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ABSTRACT 

A linearised treatment is presented of vertical bifurcations of 
symmetric periodic orbits"(bifurcations of plane with three-dimensional 
orbits) in the circular restricted problem. Recent work on bifurcations 
from vertical-critical orbits (a = ±1) is extended to deal with the 

v 
more general situation of bifurcations from vertical self-resonant 
orbits (a = cos(2itn/m) for integer m,n) and it is shown that in this 
more general case bifurcating families of three-dimensional orbits 
always occur in pairs, the orbital symmetry properties being governed 
by the evenness or oddness of the integer m. The applicability of the 
theory to the elliptic restricted problem is discussed. 

1. INTRODUCTION 

The occurrence of intersections of planar with three-dimensional 
periodic orbits of the circular restricted problem ("vertical" bifurca­
tions) at planar orbits for which the vertical stability index a =± 1 
("vertical-critical" orbits) was first proposed by Henon (1973). 
Markellos et al (1981) have discussed the mechanism of such bifurcations 
and calculated entire series of the vertical bifurcations of the basic 
"Stromgren families" of periodic orbits of the problem. Zagquras and 
Markellos (1977) and Zagouras and Kalogeropoulou (1978) have presented 
numerical results on the continuation of vertical-critical orbits into 
three dimensions, and showed that vertical bifurcations also occur at 
planar orbits for which 

a = cos(2Ttn/m), (1.1) 

for integer values of m and n. Robin and Markellos (1980) gave examples 
of families of three-dimensional periodic orbits generated from such 
"multiple" vertical bifurcations for values of m up to 8, and found 
that, as had been anticipated by the second author, the bifurcating 
families always occur in pairs, each pair arising from the same self-
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resonant orbit, and that the three-dimensional symmetry properties of 
these families depend solely on whether the integer m, the "multiplicity" 
of the bifurcation, is even or odd. 

The object of the present paper is to provide an analytical back­
ground to the above-mentioned numerical results on "multiple" vertical 
bifurcations of symmetric periodic orbits, and to show that the observed 
pattern of occurence of the bifurcating families of three-dimensional 
orbits is of general validity. 

2. BIFURCATION CONDITION 

With respect to the usual dimensionless barycentric rotating 
coordinate system (x. = x, x =y, x = z) (see e.g. Robin and Markellos, 
1980, hereafter referred to as "Paper I"), the initial conditions for 
a symmetric planar periodic orbit may be written 

~o = ( X 0 1' °'0'°> x 05' 0)* ( 2 , 1 ) 

This initial state of the massless third body of the system corresponds 
to a mirror configuration (Roy and Ovenden, 1955) in the horizontal 
plane, or plane of the primaries. The periodicity conditions for this 
"unperturbed" orbit can be expressed in the form 

x2 (xQ1, xQ5, T/2) 

\ (x01' X05> T / 2 ) = ° 

(2.2) 

where T is the orbital period. (Note that the components x and xg of 
the state vector vanish for all values of the epoch t in this unper­
turbed orbit). 

Let us now consider the orbit resulting from small "vertical per­
turbations" 6x and 6x in the initial conditions (2.1). The initial 
conditions of this perturbed orbit are 

xQ = (xQ1, 0, 6xQ 3, 0, x Q 5 , 6 x 0 6 ) . (2.3) 

As Henon (1973) has pointed out, the horizontal components (x-, x„, x , 
x,-) of the state vector are, in the linear approximation, unaffected 
by purely vertical perturbations (see also, Markellos et al, 1981). 
Denoting the "vertical" components of the state vector in the perturbed 
orbit by (6XQ, 6 x R ) 5 we may express these in terms of the initial per­
turbations (6x0 , 6xnfi)

 a s follows: 

/ 6 x
3 \ _ /V33 V36\/6X03\ 

\6x,/ \vco v c c / \ 6 x n c / 
(2.4) 

63 66' ' 06' 

where the v « s are the first-order "variations" 3x, /9x „ for the 
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unperturbed orbit. 

We now seek to establish periodicity conditions for the perturbed 
orbit in terms of the Periodicity Theorem of Roy and Ovenden (1955). 
Referring to Equations (2.1) and (2.2) of Paper I, we see that the 
initial conditions of the perturbed orbit correspond to a mirror confi­
guration if and only if 

6x-=0 (2.5) 
06 

or 

6x03 = 0 (2.6) 

according as the mirror configuration is of type (P) (in-plane) or 
type (A) (on-axis). (Note that this distinction arises because we are 
now considering a "three-dimensional" rather than a planar mirror con­
figuration, as was the case for the unperturbed orbit). 

By the Periodicity Theorem, the perturbed orbit resulting from 
initial perturbations (6xn„, 6x _) satisfying either of the above 
conditions will be periodic if,at some epoch t^O, another mirror con­
figuration occursi Since, as we have just seen, the horizontal part of 
the perturbed motion is (to first order) unaffected, it iŝ  clear that 
a mirror configuration can only take place at those epochs corresponding 
to the occurrence of a mirror configuration in the unperturbed planar 
periodic orbit: that is, for values of t given by 

t = N(J), (2.7) 

where N is some positive integer. The condition for a mirror confi­
guration in the perturbed orbit at epoch t satisfying Equation (2.7) is 
then either 

6x5=0 (2.8) 

6x3 = 0, (2.9) 

again depending on the type of configuration. Combining Equations (2.4)-
(2.9), we see that the periodicity conditions for the perturbed orbit 
can be written 

6Xj = Vji(NT/2) 6xQi = 0 , (2.10) 

where i = 3 for a type (P) and i = 6 for a type (A) mirror configuration 
at the initial epoch, while j = 6 for a type (P) and j = 3 for a type (A) 
mirror configuration at the final epoch (as in Table I of Paper I), and 
VJ£(NT'/2) denotes the variation 3XJ/3X . evaluated at t = NT/2 on the 
unperturbed orbit. Thus, Sx.-; is always the non-zero initial perturba­
tion; 6xQ. = 0 is the trivial solution of Equation (2.10) corresponding 

https://doi.org/10.1017/S0252921100097104 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100097104


216 I. A. ROBIN AND V. V. MARKELLOS 

to the original unperturbed orbit. 

Equation (2.10) expresses the condition that in the linear approxi­
mation, there exists a family of three-dimensional symmetric periodic 
orbits parametrised by the perturbation 6s- . , bifurcating from the 
planar periodic orbit. The condition for the occurrence of a vertical 
bifurcation from a symmetric planar periodic orbit is therefore that 
one (at least) of the four elements ( V3Q 5

 v
3g»

 V63> v66) of the vertical 
submatrix V of the full variational matrix V = t^/lexB v a n ^ s h e s a t 

an epoch t equal to an integer number of half-periods of the orbit. 

3. PROPERTIES OF BIFURCATING FAMILIES 

The symmetry properties of the bifurcating three-dimensional orbits 
depend on the mirror configuration types occurring at the initial (t = 0) 
and final (t = NT/2) epochs, and hence on the values of the subscripts 
i and j in Equation (2.10). This means that we can predict the symmetry 
class (plane symmetric, axisymmetric or doubly-symmetric) of the bifur­
cating family by identifying which of the four elements of the matrix 
V vanishes at the appropriate epoch. For example, a family of plane 
symmetric three-dimensional orbits would be expected to bifurcate from 
a planar periodic orbit for which vR (NT/2) =0 for some value of N. The 
four possible cases are listed in Table I. 

The interval between successive mirror configurations for the three-
dimensional periodic orbits in the neighbourhood of the bifurcation, as 
we have seen, is equal to NT/2 for some integer N. This interval is 
equal to half of the orbital period for a three-dimensional orbit of 
simple symmetry (plane symmetric or axisymmetric), and equal to a quarter 
of the period for a doubly-symmetric orbit. Thus, in the linear approxi­
mation, the period of the three-dimensional orbits arising from a 
vertical bifurcation is equal to NT or 2NT according to whether the 
orbits are of simple or double symmetry, respectively (T being the 
period of the planar orbit at which the bifurcation takes place). The 
final column of Table I gives the values of the periods in each case. 

Table I 

Case 
Type of Mirror Congigurat'ion at':' " Symmetry "•-•_•_ Orbital 

Initial Epoch Final Epoch Class J Period 

2 A 

3 A 

4- P 

p 

A 

P 

A 

Plane 
Symmetric 

Axisymmetric 

Doubly-

Symmetric 

3 

6 

6 

3 

6 

3 

6 

3 

NT 

NT 

2NT 

2NT 
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The elements of the "vertical variational matrix" 

/V33 V36 
V v=( ] (3.1) 

\V6 3 V66 

satisfy the well-known area-preserving property 

d e t Vv = V33V66 ' V36V63 = 2 (3"2) 

(see, e.g. Henon, 1973). The terms v„„vfi(-. and v3gV cannot both vanish, 
and so zero elements of V , indicating a vertical bifurcation, can 
only occur either singly, or as one of the diagonal pairs (VOQ'V66^ o r 

(vggjVgg). Table I shows that in consequence of this fact, a vertical 
bifurcation orbit can only give rise either to a single family of three-
dimensional orbits, corresponding to one and only of Cases 1-4 of the 
table, or else to two families of three-dimensional orbits corresponding 
to Cases 1 and 2 or to Cases 3 and 4 (that is, one family of plane 
symmetric and one of axisymmetric orbits, or a pair of families of 
doubly-symmetric orbits). As we shall see presently, the former situation 
applies in general to vertical-critical orbits, and the latter to verti­
cal self-resonant (non-critical) orbits. 

4. BIFURCATION FROM VERTICAL-CRITICAL ORBITS 

Let us first of all consider the case of a planar orbit which has 
a zero element appearing in the matrix V (NT/2) for N= 1. The full set 
of vertical stability indices a , b , c , d is defined by 

'a b 
v v 

Vv(T) =1 ] , (4.1) 

c d 
• v v • 

and the elements of V (T/2) are denoted 
v 

'A B 
v v 

Vy(T/2) = 1 ) . (4.2) 

C D v v 

It can easily be shown that for a symmetric orbit, these two sets of 
quantities are related by 
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A D + B C 2B D 
V V V V V V 

2A C A D + B C 
V V V V V V 

(4 .3 ) 

(Henon, 1973). This incidentally shows the important property a =d 
for a symmetric planar periodic orbit. 

By Equations (2.10) and (4.2), with N = l, Cases 1-4 of Table I 
correspond respectively to 

C = 0; B = 0; D = 0; A = 0 . (4.4) 
V V V V 

Now from Equations (3.2) and (4.3), the vertical stability index a is 
given by 

a = 2A D - 1 = 2B C + 1 . (4.5) 
V V V V V 

In each of the cases (4.4), |a | = 1: we are therefore dealing with 
bifurcation from vertical-critical orbits, which has been discussed by 
Henon (1973). In the first two cases (C =0 and B =0), a has the 

V V V 

value ± 1, corresponding to the values m=n = l in Equation (1.1). This 
can be described as a "simple bifurcation", since in the neighbourhood 
of the bifurcation, the period of the three-dimensional orbits is (to 
first order) equal to T, the period of the vertical-critical orbit; 
the orbital multiplicities are of course also equal. In the second two 
cases of (4.4), A =0 and D =0, Equation (4.5) shows that a = -1, 
corresponding to the values m = 2, n= 1 in Equation (1.1): this can be. 
described as a "double bifurcation", since it involves a doubling of 
the period and orbital multiplicity of the vertical-critical orbit (the 
"multiplicity" of an orbit being defined as half the number of crossings 
of the (x1,x„)-plane occurring in one period). 

Since the parameters A , B ., C and D are all independent, zero 
elements of the matrix V (T/2) will in general occur singly: thus, a 
vertical-critical orbit will as a rule give rise to only one family of 
three-dimensional periodic orbits. The summetry properties of the bifur­
cating family depend on which of the four elements of V (T/2) vanishes, 
as indicated in Table I; this has been clearly illustrated by Henon 
(op. cit.). 

5. BIFURCATION FROM VERTICAL SELF-RESONANT ORBITS 

Let us now consider the case of a planar orbit for which V (NT/2) 
(N>1) has at least one zero element, such that all of the elements 
A , B , C and D of V (T/2) are non-zero. It can be seen from Equation 
v v v v v 
(4.5) that this latter constraint excludes from consideration the 
special case of vertical-critical orbits (a = ±1), which were dealt 
with separately in the previous section. As we shall see later, we are 
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now dealing with vertical self-resonant orbits, for which a is given 
by Equation (1.1) with values of the integer m greater than 2. 

In order to relate the occurrence of a zero element of V (NT/2) for 
some N>1 to the value of the vertical stability index a , we make use 
of the well-known property of the variational matrix 

V(t t T) = V(t)V(T) (5.1) 

(e.g. Wintner,1946); this general property can be applied in particular 
to the'Vertical submatrix"V of V. It is convenient to consider separa­
tely the cases of even and of odd values of the integer N. Using Equa­
tion (5.1^, we may express V(NT/2) for odd values of N= 2r+l as 

V (NT/2) = V (T/2 + rT) =V (T/2) [v (T) ] T (5.2) 

(r = 0,1,2,...). 

Similarly, for even values of N = 2r we have 

V (NT/2) = V (rT) = [V (T) 1 r (5.3) 
V V L V J 

(r = 0,1,2,...). 

Note that although we are restricting our attention to values of N> 1, 
the above formulae are valid for all non-negative values of* N. 

It is easily shown by induction that the vertical variational 
matrix V computed at t = NT/2 (N= 0,1,2,...) satisfies the following 
two equations: 

a A 3 B 
r v r v 

Vy(T/2 + rT) = I | (r"2 0) (5.4) 

1 C a D 
r v r v 

where a and B are functions of A , B , C and D only; 
r r v v v v 

Y 26 B D 
'r r v v 

Vy(rT) = j ] (r 2, 0), (5.5) 
26 A C v 
r v v 'r 

where Y and 6 are functions of A , B , C and D only. We may there-
'r r v v v v 

fore state the following: 
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If the elements A , B , C and D of V (T/2) are all non-zero, then 
V V V / , s V V 

for all values of N > 1 , V (NT/2) has either no zero elements, or 
v 

exactly two zero elements on the same diagonal. 
This follows from Equation (3.2), together with Equation (5.4) for odd 
values of N ( = 2r + l, r= 1,2,3,...), and Equation (5.5) for even values 
of N ( = 2r, r= 1,2,3,...) , the important point being the appearance of 
the common factors (a , g ) , (y , 6 ) in the diagonal pairs of elements: 
since A,r, B , C and D are assumed to be all non-zero, an element of 

/ / Y v v v . 
V (NT/2) can vanish only if one of the functions a , g , y or 6 is 
v J r r r r 
zero. 

We therefore have the important result that families of three-
dimensional periodic orbits bifurcating from a vertical self-resonant 
periodic orbit for which N >1 (that is, excluding vertical-critical 
orbits) always occur in pairs, and as we have already seen, both families 
must consist either of simply-symmetric or of doubly-symmetric orbits. 

Using Equations (5.1) (as applied to V ), (4.1) and (4.3), together 
with Equations (5.4) and (5.5), pairs of simultaneous recurrence rela­
tions can be established for the functions a , g , Y and 6 : 

r r r r 

a = a a 1 + (a -1)3 . 
r v r-1 v r-1 

g = a g + (a tl)a . , 
r v r-1 v r-1 

2 
Y = a y . + (a - 1)6 . , 
'r v'r-1 v r-1 

6 = a 6 , + Y 
r v r-1 'r-1 

(5.6) 

(5.7) 

Since |a \i 1, the g's can be eliminated from Equations (5.6), and the 
6's from Equations (5.7), giving 

a ,, - 2a a + a . = 0 , 
r+1 v r r-1 

Yr+1 - 2a Y + Y , = 0. 
v'r 'r-1 

(5.8) 

The general solutions of these two identical second-order recurrence 
relations are 

. irtp _ -irep 
a = Ae T + Be T 

„ irep _, -irep 
Y = Ce y + De T 

'r 

(5.9) 

where 
cos a = a , (5 .10) 

Y v 
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and A, B, C, D are constants to be determined from the initial conditions 

(5.11) 
a 0 = 1> a l = 2 a v ~ 1; 

Calculation of the four constants yields 

a r = sin (r+l)(p - sin rep (5.12) 

sin tp 

Y = cos r<p, (5.13) 

and the associated solutions for 6 , 6 are found to be 
r r 

sin (r+l)cp + sin rep 

r 
sin q> 

(5.14) 

6 = _ ^ n £ 3 L . (5.15) 
r sin tp 

Note that since costp 1= a 1^1 for vertical self-resonant orbits, 
s m tp i- 0 . 

Let us consider the conditions for the occurrence of a pair of zero 
elements of the matrix V (NT/2), for odd values of N =2r+l (r= 1,2,3, 
. . . ) . It is clear from Equation (5.4) that this requires either a or 
3 to vanish, for some r > 0 . By Equation (5.12), the function a is 
equal to zero if and only if 

sin (r+l)cp = sin rep , (5.16) 

with solutions 

(5.17) 
/ 2k+l \ 

where k is an arbitrary integer, such that (2k+l)/(2r+l) is not an 
integer. Substitution of the solutions (5.17) into Equation (5.10)gives 

(2k+l \ 
a = cos \ „__,, J ii, (5.18) 

and with 0 S k < r , the complete set of r roots of a , a polynomial in 
a of degree r, is obtained. (A duplicate set of r solutions is obtained 
for r <k £2r). 
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In a similar way, the roots of g , also an r degree polynomial 
in a , are found to be given by 

\ = cos | ^ ^ |it , (5.19) 

which with 0 < k S r gives the complete set of r roots of $ . Note that 
the two sets of solutions (5.18) and (5.19) are mutually exclusive, as 
would be expected, since a and $ cannot vanish simultaneously. 

We now consider the conditions for the occurrence of a bifurcation 
for even values of N= 2r (r =1,2,3,...), that is, for the appearance of 
a pair of zero elements of V (rT). This requires that either y or 6 
vanishes, for some r > 0 . From Equation (5.13), the roots of y^ are 
found to be r 

M a = cos ( — — — J u, (5.20) 

the complete set of r solutions being given by 0 S k < r . Similarly, 
from Equation (5.15), 6 has roots 

]<-
a = cos (—) it , (5.21) 
v r 

the complete set of roots of the polynomial 6 , of degree r-1 in a , 
being given by 0 < k < r . 

Let us now relate these results to the vertical self-resonance 
condition (1.1), 

a = c o s l _ £ I ^ 1 (5.22) 
v 

\ m / 
m and n being mutually prime integers with 0 < n S m . The vertical-criti­
cal cases m = n = l(a =±1) and m = 2 , n=l(a =-1) are excluded, having 

v v 
been dealt with already. From Equations (5.18)-(5.21), the condition 
for the occurrence of a bifurcation associated with the vanishing of one 
of the functions a , 3 , y , 6 (and therefore of one of the diagonal 
pairs of elements (v , V6S^' ^v36' v63^ °^ t^le ma-tri-x v (NT/2)) can 
be expressed in the form (5.22), with the values of the integers m 
and n in each case as given in Table II, with r any positive integer. 

The final entry of Table II, corresponding to 6 = 0, is essen­
tially redundant, since all the possible combinations of values of m 
and of n can be constructed from the entries corresponding to the cases 
a = 0 and y =0. This redundancy of solutions reflects the fact that a 
doubly-symmetric periodic orbit can be regarded as simply-symmetric if 
one of its symmetries is ignored; the bifurcation of doubly-symmetric 
orbits corresponding to v _(N T/2) = v (N T/2) = 0, for some N > 1 
(a or y equal to zero), automatically gives v (N T/2) =v „(N2T/2) =0. 
where N_ =2N., is even (that is, 6M = 0 ) . The occurrence of a bifurca-

Z ± JN i 
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Table II 

223 

Function 

2(2r+l) 

2r+l 

4r 

2r 

2k+l : k = 0,1,2,...,r-l 

k : k = 1,2,...,r 

2k+l : k = 0,1,2,...,r-l 

k : k = 1,2,...,r-l 

tion of genuinely simply-symmetric orbits is associated with the vani­
shing of the function 3 , for some r >1. 

The possible values of the integer m in Equation (5.22) in each 
case of Table II (with r= 1,2,3,...) are 

a = 0 : m = 6,10,14,. . . 

3 = 0 : m = 3,5,7,. . . 

Y = 0 : m = 4,8,12,... 

which together account for all integer values greater than 2 ; the 
values m= 1 and m = 2 applying to the special case of vertical-critical 
orbits. It is evident that an even value of m corresponds to the case 
of doubly-symmetric three-dimensional bifurcating orbits (v 33 . 6 6 0), 
while an odd value of m corresponds to a bifurcation with a family of 
simply-symmetric orbits (v 
therefore be stated: 36 63 

0). The following conclusion may 

A vertical self-resonant orbit, with vertical stability index 
given by Equation (5.22), gives rise to one family of axisymmetric 
and one of plane symmetric three-dimensional orbits if m is odd, 
or to two families of doubly-symmetric orbits if m is even. 

6. REMARK 

The foregoing discussion, which is of general validity in the 
circular restricted problem, can easily be extended to the elliptic 
restricted problem, the only difference being that the orbital period 
of the three-dimensional orbits arising from a vertical bifurcation in 
the elliptic case have fixed period (an integer multiple of the period 
of the primaries), the eccentricity of the orbit of the primaries 
varying along the bifurcating family instead of the period (Robin,1981). 
The pattern of vertical bifurcations in the two versions of the problem 
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would therefore appear to be identical, in terms of the occurrence of 
pairs of vertical branches whose symmetry properties are governed by 
the evenness or oddness of the "multiplicity" m of the bifurcation and 
the special nature of bifurcation from vertical-critical orbits. 
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