Y. Shikata
Nagoya Math. J.
Vol. 56 (1974), 53-60

ON A DISTANCE FUNCTION BETWEEN
DIFFERENTIABLE STRUCTURES*

YOSHIHIRO SHIKATA*

Introduction

In this note, we investigate a relation between the connected sum
of manifolds and the distance of manifolds ([2]). Since the smoothing
of a piecewise linear equivalence is given by connected sum of exotic
spheres ([1]), we have a certain estimate of the smoothing obstruction
using the distance of manifolds (Proposition 3). In §3, an application
is given to show the impossibility of the 0.64-pinching of an exotic
Sphere.

1. Let M,N be smooth orientable manifolds with boundary so that the
boundaries oM, oN are diffeomorphic each other through a diffeomorphism
f. Denote by C(0M), C(6N) the collar neighbourhoods of aM, 0N, respec-
tively, and let

a:oM x [0,1) - C(5M) , B:oN x [0,1) — C(GN)

be the diffeomorphisms. Then the map which sends a(x,f)(xedM,t
€[0,1)) into A(f(x),1 — t) defines a diffeomorphism F' = F(f) between
C(@M), C(3N) and the identified space M | j» N turns out to be a smooth
manifold.

LEMMA 1. Let M;,N; (1 = 1,2) be smooth manifolds with boundary
and let f, be a diffeomorphism between oM, and 0N,. If homeomorphisms
g.: M, — M, and g,: N, — N, are diffeomorphic on some neighbourhoods
of the closures of collar neighbourhoods C(OM,), C(ON,), then there are
collar neighbourhoods C(BM,), C(ON,) and o diffeomorphism F, of C(OM))
onto C(@N, so that M,\Jr, N, is homeomorphic to M,\Ur,;, N: by a
homeomorphism g, U ¢, defined by
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g.(x) , if xeM,

9 U 9w} = {gxx) ., if weN,

PROPOSITION 1. Let M, N, g9; (i(=1,2),f, be as in Lemma 1.
Suppose moreover that with respect to Riemannian metrics p;, 0, (1 = 1,2)
on M,;, N, respectively, the homeomorphisms ¢g; (i = 1,2) satisfy that

{pl(x, W[k, < 0.(90:(), 9.(¥) < kioi(x, y) for z,ye M,,
ay(z, y)/kz < 0941, 9:(¥) < kyo,(, Y) for x,ye N,,

then there exist Riemannian metrics ©, on M;\Jr,N; (0 = 1,2) such that
(@, ) /max (k;, k) < (9, U 9:(®), 9: U 9:(¥)) < max (k,, k) (z,(x, v) .
Proof. Take a real valued smooth function ¢ such that

0<o® <1, o¥)=0 for t<0,p(t) =1 fort>1,
0<d®, @ =0Ffor t<O0o0rt>1,
o1 —18) =1— )

and let
oM, x [0,1) - C(6M,) , B.: N, x [0,1) — C(BN,)
be diffeomorphisms onto the collar neighbourhoods. Then
a, = groa((97 o), 1d) 5 fr = 950 Bi((97 7 ow,), 1d)

also are diffeomorphism of oM, x [0,1),0N, x [0,1) onto collar neighbour-
hoods C(6M,), C(6N,), respectively, moreover the identification map F,
obtained from a,, 8,, and (g,lx,) o fio (g1 sn,) satisfies that

9:0F, =F,09, on CGM, .

Define quadratic forms #, on M; Uz, N; (¢t = 1,2) by

(B9 »  weM;— COM,),
(). = (p@)(E). + A — e(E@NFF6), , e COM,) ,
)4 , xeN; — C(ON,) .

where t(x) denotes the t-coordinate of x in the collor neighbourhood and
(7) indicates the quadratic form of a metric ( ). Then it is easy to see that
the well defined quadratic forms %z, (1 =1,2) give Riemannian metrics
z; on M;\Jp, N;. Since
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0@, P/ < p(9:(2), 9:(¥)) < Fiou(@, Y)
0 (Fy(x), F\() | k, < 0)(9.F:(®), 0.F,(¥)) < koo, (Fy(), Fi(y)
it holds that
ok < g8, < ki
F¥a, [k, < g¥(Ff6,) = (9.F)*6, < k.F¥a, .
Therefore the metrics 7, satisfy that
# /max (k,, k,) < g¥#, < max (k,, k)%
on C(GM,), thus from the construction of ¢, U g, we may conclude that

(@, ¥) /max (k;, k) < (9, U 99(@), (9, U 9.)() < (max (ky, k) (z,(2, ¥)) -
Let M; (i = 1,2) be smooth manifolds with metrics p; (? = 1,2) and
f be a map of M, into M,, then we define 4(f: p,, p.) by

Uf:pyp) =inf{k > 1/ pi(x, )/ k < p,(f (@), F(W) < kpu(,y),
for any x,y ¢ M}

DEFINITION. Let 3; (@ = 1,2) be differential structures on a com-
binatorial manifold X represented by smooth manifolds M; (1 =1,2)
with Riemannian metrics p; (¢ = 1,2). The distance d(X), 2, between
the differential structures is defined to be

d(2,, 2;) = log (inf 4(f: 01 Pz)) ’

where the infimum is taken over all the piecewise linear equivalences f
of M, onto M, and all the Riemannian metrics p;,p,. It is known ([2])
that d is actually a distance function.

THEOREM 1. Let X, ; (i,5 = 1,2, j = 1,2) be differential structures on
cominatorial manifolds X, (¢ =1, 2), respectively, then it holds that

d(zl,l #22,1, Z"1,25}#22,2) < max (d(zmy 21,2)’ d(zz,v 22,2))

where ;4 2%, , denotes the differential structure obtained by the connected
sum.

Proof. Represent I, ; by smooth manifolds M, ;, and for ¢>0
take piecewise diffeomorphisms ¢, of M,, into M,, and Riemannian
metrics p;; on M, ; so that

log 4(9;; 04,15 Pi,z) < d(Zi,u Z'zz) + ¢
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Assume that g, are diffeomorphic on mneighbourhoods of points
p;eM,;,. Let M}, (resp. M}, be the manifold obtained by cutting out
a small imbedded disk around p; (resp. 9,(p;)). Then M;; and g; turns
out to satisfy the assumption of Proposition 1 with k; = 4(g:; pi1s 0:.0)-
Since identified manifolds M; ; U M;; represent the connected sum %, ;
$2,; we have that

A2, 425,242, < max (log ki, log k,)
finishing the proof.

COROLLARY 1. Let I', be the group of k-dimensional homotopy
spheres, then it holds that

A2, + 25,2, + 23 =d2,, )
forany 2; e’y (1 =1,2,3).
COROLLARY 2. The subset I',(a) of 'y given by
@) = {Sel/dS", 2 < a)

turns out to be a subgroup of I'y, where S* denotes the standard k-
sphere.

COROLLARY 3. Let M; (i =1,2) be k-dimensional manifolds such
that M, ~ M, 4% (diffeomorphic) with 3 e I'y(a), then

aM, M) <a.

COROLLARY 4. Let Diff S*! denote the set of orientation preserving
diff eomorphisms onto itself and let = denote the projection of Diff S¥-!
onto I'y, then taking the usual metric | | on S*~' induced from that of
R* D S®', it holds that

S () <log e(f5| LI D

Proof. Extend f radially to a homeomorphism g of disk D* onto
itself which bounds the sphere S*~! and apply Lemma 1 to disks D%, g,
id and f:

D* 5 D% —L» 9D* — D*

. i

Dk D*
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to obtain a homeomorphism ¢ U id and a diffeomorphism F, of 6D* onto
itself which can be chosen to be identity. Since it is obvious that

«fs Ll D=4l L1 D,
Proposition 1 yields that

a(s* S, a() < Tog 4751 11 D) -
Fy

2. The partial converse to Corollary 3 holds as in the following:

PROPOSITION 2. Let f be a homeomorphism between k-dimensional
manifolds M;, (¢ = 1,2) with Riemannian metrics p; (¢ = 1,2) and assume
that f is diffeomorphic except finite number of points P, --- P, e M,
then M, =~ M, #25 (diffeomorphic) with 2 eI’y (log ¢(f; py, p2))-

Proof. Imbed small k-disks D; around P;, then the images jf(D;)
turn out to be submanifolds in M, Apply Lemma 1 to manifolds
D,, f(D,), diffeomorphism f|,,, and homeomorphisms id, f*

D; DaD,; —f—@—; a(f(Dy) < f(Dy)

lm ol
id

to obtain homotopy sheres X, = D,y f(D;,) and a homeomorphism
id U f~! between the homotopy sphere and the sphere S;. Because of
Proposition 1 there are Riemannian metrics of, 0 on 2, S;, respectively,
so that

44d U fai,0) < 60 o1y p0) -
Therefore we have that
ZieI'y(log £(f ;5 pus ) -
On the other, since it is easy to see that
M, = M2 4%, --42,,

this finishes the proof.
In general, concerning the first obstruction of Munkres ([1]) to
smoothing f, we obtain the following:
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PROPOSITION 3. Let M; (1 = 1,2) be smoothly triangulated manifolds
with Remannian metrics p;, (i =1,2) and let L be an m-dimensional
subcomplex of M,. If a homeomorphism f of M, onto M, is diffeomor-
phic mod. L, and if ¢(f: p,p) < 4y = 1.32 for the positive root ¢4, of
2 —x—1=0, then the first obstruction chain A(f) of Munkres to
smoothing f lies in

I'y_n(og £()A — (L) — 4()H™H
where 4(f) = £(f; p» p2)

Proof. Munkres obstruction is obtained as follows: Take an m-
simplex oe L and take trivializations of normal bundles as coordinate
systems around ¢ and f(¢) so that the tubular neighbourhoods of a, f(o)
are diffeomorphic to ¢ X R*~™, f(s) X R* ™, respectively, then if ¢ >0
is sufficiently small, zo fo4, is a homeomorphism of the e-disk D,
around 0 into R* ™ for the inclusion 4,: R* ™ — p X R* ™ and for the
projection z: f(¢) X R* ™. Thus the obstruction A(f)(¢s) is defined to be
homotopy sphere obtained by glueing the boundaries of D, and zo foi,(D,)
through zo fo%,. Hence it is sufficient for the proof of Proposition 3
to compute 4(xo foi,; o1, 0,) (see Proposition 1) and because of the reg-
ularity of f at L ([1] p. 526 (4)) the computation is reduced to the
following Assertion;

Assertion. Let g be a map between manifolds N; (1 =1, 2) with
Riemannian metrics o; (¢ = 1,2) satisfying that

0g:ay,0) <k < ¥,

then if g is differentiable along any vector of an m dimensional vector

space V C T,(N), the angle 0 between the vector exp;'ogoexp, (y),’O and
the plane dg (V) is not too small, in fact ¢ satisfies that

cos < —k<1,

for any y in orthogonal linear subspace W to V, provided |y| is suffi-
ciently small.

Proof of Assertion. Taking an e-disk D, of 0 in T,(N,), we may
assume that § = exp;'ogoexp, also satisfies that

g L D<e<4
on D,. Let xeV be such that || = |y|, then it holds that
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2{g(®), FW)) = 9@ + | S} — |§®) — fF(WF
<«k(zf + lyP) — |z — yf/e
=2z — 1/k)
also it holds that

2{g@), fW)> > 2|l A/ — ),

therefore we have that

[cos (F(x)0, f(WO)| < &* — &,

finishing the proof of Assertion.
Thus taking the regularity of f into consideration, we may conclude
that by an application of Assertion to g = fo1,,

£ (L — (8 — k) < pymo foty(@), o foty(Y) (@, y) < &
on a small disk around 0, completing the proof of Proposition 3.

3. The method in §1,2 applies to obtain a weak estimation of the pinch-
ing of an exotic sphere. Let M,, M, be combinatorially equivalent com-
pact manifolds, then according to the construction of Hirch-Munkres ([1]),
we may have a sequence of compact manifolds L; (4 = 1-.-k) such that
i) L; are combinatorially equivalent to M,, M,.

ii) L, = M, I, = M, (diffeomorphic).

iili) L;,, is obtained by attaching of 37 x I*~/ to L; through a certain
attaching map, (27 eIY).

Now suppose M,, M, have different (integral) Pontrjagin class, then
for some i, L;, L;,, have also different Pontrjagin classes. Since we
know that manifolds having different Pontrjagin classes are of distance
=1/21og 3/2 ([3]), we have that

1/21og 8/2 < d(L;, L;,.)
(1) < max (d(L;, Ly), d(S? x I*~1,39 x I*77))
< d(S7,239) .

Here the last inequality follows from an easily proved Lemma below:

LEMMA 2. If M;, N, denote a pair of combinatorially equivalent
compact manifolds (1 = 1,2) then

d(M; X M,,N, X N,) < max (d(M,, N), d(M,, N,))
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On the other as is improved by Karcher (unpublished, see also ([4]))
d-pinched Riemannian manifold M, (5 = 9/16) has distance <4(1 — v 4)
from the standard sphere S, therefore if the exotic sphere 37 in (1) is
expressed as a d-pinched manifold M,,s must satisfy that

1/210g3/2 <41 — 43) .
hence

d=0.64,

thus we may conclude that a certain exotic sphere of dimension <16
which appears in the obstruction chain to smoothing a combinatorial
equivalence can not be pinched by 0.64, because we know that there are
compact 16 manifolds having different Pontrjagin classes.
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