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Abstract

We study a nonparametric method for estimating the boundary measure of a compact body
G ⊂ R

d (the boundary length when d = 2 and the surface area for d = 3) in the case
when this measure agrees with the corresponding Minkowski content. The estimator we
consider is closely related to the one proposed in Cuevas, Fraiman and Rodríguez-Casal
(2007). Our method relies on two sets of random points, drawn inside and outside the
set G, with different sampling intensities. Strong consistency and asymptotic normality
are obtained under some shape hypotheses on the set G. Some applications and practical
aspects are briefly discussed.
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1. Introduction

The volume and the boundary measure of a compact body G ⊂ R
d , d > 1, are the most

basic quantitative measurements of its size and shape. We will denote by � and µ(G) the
boundary and the Lebesgue measure of G, respectively.

The measure of � is usually defined as its (d − 1)-dimensional Hausdorff measure. We are
interested in estimating this measure using a random sample of points, which will require that
the set G satisfy certain regularity properties. We will therefore restrict ourselves to those sets
whose Hausdorff boundary measure coincides with the Minkowski content defined by

L0(G) = lim
ε→0

µ(B(�, ε))

2ε
, (1)

when this limit exists and is finite (see [11, p. 79] for definitions and properties). In this equation,
given a set A, B(A, ε) stands for the parallel set B(A, ε) = ⋃

x∈A B(x, ε), if B(x, ε) is the
closed ball with center x ∈ R

d and radius ε > 0.
Although the Minkowski content is more restrictive than the Hausdorff measure, it has the

advantage that its definition (1) is much simpler to handle in statistical applications, and yet it
is well defined for the sets encountered in many practical situations.
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In what follows, G ⊂ R
d will denote a compact body whose (boundary) Minkowski content

L0 = L0(G) is well defined and finite. We assume throughout that G is the support of an
absolutely continuous probability measure. Without loss of generality, we will further assume
that G is a subset of the open unit square (0, 1)d . We will denote by Gc the complementary set
of G relative to [0, 1]d , i.e. Gc = [0, 1]d \ G.

In fact, in this paper we will work with a one-sided version of the Minkowski content given
by

L−
0 (G) = lim

ε→0

µ(B(Gc, ε) ∩ G)

ε
. (2)

Our estimation procedures will rely on sample data taken inside and outside the set G, and
the use of the one-sided Minkowski content (2) will make it possible to work with different
sampling intensities for the inner and outer data, a crucial factor in our approach.

There has recently been some interest in the one-sided Minkowski content (2) as a convenient
mathematical tool to apply definition (1). Ambrosio et al. [1] provided a thorough study of this
concept. They showed that when G has a Lipschitz boundary, L0(G) = L−

0 (G), and these in
turn coincide with the (d − 1)-dimensional Hausdorff measure of � (see Corollary 1 of [1]).
See also Remark 4.9 of [15].

Our aim is to devise statistical procedures to estimate L0(G), and study their consistency
and asymptotic distribution. Such results could then be applied to testing statistical hypotheses
and the search of confidence intervals. Problems of this type have already been considered in
stereology; see, e.g. [2, pp. 17–21], [3], and [10]. In the stereological approach the estimation
usually relies on using lower-dimensional sections of G. In the methods proposed in this paper,
on the other hand, the information is obtained from samples of randomly selected observations
in R

d , under the assumption that we are able to determine whether each sample point belongs
to G. One advantage of this approach lies in the generality of the sets G it can be applied to.
In particular, these are not assumed to be members of any finite-dimensional family; hence,
the method is nonparametric. As is quite standard in nonparametric estimation, our techniques
require the use of a smoothing parameter.

This paper is a further development of the ideas proposed in [8]; see also [6] and [14] for
related approaches. Cuevas and Rodríguez-Casal [7] (see also the references therein) studied
the problem of boundary approximation from a nonparametric perspective as well, but they did
not provide results on the estimation of boundary measures.

The main contribution of this paper is the derivation of the asymptotic nondegenerate
distribution for an estimator of L0(G). These types of result are not very usual in the field of set
estimation theory, where most articles are devoted to establishing consistency and convergence
rates. For results on asymptotic distributions, see, e.g. the papers of Bräker et al. [5], who
computed the Hausdorff distance between a convex set and the convex hull of an inner random
sample, and Molchanov [12] on plug-in estimation of level sets.

The problem of estimating boundary measures arises quite naturally in the analysis of two-
dimensional images. For example, the contour index of an injured area has sometimes been
used in oncology and cardiology as an auxiliary diagnostic tool to assess the injury malignity.
This index combines the volume and boundary measures of the set G in the ratio

C0(G) = L0(G)

µ(G)(d−1)/d
,

providing an adimensional measurement of how complicated the boundary of G is. The
quantities L0 = L0(G) and C0 = C0(G) are clearly very closely related; we propose here
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a consistent estimator for C0 and derive its asymptotic normality from the analogous result for
the estimator of L0. We refer the reader to [8], where a case study in cardiology is described in
detail using a variation of the approach considered in the present paper.

Another possible area of application has recently come to our attention in astrophysics,
in connection with the Wilkinson microwave anisotropy probe. The goal of this project
is to measure the temperature differences in the cosmic microwave background (CMB), an
electromagnetic radiation whose discovery in 1965 is considered to provide strong support for
the big bang cosmological model. Some maps have already been drawn identifying the cold
and hot CMB regions (see [4]), and an important tool in the analysis of such maps is the use of
Minkowski functionals, which include the area and boundary length. The statistical approach
followed here (combined with a Monte Carlo methodology similar to that employed in the case
study in [8]) could hopefully be applied to the estimation of these Minkowski functionals.

This paper is organized as follows. In Section 2 we present the sampling model, define the
basic estimators, and introduce the required hypotheses. We state and discuss the main results
in Section 3, and give the proofs in Section 4.

2. Model and hypotheses

2.1. Sampling model and estimators

Our goal is to estimate L0(G) and the contour index C0(G) from two independent samples
of random variables {Xi} and {Yi}, drawn according to the following design, which we will
refer to as model 2 (M2):

{Xi}1≤i≤n are independent and identically uniformly distributed in Gc = [0, 1]d \ G

and {Yi}1≤i≤m are independent and identically uniformly distributed in G.

The sample sizes m and n are chosen in advance, fulfilling some conditions to be specified
below. This sampling design is closely related to that applied to estimate L0(G) in [8]: under
that design, referred to here as model 1 (M1), the information is drawn from a sequence of
independent and identically distributed observations (Z1, δ1), . . . , (Zn, δn)of a random variable
(Z, δ), where Z is uniformly distributed in [0, 1]d . The parameter δ takes binary values: δ = 1
if Z ∈ G and δ = 0 if Z /∈ G; it is therefore assumed that it is possible to decide whether any
given observation belongs to the set G.

In practice, we could use a sequential version, M1′, of M1 to obtain the data in M2: we just
need to draw the data (Zi, δi) sequentially, setting Zi = Xi if δi = 0 and Zi = Yi otherwise,
until we have obtained m observations in G and n observations in Gc. It is then necessary to
consider a random number of observations N = N(n, m) ≥ n + m. Hence, the difference
between M2 and M1′ is rather formal: under M2, we consider just the two independent samples,
with sizes m and n, on G and Gc, whereas under M1′, we obtain N −m−n extra observations
in [0, 1]d , as a by-product of the sequential process employed in drawing the samples. In most
real cases we have a criterion, typically following from some sort of analysis, to decide whether
a given observation Zi ∈ [0, 1]d belongs to G, and then M1′ is the natural mechanism to obtain
the data required by M2.

The sampling schemes M1 and M2 share an essential feature: they assume that positive
fractions of the sample points fall both inside and outside G. This suffices to prove consistency
and even to obtain convergence rates (see [8]) under some shape conditions on G. In the present
paper we establish the asymptotic normality of the considered estimators of L0(G) and C0(G).
The task becomes much easier by requiring that the inner and outer samples have different
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intensities. This is the reason for the replacement of the original sampling scheme M1 with the
more flexible version M2: the latter allows us to control the relative intensities (n and m) of the
samples. For notational convenience, we will often omit the subindex m in the notation for the
estimators, even though these still depend on the sizes of both samples, n and m(n).

We now establish some notation necessary to define the estimators for L0(G) and C0(G).
Given a Borel set A ⊆ [0, 1]d , let Nm(A; G) be the counting measure associated with the Y

sample. That is, Nm(A; G) is the number of Y points that belong to A:

Nm(A; G) = #{j ≥ 1 : Yj ∈ A}.

We will denote by

µm,G(A) = µ(G)
Nm(A; G)

m

the renormalized version of this empirical measure: µm,G(A) ‘estimates’(if µ(G) were known)
the Lebesgue measure of the intersection A ∩ G.

Our estimators will depend on a sequence {εn} of positive smoothing parameters converging
to 0 at a suitably slow rate, which we describe in the set of hypotheses below. They also rely
on the nonparametric estimator Hn of Gc given by the parallel set of the outer sample:

Hn = B({X1, . . . , Xn}, εn).

We are ready to introduce the estimators L̂n = L̂n,m(G) of L−
0 (G) and Ĉn of C0(G). First, we

define an auxiliary statistic

An = µm,G(Hn)

εn

, (3)

which will be a true estimator only in the unrealistic case where µ(G) is known. The numerator
in (3) estimates the εn-‘inwards dilation’ of � by measuring Hn in terms of the inner sample
points Yj . Typically, the Lebesgue measure µ(G) is an unknown quantity, which must be
estimated from the data as well. Under M1′, a natural estimator of this value is given by

µ̂(G) = #{i : δi = 1}
N

,

which is just the relative frequency of observations falling inside G, when the total size of the
sample is the random quantity N = N(n, m). Since the Z sample is uniformly distributed
in [0, 1]d , µ̂(G) is consistent by the law of large numbers. The estimator L̂n is defined by
replacing the value µ(G) by µ̂(G) in (3). We thus obtain

L̂n = µ̂(G)
Nm(Hn; G)

mεn

.

In this setting, the natural choice for the estimator Ĉn is given by

Ĉn = L̂n

µ̂(G)(d−1)/d
.

https://doi.org/10.1239/aap/1246886612 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1246886612


Estimation of boundary measures SGSA • 315

2.2. Hypotheses

We now state the main hypotheses to be used in our results. The first three are required for
the consistency results (see Theorem 1, below). The remaining hypotheses are necessary for
the derivation of the asymptotic normality (see Theorem 2, below).

(H0) The Minkowski content L0 satisfies L0(G) = L−
0 (G) < ∞.

As mentioned in the introduction, the relations between L0(G), L−
0 (G), and the Hausdorff

(d −1)-dimensional measure of G are discussed in detail in [1, Theorems 1, 2 and Corollary 1];
see also [15]. Note that all the discussion below could be alternatively written, with obvious
changes, in terms of the lateral Minkowski content L+

0 (G) defined in a dual way by just
interchanging the roles of G and Gc.

(H1) The set Gc is standard in �. That is, there exists a positive constant K such that, for any
small enough η, P(X1 ∈ B(x, η)) ≥ Kµ(B(x, η)) for all x ∈ �.

We recall that the variable X1 above has uniform distribution in Gc. Condition (H1) is
quite usual in set estimation theory; see, e.g. [7] and the references therein. It can be seen as a
regularity assumption on the shape of the set Gc which rules out the existence of sharp peaks
in the boundary.

(H2) The sequences {εn} and m = m(n) satisfy

εn → 0,
mεn

log n
→ ∞, and

nεd
n

log n
→ ∞, as n → ∞.

This condition is analogous to that imposed on the sequence of smoothing parameters in
the classical theory of nonparametric density estimation in order to obtain strong uniform
consistency in kernel density estimators (see, e.g. [14]). It concerns the rate at which the
smoothing parameters converge to 0.

(H3) |L(ε) − L0| = O(ε) as ε → 0, where L(ε) = µ(B(Gc, ε) ∩ G)/ε.

This is a further regularity hypothesis on the set G. It clearly holds when L(ε) is differentiable
at ε = 0.

The reach of a closed set S ⊂ R
d is defined as the largest (possibly ∞) value r such that if

x ∈ R
d is at a distance less than r from S then this distance is realized at a unique point in S.

A generalization of Steiner’s formula concerning the parallel sets of convex bodies (see [9,
Theorem 5.6]) proves that when (H0) holds and Gc satisfies reach(Gc) > 0, then the function
L(ε) is given, for 0 ≤ ε < reach(Gc), by a polynomial whose independent term is L0, and
in particular (H3) holds. Moreover, the condition reach(Gc) > 0 turns out to imply both
the finiteness of the one-sided Minkowski content L−

0 (G) (see the comments after Theorem 7
of [1]) and the equality between L0(G) and the corresponding (d − 1)-dimensional Hausdorff
measure (see Corollary 3 of [1]). A related discussion can be found in Subsection 3.2 of [8].

(H4) The sequences m = m(n) and εn satisfy mε3
n → 0 as n → ∞.

(H5)
1

n

(
m

εn

)d/2

log

(
m

εn

)
→ 0 as n → ∞.

Hypotheses (H4) and (H5) impose additional constraints on the rate of increase of m(n) and
the speed of convergence to 0 of the smoothing parameters εn. Note that (H5) implies that the
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size n of the outer sample is of a larger order than that of the inner sample, m. This hypothesis is
essential to our proof of the asymptotic normality (Theorem 2, below): the result follows from
an application of the standard central limit theorem for independent and identically distributed
random variables, once we condition on the set Hn ∩ G. The fact that n � m means that when
we work at the scaling required to obtain the limiting distribution of the estimator, we are just
perceiving the fluctuations in the spatial distribution of the inner sample in such a way that, for
the purposes of determining the asymptotic distribution of the estimators, the set Hn may be
considered as deterministic.

We can take m = nα and εn = n−β , and look for the values of α, β > 0 that fulfill the
conditions imposed on m(n) and εn. A direct computation shows that, in this case, (H2), (H4),
and (H5) are satisfied whenever

α + β <
2

d
and β < α < 3β. (4)

3. Asymptotic results

We first establish the almost sure (a.s.) consistency of our estimators.

Theorem 1. Under (H0), (H1), and (H2) and the sampling model M2 (i.e. independent samples
of sizes m and n), we have An → L0 a.s. as n → ∞.

The same result holds for the estimator L̂n under the sampling model M1′.

A similar consistency result is given in [8] under the sampling model M1.
As the estimator Ĉn for the contour index C0 is obtained by just dividing L̂n by µ̂(G)(d−1)/d ,

the following result is immediate from Theorem 1.

Corollary 1. Under (H0), (H1), and (H2) and the sampling model M1′, we obtain

Ĉn → C0 a.s. as n → ∞.

Our main result is the asymptotic normality established in the next theorem. We denote by
N(a, σ 2) the normal distribution with mean a and variance σ 2, and denote by ‘

w−→’ the weak
convergence.

Theorem 2. Under the set of assumptions (H0)–(H5) and the sampling model M2, we have

√
mεn(An − L0)

w−→ N(0, µ(G)L0) as n → ∞, (5)

and, under M1′, we have

√
mεn(L̂n − L0)

w−→ N(0, µ(G)L0) as n → ∞. (6)

As a direct consequence of Theorem 2 (see the comment preceding the statement of Corol-
lary 1), we have the following result.

Corollary 2. Under assumptions (H0)–(H5) and the sampling model M1′, we obtain

√
mεn(Ĉn − C0)

w−→ N(0, σ 2) as n → ∞, (7)

where σ 2 = L0µ(G)(2−d)/d .
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A few comments about the results are necessary.
The convergence rate. Set m = nα and εn = n−β as discussed in the previous section. The

conditions in (4) then imply that the convergence in (5), (6), and (7) can be realized at any rate
slower than n1/2d by making a convenient choice of the parameters α and β. Indeed, the fastest
rate for mεn subject to α + β < 2/d and α < 3β corresponds to a choice of α very close to
3β, where β = 1/2d , which yields

√
mεn ∼ n1/2d . This coincides with the best rate found in

[8] for the estimation of L0(G) under M1.
A faster convergence rate is obtained in [14], assuming additional shape conditions on G

which are incorporated into the estimator. Our procedure yields rates that come arbitrarily
close to n1/2d = m1/3; see the suggested values for the parameters m and n in (4). If no
extra regularity assumptions on the set G are imposed, we do not expect that the rate n1/2d can
be substantially improved. A simple informal argument illustrating this follows. Consider an
ideal situation in which a set G fulfilling (H3) is completely known. In this case the parallel
set B(Gc, εn) is part of the data, and a natural estimator for L0 is given by

L̃n = 1

mεn

m∑
j=1

1{Yj ∈B(Gc,εn)∩G} .

A straightforward calculation shows that the mean-square error E[(L̃n − L0)
2] is of order

ε2
n +1/mεn, which leads to an optimal convergence rate of order

√
mεn = m1/3 for L̃n. Hence,

this seems to be the best attainable performance.
The statistical use of asymptotic normality. We briefly illustrate the application of these

results to problems arising in cardiology or oncology, where the contour index is used as
a diagnostic tool. Similar applications to the computation of the boundary length, or other
quantities that can be derived from this, follow in a similar way.

Theorem 2 and Corollary 2 can be applied to determine from an estimate Cn of C0 whether
there is enough statistical evidence to decide that the true C0 is larger than a prescribed value C∗

0 .
According to (7), we may accept the alternative hypothesis C0 > C∗

0 , at an approximate
significance level α, whenever

√
mεn

(Ĉn − C∗
0 )

σ̂n

> zα,

where σ̂ 2
n = L̂nµ̂(G)(2−d)/d and zα is the 100(1 − α)% percentile in the N(0, 1) distribution.

Suppose, on the other hand, that it is necessary to compare two images and decide whether
there is sufficient statistical evidence in favor of a relationship C

(1)
0 > C

(2)
0 between the two

contour indices. Using the estimators Ĉ
(1)
n , Ĉ

(2)
n , σ̂

(1)
n , and σ̂

(2)
n of the contour indices and

asymptotic standard deviations, we could then consider a classical two-sample test with
approximate α-critical region given by

√
mεn(Ĉ

(1)
n − Ĉ

(2)
n )√

[σ̂ (1)
n ]2 + [σ̂ (2)

n ]2
> zα.

It is clear that this analysis deals only with the statistical variability due to the sampling
variation in the estimators. When applying these techniques to estimate the contour index of a
set which has in turn been randomly chosen among some population, an additional stochastic
model should be considered in order to account for the inter-individual variability of C0.
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4. Proofs

In the sequel, P will denote the measure on the space ([0, 1]d)n × ([0, 1]d)m determined by
the sequence (X1, . . . , Xn, Y1, . . . , Ym), and E will stand for the expectation taken with respect
to P. Hence, P is the product of n+m probability measures: the first n are uniformly distributed
in Gc and the remaining m are uniformly distributed in G.

We will need to use several auxiliary constants in the following proofs, most often as part of
chains of inequalities. These constants will be independent of the parameters n and m, which
will eventually tend to ∞. They will be all denoted by the letter C, provided that this does not
lead to confusion.

4.1. Proof of Theorem 1

Recall that the statistic An is given by An = µm,G(Hn)/εn. We will henceforth use the
acronym i.o. to mean infinitely often.

The theorem will follow if we can show that, for any δ > 0,

P

(∣∣∣∣µm,G(Hn)

εn

− L0

∣∣∣∣ > δ i.o.

)
= 0.

We have∣∣∣∣µm,G(Hn)

εn

− L0

∣∣∣∣ ≤
∣∣∣∣µm,G(Hn)

εn

− µ(Hn ∩ G)

εn

∣∣∣∣ +
∣∣∣∣µ(Hn ∩ G)

εn

− µ(B(Gc, εn) ∩ G)

εn

∣∣∣∣
+

∣∣∣∣µ(B(Gc, εn) ∩ G)

εn

− L0

∣∣∣∣
=: T1(n, m) + T2(n) + T3(n). (8)

We study these terms separately in the following lemmas.

Lemma 1. Under (H0)–(H2),

P

(
T1(n, m) >

δ

3
i.o.

)
= P

(∣∣∣∣µm,G(Hn)

εn

− µ(Hn ∩ G)

εn

∣∣∣∣ >
δ

3
i.o.

)
= 0.

Proof. We first condition on the σ -algebra generated by the sample {Xi}, so that in particular
the set Hn is fixed.

The inequality

P

(
T1(n, m) ≥ δ

3
i.o.

)
≤ lim

n0→∞

∞∑
n=n0

P

(
T1(n, m) ≥ δ

3

)
(9)

implies that the left-hand side vanishes: P(T1(n, m) ≥ δ/3 i.o.) = 0 whenever the series on
the right-hand side of (9) is convergent.

Consider the sequence of random variables

αj = 1{Yj ∈Hn} −µ(Hn ∩ G)

µ(G)
, 1 ≤ j ≤ m,

and note that

E[αj | Hn] = 0, E[α2
j | Hn] = µ(Hn ∩ G)

µ(G)
−

(
µ(Hn ∩ G)

µ(G)

)2

.
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We have

P

(
T1(n, m) ≥ δ

3

)
= P

(∣∣∣∣
m∑

j=1

αj

∣∣∣∣ ≥ mεn

3µ(G)
δ

)
= E

[
P

(∣∣∣∣
m∑

j=1

αj

∣∣∣∣ ≥ mεn

3µ(G)
δ

∣∣∣∣ Hn

)]

in terms of the sequence {αj }. Using Bernstein’s inequality, the last expression above can be
bounded by

P

(∣∣∣∣
m∑

j=1

αj

∣∣∣∣ ≥ mεn

3µ(G)
δ

∣∣∣∣ Hn

)
≤ 2 exp{−C(G, δ)mεn}.

In order to derive the last inequality, we used the fact that µ(Hn ∩ G) ≤ µ(B(Gc, εn) ∩ G) =
O(εn), which holds by hypothesis (H0). The bound does not depend on Hn; hence, it also
applies to the unconditional probability. The lemma now follows from assumption (H2) on the
relation between εn and m.

Lemma 2. Under (H0)–(H2),

P

(
T2(n) >

δ

3
i.o.

)
= P

(∣∣∣∣µ(Hn ∩ G)

εn

− µ(B(Gc, εn) ∩ G)

εn

∣∣∣∣ >
δ

3
i.o.

)
= 0.

Proof. As in the proof of Lemma 1, it will be enough to show that the series with the nth
term given by P(T2(n) ≥ δ/3) is summable. Then let

Rn = (B(Gc, εn) ∩ G) \ (Hn ∩ G).

We first remark that in the event T2(n) > δ/3, or, equivalently,

µ(Rn) ≥ δεn

3
, (10)

there exists z ∈ � (the boundary of G) such that

B(z, rεn) ∩ {X1, . . . , Xn} = ∅ (11)

for large enough n and r = δ/6L0. We assume at this point that δ is small enough so that r < 1.
Indeed, from assumption (H0) we have

µ(B(Gc, ε) ∩ G) = µ(B(�, ε) ∩ G) = εL0 + ρ(ε), 0 ≤ ε ≤ εn, (12)

where the residue term ρ(·) satisfies ρ(ε) = o(ε) as ε → 0. If (11) does not hold, we then have
� ⊆ B({X1, . . . , Xn}, rεn), from where it follows that the parallel set of � of radius (1 − r)εn

must satisfy the relation B(�, (1 − r)εn) ∩ G ⊆ Hn ∩ G. In particular,

µ(Hn ∩ G) ≥ (1 − r)εnL0 + ρ((1 − r)εn), (13)

where the function ρ(·) is as in (12).
However, (10) and (13) are incompatible. In order to see this, note that the sets Hn ∩ G and

Rn are disjoint by construction, and that (Hn ∩ G) ∪ Rn = B(Gc, εn) ∩ G. We take measures
in this set equality and apply the bounds in (10) and (13) to conclude that, with our choice of r ,

µ(B(Gc, εn) ∩ G) = µ(Hn ∩ G) + µ(Rn)

≥ δεn

3
+ (1 − r)εnL0 + ρ((1 − r)εn)

≥ εnL0 + δεn

6
+ ρ((1 − r)εn),

which violates (12). Hence, (11) follows.
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Let M be the minimal cardinality of a covering of � of type {B(zi, rεn/2) : zi ∈ �}. Clearly,
M = O(1/εd

n) since the minimal number of balls of radius rεn/4 needed to cover [0, 1]d is an
upper bound for M .

Choose z ∈ � as in (11), and let i0, 1 ≤ i0 ≤ M , be such that z ∈ B(zi0 , rεn/2).
Then B(zi0 , rεn/2) ⊆ B(z, rεn), and, therefore, B(zi0 , rεn/2) ∩ {X1, . . . , Xn} = ∅. We
conclude that P(T2(n) ≥ δ/3) can be bounded by the probability of the event that none of the n

independent, uniformly distributed points in Gc fall into one of the balls B(zj , rεn/2). By (H1),
P(X1 ∈ B(zj , rεn/2)) ≥ Kωd(rεn/2)d , where ωd is the volume of the d-dimensional unitary
ball. We obtain

P

(
T2(n) ≥ δ

3

)
≤ M max

j
P

(
B

(
zj ,

rεn

2

)
∩ {X1, . . . , Xn} = ∅

)

= M max
j

P

(
X1 /∈ B

(
zj ,

rεn

2

))n

≤ M(1 − C(d, G)(rεn)
d)n

≤ exp{−C(d, G, δ)nεd
n}.

The series with the nth term given by the expression on the right-hand side above is summable
due to (H2). This completes the proof of Lemma 2.

It remains to control the third term in expression (8). Clearly, from (H0),

T3(n) =
∣∣∣∣µ(B(Gc, εn) ∩ G)

εn

− L0

∣∣∣∣ ≤ δ

3
for sufficiently large n. (14)

The proof of the first statement in Theorem 1 follows from (8) together with Lemmas 1 and 2
and (14).

In order to see that L̂n → L0 a.s. as n → ∞ as well, it suffices to observe that in L̂n the
true value µ(G) has been replaced by the consistent estimator µ̂(G). This completes the proof
of Theorem 1.

4.2. Proof of Theorem 2

The proof of (5) follows the steps of the proof of Theorem 1. Briefly, we will decompose
the difference |µm,G(Hn) − L0| as in (8), and study each term separately. The first term will
yield the central limit theorem we are looking for, which will follow in the standard way by
conditioning on the set Hn. The second and third terms in (8) are negligible. In order to prove
this assertion for the second term, we will show that when it does not hold, we can find a
(random) set in Gc with the property that it does not intersect the sample {Yi}, and that the
probability of this event can be easily controlled. The third term is deterministic, the result is
straightforward from the assumptions on G.

As some of the arguments to be presented now are similar to those employed in the proofs
of Lemmas 1 and 2, we give an outline here and refer the reader to those lemmas for details.

Lemma 3. Under (H0)–(H2),

√
mεn

(
µm,G(Hn)

εn

− µ(Hn ∩ G)

εn

)
w−→ N(0, µ(G)L0) as n → ∞.
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Proof. We compute the Laplace transform of the expression on the left-hand side. Let
γ > 0. We have

E

[
exp

{
−γ

√
mεn

(
µm,G(Hn)

εn

− µ(Hn ∩ G)

εn

)}]

= E

[
E

[
exp

{
− γ̃√

mεn

(1{Y1∈Hn} −βn)

} ∣∣∣∣ Hn

]m]

= E

[(
1 + 1

2

γ̃ 2

mεn

(βn − β2
n) + O

[
1

(mεn)3/2

])m]
, (15)

where γ̃ = µ(G)γ and βn = µ(Hn ∩ G)/µ(G) = E[1{Yi∈Hn} | Hn]. The last line in (15)
follows by expanding the exponential term in its Taylor series up to the second order, and
taking conditional expectations. Note that since | 1{Y1∈Hn} −βn| ≤ 1, the remainder term
in the expansion is uniformly bounded. On the other hand, βn/εn → L0/µ(G) a.s. by
Lemma 2 and (14), and the difference can be bounded uniformly as well. We apply the bounded
convergence theorem to conclude the result.

Lemma 4. Under (H0)–(H5),

√
mεn

(
µ(Hn ∩ G)

εn

− µ(B(Gc, εn) ∩ G)

εn

)
w−→ 0 as n → ∞.

Proof. We just need to slightly adapt the proof of Lemma 2 and apply the extra assumptions.
We maintain the same notation from this lemma.

The result will follow if we show that
√

m/εnµ(Rn) → 0 in probability as n → ∞. Then
let δ > 0, and suppose that √

m√
εn

µ(Rn) ≥ δ. (16)

Define δn = δ/2
√

mεn. Assumptions (H2) and (H3) now imply that

µ(B(Gc, εn(1 − δn)) ∩ G) = L0εn(1 − δn) + O(ε2
n),

and, hence, in the event that (16) holds, there exists z ∈ � such that

B(z, εnδn) ∩ {X1, . . . , Xn} = ∅.

We now consider a covering of � consisting of M balls {Bj }1≤j≤M with radii εnδn/2, centered at
points {zj }1≤j≤M in�. It is easy to see that the centers can be chosen so thatM = O(1/(εnδn)

d).
Finally, if j0 is such that ‖z − zj0‖ ≤ εnδn/2 then Bj0 ∩ {X1, . . . , Xn} = ∅. The problem is
thus reduced to estimating the probability of this last event,

P

( √
m√
εn

µ(Rn) ≥ δ

)
≤ P

( M⋃
j=1

{{X1, . . . , Xn} ∩ Bj = ∅}
)

≤ M max
j

P({X1, . . . , Xn} ∩ Bj = ∅)

≤ C(G)

(
m

εn

)d/2(
1 − C(d, G)

(
εn

m

)d/2)n

→ 0 as n → ∞,

after replacing M and δn by their values and applying conditions (H1) and (H5). This completes
the proof of Lemma 4.
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Let us finally note that (H4) implies that

√
mεnT3(n) = √

mεn

∣∣∣∣µ(B(Gc, εn) ∩ G)

εn

− L0

∣∣∣∣ ≤ δ

if n is large enough. Together with Lemmas 3 and 4, this concludes the proof of (5).
In order to prove (6), it suffices to note that the difference µ̂(G) − µ(G) is of order (in

probability)
1√
N

≤ 1√
n + m

� 1√
mεn

;

hence, we can replace An by L̂n in (5) while keeping the convergence rate and the asymptotic
distribution.
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