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Abstract

The prevalence of calcium oxalate (CaOx) uroliths detected in cats with lower urinary tract disease has shown a sharp increase over

the last decades with a concomitant reciprocal decrease in the occurrence of struvite (magnesium ammonium phosphate) uroliths.

CaOx stone-preventative diets are available nowadays, but seem to be marginally effective, as CaOx urolith recurrence occurs in patients

fed these diets. In order to improve the preventative measures against CaOx urolithiasis, it is important to understand its aetiopathogenesis.

The main research focus in CaOx formation in cats has been on the role of Ca, whereas little research effort has been directed towards the

role and origin of urinary oxalates. As in man, the exogenous origin of urinary oxalates in cats is thought to be of minor importance,

although the precise contribution of dietary oxalates remains unclear. The generally accepted dietary risk factors for CaOx urolithiasis

in cats are discussed and a model for the biosynthetic pathways of oxalate in feline liver is provided. Alanine:glyoxylate aminotransferase 1

(AGT1) in endogenous oxalate metabolism is a liver-specific enzyme targeted in the mitochondria in cats, and allows for efficient

conversion of glyoxylate to glycine when fed a carnivorous diet. The low peroxisomal activity of AGT1 in cat liver is compatible with the

view that felids utilised a low-carbohydrate diet throughout evolution. Future research should focus on understanding de novo

biosynthesis of oxalate in cats and their adaptation(s) in oxalate metabolism, and on dietary oxalate intake and absorption by cats.
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Introduction

Urolithiasis is the condition in which calculi are formed in

the urinary tract from initially dissolved minerals and/or

organic compounds. In domestic cats, the primary stones

are composed of calcium oxalate (CaOx) monohydrate or

dihydrate and struvite (magnesium ammonium phosphate

hexahydrate). Less common stones are purines (i.e.

ammonium urate, sodium (calcium) urate, potassium

urate, uric acid dihydrate and xanthine), calcium phos-

phate, matrix, cystine and silica uroliths(1).

Urolithiasis in domestic cats is, after feline idiopathic

cystitis (FIC), the second most common cause of lower

urinary tract disease (LUTD)(2,3). Studies with the aim to

determine the incidence rates for urolithiasis have not

been conducted in cats. Estimates on incidence rates

reported in the literature are largely based on morbidity

rates seen in veterinary practices, with estimates varying

between 0·2 and 0·7 %(4,5).

Over the past 30 years, a progressive increase in the

prevalence of CaOx uroliths in cats diagnosed with LUTD

has been reported in the USA(1), with a similar trend

being observed in Western Europe(6). During the early

1980s, CaOx was detected in only 2 % of all feline uroliths

submitted to the Minnesota Urolith Center, whereas struvite

was detected in 78 % of the uroliths submitted (Fig. 1)(1).

However, in the mid-1990s, together with a rapid increase

in the total number of uroliths submitted for analysis, a

notable shift in the submitted types of uroliths has been

observed(7). In the mid-1980s, the submitted CaOx uroliths

noticeably increased(8), reaching 55 % in 2002 in the USA(1)

and 61 % in 2003 in Western Europe(6). Since 2003 a slight

decline in the percentage of CaOx uroliths has been

observed, reaching 41 % in 2007. This decline comes

along with a reciprocal increase in the frequency of struvite

uroliths, up to 49 % in 2007(1). The amount of less common

uroliths (i.e. purines, calcium phosphate, etc) submitted

for analysis has remained fairly constant at about 10 %(1).
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The same general trend in urolith composition can

be observed in dogs but is less extreme compared

with cats(1,6).

It is generally thought that the concomitant increase in

the occurrence of CaOx uroliths with the reciprocal

decrease in struvite until 2003 reflects the widespread

use of struvite urolith-preventive diets since the mid-

1980s(9,10). These acidifying diets, often with reduced

quantities of Mg, are believed to promote calciuria and

reduce urinary Mg concentrations, both being risk factors

for CaOx urolith formation(10,11). The progressive decrease

in occurrence of CaOx uroliths from 2003 until 2007

may be associated with the improvement of adult main-

tenance and therapeutic diets to minimise risks for

CaOx crystalluria.

Despite the use of urolith-preventive diets over the past

decades, the prevalence of CaOx uroliths in cats remains

substantial. In order to further decrease the incidence of

CaOx urolithiasis in cats, understanding of the aetiopatho-

genesis of CaOx urolithiasis is essential. The purpose of the

present review is to discuss dietary risk factors for CaOx

urolith formation in cats, with an emphasis on the origin

of urinary oxalates. Endogenous biosynthesis of oxalate

in the mammalian liver is reviewed and recommendations

for research in order to reduce feline CaOx urolithiasis by

dietary intervention are provided.

Risk factors

Several risk factors have been identified for CaOx urolith

formation in cats. The risk of developing CaOx uroliths

appears to increase with age, with cats aged 7–10 years

showing the highest predisposition(12). Other predisposing

factors seem to be sex and reproductive status, with male

cats more commonly affected (59 %)(12), and 95 % of cats

with CaOx urolithiasis being neutered. However, the

imbalance of reproductive status in the population of cats

(for example, 78 % of cats examined at primary veterinary

practices in the USA were neutered)(4) might be a con-

founding factor. In Burmese, Himalayan and Persian cats,

a predisposition to develop CaOx uroliths has been

observed, indicating that genetic background also contrib-

utes to CaOx urolithiasis(10,12,13). Nevertheless, considering

the short time span in which the types of feline uroliths

have changed over the past three decades (Fig. 1), it is

highly unlikely that animal-related factors have made a sig-

nificant contribution to this observed trend, as opposed to

nutritional and husbandry factors. Changes in nutrition are

thought to be one of the main reasons for the epidemiolo-

gic shift in urolith type in cats(1).

Urinary concentrations of Ca and oxalate play a key role

in CaOx urolith formation. Factors indirectly influencing

the formation of CaOx crystals are urinary volume, pH,

citrate and glycosaminoglycans (GAG) concentration. The

relationship between various dietary components and the

risk factors for CaOx urolith formation are outlined in

Fig. 2. Dietary components able to influence urine

volume, urinary oxalate excretion, urinary Ca excretion,

urine pH (acidosis) and urinary citrate and GAG levels

(see Fig. 2) will be discussed in more detail.

Urine volume

Theoretically, a high fluid intake could inhibit CaOx urolith

formation since it dilutes the urine, thereby lowering the

urinary concentrations of Ca and oxalate and, in turn, the

crystallisation of CaOx in the urinary tract. Enhancing

urine volume may also increase the frequency of urination,

which would reduce crystalloid and crystal transit time

along the urinary tract, thereby reducing the potential for

crystal growth(14). Therefore, measures to increase water

intake to promote high urine volume can be considered
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Fig. 1. Feline urolith distribution in the USA from 1981 until 2007(1): magnesium ammonium phosphate hexahydrate ( ); calcium oxalate ( ); calcium phosphate

( ); purine ( ); matrix ( ); other ( ).
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as one of the best approaches to prevent urolith recur-

rence. A higher water intake can be achieved by feeding

diets with high moisture and/or Na content.

Dietary factors affecting urine volume. Data in the

literature indicate that feeding high-moisture diets to

adult cats leads to a slightly higher total water intake

leading to an increased urine volume(15,16). When high

(82 %)-moisture diets are fed, urine output is increased

by 57·4 % compared with low (10 %)-moisture diets(15). In

a retrospective case–control study with 173 cats with

CaOx uroliths, it was found that cats fed (canned) diets

containing the highest moisture contents (77·4 to 81·2 %)

were only about one-third as likely to develop CaOx uro-

liths compared with cats fed (dry kibble) diets low in

moisture (7·0 to 7·9 %)(9). The purpose of the latter study

was to identify dietary factors associated with the increase

in occurrence of CaOx uroliths. The dietary factors studied

were moisture content, protein, carbohydrate, fat and fibre

content, but also Ca, P, Mg, Na, K and chloride content and

urine-acidifying potential. Of these factors, the moisture

content of the diet seemed to have the strongest associ-

ation with CaOx urolith formation in cats(9). The favour-

able effect of a high water intake on LUTD in general

was also reported by Markwell et al.(14), who stated that

recurrence rates of signs in cats classified as having idio-

pathic LUTD, or FIC, may be more than halved when

affected animals are maintained on high-, rather than

low-, moisture content diets. Gunn-Moore & Shenoy(17)

observed a significantly lower urine specific gravity in

cats with FIC when they were fed more canned cat food

as well.

The increased water intake when feeding moist diets

might not only be due to its higher moisture content, but

also because its higher mineral (ash) and protein content

(evoking a higher renal solute load) may stimulate drink-

ing(18,19). This is in line with the finding that a high

intake of animal protein is accompanied by increased

water consumption and urine volume in cats(20). Taking

into account the overall beneficial effect of high-moisture

diets by increasing urine volume, and therefore diluting

all substances dissolved in the urine, feeding a high-

moisture diet may be considered as one of the most

effective measures to prevent CaOx formation.

Another way to increased urine volume is to stimulate

drinking by increasing dietary Na intake(21,22). This effect

of a higher Na intake might explain the results of the pre-

viously mentioned retrospective case–control study with

173 cats, in which diets high in Na (0·34 to 0·89 g/MJ

metabolisable energy (ME)) were correlated with a

decreased risk of CaOx urolith formation(9). In humans,

an increased salt intake has been associated with elevated

urinary Ca excretion(23–25). Salt-induced calciuria is

believed to result from Na–Ca interactions in the kidney,

in both the proximal and distal tubule. Reabsorption of

Glucosamine

Moisture
NaCl

Protein

Volume

[Mg2+] Pyridoxine
Ascorbic acid

Carbohydrates
Protein

[Ca2+]
[PO4

3–]
[Oxalate–]

[Oxalate–]

[Oxalate–]

[Citrate2–]

D
ie

t

[Citrate2–]

[Citrate2–]

Protein

Protein

[Ca2+]

[Ca2+]

[Ca2+][Oxalate–]2 precipitation

[Ca2+][Oxalate–]2 crystal aggregation and growth

[Ca2+][Oxalate–]2 urolith growth

GAG

[Mg2+][PO4
3–]

[K+]

pH

U
rin

e

†*

Fig. 2. Schematic model of dietary risk factors likely to increase calcium oxalate urolith formation in cats. GAG, glycosaminoglycan. * This box contains dietary

factors affecting the availability of exogenous oxalate for absorption in the gastrointestinal tract. † This box contains dietary factors affecting endogenous

oxalate synthesis.

J. C. Dijcker et al.98

N
u
tr
it
io
n
R
es
ea
rc
h
R
ev
ie
w
s

https://doi.org/10.1017/S0954422410000351 Published online by Cambridge University Press

https://doi.org/10.1017/S0954422410000351


Ca parallels the reabsorption of Na in the proximal tubule

and loop of Henle. Na may influence renal reabsorption of

Ca in the distal tubule by both a direct effect and indirectly

through its effects on parathyroid hormone levels(26). In a

study with healthy cats, the total daily amount of Ca

excreted in urine was reported to be increased(27). Similar

results were found in dogs(28,29). However, in two studies

with healthy adult cats, dietary Na levels of up to 0·96 g/

MJ ME did not increase urine Ca concentrations, but did

increase the volume of water drunk, resulting in a larger

urine volume and a concomitant decrease in urine specific

gravity and CaOx relative supersaturation (RSS)(30,31).

A possible explanation for this discrepancy might be that

an increased dietary Na intake enhances urinary total Ca

excretion as seen in humans, but by augmenting urine

volume, does not lead to substantially elevated urine Ca

concentrations(9,27).

Overall, research indicates that the urine volume in cats

can be increased successfully by feeding a high-moisture

diet, as well as by increasing dietary Na intake. An

increased Na intake might be used as a preventative

measure for CaOx formation as there is no evidence that

dietary Na induces elevated Ca concentrations in the

urine of healthy cats, and there are no adverse long-term

effects reported for this nutrient on, for example, blood

pressure and kidney functioning as well(32,33). However,

the effectiveness of increased dietary Na intake on

reducing CaOx urolith formation in urolith-forming cats

has not been tested.

Urinary oxalate

Since oxalate forms a relatively insoluble salt with Ca ions

at physiological pH, an increased urinary excretion of

oxalate, i.e. hyperoxaluria, can promote CaOx formation.

It has been argued that an increase in urinary oxalate

concentration promotes CaOx urolith formation to a

greater extent than comparable increases in Ca, as

changes in urinary oxalate concentration are fifteen

times as potent as equimolar changes in Ca concentration

in effecting CaOx saturation(34,35). Therefore, hyperoxa-

luria is generally accepted as a critical factor of CaOx

urolithiasis(36). To be able to reduce urinary oxalate

excretion, it is essential to understand the origin of the

oxalates excreted in the urine of cats. Both the intake of

dietary oxalate (exogenous oxalate) and biosynthesis of

oxalate (endogenous oxalate) contribute to the amount

of oxalate excreted with the urine.

Factors influencing urinary oxalate: exogenous urinary

oxalates. Intake of dietary oxalate is a known factor

that increases urinary oxalate excretion. The amount of

dietary oxalate available for absorption in the gastrointesti-

nal tract is dependent on the amount of free oxalate

present in the diet, dietary components which can

form complexes with free oxalate (for example, Ca, Mg)

and the activity of oxalate-degrading bacteria in the

gastrointestinal tract of man and animals.

In general, large amounts of oxalate are present in green

leafy vegetables and bran concentrates, moderate amounts

in nuts and cereals, and low amounts in dairy products,

meat and fish(37,38). The contribution of dietary oxalate

intake to urinary oxalate excretion in free-roaming cats is

unknown, but can be expected to be low, as the natural

(carnivorous) diet of the cat is mainly composed of food/

prey items that contain low amounts of oxalate(39,40).

In contrast, omnivorous diets (for example, for humans

and rats) contain moderate to high levels of oxalate, which

may result in a relatively high contribution of exogenous

oxalate to total urinary oxalate excretion. In humans, con-

tributions of dietary oxalate to urinary oxalates have been

reported, with estimates ranging from 25 to 68 %(41,42).

Unfortunately, no such data are available in cats.

In thirty different dry pet foods for adult small

breed dogs, the oxalate content was found to range

between 9·6 and 60·0 mg/MJ ME (4–25 mg/100 kcal) with

a mean of 26·3 mg/MJ ME (11 mg/100 kcal)(43). In a

canned diet designed to assist in the management of

LUTD in dogs, the oxalate content was 5·9 mg/MJ ME

(2·5 mg/100 kcal)(44). The average daily intake of oxalate

(2·5–15·5 mg/kg body weight (BW) per d) in dogs fed

these commercial dry diets can be considered to be

relatively high compared with the average oxalate intake

(2–3 mg/kg BW per d) by humans(43). Stevenson et al.(43)

studied the relative effects of dietary Ca and oxalate

on the composition of urine by feeding healthy dogs

a diet supplemented with 24·0 to 60·0 mg oxalate/MJ

(10–25 mg/100 kcal) and varying the dietary Ca contents.

These authors found that the oxalate excretion inconsist-

ently increased with a higher oxalate intake only when

dietary Ca intake was low (molar Ca:oxalate ratio , 18).

With higher dietary Ca:oxalate ratios (. 25) the oxalate

excretion remained low and stable, irrespective of dietary

oxalate content. The variation between dogs when differ-

ent oxalate levels were fed, in conjunction with a low diet-

ary Ca content, was very high, with effects ranging from

0 to a 400 % increase in urinary oxalate excretion. These

results indicate that the contribution of dietary oxalate to

urinary oxalate excretion in dogs is dependent on the

dietary Ca content, and is expected to be low with a

high (. 40) molar Ca:oxalate ratio in the diet.

Other factors than dietary Ca are also known to influ-

ence intestinal oxalate absorption. A similar role for dietary

Mg has been found(45). Both minerals can directly interact

with oxalate to form an insoluble complex to lower the

free oxalate concentration in the gastrointestinal tract(45),

resulting in a reduction in the absorption of oxalate(42,46,47).

Fat and phosphate can act as scavengers for Ca, thereby

indirectly increasing the availability of oxalate for uptake

by the intestine(48,49). In addition, oxalate-degrading

bacteria, such as Oxalobacter formigenes present in the

intestinal tract of man and rats, are known to reduce the
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contribution of exogenous urinary oxalates to total urinary

oxalates, as this bacterium uses oxalic acid (or its anion

oxalate) as its sole energy source by degrading oxalic

acid to formate(50,51). O. formigenes has also been detected

in the stool of cats and dogs(52,53). Lactic acid bacteria have

also been shown to degrade oxalates in vitro(54). The

impact of oxalate-degrading bacteria in the gastrointestinal

tract of humans and animals on urinary oxalate excretion

remains to be clarified.

Research in dogs indicates that, although canine foods

contain relatively high levels of oxalate, the contribution

of exogenous oxalates to the urinary oxalate excretion is

expected to be of minor importance mainly due to the

high molar Ca:oxalate ratio in commercial canine foods.

The influence of factors other than dietary Ca that are

known to affect intestinal oxalate absorption in humans

is not known in dogs and cats, but is expected to be of

minor importance in practice, as the dietary Mg content

in the majority of commercial foods is approximately 10-

fold lower than the Ca content, and dietary Ca and phos-

phate are normally balanced. Oxalate and Ca contents of

dry commercial feline diets may be expected to be in the

same range as canine foods, as similar ingredients are

used. This would imply that the potential contribution of

exogenous oxalates to total urinary oxalate excretion by

domestic cats is expected to be marginal as well, as the

Ca:oxalate ratio can be expected to be high. However,

the oxalate content of commercial feline foods and its

contribution to urinary oxalate excretion remains to be

determined in order to ascertain its relative importance.

Factors influencing urinary oxalate: endogenous urinary

oxalates. Since hyperoxaluria in humans is recognised as

an important risk factor for CaOx urolith formation, many

studies (mainly in rodents) have been conducted to unra-

vel the aetiopathogenesis of hyperoxaluria. Studies in

human subjects and rodents have revealed that the largest

part of the endogenous oxalate formation originates from

the conversion of sugars (including glucose and fructose),

amino acids (including hydroxyproline, glycine, serine,

phenylalanine, tyrosine and tryptophan) and/or glycolate,

ending via the metabolism of glyoxylate to oxalate.

Another precursor that can give rise to oxalate is ascorbic

acid, which can break down non-enzymically in urine to

produce oxalate, a reaction which is accelerated at alkaline

pH. Originally it was thought that 40 to 50 % of urinary

oxalate was derived from the breakdown of ascorbic

acid(42,55–57). However, close scrutiny of the experimental

procedures indicates that the breakdown occurred due to

processing of urine at alkaline pH(58). In cats, ascorbate

has not been found to be an important dietary precursor

of oxalate(59), indicating that endogenous oxalate biosyn-

thesis in cats relies predominately on glyoxylate

metabolism.

Endogenous biosynthesis of oxalate occurs mainly in the

liver(60) and is highly dependent on the glyoxylate content

in the hepatocytes (Fig. 3). Any glyoxylate that is not

reduced to glycolate or transaminated to glycine is oxidised

to oxalate, a reaction catalysed by cytosolic L-lactate

dehydrogenase(61) (Fig. 3(a), step I). Since oxalate can be

considered a metabolic ‘end-waste-product’ it will be

quantitatively excreted in the urine, mainly via glomerular

filtration. Oxalate excretion also occurs in the proximal

tubule after a high oral oxalate load(62,63). The most

efficient way of reducing urinary endogenous oxalate

excretion is to reduce the content of glyoxylate in the

hepatocyte (Fig. 3). This can be achieved in two ways:

by supplying less dietary precursors for glyoxylate

production in the hepatocyte or by metabolic removal of

glyoxylate from oxalate synthesis.

Glyoxylate removal can be achieved through the

conversion into glycine, which is catalysed by serine:

pyruvate aminotransferase/alanine:glyoxylate aminotrans-

ferase, also called alanine:glyoxylate aminotransferase 1

(AGT1)(64) (Fig. 3(a), step II). This enzyme can also convert

serine into hydroxypyruvate. An essential cofactor for

AGT1 is pyridoxine, or vitamin B6. A deficiency in pyridox-

ine can lead to a shift from glyoxylate removal through

conversion into glycine, to glyoxylate oxidation to oxalate.

This shift has been well documented in cats. In a study

with kittens that were fed a pyridoxine-deficient diet, a

significantly higher daily urinary oxalate excretion was

observed(65).

Glyoxylate can also be converted into glycolate (Fig. 3(a),

step III) via the action of the enzyme glyoxylate reductase/

hydroxypyruvate reductase (GR/HPR), a 2-hydroxy-acid

dehydrogenase. GR/HPR also catalyses the reduction of

hydroxypyruvate to D-glycerate (Fig. 3(a), step IV) and

the oxidation of D-glycerate to hydroxypyruvate(66). In

the human liver, GR/HPR is found predominantly in the

cytosol (. 90 %), with a small portion in the mitochon-

dria(67). In cats, GR/HPR localisation has been reported to

predominantly occur in the cytosol(68).

The existence and importance of the conversions of

glyoxylate into glycine and glycolate in the hepatocyte

has been discovered as a result of extensive research into

two severe autosomal-recessive disorders leading to mild

to severe hyperoxaluria in humans. These disorders are

termed primary hyperoxaluria (PH) and two types can be

distinguished. PH type I is an inherited disorder of glyoxy-

late metabolism arising from a deficiency in AGT1, leading

to a disrupted conversion of glyoxylate into glycine

(Fig. 3(a), step II). PH type II is an inherited disease

caused by mutations in GR/HPR, leading to a reduced con-

version of glyoxylate into glycolate (Fig. 3(a), step III) and

that of hydroxypyruvate into D-glycerate (Fig. 3(a), step

IV)(69,70). PH type II patients have a limited ability to con-

vert D-glycerate into hydroxypyruvate, resulting in most

cases in an elevated concentration of L-glycerate in the

urine, as metabolic removal of D-glycerate occurs via con-

version into L-glycerate (Fig. 3). The reported cases of PH

in cats(71,72) reflect those of human PH type II(68), while
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cases of PH in cats analogous to human PH type I are

unknown.

Highly notable is the observation that the spatial

localisation of AGT1 seems to be species dependent. In

carnivores and insectivores, AGT1 is mainly present in

mitochondria(73,74), while in the human liver an almost

exclusive peroxisomal localisation of this enzyme has

been reported(75). The mitochondrial localisation of AGT1

is seen in carnivorous and insectivorous species of differ-

ent genera (mammals, birds, reptiles)(73), indicating that

AGT1 localisation in the mitochondrion might be a neces-

sity when consuming high-protein, low-carbohydrate diets.

Interestingly, the Gly170Arg in combination with the

Pro11Leu mutation in the gene AGXT, encoding for

AGT1, which are commonly found in human patients

with PH type I, targets AGT1 to mitochondria instead of

to its normal location in peroxisomes(75), resembling

the mitochondrial localisation of hepatic AGT1 in

carnivores(74). Herbivores, such as Old World monkeys

(macaques and baboons), rabbits and guinea-pigs, have

most, if not all of their AGT1 located in peroxisomes(74).

Rodents (rats, mice, hamsters) and marmosets (New

World monkey) have AGT1 distributed approximately

equally between both organelles. The interspecies differ-

ence in intracellular localisation of hepatic AGT1 may

very well be the result of dietary selection pressure

during evolution(74).

Genomic expression analyses have revealed that the

adaptive shift in AGT1 targeting among species can be

ascribed to the use of alternative transcription- and trans-

lation-initiation sites of the single-copy AGXT gene(76,77).

The longest transcript of AGXT, as found in cats, encodes

a cleavable N-terminal mitochondrial targeting sequence

(MTS) and C-terminal peroxisomal targeting sequences

for peroxisomal uptake, in which MTS is dominant over

peroxisomal targeting sequences in determining the final

subcellular destination of AGT1(76,77). Species such as

man and rabbits expressing AGT1 almost exclusively in

peroxisomes have lost the first translation start site during

evolution resulting in an MTS-lacking protein. In cats and

Feline hepatocyte
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Fig. 3. Proposed metabolic pathways of de novo oxalate synthesis via glyoxylate metabolism. Major metabolic conversions that are considered prominent in the

feline hepatocytes when precursors from a carnivorous and omnivorous diet are present are shown in panels A and B, respectively. Metabolic conversions

expected to play a major role are indicated by thick arrows. Metabolic conversions expected to play a minor role are indicated by dashed arrows. Essential meta-

bolic conversions in situation A are indicated with I, II, III or IV, meaning: I, conversion of glyoxylate into oxalate catalysed by cytosolic L-lactate dehydrogenase

(L-LDH)(61,69); II, conversion of glyoxylate into L-glycine catalysed by alanine:glyoxylate aminotransferase 1 (AGT1)(64,74,75,82,83,92,100,101,105); III, conversion of

glyoxylate into glycolate catalysed by glyoxylate reductase/hydroxypyruvate reductase (GR/HPR)(67,68,69,72,155,156); IV, conversion of hydroxypyruvate into

D-glycerate catalysed by glyoxylate reductase/hydroxypyruvate reductase(67,68,69,72,155,156). Essential metabolic conversions in situation B are indicated with Ia–d,

II, III and IV, meaning: Ia, conversion of cytosolic D-fructose, D-glucose and D-galactose into D-glycerate(86,87,89); Ib, conversion of D-glycerate into hydroxypyru-

vate; Ic, conversion of hydroxypyruvate into glycolaldehyde(80); Id, conversion of glycolaldehyde into glycolate(80); II, conversion of peroxisomal glycolate into

oxalate catalysed by glycolate dehydrogenase (GD)(97); III, conversion of peroxisomal glycolate into glyoxylate catalysed by glycolate oxidase (GO)(97); IV,

conversion of glyoxylate into L-glycine catalysed by alanine:glyoxylate aminotransferase 1(64,74,75,101,157).
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other species expressing AGT1 almost exclusively in

mitochondria, almost all encoded proteins contain the MTS

due to the loss of the – more downstream – second

transcription-initiation site(74,77). Species in which hepatic

AGT1 is roughly equally distributed between both

organelles utilise both translation-initiation sites(78).

It has been postulated that the dual localisation of AGT1 in

the liver is a reflection of its dual physiological function:

that is, its role in glyoxylate detoxification in peroxisomes

and its role in gluconeogenesis in mitochondria(64,74).

Intraperoxisomal glyoxylate detoxification is essential in

herbivores, since their diet is rich in glycolate and carbo-

hydrates. To prevent oxidation of cytosolic glyoxylate

to oxalate by L-lactate dehydrogenase (Fig. 3(a), step I), a

high activity of intraperoxisomal AGT1 is required. High

levels of glycolate and carbohydrates in combination with

a scarcity of animal protein (containing L-hydroxyproline,

glycine, serine), typically found in diets of herbivores,

retard the need for directing hydroxyproline-derived

glyoxylate into gluconeogenesis by conversions facilitated

by AGT1 (Fig. 3(a), step II). In contrast, carnivores

and insectivores are likely to have consumed a very low

amount of glycolate and carbohydrates during evolution

and these species have not required intensive detoxification

of glyoxylate in the peroxisome. In contrast, the high

animal protein and low carbohydrate content of the diet

of carnivores and insectivores would clearly favour the

contribution of gluconeogenesis in the mitochondrion(64).

As stated earlier, the glyoxylate content in the hepatocyte

is also dependent on certain dietary precursors. In human

medicine, it has been demonstrated that a high intake of

amino acids (i.e. hydroxyproline, serine, glycine, phenyl-

alanine, tyrosine and tryptophan)(78–83) or sugars (i.e.

glucose, fructose, galactose, xylose)(84–89) stimulates oxa-

late synthesis from the intermediate product glyoxylate.

Knight et al.(90,91) showed that hydroxyproline is a potent

contributor to urinary oxalates, with glycine contributing

little to the endogenous production of glycolate or oxalate.

In cats, the endogenous synthesis of oxalate has not

been widely studied. A study by Zentek & Schulz(92)

describes the effects of various dietary protein sources

(collagen tissue, horse meat and soya isolate) on urine

composition, including urinary oxalate excretion. Uptake

of the (high)-protein diet with collagen as the protein

source resulted in an increase in urinary oxalate excretion

(2·83 (SD 0·89) mg/kg BW per d) compared with the (high)-

protein diets with horse meat and soya protein isolate

as the protein source (0·94 (SD 0·29) mg/kg BW per d

and 1·17 (SD 0·53) mg/kg BW per d, respectively). Since

the hydroxyproline content of collagen tissue is high

(about 10–13 %), mitochondrial AGT1, which converts

L-hydroxyproline-derived glyoxylate into glycine (Fig. 3(a),

step II), might have been saturated in the cats fed the

collagen protein, leading to undesirable conversion to

oxalate by L-lactate dehydrogenase (Fig. 3(a), step I),

resulting in an increased urinary oxalate excretion(83).

Besides hydroxyproline, the amino acids glycine and

serine are also present in relatively high concentrations in

collagen tissue(93).

Zentek & Schultz(92) also investigated the effects of

different dietary protein levels on daily urinary oxalate

excretion. Of each protein source (collagen tissue, horse

meat and soya isolate), two diets were fed, one containing

a high and the other a low protein level. In the low-protein

diets, protein was exchanged with rice (carbohydrate) and

animal fat. Remarkably, all low-protein diets showed a

consistently higher daily urinary oxalate excretion. The

oxalate excretion increased approximately 5-fold (from

2·83 (SD 0·89) to 13·70 (SD 4·32) mg/kg BW per d) when

fed the low-protein diet with collagen as the protein

source compared with the high-protein diet. Urinary oxa-

late excretion increased 4-fold when changing from high-

to low-protein diets using soya isolate and horse meat as

a protein source (soya isolate diet from 1·17 (SD 0·53) to

4·79 (SD 2·73) mg/kg BW per d and the horse meat diet

from 0·94 (SD 0·29) to 3·62 (SD 2·44) mg/kg BW per d).

However, the observed increase in urinary oxalate

excretion might have been the result of a concomitant

high carbohydrate intake with the low-protein diets. As

stated earlier, in humans sugars (i.e. glucose, fructose,

galactose, xylose) are known to be a substrate for the per-

oxisomal glyoxylate pathway(84–89). It is conceivable that

when fed a high-carbohydrate diet, cats suffer an overload

of hepatic oxalate as a consequence of a deficiency in

peroxisomal AGT1 and excrete more oxalate in their

urine. Although the urinary oxalate excretion was found

to be unaffected in a study feeding healthy cats a dry com-

mercial diet with a low carbohydrate content (19·1 g/MJ

ME) v. a high carbohydrate content (34·7 g/MJ ME)(94),

the carbohydrate content of the low-carbohydrate diet in

this study can still considered to be high compared with

the carbohydrate content of the experimental diets in the

study of Zentek & Schultz(92) (i.e. collagen tissue diets:

2·7 v. 23·2 g/MJ ME; soya diets 7·1 v. 22·3 g/MJ ME; horse

meat diets 5·9 v. 25·3 g/MJ ME).

A proposed metabolic pathway for the synthesis of the

undesirable metabolite oxalate in cats from sugars is pre-

sented in Fig. 3(b). In this model, the sugars D-fructose,

D-glucose and D-galactose are first converted to D-glycerate

(Fig. 3(b), step Ia). Since the activity of fructokinase in

feline liver is found to be relatively high and that of

glucokinase to be low(95), the contribution of D-fructose

compared with D-glucose is expected to be higher.

D-Glycerate can subsequently be converted into glycolate

via the intermediates hydroxypyruvate and glycolaldehyde

(Fig. 3(b), steps Ib, Ic and Id). The sugar D-galactose(84)

can also be converted to glycolate, with only glycolalde-

hyde as an intermediate. The sugar xylose enters the

metabolic pathway to oxalate via glycolaldehyde as

well(96). Cytosolic glycolate may partly be directed into

the peroxisomes by diffusion where glycolate will be

either oxidised directly to oxalate by the enzyme glycolate

J. C. Dijcker et al.102

N
u
tr
it
io
n
R
es
ea
rc
h
R
ev
ie
w
s

https://doi.org/10.1017/S0954422410000351 Published online by Cambridge University Press

https://doi.org/10.1017/S0954422410000351


dehydrogenase(80) (Fig. 3(b), step II) or converted to

glyoxylate by the enzyme glycolate oxidase(97) (Fig. 3(b),

step III). In most animals, the major part of this glyoxylate

will be transaminated to glycine by AGT1 (Fig. 3(b),

step IV) (i.e. peroxisomal glyoxylate detoxification), but

in cats, and other carnivores, most of this glyoxylate will

probably be converted back to glycolate due to a deficit

of AGT1 activity in the peroxisome. This surplus in

glycolate will probably result in an increased conversion

of glycolate to oxalate catalysed by glycolate dehydro-

genase (Fig. 3(b), step II).

An additional explanation for the increase in oxalate syn-

thesis upon feeding diets high in carbohydrate and low in

protein content may be a reduction of gluconeogenesis in

the liver, which results in a lower need for glycine and

serine as a gluconeogenic precursor. It is conceivable

that high concentrations of glycine and/or serine attenuate

mitochondrial AGT1 in a negative feedback loop. This

might result in an additional shift to oxalate synthesis.

Collectively, it is possible that in cats a high carbohydrate

intake is a potential risk factor for CaOx urolith formation

by increasing endogenous oxalate synthesis.

The prevention of oxalate synthesis in cats by expressing

AGT1 almost exclusively in the mitochondrion can be

considered as one of the many enzymic adaptations as a

result of their obligatory carnivorous lifestyle throughout

evolution. By expressing AGT1 almost exclusively in the

mitochondrion, the formed glyoxylate (mainly originating

from hydroxyproline) is efficiently transaminated to

glycine (Fig. 3(a), step II), which can directly be used for

intramitochondrial gluconeogenesis. This enzymic adap-

tation appears to be part of a long list of adaptations in

this species, such as cysteine dioxygenase and cysteinesul-

finate decarboxylase (taurine synthesis), pyrroline-

5-decarboxylase and ornithine aminotransferase (citrulline

synthesis), dioxygenase (retinol synthesis), glucokinase

(glucose metabolism), 7-hydroxycholesterol-D7 reductase

(25-hydroxycholesterol synthesis) and picolinic carboxy-

lase (nicotinic acid synthesis)(39,98).

Dietary factors influencing endogenous urinary oxalate

synthesis. In cats, urinary oxalate excretion has been

found to be inversely correlated with protein intake and

dependent on the protein source(92), although the inverse

correlation with protein intake might be the result of a

higher carbohydrate intake. In contrast, in human subjects

some studies reported that urinary oxalate excretion

increased with increased dietary protein intake and

decreased with protein restriction(99,100). This might be

explained by the distinct subcellular AGT1 distribution in

humans and cats.

AGT1 catalyses the hepatic transamination of glyoxylate,

being an important precursor of oxalate, to glycine(101).

Pyridoxine, or vitamin B6, is a known cofactor for

AGT1(102) and, as such, pyridoxine deprivation could

indirectly elevate endogenous oxalate biosynthesis and,

in turn, its urinary excretion(103–105). Indeed, the daily

urinary oxalate excretion was higher in kittens fed a

pyridoxine-deficient diet compared with those receiving

adequate amounts of pyridoxine(65,106). Moreover,

pyridoxine can act as a cofactor for various enzymes in

the tricarboxylic acid cycle as well, leading to a decreased

synthesis of citrate. Thus, under the condition of pyridox-

ine deficiency, citrate metabolism may be impaired,

leading to a lower urinary citrate concentration and

increased risk of precipitation with CaOx(103). To the

authors’ knowledge, the effect of pyridoxine on urinary

citrate excretion in cats has not been studied.

Although an excess consumption of ascorbate (i.e. vita-

min C) has been associated with increased endogenous

oxalate synthesis (by the non-enzymic oxidation of ascor-

bate to oxalate)(36,107–110) in humans, in healthy cats diet-

ary supplementation with ascorbate up to 193 mg/kg did

not affect urinary oxalate concentrations(59). However,

only the effect of a moderate and not a high amount of

ascorbate on the urinary oxalate excretion has been

tested. As cats, in contrast to man, can synthesise ascorbate

in sufficient amounts de novo from glucose, ascorbate is

not an essential nutrient(111). Although there is no evidence

that dietary ascorbate can increase urinary oxalate levels in

cats, it is generally recommended to avoid excessive

amounts of dietary ascorbate. This recommendation is

purely based on the results obtained in human subjects.

Urinary calcium

It goes without saying that an increase in urinary Ca

excretion, as one of the constituents of CaOx uroliths,

significantly contributes to CaOx formation. The question

is whether hypercalciuria is indeed a causative factor in

CaOx uroliths formation. In humans hypercalciuria is

thought to be a risk factor for, but not necessarily the

cause of, CaOx urolith formation(2).

One of the factors that can cause hypercalciuria is hyper-

calcaemia. Approximately 35 % of the cats with CaOx

uroliths also have evidence of an increase in total serum

Ca concentrations(112). On the other hand, in a study

which reported the laboratory findings, clinical course,

and treatment of twenty cats with idiopathic hypercalcae-

mia, 35 % (seven cats) had signs of urolithiasis, and in

only two cats these uroliths were composed of CaOx(113).

Although hypercalcaemia is frequently seen in cats with

CaOx urolithiasis, hypercalcaemia in itself does not seem

to be a causative factor in CaOx formation.

Another factor that is frequently indicated as a possible

cause for hypercalciuria is feeding an acidified diet. In a

case report of five cats with hypercalcaemia and CaOx uro-

lithiasis, hypercalcaemia resolved after discontinuation of

urinary acidifying therapy or dietary change, or both(114).

Controlled studies in cats have confirmed that feeding acidi-

fying diets to cats leads to increased urinary Ca excretion.

In a long-term case–control study, feeding healthy adult

cats an acidifying diet supplemented with 1·7 % phosphoric
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acid, a low urine pH (#6·4) was found, together with an

increase in urinary Ca excretion(115). Another study

reported the same effect, with the exception that only

after 1 month of feeding an acidifying diet (1·5 %

ammonium chloride added), the calciuric response

declined gradually (during 4 months)(116).

Dietary factors influencing urinary calcium excretion.

Conflicting results exist in the literature on the role of

dietary Ca in inducing and resolving hypercalciuria. For

decades, the prevailing consensus was that dietary Ca

restriction would reduce urinary Ca excretion, and as

such CaOx formation(9). However, recent literature in

humans and dogs indicates that there might be an advan-

tage of increased dietary Ca intake, which is thought to

be related to interactions between Ca and oxalate in the

intestinal lumen(44,117). When sufficient dietary Ca is avail-

able, complexation with oxalate occurs in the intestinal

lumen, which in turn results in a reduction of intestinal

absorption and renal excretion of both exogenous Ca

and oxalate. Furthermore, a retrospective case–control

study in cats revealed that consuming diets with a relatively

low amount of Ca (0·23 to 0·49 g/MJ ME) had a significantly

greater risk for CaOx urolith formation than cats that

consumed higher dietary levels of Ca(9). This association

may be explained by a higher oxalate absorption from

the gastrointestinal tract.

Low dietary intake of P may be related to an increased

urinary Ca excretion due to a lower binding of Ca by phos-

phate ions in the gastrointestinal tract resulting in an

increased Ca absorption(118). An increase in urinary Ca

excretion due to a low dietary P content could explain

the increased risk for developing CaOx uroliths in cats fed

diets containing a low P content (0·20 to 0·42 g/MJ ME)(9).

On the other hand, the same study indicates that diets with

a high P content (0·76 to 1·13 g/MJ ME) correlate with an

increased risk of CaOx urolith formation compared with

diets with moderate P content (0·66 to 0·76 g/MJ ME).

Excessive amounts of P present in the gastrointestinal tract

could compete with oxalate, preventing intestinal Ca com-

plexation with oxalate, which in turn could increase the

availability of free oxalate for intestinal absorption and

eventually renal excretion(9,119,120). The precise influence

of dietary P on hypercalcaemia and CaOx formation in cats

remains unclear and should be further studied.

Results of a retrospective case–control study revealed

that cats fed diets with relatively high K contents (0·52 to

0·77 g/MJ ME) were less than half as likely (OR 0·45) to

develop CaOx uroliths compared with cats fed diets with

low K contents (0·23 to 0·38 g/MJ ME)(9). In cats, no studies

have been conducted that may explain this relationship.

However, in human subjects, studies have observed

reduced Ca excretion after K supplementation(121,122).

The authors of these studies suggested that the decrease

in urinary Ca during K administration may be related to

the natriuretic effects of K, resulting in extracellular

fluid-volume contraction or to K-induced phosphate

retention and/or suppression of 1,25-dihydroxyvitamin D3

synthesis(121). Another explanation for the relationship of

a higher K content with a decrease in CaOx formation is

the alkalising effect of K salts, leading to a higher urine

pH and therefore a lower potential for Ca and oxalate to

precipitate. Whether these suggested mechanisms are

effective in cats should be investigated further.

Urine pH

Although the solubility of CaOx in urine is marginally

influenced by pH of 4·5 to 7·5, several epidemiological

studies have consistently identified acidifying diets (con-

taining acidifying components such as phosphoric acid,

ammonium chloride or D,L-methionine) as one of the

most prominent risk factors for cats(9,10,13). The influence

of urine pH on CaOx formation in cats was confirmed in

a study feeding urine-acidifying, basal, and alkalinising

diets to cats during 12 months (resulting in urine pH of

6·2 (SD 0·1), 6·8 (SD 0·2) and 7·2 (SD 0·3), respectively).

Significant differences in urine saturation for CaOx were

found: the highest saturation occurring in cats consuming

the acidifying diet and the lowest saturation occurring in

cats consuming the alkalinising diet(123). Compared with

cats, a less prominent association with dietary acidifying

potential was found in dogs, especially when fed canned

diets(124). It has been suggested that urine pH may affect

the potency of CaOx crystallisation inhibitors, such

as chondroitin sulfate and citrate(125). Another possible

explanation is that acidifying diets increase urinary Ca

excretion. Since there is a correlation between the base

excess in the food and the average urine pH(126–128), an

acidified diet induces persistent aciduria which is associ-

ated with low-grade metabolic acidosis. This metabolic

acidosis induces bone mobilisation, which results in an

increased urinary Ca excretion(115,116,129). Another mecha-

nism of acidified urine to result in elevated Ca excretion

is by inhibition of Ca reabsorption in the distal renal

tubule(114). Luminal protons directly inhibit transepithelial

Ca reabsorption in the kidney by altering the conformation

of the Ca-selective channel TRPV5 located in the apical

membrane of the distal renal tubule(130).

Although the cause of acidosis-induced hypercalcaemia

in cats has not been identified, it is possible that acidosis

affects the activity of TRPV5 in osteoclasts as well, which

plays a critical role in bone formation and maintenance

of serum Ca(131). From the literature it appears that a

dietary-induced decrease in urine pH affects the Ca

excretion in the urine of cats, although the long-term

effect remains questionable(115,116).

As an elevated Ca concentration in the urine can be

considered as a risk factor for CaOx urolith formation, it

might be reasonable to assume that a decrease in urine

pH might affect the RSS of CaOx. However, some studies

have claimed no correlation between urinary pH and

CaOx RSS(132,133). Since the RSS is thought to serve as a
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predictor of CaOx urolith formation(134), these findings

suggest that factors other than urine pH play a role in

CaOx urolith formation as well. However, it is important

to note that, although the value for urinary RSS with

CaOx is higher in urolith-forming dogs and cats, no pro-

spective studies are available to confirm that a high RSS

value indeed correlates with increased frequency of

CaOx urolith recurrence(28,135).

Dietary factors influencing urine pH. Dietary protein of

animal origin may decrease the base excess of the diet and

increase the acid intake. As described above, a high acid

intake can result in an increase in urinary Ca excretion. It

can also reduce urinary citrate excretion since protons

are able to associate with citrate in the intestine and

kidney(136). This mechanism might explain why humans

do have a higher risk for CaOx formation following the

consumption of high amounts of animal protein(99,137). In

cats, however, an opposite effect has been found. In a

retrospective case–control study it was demonstrated that

cats fed diets containing high amounts of protein (25·1 to

33·0 g/MJ ME) were less than half as likely (OR 0·44) to

develop CaOx urolithiasis compared with cats receiving

low amounts of protein (12·4 to 18·9 g/MJ ME)(9). A possible

explanation might be that in cats the consumption of animal

protein is often accompanied by stimulated water consump-

tion, eventually resulting in an increase in urine volume, and

an increased P excretion without altering Ca excretion(20).

The observed lower oxalate excretion in healthy cats fed a

high-protein diet compared with a low-protein diet(92)

might explain this association as well (Fig. 3).

The precise mechanism in which urinary Mg may

influence CaOx formation is still largely unknown.

Originally, Mg was thought to act as a mild inhibitor of

CaOx crystallisation(138). Another plausible explanation is

that Mg, given as alkali salts, increase the urine pH, which

in turn stimulates urinary citrate excretion by the kidney,

which reduces the risk of CaOx crystal formation(139,140).

A retrospective case–control study in cats revealed that

diets with a low Mg content (22 to 43 mg/MJ ME) were

associated with CaOx urolith formation(9). Several studies

(in other species) have reported an association between

low dietary Mg and CaOx urolith formation as

well(139,141–143). In addition, in human medicine an

increased dietary intake of Mg salts (containing citrate) is

recommended in patients suffering from CaOx urolithia-

sis(139,144,145). An additional mechanism of action is the for-

mation of complexes between Mg and oxalate, thereby

reducing the supersaturation with CaOx. However, in a

study with cats fed a diet with a high Mg concentration,

despite a significant increase in urinary Mg, no significant

effect was observed regarding urinary CaOx crystal

growth inhibition, agglomeration inhibition or solubility,

compared with the base diet(146). Interestingly, in the ear-

lier mentioned retrospective case–control study, diets

high in Mg content (86 to 336 mg/MJ ME) were associated

with a higher risk for CaOx urolith formation compared

with diets with a moderate Mg content (43–86 mg/MJ

ME)(9). An explanation might be that in cats the contri-

bution of dietary oxalate to urinary oxalate excretion is

less prominent and therefore complexation of oxalate in

the gastrointestinal tract by Mg less effective. Moreover,

in cats there is no evidence that hypocitrauria is a risk

factor for CaOx urolith formation.

Urinary citrate

Citrate synthesised by the kidney or derived from the diet

is one of the most abundant organic anions in urine and

has two main functions. First, it prevents alkaline-induced

calcium phosphate stone formation by permitting base

excretion without raising urine pH. Second, urinary citrate

acts as a chelator of Ca and is therefore considered to be

the best natural inhibitor of CaOx urolith formation(147).

The higher the citrate concentration in the urine, the less

Ca is available to form CaOx crystals. As a consequence,

a deficiency of urinary citrate caused by renal or gastroin-

testinal disorders is often seen in humans with CaOx

stone disease(148,149). However, there is no evidence that

hypocitrauria is a risk factor for CaOx urolith formation

in cats. In dogs with CaOx urolithiasis, no hypocitrauria

was reported(150).

In order to increase the citrate concentration in the urine,

potassium or sodium citrate is added to the majority of the

CaOx urolithiasis therapeutic diets. However, there have

been no studies in cats investigating the effects of dietary

citrate addition on citrate concentrations in the urine or

the formation of CaOx. In healthy dogs, supplementation

of dietary potassium citrate did not result in a consistent

increase in urinary citrate excretion(151). In this study,

only a small, but not significant, increase in urine pH

was observed. This increase in urine pH might be ben-

eficial, although the influence of the urine acidity on

CaOx formation remains questionable.

Urinary glycosaminoglycans

GAG comprise another class of components affecting stone

formation. They can act in two ways: GAG, chondroitin

sulfate and heparin sulfate are freely excreted in

the urine and can inhibit the growth of CaOx crystals.

Secondly, GAG are part of the extracellular matrix and

can cover the inner wall of the bladder to form a defence

against microbial and crystal adherence(152). In cats with

FIC, compared with healthy cats, a lower urinary GAG

excretion has been detected, indicating that the defence

against microbial and crystal adherence and inhibition of

CaOx growth is decreased(153). Oral supplementation of

GAG in order to increase the free GAG concentration in

urine has been shown to have a moderate to significant

beneficial effect in humans with interstitial and radial cysti-

tis(154). In a study where oral glucosamine supplementation

(i.e. 125 mg N-acetyl glucosamine) was compared with a
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placebo control group in order to manage cats with FIC,

no significant difference in urinary GAG concentration

between the two groups was observed(17). Surprisingly,

the majority of the cats receiving the N-acetyl glucosamine

did improve clinically, as was also the case for cats in the

placebo group. According to Gunn-Moore & Shenoy(17),

the improvement in both groups can be explained by the

significant decrease in urine specific gravity that was

found in about 90 % of the subjects (of both treatment

and placebo groups). It is likely that this positive effect

was due to the fact that the owners decided to feed their

cats more moist food during this study and not due to

the N-acetyl glucosamine treatment.

Conclusions

Most of the dietary modifications to reduce CaOx urolith

formation in cats and dogs are mainly based on data

from epidemiological studies in these species and clinical

studies in human subjects and rodents. Controlled studies

designed to evaluate the efficacy of these dietary modifi-

cations in cats are scarce. To be able to improve the

preventative measures (i.e. dietary modifications) against

CaOx urolithiasis in cats, it is important to study the

aetiopathogenesis of CaOx urolithiasis.

In contrast to human medicine, dietary modifications to

decrease endogenous oxalate synthesis have hardly been

studied in cats and future focus should examine the

origin of urinary oxalate in cats, as a representative of

the carnivores. The exclusive mitochondrial localisation

of AGT1 in cats conforms to the notion that obligate carni-

vores, including domestic cats, are adapted to their natural

diet, i.e. eating small mammals, containing high levels of

animal protein, low levels of carbohydrate and glycolate.

The observation that most commercial cat foods contain

relatively high amounts of carbohydrates, often at the

expense of animal protein, raises the question whether

the consumption of these diets increases endogenous

oxalate synthesis and in consequence the risk of CaOx

urolithiasis. In addition, the contribution of exogenous

oxalates to urinary oxalate excretion is unknown in cats

as well. Knowledge about the dietary oxalate content in

commercial feline diets, which is expected to be higher

than in their natural diet, is essential in order to determine

the contribution of exogenous oxalates in urinary oxalate

excretion.

In-depth knowledge of feline endogenous oxalate

metabolism and dietary oxalate absorption will provide a

better understanding of the sharp increase in CaOx urolith

prevalence in cats reported over the last few decades and

provide new insights for preventative strategies. Also,

based on the fact that in many human PH type I patients

AGT1 is mistargeted to the mitochondria, mimicking the

subcellular AGT1 distribution of cats, the cat might be a

perfect research object to study endogenous oxalate

synthesis in this genetic disorder.
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