, (B6)

where ψx = Dux/Dt . Additionally, as 〈(ux |C − ux |A)ψx |A〉 ≈ 〈(ux |C − ux |A)ψx |C 〉 =
−〈(ux |C − ux |A)ψx |A〉 due to homogeneity, 〈(ux |C − ux |A)ψx |A〉 ≈ 0. Therefore,

σ 2 = r2
c

〈(
∂ux

∂x

)2
〉

+
(
β2τ2

〈 f2〉 − β1τ1

〈 f1〉
)2
〈(

Dux

Dt

)2
〉

:= r2
c γ

2 +
(
β2τ2

〈 f2〉 − β1τ1

〈 f1〉
)2

λ2,

(B7)
where γ 2 = 〈(∂ux/∂x)2〉 = ε/(15ν) and λ2 = 〈(Dux/Dt)2〉 = 1.3ε3/2ν−1/2.

Finally, note that, in the case where g(rc)= 1,

Γ12 = 1
2

∫ π

0
〈|�vr (θ)|〉(2πrc sin θ)rcdθ = πr2

c

∫ π

0
〈|�vr (θ)|〉 sin θdθ, (B8)

where the factor 1/2 in the first equality singles out the inward flux of particles across
the collision sphere assuming flux balance. This equation can be further simplified using
symmetry of 〈|�vr (θ)|〉

〈|�vr (π − θ)|〉 = 〈|ξ − h(θ)|〉 = 〈| − ξ + h(θ)|〉 = 〈|�vr (θ)|〉, (B9)

where the final equality is attributed to the symmetry of the distribution of ξ about 0.
Equation (B8) then becomes

Γ12 = 2πr2
c

∫ π/2

0
〈|�vr (θ)|〉 sin θdθ. (B10)

Performing the integration results in

Γ12 = √
8πr2

c σ f (c), (B11)

where

f (c)=
√
π

2

(
c + 1

2c

)
erfc + exp(−c2)

2
, (B12)

and

c = |β2τ2/〈 f2〉 − β1τ1/〈 f1〉|g√
2σ

. (B13)

Appendix C. Domain size effects
The simulations reported are conducted in a cubic domain with Lbox = 1. With gravity,
bubble and particle statistics may exhibit periodicity effects if the time taken by the
bubbles and particles to travel through the periodic simulation domain is less than the
eddy turnover time, i.e. Tbox,i < �/u′ (Woittiez et al. 2009), where � is the integral length
scale. Taking Tbox,i ∼ Lboxz/|βi |τig, this means

max(Sti )= Fr · Lboxzu′

�uη|βi | , (C1)
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Reλ = 69 Reλ = 167

1/Fr 0.01 0.1 1 2 3 5 10 0.01 0.1 1 2 3 5 10
max(Stb) 1947.2 194.7 19.5 9.7 6.5 3.9 1.9 3217.7 321.8 32.2 16.1 10.7 6.4 3.2
max(Stp) 5338.5 533.9 53.4 26.7 17.8 10.7 5.3 8821.7 882.2 88.2 44.1 29.4 17.6 8.8

Table 2. The maximum St that satisfies the criterion in (C1) when Lboxz = 1.
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Figure 12. The (a) collision kernel, (b) RDF and (c) effective radial approach velocity with different Lboxz at
Reλ = 69 and (d–f ) Reλ = 167. The dotted segments indicate r < rc. The tables in (b–c) and (e–f ) show the
percentage difference of the values at rc compared with the Lboxz = 1 case.

where Lboxz is the vertical domain size. Table 2 shows that the maximum St is not
exceeded with Lboxz = 1 even for the largest Stb and Stp simulated except for the
(Reλ, 1/Fr)= (69, 10) case. To confirm the collision statistics are not affected even then,
we lengthen the simulation domain along the vertical direction following Chouippe &
Uhlmann (2015) and rerun the (St, 1/Fr)= (3, 10) cases. Figure 12 shows that Γ (r),
g(r) and S−(r) are not sensitive to Lboxz for bubble–particle, bubble–bubble and
particle–particle collisions.

Appendix D. Code verification
The code used in this study is identical to the already verified code used in Chan et al.
(2023) apart from the addition of the buoyancy, history force and lift terms. To verify the
buoyancy term, we first omit the history force and simulate 100 bubbles rising in still fluid.
Figure 13(a) shows that their terminal rise velocities correspond to the theoretical value
(vT = 0.117). We next add the history force and consider a particle settling in still fluid.
Here, we employ Stokes drag ( f p = 1) to enable comparison with the analytical solution
of the velocity time series by van Hinsberg et al. (2011). As shown in figure 13(a), the
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Figure 13. (a) Time series of the mean vertical velocity of 100 bubbles rising in quiescent liquid (blue line)

with a Galileo number Gab =
√
g(2rb)3|ρb/ρ f − 1|/ν = 106, ρb/ρ f = 1/1000 and nonlinear drag fb = 1 +

0.169Re2/3
b , as well as that of a particle settling in quiescent liquid with Gap = 36, ρp/ρ f = 3.69 and Stokes

drag f p = 1. (b) The lift force acting on a bubble with (Gab, ρb/ρ f )= (106, 1/1000) and nonlinear drag
fb = 1 + 0.169Re2/3

b in a simple shear flow.

numerical and analytic solutions agree perfectly when the window length of the history
force spans the entire simulation duration, and the agreement is still excellent if a window
length of tw/(ν/g2)1/3 = 0.07, which corresponds to 5 time steps, is used.

For the lift term, we checked that the lift force acting on a bubble in a simple shear
flow with ∂uz/∂x = 0.64 is equal to the manually computed value given by the lift force
expression in figure 13(b).
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