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A COUNTEREXAMPLE IN LP
APPROXIMATION BY HARMONIC FUNCTIONS

JOAN MATEU

ABsTRACT.  For 55 < p < oo we show that the conditions Cy4(G \ >°() =
C24(G \ X) for @l open sets G, Cq denoting Bessel capacity, are not sufficient to

characterizethe compact sets X with the property that each function harmonic on X and
in LP(X) is the limit in the LP norm of a sequence of functions which are harmonic on
neighbourhoods of X.

1. Introduction. Let X C R" be compact and let LP(X), 1 < p < oo, be the usual
L ebesgue space with respect to n-dimensional Lebesgue measure. Set

hP(X) = {f € LP(X) : f isharmonic on )O(}

and denote by HP(X) the closure in LP(X) of the set (of restrictions to X) of functions
that are harmonic on some neighbourhood of X. Clearly HP(X) C hP(X) for any X. Many
authors have considered the problem of characterizing those X such that

(Ap) HP(X) = h*(X),

which we call the problem of LP approximation by harmonic functions.

Polking [P, Theorem 2.6, p. 1237] considered and solved the specia case of nowhere
dense sets X using the Bessel capacity C, g, q being the dual exponent of p. See Section 2
below for the definition of Bessel capacities C,, 4. In particular Polking [P, Theorem 1.1,
p. 1233 and Theorem 2.7, p. 1238] showed that for ageneral compact set X the condition

Q) Coq(G\ )o() = Cy4(G\ X), foreachopensetG,

is necessary for (Ap).

In the other direction, Hedberg [H3, Theorem 6.4, p. 76] pointed out the relevant role
played by spectral synthesisfor Sobolev spacesin the problem of LP approximation by
harmonic functions. Concretely, he showed that once one knows that all closed setsin
R" admit (2, q) spectral synthesisthen condition (1) and

) Crq(G\ X) = C14(G\ X),  for each open set G,
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are sufficient for (Ap). Some years later it was shown, using deep results on nonlinear
potential theory, that all closed sets admit spectral synthesis[H4, Theorem 1.1, p. 237;
HW, Theorem 5, p. 166].

It isworth mentioning that Bagby [Ba, Theorem 2.1, p. 764], adapting the constructive
methods of Vitushkin [G, Chapter 8] to the LP case, was able to give necessary and
sufficient conditions for (Ap) in terms of afamily of polynomials capacities. However,
some of these capacities are very difficult to handle and, in particular, they cannot be
described in terms of more familiar quantities such as Bessel capacities.

It is not difficult to show, considering an appropriate Swiss cheese [G, p. 25] that (2)
does not follow from (Ap).

We can now ask whether (1) alone is sufficient for (Ap). In this respect, given p,
p > 3, Hedberg [H3 Example 6.6, p. 77; AH, Theorem 11.5.5, p. 321] constructed
a compact set X in R" such that HP(X) # hP(X). If p < &5, then condition (1) holds
because Cyq is trivial in that range, and therefore we have an example in which (Ap)
does not follow from (1). Whenp > -5, is not known whether condition (1) is satisfied
for that set. Hence, it is not known if (Ap) follows from (1) for p > -2.

The main goal of this paper is to present a construction, for p > -, different from
that of Hedberg, of acompact X satisfying (1) but not (Ap).

THEOREM 1. Givenp, -5 < p < oo, there exists a compact X C R" such that
HP(X) # hP(X) and (1) holds.

Our construction of X will give easily

) Caq(BO,1) \ X) < CCog(B(x,) \ X)

for al openballs B(x, r) with center x € 0X and radiusr < rq. Herergisasmall positive
number and C some constant independent of x and r. In the process of showing (1) from
(3) we abtain the following result, which seemsto be of independent interest.

THEOREM 2. Let X C R" be compact and -5 < p < oo. Thefollowing are equiva-
lent.
(i) MP(X) = HP(X).
(i) Coq(B\ X) < CCypy(B\ X) for all openballsB(x,r), x € X, r < rq.
(i) C2q(G\ X) = C24(G \ X) for all open sets G.

Here we have denoted by MP(X) the closure in LP(X) of the linear span of the set
of functions of the type f = |x|~"2 x yu, where y is a positive measure supported on
R"\ Xandf & LP(R"). For p = -5 the definition of MP(X) must be modified replacing
“f € LP(R")” by “f € LP(Q)” where Q isany ball such that dist(R" \ Q,X) > 1. Thisis
dueto the fact that x| =2 x y isnotin L"/"2 at oo (unless i = 0).

The statement of the above theorems can be extended to the case of a gen-
eral homogeneous elliptic operator L with constant coefficients. Let hP(X,L) =
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{f : Lf = 0on §(} M LP(X) and let HP(X, L) be the closure in LP(X) of the set of re-
strictionsto X of functionsf satisfying Lf = 0 on some neighbourhood of X. Polking [P,
Theorem 2.7, p. 1238] has shown that a necessary condition for hP = HP is

4 Ciq(G\ )o() = Cio(G\ X), forall opensetsG,

where r denotes the order of L. In the other direction, Hedberg and Wolff [H3, Theo-
rem 6.4, p. 76; HW, Theorem 5, p. 166] proved that the conditions

Ca(G\ X) = Ciq(G\ X), forall opensetsG, 1< <r,

are sufficient for HP(X,L) = hP(X,L). For -& < p < I isknown that HP(X,L) =

hP(X, L) does not follow from (4) [H3, Example 6.6, p. 77]. We are able to prove the
following extension of Theorem 1.

THEOREM 3. Let L be a homogeneous elliptic operator with constant coefficients.
Given p, ;& < p < oo, there exists a compact X C R" such that HP(X, L) # hP(X,L)
and (4) holds.

The construction of the compact set in the statement of Theorems1 and 3isbasedona
combination of previous examplesdueto O’ Farrell and Hedberg [O, Section 20, p. 203;
H3, Example 6.6, p. 77]. Our ideaturns out to be useful also in Holder approximation by
solutions of eliptic operators (see [MNOV]).

In Section 2 we collect some background information, definitions and auxiliary re-
sults. The proof of Theorem 1 can be found in Section 3. In Section 4 we will show the
result of approximation in the space MP(X), Theorem 2. Finally, Section 5 is devoted to
the case of more general elliptic operators and contains the proof of Theorem 3.

2. Preliminary results.
2.1 Capacities. Let1 < p,q < oo, z+ ¢ = 1and o be a positive real number.
Following Hedberg [H2] we define the (o, p)-Riesz capacity of asubset A of R" as

Rup(A) = inf{[[f[5:f€LP, f>0 andl,*f>10nA},

where l,(X) = -~ isthe Riesz potential and Y(a) = 7"/22°T (or/2) /T (§ — &

Y(e) [« 27"

For an arbitrary Borel set A C R" we also define a capacity R, p(A) by
Ro,p(A) = sup u(A)
7
where the supremum is taken over all positive measures supported on A such that
Mo pllg < 1.

As Meyers noted [M¢€], for aBorel set A one has

(Rep(A) P = Rop(A).
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Let G, bethe Bessel kernel of order o.. G, is most conveniently defined in terms of
its Fourier transform by G,,(¢) = (1+ |¢[2)~%/2. If A C R", the Bessel («, p) capacity is
defined by

Cop(A) = inf{|[f[5:f€LP, >0 andG,x*f>1onA}
and
Cop(A) =sup{u(A) : p >0, sptp CA and |Gy pllq <1}

As a consequenceof the mini-max theorem one obtains that for all Borel setsA C R"
: 1
Cap®) = (Cap(®)"'".

Therelation between Bessel and Riesz capacity is given by the following:

PROPOSITION A [e.g., AH, PROPOSITION 5.1.4, p. 131]. Let ap < n. Then the fol-
lowing holds.
(8 Forall ACR"
Ryp(A) < Cop(A).

(b) For eachR > Othereis C (R) such that
Cop(A) < CRyp(A)

for all A C R" with diameter at most R.

Some of the set functions introduced above might vanish identically. More precisely,
Ruyp(A) = 0if ap > n. To circumvent this undesirable situation we will introduce ca-
pacities with respect to aregion G.

_ DerINITION.  If G is an open bounded set in R" and A C G a Borel set such that
A C G, define

Rep(AG) = up{u(A) : p >0, sptp CA  and ||l # piflqe < 1}.

We then have
K1Rxp(A G) < Cyp(A) < KaRyp(A, G).

A property which holdsfor all points outside aset A with C,, 5(A) = Oissaid to hold
(o, p)-quasi everywhere or («, p)-g.€.

2.2. Quasicontinuity and Kellogg property. Let the function f be defined C, p-quasi
everywhereon R" or on some open set. Thenf is said to be C, p-quasi continuous, if for
every e > O thereis an open set G such that C, 5(G) < ¢ and f | is continuousin G°.
Itiswell known that if f € W*P(R"), the Sobolev space of functions whose distribu-
tion derivativesup to order o arefunctionsin LP, thenf can berepresentedasf = G, xg,
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g € LP. So,if g € LPRM), 1 < p < oo, then the potential G, * g, « > 0 is (o, p)-
guasicontinuous.

In classical potential theory and in non-linear potential theory there are several equiv-
alent definitions of thin sets, see [Br,H1]. We adopt here the following one as suitable
for our purposes.

DEFINITION. Let A C R"andlet1 < p < n/a. Then Ais («, p)-thin at a point
acR"if

1/ Cop(ANB(a, 1))\ 1ar
/0 ( ’p( rn—ap( ))) T <
where $ + ¢ = 1.
If Aisnot (o, p)-thin at a it is said to be («, p)-thick there. The set of points where A
is (o, p)-thin is denoted by e, p(A).
Thereisaknownan useful result which saysthat givenaset A C R", C,, , quasi-every
x € A, xis («, p)-thick in A. More precisely, one has the following

THEOREM (KELLOGG PROPERTY). Letl < p < n/a andlet A C R" Then
Ca’p(ea’p(A) OA) = 0.

In potential theory it is convenient to define the («, p) fine topology associated to the
concept of («, p)-thinness.

DerINITION. A function f that is defined on a set F is finely continuous at a point
x € Fiftheset{y e F; |f(y) — f(X)| > e} isthinat xfor al e > 0.
In the proof of Lemma 2 in Section 4 we will use the following.

PrROPOSITION B. An («,p)-quasicontinuous function is («, p)-finely continuous
(o, p)-quasi everywhere.

In [AH, Chapter 6] one can find more information on the continuity of Bessel and
Riesz potentials of LP functions.

2.3. Hausdorff content. A measure function is a non-decreasing function h(t), t > 0,
such that !ingh(t) = 0. The Hausdorff content A", related to a measure function h is

defined for A C R" by
NL(A) = inf 3" h(p),
i

where the infimum is taken over all countable coverings of A by open balls B(x;, pi).
When h(t) = t%, o > 0, Al (A) = A% (A) is called the a-dimensional Hausdorff content
of A.

https://doi.org/10.4153/CJM-1997-026-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-026-3

A COUNTEREXAMPLE IN LP 573

3. Proof of Theorem 1. Firstwewill considerthenoninteger case.Let1 < q < oo
beanoninteger suchthatn—2g>0,d=[n—qglands=(n—qg)—d. Then0 <s< 1.
Let ¢ be apositive real number satisfying 0 < s+e < 1,andletE, 1 <i < n, bethe
linear manifold of dimensioni in R" givenby E; = {(X1,...,%n) : x = 0if j > i}. We
claim that there exists acompact set I' satisfying the following conditions:

(@ T C Egr1 C Eng, With A¥S(M) > 0and I C B(0,1/2).

(b) There exists a family of balls Bjx = B(aj,6j), ax € Eg+1, lmost digjoint, such

that § = UBjx and § —— T in the Hausdorff metric.

(c) 1f n—2q > 0, thereis aconstant C such that for all x € I and % >r > 0one
has Cq(Ui§ N B(x,1)) > Cr™=2. (If n— 2 = 0, theright hand side of the last
inequality must be replaced by C (Iog(%))l/(lfp)).

(d) %6}’*5 <27,

(&) Set§ = UB(a, 25). ThenS NS = Dif j #j’ and § C B(0,3/4).

Set X = B(0, 1)\ §. First, wewill show that condition (1) isfulfilled. By Theorem 2
it is enough to prove that Co4(B \ )O() < CCyq(B\ X) for each ball B with center x € 9X
and radiusr < 1/2. Thisinequality is satisfied if x € " as a consequence of (c), and in
the other case, namely x € 9X\I', becausex € 0§ U 9B(0, 1) and these are regular sets

(finite union of balls) satisfying the cone condition. So, Cy4(B \ )O() < CChq(B\ X).
Now, we will prove that the equality (Ap) is not satisfied.
Take iy € C3°(B(ayk, 25))) suchthat Sy oy = 1in § and [V'gy < §,1=0,1,2.
J

Set o € C3°(B(0,1)), satisfying o = 1 0n B(0,3/4).
PUt ¢ = Xa0 — Xn 3 ik Then ¢ vanishesonU;§ and (B(0, 1))°, and so the support
ik

of ¢ isasubset of X. Moreover, ¢ = X, in B(0,3/4)\ Uj S Consequently the function
0y /O, satisfies

(5) 0p/0x,=1onT.

We will seethat the distribution T = Ay belongsto L9(X). Clearly the support of T isa
subset of X.

On the other hand, using the definition of ¢y, it is easy to check that |A(X¢j)| <
[Onpinl + ol [8Cep] < £ Thus, [[AGeiKIIG < e} = cof'**. Consequently,

1Tl < 2'(180we0)§ = /]520000] o)

q
§C+CZ/‘ZA(Xn‘ij)‘ dx
j k
<C+CY Y [IAGnplld < C+CYodmahe
K Ik

<c+Cy 2l <,
i
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where the second inequality is satisfied becausefor every j the functions S A(xapjk) are
supported in§ and § NS, = (Bif j # |/, the third because for afixed j, the family of
balls By is almost digjoint, and the next to last because of (d). Hence, T isafunction in
LI(X).

Wewill show that T annihilatesHP(X). Let E bethe fundamental solution of the Lapla-
cianandf € HP(X). Sincespt o NsptAf = (), (T,f) = (T = E,Af) = (¢,Af) = 0. The
proof will be finished if we can show that T is not orthogonal to hP(X). By property (a)
there existsacompact set I satisfying AY*s**(I") > 0 and d+s+¢ > n—q. Thus, follow-
ing [AH, Theorem 5.1.13, p. 137] one hasthat Cy4(I") > AA%S*(I") > 0. It meansthat
there exists a positive measure ; supportedon I, (") > 0, satisfying |11 * uf|p < 1.

Setg = 0E/0xq* . Then||gl|p < Cljuxl1||p < CandAg = du/0x%,. Thusg € hP(X).

On the other hand, (T,g) = (T * E,AQ) = (¢,0u/0%) = — [0p /0% du =
—Jr dp = —u(l) # 0, where the forth equality comes from (5). Consequently g €
hP(X)\HP(X), and so we get the required result.

When n — g is non integer, the main idea for the construction of I comes from [O,
Section 20, p. 203]. Following the exampleof O’ Farrell onecan build acurveloinE, =
Eon{(Xa,...,Xn) : —3 <X < 3ifi = 1,2}, asalimit of polygonalsI} also supportedin
B, satisfying AL*(To) > 0 and ALS(IL) = 0. Takenow I = {(Xq, ..., Xn) © (X1, %2) €
Fo,—3 <x < 1ifj=3,...,d+landx = Oifj = d+2,...,n}and I = {(xq,..., %) :
(XX) €My, —2<x<3ifj=3,...,d+landx =0ifj=d+2,...,n}.

Infact, I and I are contained in E,_1, becaused + 1 < n— 1. An easy computation
gives that A%*s*(") > 0. Therefore, since I is a finite union of linear manifolds of
dimension d one gets AY'S(") = 0.

For each I one can construct an open set § as afinite union of almost disjoint balls
Bk = B(aw.6j), ax € I, suchthat I C § = UBj, SN = 0if j # |/, where
S = UB(ax, 24;) C B(0,3/4), and Zkél-d*S < 271, Clearly, by construction, properties
(@), (b), (d) and (e) are satisfied. In order to obtain property (c) we need the following.

LEMMA 1. Letl < g < oo beareal number andd = [n— ¢]. Let F C R" and
B be a ball of center a and radiusr. If there exist a positive measure 1 in F N B, and
constants ¢; and ¢, such that 1 (F N B) > crdand, pg (FN B(z, 8)) < cz¢° for all balls
B(z,6), then

(@ Ifn—2q>0, Coq(FNB) > cyr™ 2.

1/(1—
(b) If n—2q =0, C(FNB) > ci(log(})) /a9

,where s + 1 = 1.

To obtain (c) applying Lemma 1 we take an open ball B(x,r), r < 1/2 and consider
jo (large) such that e N B(x, 5) # 0. Since I° is afinite union of linear manifolds of
dimension d, connecting the two componentsof the boundary of {y : § < |ly—x|| <r},
one has that /\‘O‘O(Fj0 N B(xr)) > crd. So, by Frostman Lemma [e.g. C, p. 7], there
exists a positive measure supported on e N B(x, r) such that ul(US N B(x, r)) > cyrd,
and 111 (US N B(z,6)) < cz8° for all balls B(z,6). So, by the conclusion of the lemma,
property (c) isfulfilled and the compact set " satisfies the properties (a)—(€).
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PROOF OF LEMMA 1. Let's assume that the hypothesis of the Lemmaimplies that
forevery 1 < q < -%5(p’ > §) onehas
(6) Cin-d.q(FNB) > Rip_g),q(FNB) > Crn(ad,
Now we will finish the proof of the Lemmausing (6). Let g be areal number such that

q < 3 and consider ¢ > O satisfyingd > n— 2q+¢. Set ¢ = £, Then ¢ satisfies

20—e _n—e¢ n

/

= < .

g n—d ~n-—d < n—d

On the other hand g’ = % > 2%3 = 1. So, applying (6) and using a known result on
comparison of capacities[AH, Theorem 5.5.1, p. 148] one has

@ Coq(FNB) > C (C(n—d),q'(F N B))”*Zq/”*q (n—d)
>Cr™% jfn—2q>0,
A 1/(1-p)
Coq(FNB) >C(log —————
(b) 2ol )= ( 9 Cin—a)q(FN B))
1/(1-p)
ZC(m9§)/ " itn—29=0

To complete the proof of the Lemmaiit is enough to show (6).
Let M *(F N B) be the set of all positive measures supported on F N B. We have

( u(FNB) )q/'

Reaq(FNB) = su
WO = o o Tinarally

peM +(ENB)
Whereé + 51’ =1
Using a standard argument, e.g. [AH, Corollary 3.6.3, p. 78], one gets the inequality
CHMn-g * pllp < la-a * pilly < ClIMn-a * plly,

where 1
(Mn—q * )(X) = ?igm / du(y).

B(x,p)

We will give an upper bound for ||M,_qg * 1]y, and so we obtain alower estimate for
the capacity Ry_qq(F N B).

SetC = {xeR" :jr <|x—al < (+r}. Foreschx € G, j > 1 we have

1\ B@ar)
|(Mn—axp2)(¥)] < %—) < &, andforx € Co,|(My_axp1)(¥)| < sup p%B(f | dua(y) <
p> X,

C. So,

IMaas pallff = 3 [ Mg P dmi) <C [ dmix)
i=0¢ B(ar)

© C © 1
+j:2;de]n 1rn Scrn+crn§)jdp'—n+1 SCI’”,
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where the last inequality comes from p’ > n/d. Thus, [[Mn_g * p1fy < Cr?, and

consequently
rd

Ri-daq(FNB) >C ( )q/ > Crnd=a),

/v

Then, the Lemmafollows. ]

Whend = n — g isaninteger, it is also possible to construct an example using the
same ideas. In this case one must show that there exist aset I' and setslj, I'; —— I, in
the Hausdorff metric such that A%=(I") > 0 for agiven e > 0, but A4 () = 0. Onecan
doit becaused > 2 (sincen—29>0,d=n—2q9+q > 2).

4. Harmonic approximation of potentials of measures.

4.1. Proof of (i) = (i). Let g be afunction such that Ag = 0 in a neighbourhood of
X. Regularizing and multiplying by a function with compact support one can consider
that g € C3° and is harmonic in a neighbourhood of X. Set (Ag)* = max{Ag, 0} and
(Ag)~ = min{Ag, 0}. Then, they are positive measures supported on R" \ X C R" \ X.
On the other hand (Ag)* x|, and (Ag)™ * I arein LP, and so HP(X) C MP(X). Let's note
that in the case p = -5 the Riesz potentials only need to belocally in LP.

In order to get the other inclusion, MP(X) C HP(X), we will show that the func-
tions orthogonal to HP(X) annihilate MP(X). Since (LP(X))* = L9(X), we take afunction
g € L9suchthat sptg C X and g isorthogonal to HP(X). Set ¢ = |, x g. Thus¢ = 0on
R"\ X, becausel»(X) = W € HP(X) ify & X.

Wewill seethat g annihilates MP(X). Let 11 be apositive measuresuchthat f = 1o % i
isafunctionin MP(X). Then

(G l2xp) = (p,p) = /god,u.
oX

To finish the proof we need the following resullt.

LEMMA 2. Let1<p,q<oo,7+4 =1 suchthatn—2q> Oandlet p € WAI(R")
suchthat ¢ = 0 onR"\ X for some compact set X C R" satisfying

Caq(B\ X) < CCaq(B\ X) for all ballsB(x, ), x € X, r < 1.

Then the following holds.
(@ ¢ =00nR"\ X, Cyq almost everywhere.
(b) If pisapositivemeasuresatisfying o € MP(X) andE = {x € 0X; ¢(x) # O},
then u(E) = 0.
Clearly, by the definition of ¢, one can check that ¢ € W294(R"), and so, using the
above lemma one obtains

oX E
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Thus (f,g) = 0. On the other hand, if fi € MP(X) and g € R,j = 1,...,N, then
N

f= 3 af; satisfies (f,g) = 2], &(fj, g) = 0. Now, the proof is complete.
=1

PROOF OF LEMMA 2. (@) Without loss of generality ¢ can be assumed to be (2, g)-
guasicontinuous (see 2.2). Thus, by Proposition B, we have that the function ¢ is (2, g)-
finely continuous, (2, g)-almost everywhere.

Let xo € 0X bea point where ¢ isfinely continuous. This meansthat for al £ > 0,
theset F. = {y: |¢(X0) — ¢(y)| > e} isthin. Consequently, by definition,

+( Coq(F-NB(Xo, 1) \P~* dr
) /( q( rn—2q >) T <
0

We will show that ¢ is not finely continuous at (2, g)-almost all xo € 9X satisfying
¢(Xo) # 0. So, ¢ vanisheson 0X, C, 4 almost everywhere.

Set g € 0X such that p(Xg) # 0 andtake 0 < g5 = |¢(X)|. Then, foral 0 < e <
g0 = min(1,ep), onehasF. D {y € X°: |¢(y) — p(%)| > &}. On the other hand one
can see easily, that each open ball B = B(xo, r) satisfiesF. N B D B\X.

Thus
/1 Coq(F-NB)\" " dr / Coq(B\X) " " dr
5 rn— T2 - rn— T rn—2q I’
Coq(F- NB)\P ™ dr
+/( rn—2q ) T
By hypothesis

]’(CZC,(B\X))V1 dr > /(Czq(B\X))p 1dr

rn—2q rn—2q I’

Coq dmost al xo € 0X, where the last equality comes from Kellogg property [see 2.2].
So, by (7), thismeansthat ¢ isnot finely continuousat (2, g)-almost al xo € 0X satisfying
»(Xo) # 0. Thus, property (a) follows.

(b) Letp > % and supposethat u(E) > 0. Then0 < [|l2* pgllp < oo. By definition
of the Riesz- capamty, Ro4(E) > 0, and moreover, by Proposition A, C,4(E) > 0. So, we
have a contradiction with (a) and property (b) follows. If p = -2 the above argument
also holdsif wereplace|| - ||p by || - ||p.0 @nd Reg(E) by Roq(E, Q). "

Let GP(X) bethe closurein LP(X) of the linear span of the set of functionsf € LP(R"),

suchthat (I — A)f = Oisapositive measure supported on R" \)O( and H5(X) isthe closure
in LP(X) of functionsf satisfying the élliptic equation (I —A)f = 0in aneighbourhood of
X. It is easy to show that the arguments given in this section can be reproduced to obtain
that (i) implies

(iv) GP(X) = H5(X).
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4.2. Proof of (i) = (iii). First wewill show that (i) implies

W) Roq(G \ X) = Raq(G \ X) for each open set G.

When p = -5 wereplace Ry ¢(-) by Rog(-, Q).

Let’s consider the case p > . To start we will assume that G is an open bounded
set. Let f be afunction in MP(X) suchthat f = I, * u, where p is a positive measure,
satisfying |[f e < 1, spty C G\X and for afixed e > 0, (11, 1) > Rpg(G\X) — e.
By hypothesis there exists a family of functions g,, harmonic in a neighbourhood of X,
such that ||gn — f||px — 0if n — oo. Replacing any function g, by anew function hy
defined as h, = g, in aneighbourhood of X, Uy, and h, = f on UE, one has afamily of
functions hy,, harmonic in aneighbourhood of X, satisfying r!l_To |hn — f{|prn = O. Thus,
regularizing, we can supposethat hy, isin C3°.

Let ¢ € CF(G), such that ¢ = 1 in a neighbourhood of the support of p. For a
functionh € LP(R"), 1 < p < oo, the Vitushkin operator is defined as T,h = ¢Ah x |,.
It is known [Ba, Lemma 5.3, p. 773] that this operator has the following property of
boundedness

(8) [Tohllper < Clihfpe-

Wehave T f = pAf x 1, = ppu x|, = f. Putf, = T, hy, then, by (8) we get
@ ||f —fallprn = | To(f — hn)||prn < CJ|f — hnl|p,c and this quantity tendsto zero if
n tendsto infinity.
(b) 1im [fallpgn < 1im [[f = follppn + [[fllpen < 1.
Consequently,

()

On the other hand, we claim that

(A, 1)] < Rpg(G\ X).

lim |
n—o0

(10) (B, 1) = (1, 1).

lim
n—o0

So, from (9) and (10) it is easy to finish the proof in the bounded case because
Reg(G\X) — ¢ < (1) = u(E) = lim (B, 1) < Rog(G\X). Thus, Ryg(G\X) =
Ro,4(G\X) for all open bounded sets G.

If Gisan openand not bounded set, then there exists afamily, Gy = G N B(0, N), of
open bounded sets such that Gy C G+ and |J Gy = G. Using awell known property

lim
n—o0

NeN
of the capacity, e.g. [AH, Theorem 2.3.10 (d), p. 28] and the above case one has

Reg(G\X) = lim Ryg(Gn\X) = lim Rog(Gn\X) < Rog(G\X).

Consequently, Rg,q(G\)o() = Ryq(G\X) for al open sets G.
To finish the proof we must show (10).
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Takey € C3°(G) suchthat ¢ = 1inaneighbourhood of the set spt Af,, Uspt Af. Then,

if ‘l) +é = 1, we can write

(B — 1,1)] = | lim (A(fy — ), 1)
= | lim (A — ), )|

= | lim [(fa — Ay
G

| lim
n—o0

< 1im [ty — fllps [8¢qc = O

where the second equality comesfrom the definition of ) and the last from (a). So, claim
(10) is proved.

When p = -5 the above arguments follow replacing || - ||pr bY || - [|p.o-

Now, we have shown that (i) implies (v). Clearly, by Proposition A, one has that (v)
implies (ii), and, as we have noted at the end of Section 4.1, (ii) implies (iv). To finish
we only have to repeat the argumentsgiven in this section to obtain that (iv) implies iii).

5. LP-approximation by solutions of elliptic operators. The purpose of this sec-
tion will be to derive the results obtained in Sections 3 and 4 for the case of a homo-
geneous elliptic operator. The ideas to improve these results are simple variants of the
above, and for thisreason we will not give all the details of the proofs and we only sketch
some of them. Let L be a homogeneous elliptic operator of order r,r < nand 1 < p,
q< oo, ¢+ =1 WedefineMP(X, L) asthe closure in LP(X) of the linear span of the

set of functionsf € LP(R") such that Lf is a positive measure supported on R" \ X For
HP(X, L), we mean the closure in LP(X) of functions f such that Lf = 0 in some neigh-
bourhood of X. We come now to the approximation theorem for the space MP(X, L). For
this purpose we need to introduce a new capacity. L et E be the fundamental solution of
the operator L. For an arbitrary Borel set A

CL,p(A) = SUp(A)
o

where the supremum is taken over all positive measures supported on A such that
|E % pllq < 1. For p = - we consider the corresponding version of MP(X, L) and
CL,p(')-

The generalization of Theorem 2 for an elliptic operator is given in the following
result.

THEOREM 4. Let1 < p,q < oo, 5 +¢ = 1, L a constant coefficient elliptic ho-
mogeneous operator of order r, such that n — rq > 0, and X C R" a compact set. The
following are equivalent.

(i) MP(X,L) = HP(X,L).
(i) Crq(B\X) < CCr 4B\ X) for each ball B(x,r),x € 0X,r <1/2.
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(i) CLq(G\ X) = CLq(G \ X) for each open set G.

ProOOF. Wewill start with (iii) = (ii). Sinceon compact sets Riesz and Bessel capac-
ities are equivalent, in order to obtain thisimplication it is enough to get the following:
thereis a constant C such that for aBorel set A

(11) C 'R g(A) < CLg(A) <CR4(A).

These inegualities can be obtained easily, by introducing a decomposition of E in terms
of the Riesz potential of order r and a Calderon-Zygmund operator.
The Fourier transform of the fundamental solution of L hasthe form

A c
E(¢) = ——
©) 16
where L(€) is the homogeneous polynomial associated to the operator.
Set

_ L

m(¢) = LO

and write )
EO = o

Then, misahomogeneousmultiplier of degree 0 and it isinfinitely differentiable on the
sphere, and so by [S, Theorem 6, p. 75] the operator T defined by (fl'?) = mf isthe sum of
aconstant timesf and the action of a Calderén-Zygmund operator T, on f. Consequently,
for a positive measure i such that E * i, € LP we have the equality

12) Exp = C(ly * p) + Ta(lr ).

Since n% is also ahomogeneous multiplier of degree 0 and infinitely differentiable on the
sphere, we also have that for a positive measure p, such that I, * i € LP, the following
equality holds

(13) (Ir % ) = C(E * p) + T2(E * p),

where T, is a Calderbn-Zygmund operator.

Now, we can proceed to prove (11). Let i be a positive measure such that spty C A
and ||E * p||q < 1. By (13) and the invariance of LP-spaces under Calderon-Zygmund
operators we havethat ||I; * p||q < C. So,

1
Rea(A) = ZCLa(A).
If we repeat the same argument with (12) we will show the other inequality:

CalA) > 7Ree().

Thus, (10) has been obtained and so (iii) = (ii) has been proved.
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(i) = (iii) follows using the ideas of (i) = (iii) in Theorem 2. In this case we must
consider the Vitushkin operator for ageneral elliptic equation. For the proof of the bound-
edness of this operator on LP spacesthe reader can see[Ba, 5.3, p. 733].

To obtain (ii) = (i) one can use the arguments of (ii) = (i) in Theorem 2. The main
difference will be in the proof that for afunction g € LP, satisfying that sptg C X and
such that g isin the orthogonal of HP(X, L), onehas ¢ = E x g € W"P(R"). This comes
from (12), since for every multi index «, || <, 0%p = 3%l xg+ T (0%, *g). So, since
g has compact support, it is not difficult to check that [0, * g||, < C||g]lp- "

The second part of this section will be devoted to sketch the ideas of the proof of
Theorem 3. Actually, we will prove something more than it is stated. We will show that
for every integer ap, 0 < o < r, there exists a compact set X such that hP(X,L) #

HP(X,L), CL4(G \ §() = CL4(G\ X) forall opensetsG, andfor 0 < o <1, ¢ # o

(14) Cag(B\X) < CCyq(B\X) for all balls B(x,r), x € 9X, r < 1/2.

PROOFOF THEOREM 3.  Let g beaninteger suchthat 0 < ap < randletl < g < oo
be a noninteger. Set d = [N — apq]. One can build a compact set X = B(0, 1)\ U; S,
where § is a union of almost disjoint balls, with the same radius for afixed j, centered
on aunion of linear manifolds of dimension d. The inner boundary of X is acompact set
I", of Hausdorff dimensionn — apq+¢,0 < ¢ < 1, suchthat n — apq+e¢ < d + 1. For
more details on the construction of I and the properties of X see Section 3.

Now, a slight variant of Lemma 1 can be easily proved.

LEMMA 3. Letl < q < oo beareal number, o aninteger, andd = [n — ap(q]. Let
F C R"and let B be a ball of center a and radiusr. If there exist a positive measure 1
in FNB, and constants ¢; and ¢, suchthat i1 (ANB) > cardand, ua (FN B(z, 5)) < co0
for each ball B(z, 6), then for any o such that o > «q the following holds.

(@ Ifn—oq> 0, then Cyq(FNB) > car" 9.

(b) 1fn—aq =0, then C,,¢(F NB) > cy(log()) ™7, where 1 + = 1.

Therefore, by the above lemma, one has for every o; o > o, Coq(B\X) > r"4
for each ball B(x,r), x € I', r < 1/2. Moreover, since § has the cone property, (14) is
satisfiedfor o > . Takenow o < ag, then C, o(I") = 0, sincethe Hausdorff dimension
of I' issmaller thand + 1. So, (14) is satisfied, because

Coa(B\X) = Cag((B\X) U (BNIS) U (BNT))
< Cog((B\X)U(BNOS))
< CChyq(B\X).

To show that hP(X, L) # HP(X, L) one only needsto slightly modify the argumentsin
Section 3. ]
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