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1. Introduction. Let P be the class of all finite groups G whose powers G7 

have no countably infinite factor groups. Neumann and Yamamuro (1) proved 
that if G is a finite non-Abelian simple group, then G £ P. We generalize this 
result by proving the following theorem. 

THEOREM. A finite group G £ P if and only if G is perfect 

2. Inheritance properties of P. 

Pi. If G e P and N is normal in G, then G/N G P. 

Proof. Since (G/N)1 is isomorphic to GI/NI
J it is clear that factor groups of 

(G/N)1 are isomorphic to factor groups of G7, and hence finite or uncountable. 

P2. If G = HK, where H G P and K £ P , then G £ P. 

Proof. We show that homomorphic images of G1 are either finite or un­
countable. Let <t> be a homomorphism of G1. Then GT<f> = (HK)T<t> = (i/7i£7)# = 
(i?7<£) (KT<l>). Since i77$ and i£7# must be finite or uncountable, the conclusion 
follows. 

3. Preliminaries. Our aim in this section is to establish some lemmas which 
are used to prove the main result. 

LEMMA 1. If G is a finite group and GT/K is infinite, then there exists a g in G 
and a countable number of distinct cosets of K in G1 with representatives whose 
components are either e or g. 

Proof. Suppose the contrary. Then for all g Ç G, there exists a finite set S(g) 
of cosets of K in G7 which contain all elements whose components are either 
e or g. Let 

s= u{s(g)\geG} 
and 

T = {Si,-. . . , Sm\ Sj £ S,rn < order (G)}. 

Since 5 is finite, so is T. Let (xa)K £ GT/K. Let U = {gi G G\ gt j& e and there 
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existsa G 7 such that x« = gt}. Then 0(U) = k < 0(G).liAt = [a\xa = gt}, 
i = 1, 2, . . . , &, define (zj) by 

zj = U; alA/ i = i,2,...,k. 
Ke, a G Au 

Then (zJ)K G 5 for i = 1, 2, . . . , w, and 

Hence, (xa)K G P, implying that G 7 / ^ = T. However, GT/K is infinite, 
contradicting the finiteness of T. 

If (xa) G G7, then (r(xa), the support of (xa), is defined by 

o-(xa) = {a\ xa 7e e}. 

LEMMA 2. If G is a finite, perfect group with unique maximal normal subgroup 
M, N < G7, (xa) G iV, and P = {a| xa & M], then Gp C iV. 

Proof. Our first step is to reduce the proof to the case where P = <r(xa). Since 
G/M is simple and non-Abelian, for all xa G G, #a G il7, there exists xa* such 
that f x a , x a ] G Af. Define (;y«) by 

_ /*«*, a G P , 
Va ~ U a € P. 

Then 0 a) = [(#«), (ya)] G iV, o-(sa) = P and za G il7, for all a G c fe ) . Hence, 
without loss of generality, P = a(xa). 

Let (&«) G Gp. Let gui = 1, . . . , k, and /̂ -, 7 = 1, . . . , £, be those non-
identity elements which occur as components in (xa) and (ba), respectively. Let 
A i = {a\ xa = gi), i = 1, . . . , k, and 7 -̂ = {a\ ba = A^}, j = 1, . . . , £. Define 
(cjijy) by 

Ca U, a î i ^ ^ 
Then 

(6ft) = n (Ca
(<^). 

Thus, if we show that for each i and j , (ca
{i'j)) G N, then (6a) G iV and the 

proof is complete. 

We may assume that (ca
(iJ)) ^ (e). Since gt G Af, there exists g* such that 

[gi, £**] € Af. Define (wtt) by 

* U a G Atr\Bj. 

Then (*;«) = [(xa), (w«)] G -A7, where 

„ = /[&,&*]. «e Atmj9 
a \e, a£ Atr\ Bj. 

https://doi.org/10.4153/CJM-1969-105-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-105-1


FINITE GROUPS 967 

Let d = [gi, g*]. Since d Q M and M is the unique maximal normal subgroup 
of G, the normal closure of d is G. Therefore, there exists nu i = 1, . . . , s, such 
that 

s 

[\ n^d^Ui = hj. 

If we let 
t ftii, a 6 AtC\ Bjy 

Ua " U, atAif^Bj, 
then 

ft (nJT'iv^inJ) = (Ca
(<^). 

Since (i;*)*1 6 iV and N < G, we have (<;«<*•'>) G iV. 

LEMMA 3. If G is a finite perfect group with unique maximal normal sub­
group M, then G Ç P. 

Proof. Suppose the contrary. Then there exists / and there exists N <| G1 

such that G1/N is countably infinite. Since G/M is simple and non-Abelian, 
G/M £ P (1, Corollary 9). Using this fact and applying an isomorphism 
theorem, we find that GZ/NMZ is finite and M1 / (N C\ M1) is countably 
infinite. 

By Lemma 1, there exists g (z M and a countable number of distinct cosets 
of N P M1 in itf7 of the form (xj) (N P M1), i = 1, 2, . . . , where 

for some 4 < C J. Since ixj) (N P If7) ^ (*«') (iV P M7) for i ^ j , 

where 

V ~x = ig o r £ *' <* ^ ^* + ^*» 
U at At + A,.. 

Let go € G, go <2 M. Define {(ya ')| i = 1, 2, . . .} by 

-, * _ ig°> a € A" 

Consider the (^«0 as coset representatives of NM1 in G1. If we can show that 
the (yj) yield distinct cosets, then G^NM1 would be infinite, and a contradic­
tion reached. This is our aim. 

Suppose that there exist i and j , i 9e j , such that (yj) (yJ)'1 6 NM1, where 
now 

i j - 1 _ /go or go-1, aeAi + Aj, 
yaJa U «g.4 , + ,4,. 

Then there exists (wa) £ iV and there exists (m«) G -M7 such that (yj) {yJ)~l = 
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(na)(ma). Hence, if a £ At + Ajy then na = goma~
1 or go~1ma~

1. Therefore, 
na g M for ail a £ At + Aj. By Lemma 2, GAi+A> Ç TV. However, this 
implies that (xj) (xa

j)~l Ç iV. This contradicts the distinctness of the cosets 
(*«*)(# ^ ^F) and (*«')CW H ilf7). Therefore, GT/NMJ is infinite and the 
desired contradiction is obtained. 

An easy application of the fact that Abelian groups of finite exponent are a 
direct sum of cyclic groups shows that finite Abelian groups do not belong to P. 
However, for ease of reference, we list this fact as a separate lemma. 

LEMMA 4. If G is a finite Abelian group, then G does not belong to P. 

4. Proof of the Theorem. The proof of the Theorem will depend upon two 
theorems of Wielandt (3, p. 228, theorems (22) and (23)). These are necessary 
only for conciseness. By induction on the order of the group, we could give a 
valid but more lengthy proof of the desired result. We need the following 
definition. 

Definition. Let G be a finite group. A subnormal subgroup H of G is called an 
atom if H' = H, and H has a unique maximal normal subgroup. 

We now proceed to prove the Theorem. 

Proof. Let G be a finite group such that G £ P. If G is not perfect, then G/Gf 

is a non-trivial Abelian group and belongs to P by Pi. This is contrary to 
Lemma 4. 

Let G be a finite perfect group. By a theorem of Wielandt (3, p. 228, 
theorem (22)), G is generated by its atoms. In addition, Wielandt showed that 
atoms and subnormal subgroups commute (3, p. 228, theorem (23)). Hence, if 
Ht (i = 1, . . . , k) are the atoms of G, then G = HiH2 . . . Hlc. Since 
Ht G P (i = 1, . . . , k) by Lemma 3, the result follows by P2. 

There are a number of observations that can be made concerning possible 
generalizations of this theorem. If we remove the finiteness condition, then it is 
still true that groups must be perfect in order that their powers have no 
countably infinite factor groups. This follows from the fact that Pi and 
Lemma 4 are still valid when G is infinite. However, the converse is false. We 
need only to take a countable perfect group with any indexing set / , and it is 
easy to obtain a countable factor group. The question still exists as to whether 
or not certain classes of uncountable perfect groups satisfy the Theorem. 

Another, and I think, more interesting question is: "Is the Theorem true if 
the finite and perfect conditions remain, but the groups are allowed to vary?". 
That one can allow a finite number of distinct finite perfect groups to occur is 
not difficult to show. However, I have not been able to answer the general 
question. 
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