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Abstract
This paper is devoted to the study of the propagation dynamics of a mutualistic model of mistletoes and birds
with nonlocal dispersal. By applying the theory of asymptotic speeds of spread and travelling waves for monotone
semiflows, we establish the existence of the asymptotic spreading speed c∗, the existence of travelling wavefronts
with the wave speed c ≥ c∗ and the nonexistence of travelling wavefronts with c< c∗. It turns out that the spreading
speed coincides with the minimal wave speed of travelling wavefronts. Moreover, some lower and upper bound
estimates of the spreading speed c∗ are provided.

1. Introduction

In ecology, mutual benefit between different populations is a common phenomenon. A special case is
the relationship between mistletoes and birds. Mistletoes are typical aerial stem-parasites plants. Birds
eat the fruit of mistletoes to obtain nutrients, energy and water. In turn, mistletoes receive directed move-
ment of their propagules into safe germination sites [3]. To better understand the interaction between
mistletoes and birds, Wang et al. [26] proposed a reaction-diffusion model⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut(t, x) = −dmu + αe−diτ

∫
R

k(x − y)
u(t−τ , y)

u(t−τ , y) +ω
v(t−τ , y)dy, t ≥ 0, x ∈ �̄,

vt(t, x) = D�v + v(1 − v) − γ∇(v∇u)

+d
∫
R

k(x − y)
u(t, y)

u(t, y) +ω
v(t, y)dy, t ≥ 0, x ∈ �̄,

(D∇v − γ v∇u) · n(x) = 0, t ≥ 0, x ∈ ∂�,

u(s, x) = u0(s, x), v(s, x) = v0(s, x), s ∈ [−τ , 0], x ∈�,

(1.1)

where the parameters α, di, dm, D, d, ω are positive constants, and the time delay τ is non-negative.
In this model, u(t, x) and v(t, x) are the densities of mature mistletoes and birds at location x ∈� and
time t, respectively, α is the hanging rate of mistletoe fruits to trees, di and dm are the mortality rates of
immature and mature mistletoes, respectively, τ is the maturation time of mistletoes, D is the diffusion
rate of birds, d is the conversion rate from mistletoe fruits into bird population. The term v(1 − v) models
the logistic growth for bird population which measures the bird population growth due to other food
resources besides mistletoes in the habitat, γ∇(v∇u) is a chemotactic term that models the effect that
birds are attracted by trees with more mistletoes, γ is the chemotactic coefficient, and ω is used to reflect
the fact that birds may perch on other trees without mistletoes and structures irrelevant to the dynamic
process of mistletoes. In [26], the authors studied the spatial pattern formation under two different types
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of kernel functions k. When �=R and γ = 0, Wang et al. [27] further investigated the existence of an
asymptotic spreading speed and travelling wave solutions.

Note that in (1.1), the Fickian diffusion D�v is used to model the random movement of birds. It
essentially is a local behaviour and hence maybe not accurate enough to describe the long-range effects
of the dispersal of birds. In order to describe the dispersal of birds reasonably, Liang, Weng and Tian
[19] introduced a nonlocal operator

(Dw)(t, x) = (J ∗ w)(t, x) − w(t, x) =
∫
R

J(x − y)[w(t, y) − w(t, x)]dy

in (1.1) and presented the following nonlocal dispersal model of mistletoes and birds:⎧⎪⎪⎨
⎪⎪⎩

ut(t, x) = −dmu + αe−diτ

∫
R

k(x − y)
u(t−τ , y)

u(t−τ , y) +ω
v(t−τ , y)dy,

vt(t, x) = D(J ∗ v − v) + v(1 − v) + d
∫
R

k(x − y)
u(t, y)

u(t, y) +ω
v(t, y)dy,

(1.2)

where x ∈R and t ≥ 0. In this system, J ∗ v − v models nonlocal dispersal processes of birds;
αe−diτ

∫
R

k(x − y) u(t−τ ,y)
u(t−τ ,y)+ωv(t−τ , y)dy is mature mistletoes recruitment, where the integral with a ker-

nel function k(x − y) expresses the spread of mistletoes fruits by birds from location y to location x
and at time t−τ , the Holling type II functional response u

u+ω is used to model the fruits removal by
birds, and e−diτ represents the probability of the mistletoe from immature survival to maturity; the term
d
∫
R

k(x − y) u(t,y)
u(t,y)+ωv(t, y)dy represents the growth of birds caused by eating mistletoe fruits; the other

terms and parameters have the same meaning as that in (1.1). We should point out that the background
and applications of nonlocal dispersal J ∗ v − v are described in Bates et al. [4], Fife [11], Hutson et al.
[13], Lee et al. [15], Murray [23] and Medlock and Kot [22]. In the past 20 years, nonlocal dispersal
equations have been extensively studied. We refer readers to [4, 5, 7, 24, 32, 34] for travelling wave
solutions, [6, 14] for asymptotic behaviours of solutions for initial boundary value problems, [8, 12,
18, 33] for spreading speeds and [17, 30] for entire solutions. The following hypotheses are imposed
in [19]:

(H1) Both kernels J(x) and k(x) are non-negative, symmetric and normalised, i.e.

J(x) ≥ 0, J(x) = J(−x) ≥ 0,
∫
R

J(x)dx = 1,

k(x) ≥ 0, k(x) = k(−x) ≥ 0,
∫
R

k(x)dx = 1,

and satisfy ∫
R

J(x)e−ν|x|dx<+∞ and
∫
R

k(x)e−ν|x|dx<+∞ for every ν > 0;

(H2) dm < d̃m := αe−diτ

ω
.

It is easy to see that system (1.2) always has a trivial equilibrium E0 = (0, 0) and a boundary
equilibrium E1 = (0, 1). If (H2) holds, then there exists a unique positive equilibrium E+ := (u+, v+)
with ⎧⎪⎪⎨

⎪⎪⎩
u+ := 1 + d + √

(1 + d)2 − 4dωσ

2σ
−ω> 0,

v+ := 1 + du+
u+ +ω

∈ (1, 1 + d),

where σ = dm

αe−diτ
. It was proved in [19] that E0 and E1 are linearly unstable with respect to the

corresponding kinetic system, while E+ is locally asymptotically stable.
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It is well known that without birds, the adult mistletoes can only spread in a small area. However, with
the nonlocal movements of birds, the mistletoes can invade into new large territories. As such, it is a very
interesting problem to model the spatial invasion process of the mistletoes. One way to mathematically
characterise this dynamics of the process is travelling wave solution. Travelling wave solutions (in short,
travelling waves) of (1.1) are bounded functions with the special form (u(t, x), v(t, x)) = (φ(ξ ),ψ(ξ )),
ξ = x + ct, which connect two equilibria E1 and E+, where c> 0 is the wave speed. Clearly, each wave
profile (φ,ψ) to (1.2) satisfies

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cφ ′(ξ ) = −dmφ + αe−diτ

∫
R

k(y)
φ(ξ − y − cτ )

φ(ξ − y − cτ ) +ω
ψ(ξ − y − cτ )dy,

cψ ′(ξ ) = D(J ∗ψ −ψ) +ψ(1 −ψ) + d
∫
R

k(y)
φ(ξ − y)

φ(ξ − y) +ω
ψ(ξ − y)dy,

(φ,ψ)(−∞) = E1, (φ,ψ)(+∞) = E+,

(1.3)

where (φ,ψ)(±∞) = limξ→±∞ (φ,ψ)(ξ ). In [19], Liang, Weng and Tian have proved the existence
of travelling wave solutions by Schauder’s fixed point theorem and upper-lower solutions technique,
i.e. there exists c∗ such that for every c ≥ c∗, (1.2) admits a travelling wavefront connecting E1

and E+. We should remark that the nonexistence of travelling wavefronts c< c∗ is not addressed
in [19].

Another way to characterise the spatial invasion process of the mistletoes into new territories is the
spatial invasion speeds (or called asymptotic speeds of spread). The asymptotic speed of spread (in short,
spreading speed) was first introduced by Aronson and Weinberger [1] for reaction-diffusion equations
and has been an important ecological metric in a wide range of ecological applications, see e.g. [2, 20,
21] and references therein. Since then, there have been extensive investigations on the spreading speed
for various evolution systems, see e.g. [2, 9, 10, 16, 20, 21, 28, 31] and references therein. In this paper,
we are devoted to investigating the spreading speeds and travelling wavefronts of (1.2). Since system
(1.2) is cooperative and its solution maps are monotone, we shall use the theory in [20] to study the
existence of spreading speeds for (1.2). Note that the theory of spreading speeds was developed in [20]
for monotonic systems under a very general setting. The verification of some abstract assumptions in
[20] is highly nontrivial for the solution maps of (1.2) due to the emergence of nonlocal dispersal and
time delay along with nonlocal interaction. In addition, we provide the upper and lower bounds of the
established spreading speed.

Finally, we investigate the travelling wavefronts of (1.2). With the help of the spreading features,
we derive the nonexistence of travelling wavefronts with speed c ∈ (0, c∗). As mentioned earlier, the
existence of travelling wavefronts of (1.2) with speed c ≥ c∗ has been obtained by Liang, Weng and Tian
[19] by using Schauder’s fixed point theorem together with the upper-lower solutions. However, in order
to construct a pair of upper-lower solutions successfully, they needed an additional condition (A) and
ω≥ 1. In this paper, we shall remove these assumptions and prove the existence of travelling wavefronts
of (1.2) with speed c ≥ c∗. We appeal to the monotone semiflow method which is different from that
in [19]. Note that the first equation of system (1.2) has no diffusion term and the diffusion term in the
second equation is nonlocal dispersal J ∗ v − v. Thus, the solution maps associated with (1.2) are not
compact with respect to the compact open topology. Therefore, the theory in [20] is no longer applicable
to prove the existence of travelling wavefronts. Fortunately, the monotone semiflow generated by (1.2)
has some weak compactness, and hence, we can use the abstract results in [8] to obtain the existence of
travelling wavefronts with speed c ≥ c∗. Our result shows that the asymptotic speed of spread coincides
with the minimal wave speed c∗.

This paper is organised as follows. In Section 2, we establish the well-posedness and the comparison
principle for the initial value problem. In Section 3, we show the existence of the spreading speed of (1.2)
and provide some lower and upper bound estimates of the spreading speed. In Section 4, the existence
and nonexistence of travelling wavefronts are investigated.
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2. Initial value problem

In this section, we shall investigate the existence and uniqueness theorem of solution to the initial value
problem and the comparison theorem. By a change of variables U = u and V = v − 1 in (1.2), we obtain

⎧⎪⎪⎨
⎪⎪⎩

Ut(t, x) = −dmU + αe−diτ

∫
R

k(x − y)
U(t−τ , y)

U(t−τ , y) +ω
(V(t−τ , y) + 1)dy,

Vt(t, x) = D(J ∗ V − V) − V(V + 1) + d
∫
R

k(x − y)
U(t, y)

U(t, y) +ω
(V(t, y) + 1)dy.

(2.1)

The spatially homogeneous system associated with (2.1) is⎧⎪⎪⎨
⎪⎪⎩

U′ = αe−diτU(t−τ )(V(t−τ ) + 1)

U(t−τ ) +ω
− dmU,

V ′ = −V(1 + V) + dU(V + 1)

U +ω
.

(2.2)

It is easy to see that the equilibria of (1.2), respectively, become

E := (0, −1), 0 := (0, 0), K := (u+, v+ − 1).

For the convenience, in what follows, we let ũ+ = u+ and ṽ+ = v+ − 1. Now we consider the correspond-
ing initial value problem of (2.1):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ut(t, x) = −dmU + αe−diτ

∫
R

k(x − y)
U(t−τ , y)

U(t−τ , y) +ω
(V(t−τ , y) + 1)dy,

Vt(t, x) = D(J ∗ V − V) − V(V + 1) + d
∫
R

k(x − y)
U(t, y)

U(t, y) +ω
(V(t, y) + 1)dy,

U(s, x) = φ1(s, x), V(s, x) = φ2(s, x), (s, x) ∈ [−τ , 0] ×R.

(2.3)

We begin with some notation. The proper phase space for (2.3) can be chosen as C := C([−τ , 0] ×
R, R2). Clearly, any vector in R

2 (which is constant in (t, x)), or any element in C̄ := C([−τ , 0], R2)
(which is constant in x), can be regarded as an element in C. A natural order “≥” in C is defined by u ≥ v
for u = (u1, u2) and v = (v1, v2) ∈ C, if ui(s, x) ≥ vi(s, x) for i = 1, 2, s ∈ [−τ , 0] and x ∈R; u> v if u ≥ v
and u �= v; and u � v if ui(s, x)> vi(s, x). For any r ∈R

2 and r ≥ 0, defined Cr := {φ ∈ C : 0 ≤ φ ≤ r} and
C̄r := {φ ∈ C̄ : 0 ≤ φ ≤ r}. Moreover, let X := BC(R, R2) be the set of all bounded continuous functions
from R to R

2, and Xr := {φ ∈ X : 0 ≤ φ ≤ r}.
We first study the existence and uniqueness of solution to the initial value problem (2.3).

Lemma 2.1. For any initial value φ := (φ1, φ2) ∈ CK, (2.3) admits a unique solution (U(t, x; φ),
V(t, x; φ)) satisfying

0 ≤ (U(t, x; φ), V(t, x; φ)) ≤ K, ∀ t ≥ 0, x ∈R.

Proof. Let β > 0. Then, system (2.3) can be rewritten as
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ut = −(β + dm)U +F1[U, V](t, x), t> 0, x ∈R,

Vt = −(β + 1)V +F2[U, V](t, x), t> 0, x ∈R,

U(s, x) := φ1(s, x), −τ ≤ s ≤ 0, x ∈R,

V(s, x) := φ2(s, x), −τ ≤ s ≤ 0, x ∈R,

(2.4)
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where (F1, F2) is defined on C([−τ , ∞] ×R, I), with I = [0, ũ+] × [0, ṽ+], by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F1[U, V](t, x) := βU + αe−diτ

∫
R

k(y)
U(t−τ , x − y)

U(t−τ , x − y) +ω
(V(t−τ , x − y) + 1)dy,

F2[U, V](t, x) := βV − V2 + d
∫
R

k(y)
U(t, x − y)

U(t, x − y) +ω
(V(t, x − y) + 1)dy

+D
∫
R

J(y)[V(t, x − y) − V(t, x)]dy

for t ∈ (0, ∞). It is easy to verify that if we choose β large enough, then Fi is nondecreasing in U and
V , i = 1, 2. Obviously, system (2.4) is equivalent to the following integral system

⎧⎪⎪⎨
⎪⎪⎩

U(t, x) = e−(β+dm)tφ1(0, x) +
∫ t

0

e−(β+dm)(t−r)F1[U, V](r, x)dr,

V(t, x) = e−(β+1)tφ2(0, x) +
∫ t

0

e−(β+1)(t−r)F2[U, V](r, x)dr,
(2.5)

for t> 0 and x ∈R.
Define the set

� :={(U, V) ∈ C([−τ , ∞] ×R, I) : U(s, x) = φ1(s, x),

V(s, x) = φ2(s, x), s ∈ [−τ , 0], x ∈R
}
,

and an operator G = (G1, G2) : �→ � by
⎧⎪⎪⎨
⎪⎪⎩
G1[U, V](t, x) := e−(β+dm)tφ1(0, x) +

∫ t

0

e−(β+dm)(t−r)F1[U, V](r, x)dr,

G2[U, V](t, x) := e−(β+1)tφ2(0, x) +
∫ t

0

e−(β+1)(t−r)F2[U, V](r, x)dr,

where (t, x) ∈R+ ×R. For any (U, V) ∈ �, by the monotonicity of Fi, we have

0 ≤ G1[U, V](t, x) ≤ e−(β+dm)tũ+ +F1[ũ+, ṽ+]
∫ t

0

e−(β+dm)(t−r)dr

≤ e−(β+dm)tũ+ + ũ+(1 − e−(β+dm)t) = ũ+

and

0 ≤ G2[U, V](t, x) ≤ e−(β+1)t ṽ+ +F2[ũ+, ṽ+]
∫ t

0

e−(β+1)(t−r)dr

≤ e−(β+1)t ṽ+ + ṽ+(1 − e−(β+1)t) = ṽ+,

and hence, G(�) ⊆ �.
For μ> 0 and (U, V) ∈ �, we define

‖(U, V)‖μ = sup
t∈[−τ ,0],x∈R

(|U(t, x)| + |V(t, x)|)
+ sup

t∈[0,+∞),x∈R
(|U(t, x)| + |V(t, x)|)e−μt,

dμ(w1, w2) := ‖w1 − w2‖μ,

https://doi.org/10.1017/S0956792523000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792523000311


538 J. He et al.

where w1 = (U1, V1) and w2 = (U2, V2). Then, (�, dμ) is a complete metric space. For any
(U, V), (U, V) ∈ �, we obtain

|G1[U, V] − G1[U, V]|

≤
∫ t

0

βe−(β+dm)(t−r)|U − U|(r, x)dr

+
∫ t

0

e−(β+dm)(t−r)αe−diτ

∫
R

k(y)
∣∣∣ U(r−τ , x − y)

U(r−τ , x − y) +ω
(V(r−τ , x − y) + 1)

− U(r−τ , x − y)

U(r−τ , x − y) +ω
(V(r−τ , x − y) + 1)

∣∣∣dydr

≤
∫ t

0

βe−(β+dm)(t−r)|U − U|(r, x)dr + αe−diτ

∫ t

0

∫
R

e−(β+dm)(t−r)k(y)

×
[

ṽ+
ω

|U − U|(r−τ , x − y) + |V − V|(r−τ , x − y)

]
dydr,

and hence,

|G1[U, V] − G1[U, V]|e−μt

≤
∫ t

0

βe−(β+dm+μ)(t−r)e−μr|U − U|(r, x)dr + αe−diτ

∫ t

0

∫
R

e−(β+dm+μ)(t−r)k(y)

×
[

ṽ+
ω

e−μr|U − U|(r−τ , x − y) + e−μr|V − V|(r−τ , x − y)

]
dydr.

Similarly, one has

|G2[U, V] − G2[U, V]|

≤
∫ t

0

e−(β+1)(t−r)
[
β|V − V| + |V2 − V

2|
]

dr

+
∫ t

0

e−(β+1)(t−r)d
∫
R

k(y)
∣∣∣ U(r, x − y)

U(r, x − y) +ω
(V(r, x − y) + 1)

− U(r, x − y)

U(r, x − y) +ω
(V(r, x − y) + 1)

∣∣∣dydr

+
∫ t

0

e−(β+1)(t−r)D
∫
R

J(y)
[|V − V|(r, x − y) + |V − V|(r, x)

]
dydr

≤
∫ t

0

(β + D + 2(ṽ+ − 1))e−(β+1)(t−r)|V − V|(r, x)dr

+ d
∫ t

0

∫
R

e−(β+1)(t−r)k(y)

[
ṽ+
ω

|U − U|(r, x − y) + |V − V|(r, x − y)

]
dydr

+ D
∫ t

0

∫
R

e−(β+1)(t−r)J(y)|V − V|(r, x − y)dydr,
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and hence,

|G2[U, V] − G2[U, V]|e−μt

≤
∫ t

0

(β + D + 2(ṽ+ − 1))e−(β+1+μ)(t−r)e−μr|V − V|(r, x)dr

+ d
∫ t

0

∫
R

e−(β+1+μ)(t−r)k(y)

×
[

ṽ+
ω

e−μr|U − U|(r, x − y) + e−μr|V − V|(r, x − y)

]
dydr

+ D
∫ t

0

∫
R

e−(β+1+μ)(t−r)J(y)e−μr|V − V|(r, x − y)dydr.

Let

M = β + D + 2(ṽ+ − 1) +
(

ṽ+
ω

+ 1 + D

d

)
(αe−diτ + d), β0 = β + min{dm, 1}.

It then follows that

‖G[U, V] − G[U, V]‖μ ≤ 2M
∫ t

0

e−(β0+μ)(t − r)‖(U, V) − U, V‖μdr

≤ 2M

β0 +μ
‖(U, V) − (U, V)‖μ.

Chooseμ> 0 large enough such that 2M
β0+μ < 1. Then, G is a contracting mapping in�. By the contraction

mapping theorem, we see that G has a unique fixed point in �, which is the solution of (2.3). The proof
is complete.

Next, we establish the comparison principle for upper and lower solutions of (2.3). For this purpose,
we introduce the definition of upper and lower solutions.

Definition 2.2. A function (U, V) ∈ C1([−τ , ∞), XK) is called an upper solution of (2.3) if it satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U

∂t
≥ −dmU(t, x) + αe−diτ

∫
�

k(y)
U(t−τ , x − y)

U(t−τ , x − y) +ω
(V(t−τ , x − y) + 1)dy,

∂V

∂t
≥ D

∫
R

J(y)
[
V(t, x − y) − V(t, x)

]
dy − V(1 + V)

+d
∫
�

k(y)
U(t, x − y)

U(t, x − y) +ω
(V(t, x − y) + 1)dy,

U(s, x) ≥ φ1(s, x), V(s, x) ≥ φ2(s, x), (s, x) ∈ [−τ , 0] ×R,

(2.6)

for all (t, x) ∈ [0, ∞) ×R. A lower solution of (2.3) is defined in a similar way by reversing the
inequalities in (2.6).

Lemma 2.3. Let (U, V) and (U, V) be a pair of upper and lower solutions of (2.3). Then, U(t, x) ≥
U(t, x) and V(t, x) ≥ V(t, x) for all t ≥ 0 and x ∈R.

Proof. Let W1(t, x) := U(t, x) − U(t, x), W2(t, x) := V(t, x) − V(t, x), ∀(t, x) ∈R+ ×R, and

W(t) := min
i=1,2

inf
x∈R

Wi(t, x), ∀t ≥ 0.

It then follows that W(t) is a continuous function. We shall prove that W(t) ≥ 0, ∀t ≥ 0. Assume, by
contradiction, that the assertion is not true. Then, there exists a number t0 > 0 such that W(t0)< 0. Since
W(t)e−δt with δ > 0 is continuous and W(0) ≥ 0. By the property of continuous function, without loss
of generality, for such t0, we have

W(t0)e
−δt0 = min

t∈[0,t0]
W(t)e−δt <W(s)e−δs, ∀ s ∈ [0, t0).
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Thus, there exist an index i ∈ {1, 2} and a sequence of points {xk}∞
k=1 such that Wi(t0, xk)< 0, ∀k ≥ 1

and lim
k→∞

Wi(t0, xk) = W(t0). Let {tk}∞
k=1 ⊂ [0, t0] be a sequence such that

Wi(tk, xk)e
−δtk = min

t∈[0,t0]
Wi(t, xk)e

−δt.

Moreover, {xk}∞
k=1 can be chosen properly as local minimisers of Wi(tk, x). Then, we obtain that∫

R
J(y)[Wi(tk, xk − y) − Wi(tk, xk)]dy ≥ 0. By a similar argument as that in [29, Theorem 2.2], we can

obtain that
∂Wi(tk, xk)

∂t
≤ δWi(tk, xk). Hence, we further have

0 ≤∂W1(tk, xk)

∂t
+ dmW1(tk, xk)

− αe−diτ

∫
R

k(y)
U(tk−τ , xk − y)

U(tk−τ , xk − y) +ω
(V(tk−τ , xk − y) + 1)dy

+ αe−diτ

∫
R

k(y)
U(tk−τ , xk − y)

U(tk−τ , xk − y) +ω
(V(tk−τ , xk − y) + 1)dy

≤(δ+ dm)W1(tk, xk) − αe−diτ

∫
R

k(y)
U

U +ω
W2(tk−τ , xk − y)dy

− αe−diτ

∫
R

k(y)
ω(V + 1)

(U +ω)(U +ω)
W1(tk−τ , xk − y)dy

≤(δ+ dm)W1(tk, xk) − αe−diτ

∫
R

k(y)

[
ũ+

ũ+ +ω
+ ṽ+
ω

]
W(tk)dy

≤(δ+ dm)W1(tk, xk) − αe−diτ ṽ+
ω

W(tk)

and

0 ≤∂W2(tk, xk)

∂t
− D

∫
R

J(y)[W2(tk, xk − y) − W2(tk, xk)]dy

+ (1 + V + V)W2(tk, xk) − d
∫
R

k(y)
U(tk, xk − y)

U(tk, xk − y) +ω
(V(tk, xk − y) + 1)dy

+ d
∫
R

k(y)
U(tk, xk − y)

U(tk, xk − y) +ω
(V(tk, xk − y) + 1)dy

≤(δ+ 1 + V + V)W2(tk, xk)

− d
∫
R

k(y)

[
U

U +ω
W2(tk, xk − y) − ω(V + 1)

(U +ω)(U +ω)
W1(tk, xk − y)

]
dy

≤(δ+ 1 + V + V)W2(tk, xk) − d
∫
R

k(y)

[
ũ+

ũ+ +ω
+ ṽ+
ω

]
W(tk)dy

≤(δ+ 1 + V + V)W2(tk, xk) − dṽ+
ω

W(tk).

Letting k → ∞, we have that
(
δ + dm − αe−diτ ṽ+

ω

)
W(t0) ≥ 0 or

(
δ + 1 − dṽ+

ω

)
W(t0) ≥ 0, which imply

that W(t0) ≥ 0 by choosing δ >max{−dm + αe−diτ ṽ+
ω

, −1 + dṽ+
ω

}. It contradicts to W(t0)< 0. The proof
is complete.

Proposition 2.4. For any φ ∈ CK with φ �≡ 0, let (U(t, x; φ), V(t, x; φ)) be the solution of (2.3). Then,
there exists t1 = t1(φ)> 0 such that U(t, x; φ)> 0 and V(t, x; φ)> 0 for any t> t1(φ), x ∈R.

https://doi.org/10.1017/S0956792523000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792523000311


European Journal of Applied Mathematics 541

Proof. In view of Lemma 2.1, when φ := (φ1, φ2) ∈ CK, (U, V)(t, x) ∈ [0, ũ+] × [0, ṽ+] for (t, x) ∈
(0, +∞) ×R. Then, it is easy to see that⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂V

∂t
= (J ∗ V − V) − V(1 + V) + d

∫
R

k(x − y)
U(t, y)

U(t, y) +ω
(V(t, y) + 1)dy

≥ (J ∗ V − V) − V(1 + ṽ+),

V(0, x) = φ2(0, x), x ∈R.

(2.7)

By the strong maximum principle (see e.g. [17, Theorem 2.1]), we obtain that V(t, x)> 0 for (t, x) ∈
(0, +∞) ×R, if φ2(0, x) ≥ ( �≡)0 for x ∈R.

Next, we show that there exists t0 ∈ [0, τ ] such that U(t0, x) �≡ 0 for all x ∈R, which means there exists
some x such that U(t0, x)> 0. Assume, by contradiction, that U(t, x) ≡ 0 for all t and x. It then follows
from the first equation in (2.5) that φ1(t, x) ≡ 0 for t ∈ [−τ , 0] and x ∈R, which is a contradiction. Since
Ut >−dmU, we obtain that for t ∈ [t0, t0 + τ ], U(t, x) �≡ 0 for all x ∈R. Thus, by the first equation of
(2.3), we get

U(t, x) ≥
∫ t

0

e−dm(t−s)

[
αe−diτ

∫
R

k(y)
U(s−τ , x − y)

U(s−τ , x − y) +ω
(V(s−τ , x − y) + 1)dy

]
ds. (2.8)

Let t1(φ) = t0 + τ . Then by (2.8), we obtain that U(t, x)> 0 for t> t1(φ), x ∈R. The proof is complete.

3. Spreading speeds
3.1. Existence of spreading speed

In this subsection, we are devoted to establishing that the solution of (2.3) has a spreading speed.

Definition 3.1. A family of mappings {Qt}t≥0 is said to be a semiflow on CK, if the following three prop-
erties hold: (i) Q0 = I, where I is the identity mapping; (ii) Qt ◦ Qs = Qt+s for all t, s> 0; (iii) Qt[φ](x)
is continuous in (t, φ) ∈ (0, +∞) × CK.

For any u = (u1(θ , x), u2(θ , x)) ∈ C, define the reflection operator R by

R[u](θ , x) = (u1(θ , −x), u2(θ , −x)).

Given y ∈R, define the translation operator Ty by

Ty[u](θ , x) = (u1(θ , x − y), u2(θ , x − y)).

A set W ⊆ C is said to be T-invariant if Ty[W] = W for any y ∈R. For a given operator Q : CK → CK, we
make the following assumptions:

(A1) Q[R[u]] =R[Q[u]], Ty[Q[u]] = Q[Ty[u]], ∀y ∈R.
(A2) Q : CK → CK is continuous with respect to the compact open topology.
(A3) One of the following two properties holds:

(a) {Q[u](·, x):u ∈ CK, x ∈R} is precompact in C̄K.
(b) Q[CK](0, ·) is precompact in X, and there is a positive number ς ≤ τ such that Q[u](θ , x) =

u(θ + ς , x) for −τ ≤ θ ≤ −ς , and the operator

S[u](θ , x) =
⎧⎨
⎩

u(0, x), −τ ≤ θ ≤ −ς ,

Q[u](θ , x), −ς ≤ θ ≤ 0,
(3.1)

has the property that S[�](·, 0) := {S[u](θ , 0) : u ∈�} is precompact in C̄K for any T-invariant
set �⊂ CK with �(0, ·) := {u(0, x) : u ∈�} precompact in X.
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(A4) Q : CK → CK is monotone in the sense that Q[u] ≥ Q(v) whenever u ≥ v in CK.
(A5) Q : C̄K → C̄K admits exactly two fixed points 0 and K, and for any positive number ε, there is a

ζ ∈ C̄K with ‖ζ‖< ε such that Q[ζ ] � ζ , where ‖ · ‖ is the maximum norm in C̄.

Let Qt be the solution map of (2.3), that is,
Qt(φ)(θ , x) = (Q1

t (φ)(θ , x), Q2
t (φ)(θ , x))

= (Ut(θ , x; φ), Vt(θ , x; φ)), θ ∈ [−τ , 0], x ∈R, φ ∈ C.
(3.2)

In order to apply the theory in [20] to address the existence of a spreading speed for (2.3), we need to
verify that the solution map Qt defined in (3.2) satisfies the above properties (A1)–(A5). It is straightfor-
ward to verify that (A1) holds, since (U(t, −x), V(t, −x)) and (U(t, x − y), V(t, x − y)) are also solution
of (2.1) provided that (U(t, x), V(t, x)) is a solution (2.1) and y ∈R.

Lemma 3.2. Let Qt be the solution map of (2.3) defined in (3.2). Then, {Qt}t≥0 is a semiflow on CK.

Proof. We shall prove that Qt is the continuous inφ with respect to the compact open topology uniformly
for t ∈ [0, t0] with t0 > 0. In view of [29, Lemma 3.1], the solution semigroup of the following linear
nonlocal dispersal equation⎧⎨

⎩
∂V(t, x)

∂t
= D(J ∗ V − V)(t, x), t> 0, x ∈R

V(0, x) =ψ(x), x ∈R,
(3.3)

is given by

[P(t)ψ](x) = e−Dt

∞∑
k=0

(Dt)k

k! ak(ψ)(x), t> 0, x ∈R (3.4)

for any ψ ∈Y, where Y is the set of all bounded and continuous functions from R to R, and

a0(ψ)(x) =ψ(x), am(ψ)(x) =
∫
R

J(x − y)am−1(ψ)(y)dy, ∀m ≥ 1.

For any ψ ∈Y, define ‖ · ‖ = supx∈R |ψ(x)|. It is easy to see that ‖a0(ψ)‖ = ‖ψ‖, ‖a1(ψ)(x)‖ =
‖ ∫

R
J(x − y)a0(ψ)(y)dy‖ ≤ ‖ψ‖. By induction, we can obtain ‖ak(ψ)(x)‖ ≤ ‖ψ‖ for all k = 0, 1, 2, · · · .

By (3.4), we have

‖P(t)ψ‖ ≤ e−Dt

∞∑
k=0

(Dt)k

k! ‖ak(ψ)‖ ≤ ‖ψ‖. (3.5)

It is clear that the system (2.3) can be rewritten into the following integral system⎧⎪⎪⎨
⎪⎪⎩

U(t, x) = e−dmtφ1(0, x) +
∫ t

0

e−dm(t−s)H1[U, V](s, x)ds,

V(t, x) = P(t)φ2(0, x) +
∫ t

0

P(t − s)H2[U, V](s, x)ds,
(3.6)

where ⎧⎪⎪⎨
⎪⎪⎩
H1[U, V](t, x) := αe−diτ

∫
R

k(y)
U(t−τ , x − y)

U(t−τ , x − y) +ω
(V(t−τ , x − y) + 1)dy,

H2[U, V](t, x) := −V(1 + V) + d
∫
R

k(y)
U(t, x − y)

U(t, x − y) +ω
(V(t, x − y) + 1)dy.

(3.7)

For φ1 = (φ1
1 , φ1

2 ), φ2 = (φ2
1 , φ2

2 ) ∈ CK, we define
w(t, x) = (w1(t, x), w2(t, x)),

where
w1(t, x) = |U(t, x; φ1) − U(t, x; φ2)|, w2(t, x) = |V(t, x; φ1) − V(t, x; φ2)|.
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Choose t0 > 0 and for any ε > 0, we let

σ = (αe−diτ + d)(v+ +ω)

ω
+ (2v+ − 1) and ε1 = ε

2σ t0eσ t0
.

It is easy to see that there exists (t∗, x∗) ∈ [−τ , t] ×R such that

ws(θ , x) ≤ sup
s∈[−τ ,t],x∈R

(w1(s, x), w2(s, x)) ≤ w(t∗, x∗) +
(ε

8
e−σ t0 ,

ε

8
e−σ t0

)
for (s, θ , x) ∈ [0, t] × [−τ , 0] ×R with t ∈ [0, t0]. Set

‖φ‖�M (z) = sup
(θ ,x)∈�M (z)

|φ1(θ , x)| + sup
(θ ,x)∈�M (z)

|φ2(θ , x)| for φ = (φ1, φ2),

with

�M(z) = [−τ , 0] × [z − M, z + M], M > 0, z ∈R.

Then, there exists M = M(t0, ε) such that∫
R

k(y)
[v+
ω

w1(s, x∗ − y) + w2(s, x∗ − y)
]

dy ≤ v+ +ω

ω
‖ws‖�M (x∗) + ε1

for 0 ≤ s ≤ t. Hence, for above ε > 0, choose δ= ε

8
e−σ t0 such that when ‖φ1 − φ2‖�M (x∗) < δ, by (3.5)

and (3.6), we obtain

‖wt(θ , x)‖�M (x∗)

≤ w1(t∗, x∗) + w2(t∗, x∗) + ε

4
e−σ t0

≤ e−dmtw1(0, x∗) + w2(0, x∗) + ε

4
e−σ t0

+ αe−diτ

∫ t∗

0

∫
R

e−dm(t∗−s)k(y)
[v+
ω

w1(s−τ , x∗ − y) + w2(s−τ , x∗ − y)
]

dyds

+
∫ t∗

0

(2v+ − 1)w2(s, x∗)ds + d
∫ t∗

0

∫
R

k(y)
[v+
ω

w1(s, x∗ − y) + w2(s, x∗ − y)
]

dyds

≤ 2‖φ1 − φ2‖�M (x∗) + ε

4
e−σ t0 + (2v+ − 1)

∫ t

0

(‖ws‖�M (x∗) + ε1)ds

+ (αe−diτ + d)(v+ +ω)

ω

∫ t

0

(‖ws‖�M (x∗) + ε1)ds

≤ 2δ + ε

4
e−σ t0 + ε1σ t + σ

∫ t

0

‖ws‖�M (x∗)ds.

By Gronwall’s inequality, we further have

‖wt(θ , x)‖�M (x∗) ≤
(ε

2
e−σ t0 + ε1σ t

)
eσ t ≤

(ε
2

e−σ t0 + ε1σ t0

)
eσ t0 = ε, t ∈ [0, t0].

This shows that Qt is continuous in φ with respect to compact open topology uniformly for t ∈ [0, t0],
which, together with the continuity of Qt in t from Lemma 2.1, implies that Qt is continuous in (t, φ)
with respect to the compact open topology. The proof is complete.

By Lemma 3.2, the property (A2) holds. The property (A4) can be guaranteed by Lemma 2.3. It is
easy to verify that the property (A5) also holds, see also [27, Lemma 3.7]. We just need to prove that
the solution map Qt satisfies the property (A3).

Lemma 3.3. Qt satisfies (A3)(a) if t ≥ τ and satisfies (A3)(b) if t< τ .

Proof. In view of Lemma 2.1, when φ ∈ CK, the solution (U(t, x; φ), V(t, x; φ)) of (2.3) is bounded.
More precisely, 0 ≤ (U(t, x; φ), V(t, x; φ)) ≤ K, ∀ t ≥ 0, x ∈R. It then follows from the first equation of
(2.3) that
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|Ut(t, x; φ)| ≤dm|U| + αe−diτ

∫
R

k(x − y)

∣∣∣∣ U(t−τ , y; φ)

U(t−τ , y; φ) +ω

∣∣∣∣ |V(t−τ , y; φ) + 1|dy

≤dmũ+ + αe−diτ
ũ+
ω

(ṽ+ + 1) =: L,

which means that Ut is bounded for t ≥ 0. Let [a, b] ⊆R with a> 0 be any bounded interval, I ⊆R be
a compact interval and K̃ = min{K ∈N : I ⊆ [−K, K]}. Then for any t1, t2 ∈ [a, b] and x ∈ I, one has

|U(t1, x; φ) − U(t2, x; φ)| ≤ L|t1 − t2|.
Hence, for any ε > 0, there exists δ= ε

L
, such that for any φ ∈ CK, any x ∈ I, s1, s2 ∈ [−τ , 0] with |s1 −

s2|< δ, we obtain

|Q1
t0

[φ](s1, x) − Q1
t0

[φ](s2, x)| ≤ |U(t0 + s1, x; φ) − U(t0 + s2, x; φ)|< ε,
where t0 > τ , which implies that {Q1

t [φ](s, x) : φ ∈ CK, x ∈R} is a family of equicontinuous functions
of s ∈ [−τ , 0]. By the Arzela-Ascoli Theorem, we obtain that {Q1

t [φ](·, x) : φ ∈ CK, x ∈R} is precom-
pact in C([−τ , 0], R) if t ≥ τ . Thus, Q1

t satisfies (A3)(a) for t ≥ τ . On the other hand, if t< τ , we set
ς = 1. Then, for the T-invariant set � defined in (A3), the set {S1[�](θ , 0) : θ ∈ [−ς , 0]} is precom-
pact in C([−ς , 0], R), where S1 is the first component of the operator S defined in (3.1). It is clear that
{S1[�](θ , 0) : θ ∈ [−τ , −ς ]} is an infinite set of constant functions in C([−τ , −ς ], R), and hence, it is
precompact in C([−τ , −ς ], R). Therefore, Q1

t satisfies (A3)(b) for t< τ .
Now we prove that Q2

t satisfies (A3). By the second equation of (2.3), we have

|Vt(t, x; φ)| ≤ 2Dṽ+ + ṽ+(ṽ+ + 1) + d
ũ+

ũ+ +ω
(ṽ+ + 1).

By a similar argument as that for Q1
t , we obtain that {Q2

t [φ](·, x) : φ ∈ CK, x ∈R} is precompact in
C([−τ , 0], R) if t ≥ τ . Thus, Q2

t satisfies (A3)(a) for t ≥ τ . In the following, we verify that Q2
t satisfies

(A3)(b) when t ∈ [0, τ ]. For any φ ∈ CK, we fix t̃ ∈ (0, τ ] and define

S2[φ](θ , x) =
{
φ2(0, x), −τ ≤ θ ≤ −t̃,

Q2
t̃ [φ](θ , x), −t̃ ≤ θ ≤ 0.

Let�⊂ CK be a T-invariant set with�(0, ·) := {u(0, x) : u ∈�} precompact in X. We just need to show
that for any given compact interval I ∈R, S2(�) is equicontinuous on [−τ , 0] × I.

When (s, x) ∈ [−τ , −t̃] × I, one has S2[φ](s, x) = φ2(0, x) for all φ ∈�. Hence, by the precompact-
ness of �(0, ·) in X, we obtain that S2(�) is equicontinuous on [−τ , −t̃] × I.

Since P(t) is uniformly continuous for t in a bounded interval in the compact open topology with
respect to the initial value, one can show that

{P(t − s)H2[φ](s, x) : t ∈ [0, t̃], s ∈ [0, t], φ ∈ CK}
is bounded in X+, where H2 is defined in (3.7). Then there exists M > 0 such that

‖P(t − s)H2[φ](s, ·)‖X ≤ M for t ∈ [0, t̃], s ∈ [0, t], φ ∈ CK,

where the norm

‖φ‖X =
∞∑

k=1

max|x|≤k |φ|
2k

, ∀φ ∈ X,

with | · | is the usual norm in R. Thus, we derive that sup|x|≤K̃ |P(t − s)H2[φ](x)| ≤ 2K̃M. Hence, for any
ε > 0, there exists δ1 = min{ ε

2K̃ 4M
, t̃}, such that for any t ≤ δ1, x ∈ I and φ ∈�, we have∣∣∣∣
∫ t

0

P(t − s)H2[φ](s, x)ds

∣∣∣∣≤ 2K̃Mδ1 <
ε

4
. (3.8)
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In [14, Section 2], Ignat and Rossi showed that the solution of (3.3) can also be written as V(t, x) =
[P(t)ψ](x) = ∫

R
G(t, y)ψ(x − y)dy, where G(t, x) = e−Dtδ0(x) + R(t, x), δ0(x) is the delta measure at

zero and R(t, x) = 1
2π

∫
R

(eD(Ĵ(ξ )−1)t − e−Dt)ejxξdξ with j = √−1 and Ĵ being the Fourier transform of J.
Moreover, it is proved that |G(t, ·)|L1(R) ≤ 3 for any t> 0. Since (φ1, φ2) ∈�(0, ·) and �(0, ·) is precom-
pact in X, then for the above I, there exists δ2 > 0 such that for any x1, x2 ∈ I satisfying |x1−x2|< δ2, we
have |φ2(x1) − φ2(x2)]< ε

12
, and hence,

|P(t)[φ2](x1) − P(t)[φ2](x2)| =
∣∣∣∣
∫
R

G(t, y)[φ2(x1 − y) − φ2(x2 − y)]dy

∣∣∣∣
≤
∫
R

|G(t, y)||φ2(x1 − y) − φ2(x2 − y)|dy

≤‖G(t, ·)‖L1(R)

ε

12
≤ ε

4
, ∀t ∈ [0, δ1]. (3.9)

On the other hand, for all t> 0, x ∈R and φ ∈ CK, we have |[P(t)φ2](x)| ≤ ṽ+. It is easy to see that∣∣∣∣∂P(t)[φ2](x)

∂t

∣∣∣∣=
∣∣∣∣D
(∫

R

J(x − y)P(t)[φ2](y)dy − P(t)[φ2](x)

)∣∣∣∣≤ 2Dṽ+.

Hence, for t1, t2 ∈ [0, δ1], (φ1, φ2) ∈�(0, ·), there exists δ3 := ε

8Dṽ+
such that when |t1 − t2| ≤ δ3, we

derive

|P(t1)[φ2](x) − P(t2)[φ2](x)| = 2Dṽ+|t1 − t2|< ε

4
. (3.10)

Combining (3.8)–(3.10), when s1, s2 ∈ [−t̃, δ1−t̃] and x1, x2 ∈ I satisfying |s1 − s2|< δ3 and |x1 − x2|<
δ2, for any φ ∈�(0, ·), we obtain

|S2(φ)(s1, x2) − S2(φ)(s2, x2)| = |Q2
t̃ [φ](s1, x1) − Q2

t̃ [φ](s2, x2)|
= |V(t̃ + s1, x1; φ) − V(t̃ + s2, x2; φ)|
≤ |P(t̃ + s1)[φ2](x1) − P(t̃ + s2)[φ2](x2)|

+
∣∣∣∣∣
∫ t̃+s1

0

P(t̃ + s1 − s)H2[U, V](s, x1)ds −
∫ t̃+s2

0

P(t̃ + s2 − s)H2[U, V](s, x2)ds

∣∣∣∣∣
≤ |P(t̃ + s1)[φ2](x1) − P(t̃ + s1)[φ2](x2)| + |P(t̃ + s1)[φ2](x2) − P(t̃ + s2)[φ2](x2)|

+
∣∣∣∣∣
∫ t̃+s1

0

P(t̃ + s1 − s)H2[U, V](s, x1)ds

∣∣∣∣∣+
∣∣∣∣∣
∫ t̃+s2

0

P(t̃ + s2 − s)H2[U, V](s, x2)ds

∣∣∣∣∣
< ε,

which means S2(�) is equicontinuous on [−t̃, δ1−t̃] × I.
Finally, we need to verify that S2(�) is equicontinuous on [δ1−t̃, 0] × I. Note that if s ∈ [δ1−t̃, 0],

then t̃ + s ∈ [δ1, t̃]. Thus, we can prove the current case similar to that for (A3)(a). Therefore, S2(�) is
equicontinuous on [−τ , 0] × I. The proof is complete.

Now we are ready to apply the general theory in [20, Theorem 2.17] to show that the map Qt admits
a spreading speed c∗, which is also the spreading speed of solutions to (2.3).

Theorem 3.4. Assume that (H1) and (H2) hold. Then, there exists a spreading speed c∗ of Qt in the
following sense.

(i) For any c> c∗, if φ ∈ CK with 0 � φ� K and φ(·, x) = 0 for x outside a bounded interval, then

lim
t→∞,|x|≥ct

U(t, x; φ) = lim
t→∞,|x|≥ct

V(t, x; φ) = 0.
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(ii) For any c< c∗ and any σ ∈ C̄K with σ � 0, there exists a positive number rσ such that if φ ∈ CK

and φ� σ for x on an interval of length 2rσ , then

lim
t→∞,|x|≤ct

U(t, x; φ) = ũ+ and lim
t→∞,|x|≤ct

V(t, x; φ) = ṽ+.

3.2. Estimates of spreading speed

In this subsection, we study the upper and lower bounds of the spreading speed established in Section
3.1. We first give an estimate of the upper bound of the spreading speed c∗. Consider the following linear
system ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂U

∂t
= −dmU + αe−diτ

∫
R

k(y)
[

1
ω

U(t−τ , x − y) + ũ+
ũ++ωV(t−τ , x − y)

]
dy,

∂V

∂t
= D

∫
R

J(y)[V(t, x − y) − V(x, t)]dy − V

+d
∫
R

k(y)

[
1

ω
U(t, x − y) + ũ+

ũ+ +ω
V(t, x − y)

]
dy,

(3.11)

where t> 0, x ∈R. For any μ ∈R+, define U(t, x) = e−μxη1(t) and V(t, x) = e−μxη2(t). Then, it is easy to
see that η= (η1, η2) satisfies

η′(t) = Mη(t) + Bη(t−τ ), (3.12)

where

M =
(

−dm 0
dk̃(μ)
ω

DJ̃(μ) − D − 1 + dũ+ k̃(μ)
ũ++ω

)

and

B =
(

αe−diτ k̃(μ)
ω

αe−diτ ũ+ k̃(μ)
ũ++ω

0 0

)
,

where k̃(μ) = ∫
R

k(y)eμydy<∞ and J̃(μ) = ∫
R

J(y)eμydy<∞ for any μ> 0. It is clear that if η(t) is a
solution of (3.12), then e−μxη(t) is a solution of (3.11). Define

Bt
μ
(η0) := Nt(η

0e−μx)(0) = η(t, η0),

here Nt is the solution operator of (3.11), and η(t, η0) is the solution of (3.12) with η0 = η(θ ) for θ ∈
[−τ , 0]. Since system (3.12) is cooperative and irreducible, by [25, Theorem 5.1], we obtain that the
characteristic equation

P(λ) = det (λI − M − Be−λτ ) = 0 (3.13)

has a real root λ(μ)> 0, and the real parts of all other roots are less than λ(μ). Let ζ = (ζ1(θ ), ζ2(θ ))
be the eigenfunction of the infinitesimal generator corresponding to λ(μ). In fact, ζ can take the form
(ζ1(θ ), ζ2(θ )) = (ζ10eλ(μ)θ , ζ20eλ(μ)θ ) with ζ10, ζ20 > 0, θ ∈ [−τ , 0]. Then, eλ(μ)t is the principle eigenvalue
of Bt

μ
with eigenfunction ζ . In particular, γ (μ) := eλ(μ) is the eigenvalue of B1

μ
. Define

�(μ) := 1

μ
ln γ (μ) = λ(μ)

μ
for μ> 0.

By using [20, Lemma 3.8], we can easily obtain the following properties of �(μ).

Lemma 3.5. The statements are valid:

(i) �(μ) → ∞ as μ→ 0+;
(ii) �(μ) is strictly decreasing for μ near 0;
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(iii) �′(μ) changes sign at most once on (0, ∞);
(iv) lim

μ→∞
�(μ) exists, where the limit may be infinite.

Then, we can get an estimate of an upper bound of the spreading speed c∗.

Proposition 3.6. Let c∗ be the spreading speed of Qt defined as in Theorem 3.4, and let λ(μ) and�(μ)
be defined as above. Then,

c∗ ≤ inf
μ>0
�(μ) = inf

μ>0

λ(μ)

μ
.

Proof. Clearly, the solution (U(t, x), V(t, x)) of (2.1) is a lower solution of (3.11), and hence, Q1(φ) ≤
N1(φ) for any φ ∈ CK. It is easy to verify that N1 and B1

μ
satisfies (C1)–(C6) in [20]. By [20, Theorem

3.10], it suffices to show that the principal eigenvalue γ (0) is greater than 1, and the infimum of �(μ)
is attained at some μ∗ > 0.

When μ= 0, it follows from (3.13) that

P(λ) =
(
λ+ dm − αe−diτ

ω
e−λτ

)(
λ+ 1 − dũ+

ũ+ +ω

)
− dαe−diτ ũ+
ω(ũ+ +ω)

e−λτ

= λ2 +
(

dm + 1 − dũ+
ũ+ +ω

)
λ+

(
1 − dũ+

ũ+ +ω

)
dm − αe−diτ

ω
(λ+ 1)e−λτ = 0.

Let

f1(λ) = λ2 +
(

dm + 1 − dũ+
ũ+ +ω

)
λ+

(
1 − dũ+

ũ+ +ω

)
dm,

f2(λ, τ ) = αe−diτ

ω
(λ+ 1)e−λτ .

Since dm < d̃m := αe−diτ

ω
by (H2), we obtain

f1(0) =
(

1 − dũ+
ũ+ +ω

)
dm < f2(0, τ ) = αe−diτ

ω
.

It is easy to see that ∂f2(λ,τ )
∂λ

= αe−diτ

ω
e−λτ (1−τ (λ+ 1)). Hence, if τ ≥ 1, then ∂f2(λ,τ )

∂λ
≤ 0 for λ≥ 0. If τ < 1,

then f2(λ, τ ) reaches its unique local (thus global) maximum at λ= 1
τ
− 1 and tends to 0 as λ→ +∞.

Moreover, f1(λ) is convex for λ> 0, while for any fixed τ > 0, f2(λ, τ ) has at most one reflection point
for λ> 0. Hence, there is a unique λ∗ > 0 such that f1(λ∗) = f2(λ∗, τ ) no matter what value τ takes. This
implies that λ(0) = λ∗ > 0, and hence, γ (0) = eλ(0) > 1, i.e. the condition (C7) in [20] is satisfied.

We now prove that �(μ) attains its infimum at some μ∗ > 0, which can be obtained by proving that
lim
μ→+∞

�(μ) = +∞. By (3.13), we have

P(λ) =λ2 +
(

dm − DJ̃(μ) + D + 1 − dũ+
ũ+ +ω

k̃(μ)

)
λ

+
(

−DJ̃(μ) + D + 1 − dũ+
ũ+ +ω

k̃(μ)

)
dm

− αe−diτ

ω
k̃(μ)(λ− DJ̃(μ) + D + 1)e−λτ = 0. (3.14)
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Let

f3(λ) = λ2 +
(

dm − DJ̃(μ) + D + 1 − dũ+
ũ+ +ω

k̃(μ)

)
λ

+
(

−DJ̃(μ) + D + 1 − dũ+
ũ+ +ω

k̃(μ)

)
dm,

f4(λ, τ ) = αe−diτ

ω
k̃(μ)(λ− DJ̃(μ) + D + 1)e−λτ .

It is easy to compute that J̃′(μ)> 0 for μ> 0 and limμ→+∞ J̃(μ) = +∞. Hence, for any large μ, we have

f3

(
DJ̃(μ) − D − 1 + 1

τ

)
< 0,

f ′
3(λ)> 0, ∀λ>DJ̃(μ) − D − 1 + 1

τ
,

lim
λ→+∞

f3(λ) = +∞,

and

f4

(
DJ̃(μ) − D − 1 + 1

τ
, τ

)
> 0,

∂f4(λ, τ )

∂λ
< 0, ∀λ>DJ̃(μ) − D − 1 + 1

τ
,

lim
λ→+∞

f4(λ, τ ) = 0.

Thus, (3.14) has a unique positive root λ(μ)>DJ̃(μ) − D − 1 + 1
τ
. Hence,

lim
μ→+∞

�(μ) = lim
μ→+∞

λ(μ)

μ
≥ lim

μ→+∞
DJ̃(μ) − D − 1 + 1

τ

μ
= +∞.

The proof is complete.

Next, we provide an estimate of the lower bound of the spreading speed c∗.

Proposition 3.7. Let c∗ be the spreading speed of Qt defined as in Theorem 3.4. Then,

c∗ ≥ inf
μ>0
�(μ) = inf

μ>0

�(μ)

μ
.

Here,�(μ) = max{DJ̃(μ) − D − 1,�2(μ)}, where�2(μ) is the unique positive root of L(�,μ) :=�+
dm − αe−diτ k̃(μ)

ω
e−�τ = 0.

Proof. Choose any small ε > 0. Let Pε
t be the solution operator of the following linear system:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂U

∂t
= −dmU + αe−diτ

∫
R

k(y)
1

ω+ ε
U(t−τ , x − y)dy,

∂V

∂t
= D

∫
R

J(y)[V(t, x − y) − V(x, t)]dy − (1 + ε)V

+d
∫
R

k(y)
1

ω+ ε
U(t, x − y)dy,

(3.15)

where t> 0, x ∈R. By a similar argument as that in the proof of Proposition 3.6, we can obtain that
Pε

t satisfies (C1)–(C7) in [20]. Moreover, for any given ε ∈ (0, 1), there exists δ = (δ1, δ2) such that the
solution (U, V) of (3.15) satisfying

0<U(t, x; φ)< ε, 0< V(t, x; φ)< ε, t ∈ [0, 1],
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for any initial φ = (φ1, φ2) with 0 ≤ φ1 ≤ δ1, 0 ≤ φ2 ≤ δ2. Hence, (U(t, x; φ), V(t, x; φ)) satisfies

∂U

∂t
= −dmU + αe−diτ

∫
�

k(y)
U(t−τ , x − y)

U(t−τ , x − y) +ω
(V(t−τ , x − y) + 1)dy

≥ −dmU + αe−diτ

∫
R

k(y)
1

ω+ ε
U(t−τ , x − y)dy, t ∈ [0, 1],

and
∂V

∂t
= D

∫
R

J(y)[V(t, x − y) − V(t, x)]dy − V(1 + V)

+ d
∫
�

k(y)
U(t, x − y)

U(t, x − y) +ω
(V(t, x − y) + 1)dy

≥ D
∫
R

J(y)[V(t, x − y) − V(t, x)]dy − (1 + ε)V

+ d
∫
R

k(y)
1

ω+ ε
U(t, x − y)dy, t ∈ [0, 1].

By the comparison principle, we obtain that Pε
t [φ] ≤ Qt[φ] for t ∈ [0, 1]. In particular, Pε

1[φ] ≤ Q1[φ] for
0 ≤ φ1 ≤ δ1 and 0 ≤ φ2 ≤ δ2. It then follows from [20, Theorem 3.10] that the spreading speed of Pε

t can
be attained by the infimum of �ε(μ) := �ε (μ)

μ
, where �ε(μ) is the principle eigenvalue of(

�+ dm − αe−diτ k̃(μ)

ω+ ε
e−�τ

) (
�− DJ̃(μ) + D + 1 + ε

)= 0,

which is the characteristic equation for the equation of η corresponding to (3.15). It is easy to verify that
the statements in Lemma 3.5 also hold for �ε(μ). Then we obtain

c∗ ≥ inf
μ>0
�ε(μ).

Since ε > 0 can be chosen arbitrarily, one further has

c∗ ≥ inf
μ>0
�(μ) = inf

μ>0

�(μ)

μ
,

where �(μ) is the principal eigenvalue of(
�+ dm − αe−diτ k̃(μ)

ω
e−�τ

) (
�− DJ̃(μ) + D + 1

)= 0.

The proof is complete.

Remark 3.8. For a fixed μ> 0, we can compute that ∂L(�,μ)
∂�

= 1 + τ αe−diτ k̃(μ)
ω

e−�τ > 0 and L(0,μ) =
dm − αe−diτ k̃(μ)

ω
. Since dm − αe−diτ

ω
< 0 by (H2) and k̃(μ)> 1 for μ> 0 by (H1), we have that L(0,μ)< 0.

Hence, the existence and uniqueness of �2(μ) can be easily obtained.

4. Travelling wavefronts

In this section, we shall prove the existence of travelling wavefronts with speed c ≥ c∗, and nonexis-
tence of travelling wavefronts with speed c< c∗, where c∗ is the spreading speed defined in Section 3.
A travelling wavefront of (2.1) is a monotone solution with the special form

U(t, x) = ϕ1(ξ ), V(t, x) = ϕ2(ξ ), (4.1)
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where ξ = x + ct, c> 0 is the wave speed. Substituting (4.1) into (2.1) gives⎧⎪⎨
⎪⎩

cϕ ′
1 = −dmϕ1 + αe−diτ

∫
R

k(y) ϕ1(ξ−y−cτ )
ϕ1(ξ−y−cτ )+ω (ϕ2(ξ − y − cτ ) + 1)dy,

cϕ ′
2 = D

∫
R

J(y)[ϕ2(ξ − y) − ϕ2(ξ )]dy − ϕ2(1 + ϕ2)

+d
∫
R

k(y) ϕ1(ξ−y)
ϕ1(ξ−y)+ω (ϕ2(ξ − y) + 1)dy,

where ′ denotes d
dξ

.
In Section 3, we have verified that the map Qt satisfies (A1)–(A5). Then, the nonexistence of travelling

wavefronts of (2.1) follows from [20, Theorem 4.3].

Theorem 4.1. Assume that (H1) and hold. Then, for any 0< c< c∗, system (2.1) has no travelling
wavefronts connecting 0 and K.

Since the solution map of (2.3) is not compact, we need to use the theory of travelling wavefronts
developed in [8] for monotone semiflows with weak compactness to establish the existence of travelling
wavefronts of (2.1). Let (X, X+) be a Banach lattice with the norm ‖ · ‖ and the positive cone X+. We
use M to denote the set of all bounded and nondecreasing functions from R to X and equip M with the
compact open topology. We use the Kuratowski measure of noncompactness in X (see e.g. [5]), which
is defined by

α(B) := inf{r : B has a finite cover of diameter< r}
for any bounded set B. It is easy to see that B is precompact (i.e. the closure of B is compact) if and only
if α(B) = 0. Let β ∈ IntX+ �= ∅. We define Xβ := {u ∈ X : 0 ≤ u ≤ β} and Mβ := {u ∈M : 0 ≤ u ≤ β}.

By employing arguments similar to those in Lemma 2.1, we can easily prove the following well-
posedness result.

Lemma 4.2. For any initial value φ := (φ1, φ2) ∈MK, system (2.3) has a unique non-negative solution
(U(t, x; φ), V(t, x; φ)) which exists globally in time t ≥ −τ , satisfying

0 ≤ (U(t, x; φ), V(t, x; φ)) ≤ K, ∀t ≥ 0.

Definition 4.3. A family of mappings {Qt}t≥0 is said to be a semiflow on Mβ , if the following three
properties hold: (i) Q0 = I, where I is the identity mapping; (ii) Qt ◦ Qs = Qt+s for all t, s> 0; (iii)
tn → t and φn → φ in Mβ , then both Qtn [φ](x) → Qt[φ](x) and Qt[φn](x) → Qt[φ](x) in Mβ almost
everywhere.

Choose X =R
2 and let Qt be the solution mapping of system (2.3), i.e.

Qt = (Q(1)
t , Q(2)

t ) : MK →MK,

where

(Q(1)
t , Q(2)

t )[φ](θ , x) = (Ut(θ , x; φ), Vt(θ , x; φ)), (θ , x) ∈ [−τ , 0] ×R, t ≥ 0,

where φ = (φ1, φ2) ∈MK and (U(t, x; φ), V(t, x; φ)) is the mild solution of system (2.3).
Clearly, the solution mapping {Qt}t≥0 is a semiflow on MK. We need to verify that the solution

semiflow Qt satisfies the assumptions in [8] for each t> 0, which are listed as follows.

(B1) Q[R[u]] =R[Q[u]], Ty[Q[u]] = Q[Ty[u]], ∀y ∈R.
(B2) Q : MK →MK is continuous with respect to the compact open topology.
(B3) (Point-α-contraction) There exists k ∈ [0, 1) such that for any U ⊆Mβ , α(Q[U ](0)) ≤ kα(U (0)).
(B4) Q:MK →MK is monotone in the sense that Q[u] ≥ Q(v) whenever u ≥ v in MK.
(B5) Q:C̄K → C̄K admits exactly two fixed points 0 and K, and for any positive number ε, there is a

ζ ∈ C̄K with ‖ζ‖< ε such that Q[ζ ] � ζ , where ‖ · ‖ is the maximum norm in C̄.

Now we are in a position to prove the main result of this subsection.
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Theorem 4.4. Assume that (H1) and (H2) hold, let c∗ be the asymptotic spreading speed of Qt

defined as in Theorem 3.4. Then, for any c ≥ c∗, system (2.1) admits a travelling wavefront (ϕ1(x +
ct), ϕ2(x + ct)) connecting 0 and K. Furthermore, (ϕ1(x + ct), ϕ2(x + ct)) is also a classical solution to
(2.1).

Proof. It is easy to see that each time-t map Qt with t> 0 satisfies (B1), (B2), (B4) and (B5) with
Q = Qt. Thus, it remains to show that Qt satisfies the weak compactness assumption (B3). We write
Qt = Lt + St, where

Lt[φ](θ , x) =
{
φ(t + θ , x) − φ(0, x), t + θ < 0,

0, t + θ ≥ 0,

and

St[φ](θ , x) =
⎧⎨
⎩
φ(0, x), t + θ < 0,

Qt[φ](θ , x), t + θ ≥ 0.

For any bounded set U in MK, the set St[U ](·, 0) is compact due to the uniform boundedness of the
derivatives (∂tU(t, 0; φ), ∂tV(t, 0; φ)) for t> 0 and φ ∈ U . On the other hand, by the α-contraction prop-
erty of the solution map of delay differential equations (see e.g. [21]), there exists some constant γ > 0
such that α(Lt[U ](0)) ≤ e−γ tα(U (0)). Then we obtain that

α(Qt[U ](0)) ≤ α(Lt[U ](0)) + α(St[U ](0)) ≤ e−γ tα(U (0)),

for some positive γ > 0, which implies that Qt satisfies (B3) with k = e−γ t. By [8, Theorem 3.8], it
follows that Qt admits a left-continuous travelling wavefront connecting 0 and K.

Finally, we show that the obtained travelling wavefront (ϕ1(x + ct), ϕ2(x + ct)) for any c ≥ c∗ is also
a classical solution of (2.1). Note that

ϕ2(x + ct) = P(t)[ϕ2](x) +
∫ t

0

P(t − s)F̃2[ϕ1, ϕ2](x − cs)ds. (4.2)

By the expression of P(t), it is easy to calculate that

∂[P(t)φ](x)

∂t
= −D[P(t)φ](x) + D

∫
R

J(y)[P(t)φ](x − y)dy,

which indicates that the right side of (4.2) is differential with respect to t. Hence, ϕ2 is differentiable.
On the other hand,

ϕ1(x + ct) = ϕ1(x) +
∫ t

0

(F̃1[ϕ1, ϕ2](x − cs) − dmϕ1(x − cs))ds,

which implies ϕ ′
1 exists for any x ∈R. Hence, (ϕ1(x + ct), ϕ2(x + ct)) is also a classical solution to (2.1).

The proof is complete.

5. Conclusions

In this paper, we have studied the propagation dynamics of a mutualistic model of mistletoes and birds
with nonlocal dispersal. We proved the well-posedness and the comparison principle for the initial value
problem. We have also established the existence of the spreading speed and provided the upper and lower
bound estimates of the spreading speed. In addition, the travelling wavefronts are considered again. Our
result shows that the spreading speed coincides with the minimal wave speed of travelling wavefronts
for this model. Our main methods are based on the comparison argument and the theory of asymptotic
speeds of spread for the monotone semiflow developed in [8, 20].
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