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Abstract
A random two-cell embedding of a given graph G is obtained by choosing a random local rotation around
every vertex. We analyse the expected number of faces of such an embedding, which is equivalent to study-
ing its average genus. In 1991, Stahl [5] proved that the expected number of faces in a random embedding
of an arbitrary graph of order n is at most n log (n).While there aremany families of graphs whose expected
number of faces is �(n), none are known where the expected number would be super-linear. This led the
authors of [1] to conjecture that there is a linear upper bound. In this note we confirm their conjecture
by proving that for any n-vertex multigraph, the expected number of faces in a random two-cell embed-
ding is at most 2n log (2μ), where μ is the maximum edge-multiplicity. This bound is best possible up to a
constant factor.
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1. Introduction
By an embedding of a graph G we mean a two-cell embedding of G in some orientable closed
surface, and we consider two embeddings of G as being the same (or equivalent) if there is a
homeomorphism between the corresponding surfaces that induces the identity isomorphism on
G. Equivalent embeddings are considered the same, and when we speak about all embeddings of a
graph, we mean all equivalence classes. It is well known that the equivalence classes of all embed-
dings are in bijective correspondence with rotation systems, which are defined as the collection of
local rotations at the vertices of the graph, where by a local rotation at v we mean a cyclic ordering
of the half-edges, (we call these darts), incident with v. We refer to [4] for more details.

It is a classical problem to study the minimum genus and maximum genus of a graph across
all of its embeddings, see [2, 4, 8]. Considering the set of all two-cell embeddings of a graph is
also a viable topic. An outline of various applications of graph embeddings can be found in [3]. In
this work, we consider the problem of the average genus across all the different embeddings of a
fixed graph. By Euler’s formula, this is equivalent to studying the average number of faces across
all embeddings of a graph. It will be more convenient to state our results in terms of the number
of faces, as it better illustrates our bounds. Formally, we consider the uniform distribution across
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Figure 1. A chain of dipoles joined by cut edges gives a tight example for the main result of the paper.

all embeddings of a fixed graph using rotation systems, and study E[F] where F is the random
variable denoting the number of faces in a random embedding of the graph.

This field of study was termed random topological graph theory by White [9]. Stahl [5] gave
an upper bound on E[F] by proving that E[F]≤ n log n for any simple graph on n vertices. It
was shown in [1] that there are many examples of graphs with E[F]= �(n): suppose a graph has
maximum vertex degree d and a set C of cycles, all of length at most �. Then it is shown that

E[F]≥ 2|C|
(d − 1)�

.

In particular, if the graph has small vertex-degrees and a set of �(n) short cycles, then we have
at least linearly many expected faces. There are many examples of graphs of bounded degree and
with linearly many short cycles. They all have E[F]= �(n).

However, there are no known examples where E[F] was super-linear, and the following
conjecture was proposed by Halasz, Masařík, Šámal, and the authors of this note.

Conjecture 1 ([1]). For every simple graph of order n, the expected number of faces when selecting
an orientable embedding of G uniformly at random is O(n).

In fact, a more general conjecture from [1] allowing for multiple edges of arbitrarily large
multiplicity μ will be treated.

Conjecture 2 ([1]). For every n-vertex multigraph G with maximum edge-multiplicity μ ≥ 2, the
expected number of faces when selecting an orientable embedding of G uniformly at random is
O(n log (μ)).

We first give some examples which show that this more general conjectured bound is tight. We
define a dipole as the graph with 2 vertices joined by μ edges. Stahl first showed [6] that for the
dipole on μ edges, E[F]≤Hμ−1 + 1 where

Hμ = 1+ 1
2

+ 1
3

+ · · · + 1
μ

is the harmonic number. It was later shown [1] using Stanley’s generating function [7] thatE[F]=
Hμ−1 + ⌈

μ
2
⌉−1. Since Hμ ∼ log (μ)+ γ , where γ is the Euler–Mascheroni constant, this gives a

tight example for n= 2. In fact Stanley’s generating function may be used (see [1]) to show that
for any graph with one central vertex incident to all of the μ edges, E[F]≤Hμ + 3

μ
.

A tight example, up to a constant factor, where n and μ may both tend to infinity is obtained
by attaching a series of dipoles via cut edges as shown in Figure 1. More precisely, consider n/2
dipoles, each withμ parallel edges, joined by cut edges. Each separate dipole contains an average of
at least Hμ faces, and joining these dipoles by cut-edges removes n/2− 1 faces. Therefore E[F]≥
1
2n(Hμ − 1).

Our main result confirms Conjectures 1 and 2. In fact we prove a more general bound in
Theorem 7, which allows for different edge multiplicities. The following result which implies both
conjectures, is a simple corollary of it.

Theorem 3. Let G be a graph on n vertices with maximum edge-multiplicity μ, and let F be the
random variable for the number of faces in a random embedding of G. Then we have:

E[F]≤ n (H2μ + 1).
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In the case whenG is a simple graph, we are able to show the better bound of π2

6 n in Theorem 8.
We are unaware of any examples of simple graphs which come close to the constant in this upper
bound. A chain of triangles connected by cut edges gives an example of a graph for which E[F]=
1
3n+ 1. We conjecture that this is the optimal bound.

Conjecture 4. For any simple graph G of order n, E[F]≤ 1
3n+ 1.

2. Random embeddings
Fix a graph G on n vertices with V(G)= [n] := {1, 2, . . . , n}. Let μi,j be the number of edges
between vertices i and j, where we could have i= j. Let μi be the maximum of the multiplicities of
edges incident with vertex i, where we count loops twice. That is, letμi =max (2μi,i, max (μi,j : j �=
i)). Let Ei be the set of darts incident with vertex i, let N(i) be the set of vertices adjacent to i, and
let di = |Ei| be the degree of the vertex. We start by outlining the random process leading to a
random embedding of G that we will use to prove the main result of this paper.

Random Process A.

(1) Start with the vertices 1, 2, . . . , n, with di unlabelled darts coming out of vertex i for each
i and fix a cyclic order of the darts around each vertex. Over the course of the random
process we will pair darts to form the edges of G, decreasing the number of unlabelled
darts at each vertex. When we pair a dart at vertex i and a dart at vertex j, thus forming
the edge ij, we label the two darts and say that we have processed the edge ij. We write Di
for the number of unlabelled darts coming out of vertex i at some step in the process, and
write μij for the number of unprocessed edges between i and j at some step.

(2) Repeat the following process: Pick one of Option A or Option B to use at this step. Option
A: Pick an edge between i and j which hasn’t yet been chosen to process. At vertices i and j
choose one of theDi and one of theDj unlabelled darts (respectively) uniformly at random
and then join them together tomake an edge.Option B: Pick a dart at some vertex i. Choose
one of the unprocessed edges ij incident with i uniformly at random. At vertex j, choose
one of the Dj unlabelled darts uniformly at random and join it with the chosen dart at i to
make an edge. In either option, we decrease each ofDi,Dj,μij by one. Note that in the case
of a loop (i= j), Di is decreased by 2.

(3) After all edges have been processed, the initial cyclic orders of darts around each vertex
define a rotation system and hence an embedding of G.

By choosing the darts at step (2) of Random Process A in all possible ways, each embedding of
G is obtained the same number of times, and each outcome has the same probability. This shows
that the process always gives an embedding of G that is selected uniformly at random from the
set of all embeddings. Let us also mention that the order in which the edges are processed, and
whether we choose Option A or B, is not important. These can be chosen deterministically or
randomly at each step.

Observation 5. No matter whether we choose Option A or Option B at any step, and no matter
which edge we choose when we use Option A or which dart we choose when we use Option B, at the
end of the Random Process A, each embedding of G is obtained with the same probability. �

At each step during Process A, we have a partial rotation for which we can define (partial)
faces. The partial facial walk around a partial face starts with an unlabelled dart, then it follows the
already processed edges (maybe none) using the local rotation at vertices until we come to another
unlabelled dart that is the end of this partial facial walk. See Figure 2, where the partial facial walks
starting at c and a (respectively) are outlined with thick lines. Each dart is the beginning dart
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Figure 2. Partial rotation after processing five edges. Unlabelled darts are shown as short halfedges, whose local rotation is
as given at the beginning, but it is not yet decided which of these will correspond to particular edges of G. Two of the partial
facial walks are shown by a thick tracing line. If we are processing the edge ij and choose darts a and b to be paired, a partial
face will be closed. If we choose c and b instead, the two partial faces will be merged into a larger partial face, which will not
be closed.

of a partial facial walk and is also the ending dart of some partial facial walk. We call a partial
walk which starts and ends on opposite sides of the same unlabelled dart a bad partial facial walk,
and the corresponding face a bad partial face. This special type of partial face will be of special
significance. In addition to the partial facial walks, we have facial walks that use only already
processed edges. These will be unchanged for the rest of the process and will be facial walks of
the final embedding of G. We say that such a completed facial walk is closed and is no longer
considered to be a partial facial walk. Each closed facial walk became closed when we processed
the last of its edges during the process. When we process the edge ij, there could be several pairs
of a dart at i and a dart at j whose pairing will close a face. If there are k such pairs, we say that k
faces can be closed while processing that edge.

We now discuss a special order in which we will process the edges while generating random
embeddings. A particular processing of edges in Process A will be termed as the greedy process.
This process is as follows:

1. If the partial rotation has some bad partial faces, then pick a dart in some bad partial face
to process and carry out Option B. We prioritise picking a dart in a bad partial face which
was also in a bad partial face at the previous step of Random Process A.

2. If the partial rotation has no bad partial faces, then take Option A and choose the next edge
ij so that the number of faces that can be closed by processing this edge divided by μij is
minimum possible.

An important property that we have when using the greedy process is that whenever an edge ij
is processed, there is a bound on the number of faces that can be closed by processing it.

Lemma 6. During Random Process A, if the partial rotation at the start of the step has no bad partial
faces then there is always an unprocessed edge ij, for which there are 2μij faces that can be closed by
processing this edge. Processing this edge either closes zero, one or two of the 2μij possible closeable
faces.

Also, any partial rotation appearing at some step of the greedy version of Random Process A has
at most 2 bad partial faces. Each bad partial face appears in at most two consecutive steps of the
greedy process.

Proof. For the first claim, notice that the rotation system of the unlabelled darts and edges at each
step is fixed. Each step of the process will join up two of the unlabelled darts into an edge. After |E|
steps, we will end up with an embedding of G. Recall that we defined a partial face as a face which
has not yet been completed (closed) during the previous steps of the process. The walk along a
partial face starts with an unlabelled dart at some vertex. It will then alternate along edges and
vertices until it eventually reaches an unlabelled dart (possibly the same one we started with), with
which the partial walk ends.

At the start of the random process we have 2|E| partial faces, where each partial face consists of
two darts that are consecutive around the vertex in the local rotation. At each step we join together

https://doi.org/10.1017/S096354832300010X Published online by Cambridge University Press

https://doi.org/10.1017/S096354832300010X


686 J. Campion Loth and B. Mohar

f1

f2

f4

f3

Figure 3. The situation when we have chosen two darts, and are replacing them with an edge. The partial facial walks f1, f4
will merge, and the partial facial walks f2, f3 will merge. This may also add one or two closed faces.

two darts to make an edge. We claim that this always reduces the number of partial faces by two,
and possibly creates one or two closed faces. Indeed each of these darts we are joining to make
an edge is the start and end of a partial face: write f1, f2 for the partial faces starting and ending
respectively at one of the darts, and f3, f4 for the partial faces starting and ending respectively at
the other dart as shown in Figure 3. Note that f1 and f3 start with different darts, so they cannot
be equal. Similarly, we have f2 �= f4. There are a couple of cases:

• f1, f2, f3, f4 are all distinct. Then joining the two darts into an edge joins f1 and f4 into a
partial face, and f2 and f3 into a partial face.

• f1 = f4 and f2 �= f3, then we close the partial face f1 = f4 into one completed closed face, and
join f2 and f3 into a partial face. The case where f1 �= f4 and f2 = f3 is the same.

• f1 = f4 and f2 = f3, then we close both of these partial faces into two closed faces.

This covers all the cases. Notice that in all of the above cases we reduce the number of partial
faces by two, proving the claim.

This means that after k edges have been processed, there are |E| − k remaining unprocessed
edges and 2|E| − 2k partial faces. Each partial face starts with a dart at some vertex i, and ends
with a dart at some vertex j, where we may have i= j. Each unprocessed edge is also associated
to a pair of vertices ij, noting that

∑
μij = |E| − k. By the pigeonhole principle there is at least

one pair i, j (where we could have i= j) with μij ≥ 1 unprocessed edges and at most 2μij partial
faces associated to it. Hence we can always choose an edge such that processing it has at most 2μij
different faces that could be closed by processing it.

For the second claim, we use induction. Initially we may assume G has no vertices of degree
one, as these will not affect the final number of faces in an embedding of G, so we have no bad
partial faces. Then, suppose that the partial rotation we have at the start of a step has at most two
bad partial faces.

Case 1: It has no bad partial faces. Then since processing the edge affects at most two faces, we
can add at most 2 bad partial faces.

Case 2: It has one or two bad partial faces. Then the greedy version of Random Process A will
pair a dart in a bad partial face, removing it. At most one other partial face will be affected by
adding this edge, so we can add at most one new bad partial face.

In either case, the number of bad partial faces in the new partial rotation is also at most two.
Also, since there is at most one dart in a bad partial face which was not processed at this step, the
greedy process must process this dart at the next step. Therefore this unlabelled dart appears in a
bad partial face in at most two consecutive steps of the random process. �

An analysis of the greedy version of Random Process A gives our main result. Recall that μi
was defined as the maximum multiplicity of edges incident with vertex i, counting loops twice.

Theorem 7. E[F]≤ n+∑n
i=1 Hμi .
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Proof. At the start of each step in our random process, we have some partial rotation. The random
process then fixes one edge into the embedding to obtain a new partial rotation. Since each step
fixes one edge, there are |E| total steps. If the partial rotation Rk appears at the start of step k for k=
1, . . . , |E|, then we say that the sequence (R1, R2, . . . , R|E|) occurs at this run of Random Process
A. Note that no edges have been fixed in R1, and all but one edge has been fixed in R|E|. However
there will only be one place to put the final edge, so this determines a unique embedding. We
denote by P[R1, R2, . . . , R|E|] the probability that we obtain this sequence. Similarly let P[Rk = R]
denote the probability that we obtain R at the start of step k. Let Xk denote the random variable
for the number of faces closed at step k of the random process.

Now suppose the partial rotation at the start of a step is R. The random process will then
add an edge to this partial rotation, which will possibly close some faces. Let X(R) denote the
random variable for the number of faces closed at this step of the random process. Recall that
X(R) ∈ {0, 1, 2}, as shown in Lemma 6.

The total probability formula gives that:

E[Xk]=
∑
R

P[Rk = R]E[Xk | Rk = R]=
∑
R

P[Rk = R]E[X(R)]

where the sum runs over all possible partial rotations.
Using linearity of expectation yields:

E[F]=
|E|∑
k=1

E[Xk]=
|E|∑
k=1

∑
R

P[Rk = R]E[X(R)]

=
|E|∑
k=1

∑
R

∑
(R1,R2,...,R|E|)

R=Rk

P[R1, R2, . . . , R|E|]E[X(R)].

Switching the order of summation, and then taking the maximum element in the sum, gives the
following:

E[F]=
∑

(R1,R2,...,R|E|)
P[R1, R2, . . . , R|E|]

|E|∑
k=1

E[X(Rk)]

≤ max
(R1,R2,...,R|E|)

⎧⎨
⎩

|E|∑
k=1

E[X(Rk)]

⎫⎬
⎭ .

Therefore we may analyse each step of the random process separately, over any fixed possible
sequence of partial rotations (R1, R2, . . . , R|E|). Suppose that we are at the start of step k of the
random process, and we have the partial rotation Rk. Further suppose that Rk has no bad partial
faces, and that we have chosen an edge e= ij to process using Option A. Let us first suppose
that i �= j. Recall that Di and Dj are the number of unlabelled darts at vertices i and j at this step,
respectively. So, there areDiDj choices of places to place the edge across two darts at these vertices.
However in the greedy version of Process A we choose an edge to process with only 2μij partial
faces that could be closed. Each partial face is closed by only one choice out of the DiDj total
placements of the edge, hence the probability that we close a face is 1

DiDj
. By Lemma 6 at most two

faces may be closed by the same choice of edge placement, but in any case we have E[X(Rk)]≤
2μij
DiDj

. Note that μij ≤min(Di,Dj). Write Di =Di(Rk),Dj =Dj(Rk) for the values of Di,Dj at this
step. Then at the next step we have Di(Rk+1)=Di(Rk)− 1,Dj(Rk+1)=Dj(Rk)− 1.

If Rk has at least one bad partial face, then recall that the greedy version of Random Process A
will take a dart in a bad partial face, incident with some vertex i. It will then pick an unprocessed
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edge ij incident with i uniformly at random, and a dart incident with j uniformly at random to pair
the dart at i with. Observe that a face is closed at this step if and only if the dart we’re pairing with
is also in a bad partial face. Since there is at most one other bad partial face, there is at most one
choice of dart to pair with which will close a face. Suppose that this dart in the other bad partial
face is incident with vertex j′, if such a dart exists. Therefore the probability we make this choice,
and hence close one face, is E[X(Rk)]≤

μ
ij′

DiDj′
. At the next step we reduce Di and Dj by one. Note

we don’t reduce Dj′ by one, but at the next step if j′ �= j, we will process the dart in a bad partial
face incident with vertex j′. Therefore at the following step we will reduce Dj′ by one.

The case when we are processing a loop from vertex i to itself is similar. If the partial rotation
has no bad partial faces, then there are

(Di
2
)
choices of placements for the edge, and there are at

most 2μii partial faces which may be closed. Therefore by the same reasoning as in the previous
case, we have E[X(Rk)]≤ 2μii

Di(Di−1)/2 = 4μii
Di(Di−1) . At the next step we have Di(Rk+1)=Di(Rk)− 2.

A similar reasoning holds for the case when we process a dart incident with a bad partial face using
Option B.

Fix some vertex i. Over the sequence of partial rotations (R1, R2, . . . , R|E|), let Rk1 , . . . , Rkc be
the partial rotations for which an edge at vertex i is processed, where c is equal to the number
of edges incident with vertex i, counting each loop only once. We have that Di(Rk1 )= di. If we
are in option A of the random process, and the first edge processed at vertex i was not a loop,
then Di(Rk2 )= di − 1. If it was a loop then Di(Rk2 )= di − 2. If we are in option B of the random
process, then we could haveDi(Rk2 )= di − 1 orDi(Rk2 )= di. However ifDi(Rk2 )= di then neces-
sarily Di(Rk3 )= di − 1. Therefore the values of Di decrease at each of these steps until Di(Rkc)= 1
or 2, then these remaining darts are processing at this step.

Initially we have that Di = di and Dj = dj. For i �= j, μij ≤min(μi,μj), and 2μii ≤ μi. When we
process a non-loop edge using Option A,E[X(Rk)] is bounded by some 2μij

DiDj
, andDi,Dj andμij all

decrease by one. When we process a loop edge using Option A, E[X(Rk)] is bounded by 4μii
Di(Di−1) ,

Di decreases by two and μii decreases by one. When we process a dart using Option B, E[X(Rk)]
is bounded by

μ
ij′

DiDj′
for some j′. For some j, Di,Dj decrease by one and μij decreases by one. Also

when i �= j, μij is the number of unprocessed edges between vertices i and j, so by definition we
have that μij ≤min(Di,Dj,μi,μj). Similarly, we have that 2μii ≤min(Di,μi).

If at step k we process an edge e= ij, then write Di(e)=Di(Rk),Dj(e)=Dj(Rk). For this
sequence of partial rotations (R1, R2, . . . , R|E|), write EA, EB for the set of edges processed under
Options A and B respectively. Then we have:

|E|∑
k=1

E[X(Rk)]≤
∑

(i,j)∈EA
i�=j

2min(Di(e),Dj(e),μi,μj)
Di(e)Dj(e)

+
∑

(i,j)∈EA
i=j

2 min(Di(e),μi)
Di(e)(Di(e)− 1)

+
∑

(i,j)∈EB

min(Di(e),Dj′(e),μi,μj)

Di(e)Dj′(e)
.

We first note that for any a, b> 0:

2 min(a, b,μi,μj)
ab

≤ min(a, b,μi,μj)
a2

+ min(a, b,μi,μj)
b2

≤ min(a,μi)
a2

+ min(b,μj)
b2

.
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This means we can rewrite the expectation as:
|E|∑
k=1

E[X(Rk)]≤
∑

(i,j)∈EA
i�=j

(
min(Di(e),μi)

Di(e)2
+ min(Dj(e),μj)

Dj(e)2

)

+
∑

(i,j)∈EA
i=j

(
min(Di(e),μi)

Di(e)2
+ min(Di(e),μi)

(Di(e)− 1)2

)

+ 1
2
∑

(i,j)∈EB

(
min(Di(e),μi)

Di(e)2
+

min(Dj′(e),μj)

Dj′(e)2

)
.

Now fix some vertex i. For each non-loop edge e ∈ EA incident with i we obtain a term of
min(Di(e),μi)

Di(e)2
in the preceding sum. For each loop in EA incident with vertex i, we obtain a term of

min(Di(e),μi)
Di(e)2

+ min(Di(e),μi)
(Di(e)−1)2 . Recall that when we process an edge incident with i, in Option A, we

reduce Di by one if the edge is not a loop, and by two if the edge is a loop. When we process an
edge in EB incident with i, we obtain a term of min(Di(e),μi)

2Di(e)2
. If we don’t decrease Di at this step,

then we do reduce Di at the following step and obtain another term of min(Di(e),μi)
2Di(e)2

. This means
that in the whole sum, Di appears (as some Di =Di(e)) for each of the values in {1, 2, . . . , di} in at
most one term of the form min(Di(e),μi)

Di(e)2
. Also recall that by the preceding arguments, it is enough

to bound
∑|E|

k=1 E[X(Rk)] for an arbitrary (R1, R2, . . . , R|E|) in order to bound E[F]. Therefore we
may bound the expectation as:

E[F]≤
n∑

i=1

di∑
t=1

min(t,μi)
t2

<

n∑
i=1

∑
t≥1

min(t,μi)
t2

.

For each vertex i we obtain a sum of terms of the form:
∑
t≥1

min(t,μi)
t2

≤
μi∑
t=1

1
t

+
∑

t≥μi+1

μi
t2

=Hμi + μi
∑

t≥μi+1

1
t2
.

Note that we have:

μi
∑

t≥μi+1

1
t2

< μi

∫ ∞

μi
x−2dx= 1.

Therefore the total contribution from all the vertices is bounded by:

E[F]<
n∑

i=1

(
Hμi + 1

)=
n∑

i=1
Hμi + n.

This gives the required bound. �
If the graph is simple, then every μi is equal to 1. In this case we can obtain a slightly better

upper bound.

Theorem 8. If G is a simple graph of order n, then

E[F]<
π2

6
n.

https://doi.org/10.1017/S096354832300010X Published online by Cambridge University Press

https://doi.org/10.1017/S096354832300010X


690 J. Campion Loth and B. Mohar

Proof. From the proof of the general case, we have the following sum as an upper bound:

E[F]≤
∑
e=ij

2
ab

≤
∑
e=ij

(
1
a2

+ 1
b2

)
,

where the pairs {a, b} of the summands exhaust the multiset
� = {1, 2, . . . , d1, 1, 2, . . . , d2, . . . , 1, 2, . . . , dn}.

Each term of 1/a2 appears at most n times for each a≥ 1, so we obtain the upper bound:

E[F]< n
∑
a≥1

1
a2

= π2

6
n.

�
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