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Abstract

If {Xn : l S n < x } are independent, identically distributed random variables having £(X,) =
0 and Var(X,)=l, the most elementary form of the central limit theorem implies that
P(n~'Sn az n ) -»Oas n -» x, where Sn = 2 ; . , Xk, for all sequences {zn : 1 S n < »} for which
zn -• x. The probability P(n^5ri g 2n) j s called a "large deviation probability", and the rate at
which it converges to 0 has been the subject of much study. The objective of the present article is
to complement earlier results by describing its asymptotic behavior when n~2zn -» * as n -» x, in
the case of absolutely continuous random variables having moment-generating functions.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 60F10, secondary 60F15.

Keywords: large deviations, asymptotic expansions, moment-generating functions, laws of large
numbers.

0. Introduction

If {Xn : 1 S n < x) is a sequence of independent, identically distributed
(iid) random variables having the standard normal distribution, and {zn: 1 S
n < =<=} is a sequence of positive numbers such that zn -* °= as n -»=<=, an
elementary large deviation result asserts that

P(n^Sn i= z.) = (2n)-'z-'exP{-l
2z

2n}{\ + O(z~2)}

where Sn = Xk,,Xk. A proof can be found on p. 175 of Feller (1968).
Theorems extending the above assertion to non-normal random vari-

ables divide basically into two classes: (1) where the tail of the common
distribution function is asymptotic to x " for some a > 0 as x -» »; and (2)
where the underlying random variables have a moment-generating function
(mgf) <f>(t) existing in a nondegenerate inrervaJ. Major results belonging to
class (1) are those appearing in Heyde (1968), Rohatgi (1973), and on pp.
255-258 of Ibragimov and Linnik (1971). As a rule, these results show that
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[2] Probabilities of very large deviations 333

P(P~'Sn g z_)= nP(X,g/3nzn){l + o(l)} as n-^°°, where the /3,,'s are nor-
malizing factors. The main theorem of the present article falls into class (2).

Throughout the remainder of the paper, we deal only with random
variables normalized so that E(X,) = 0 and Var(X,)= 1.

The first general result of class (2) was obtained by Cramer (1938), who
worked with zn's such that n~*zn ->0as« -»°°, as improved by Petrov (1954).
In the same article, Cramer established a large deviation result for "strongly
non-lattice" random variables when zn = en2 for some constant c >0. This
result was later extended by Bahadur and Ranga Rao (1960) to random
variables of all types.

The objective of the present article is to derive an asymptotic representa-
tion of the probability P(n^Sn a zn) when the zn's tend to °° faster than n*.
The proof, based on methods due to Bahadur and Ranga Rao (1960), requires
that certain moments of an "associated" distribution must be uniformly
bounded. Furthermore, the faster zn goes to °°, the higher is the order of those
moments that must be bounded. To insure this degree of increasingly
normal-like behavior, we require that the underlying mgf exist on the whole
real line, and we extend a theorem of Baum, Katz, and Read (1962) to show
that this requirement is necessary.

1. Preliminaries

We consider a sequence {Xn: 1 g n < &} of iid absolutely continuous
random variables having E(X,) = 0, Var(X,)=l, and mgf 4>(t) =
E(exptX,)< °c for all positive values of t. For a sequence {zn: 1 § « < oo} of
real numbers such that n~2zn -* °° as n -> °°, we have for Sn = X£_i Xk that

where Ynk = n 2Xk - n 'zn. The distribution function (df) of Ynk is given by

Gnk(y) = P(Ynk^y) = F(n2y + n~hn),

where F(x) = P(X, S x) is the df of X,. Denoting the density function of X,
by /(*)= F'(x), we see that the density function of Ynk is

gnk{y)= G'nk{y)= n2f{nh + n"zn).

The mgf of Ynk can be expressed as

«M0 = E (exprYnk) = e-^ '-Wn-if) .

We define for each h, 0 ^ h <<*, an "associated" random variable Ynk(h) by
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its df

dGnk(y) = {eh> /<pnk(h)}dGnk(y).

The mgf of Ynk(h) is

We further set Sn = 2k., Ynk and then

A change of variable and an integration by parts yield the following lemma:

(1.2) LEMMA. For every h SO,

Jo

Using the fact that Sn(/t) has mgf

and defining

(1.3) O(0 = ^ '

we obtain the next lemma:

(1.4) LEMMA. E(Sn(h)) = n '0(n ' ^ ) - z

Using the next lemma, we choose a particular sequence {«„ : l gn<oc )
of /i's. For notational ease, we write A g l i m ^ . Q g B to indicate that
A g lim infn^ Cn ^ lim supn_ Cn S B.

(1.5) LEMMA. / /

(1.5a) limO(0 = °°

and

(1.5b) tfiere ex/s/ numbers a] and <r\ such that

O<<r?gQ'(O=0-2<°°

/or a// sufficiently large t, then, for every sufficiently large n, there exists a
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[4] Probabilities of very large deviations 335

solution h = hn to the equation E (Sn (h)) = 0,

and

where a\= Q'(n'hn).

PROOF. In view of Lemma 1.4, E(Sn(h)) = 0 if and only if Q(n~^h) =
n~*zn. By condition (1.5a) and the continuity of Q, there must exist for each n
an hn with Q(n~*hn) = n~*zn. Therefore

(1.6) K = n*Q-\n-*zn)

as Q is one-to-one since Q'(t)>0 for all f, being the variance of a
nondegenerate random variable. Condition (1.5a) now implies that hn—»°° as
n—»°° because n ~*zn—*°°. Furthermore

so that, by L'Hopital's Rule for subsequences {nk: 1 ^ k < <»},

where uk = n^znit. Assertion (1.5c) follows. From (1.5c) and the fact that
n~*zn-*<x>, assertion (1.5d) follows.

The next step in the analysis requires an asymptotic expansion of the
distribution function G n (y)= P(Sn S= y) that appears in the statement of
Lemma 1.2. The Cramer asymptotic expansion below is discussed in more
detail on pp. 1224-1227 of Book (1972) in a slightly more general form. A
complete proof is available in Chap. 4 of Book (1970).

(1.7) Cramer's Asymptotic Expansion. If {Xnk : l ^ / c < » , 1 S n < °o} is a
triangular array of random variables such that
(1.7a) Xni, • • •, Xnn are independent for each n;
(1.7b) E(Xnk) = 0 for all k and n;
(1.7c) S; . , Var(Xn k)= 1 for all n;
(1.7d) E(\Xnk |m) = (lmnk < oo for all k and n and some m S 3 ;
(1.7e) each Xnk has absolutely continuous distribution Fnk(x);
(1.7f) each density fnk{x) = F'nk(x) has finite total variation vnk; and
(l-7g) if n n = {k : 1 g fc S n, unk ̂  (3n)V(32p3^)}, where pmn =
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n<m/2)-i 2» = I p^^ tnen every seqUence {n, : 1 S r ^ °°} of positive inte-

gers contains a subsequence {np : 1 S p <oo} such fhaf eif/ier
(A) limp_0O(lognp)"1card(nnp) = oo or

(B) l i m p _ ( « p ' p2™ log n, ,)1

>(x) = (2irr ' / l«e-"2 / 2du, | «„,„(*)! < M* nl-(m'2)pZm)'3 for M* inde-
pendent ofn and x, and p3i-Un(x) is a polynomial of degree 3/ — 1 inx, further
explicit details about which can be found in Book (1970) and in Corollary
(1.13) below.

In order to apply Cramer's asymptotic expansion (1.7) to our situation,
we define

Xnk = &-' Ynk(/!„),

where E(Ynk(hn)) = 0 and &2
n= 2"k = 1 Var(fnlc(/in)) because the f n k (^) ' s ,

1 g k g n, are iid for each n. It follows immediately that conditions (1.7a),
(1.7b), and (1.7c) hold. Our objective in the next several lemmas will be to
specify situations in which the remaining conditions of (1.7) hold. We first
recall from calculus the following fact, which can be proved using mathemati-
cal induction:

(1.8) LEMMA. If f(x) and g(x) are n-times differentiable and y = f(x)g(x),

Applying Lemma 1.8 to the mgf <l/nk(t) of Ynk = Ynk(hn), taking note of
(1.1), (1.3), and (1.6), and setting f = 0, we obtain

(1.9) LEMMA. E(Y"k) = n-ml2Gim\n~'hn),

where

The next three lemmas follow immediately.

(1.10) LEMMA. / / m =? 4 is an even positive integer, then

pmnk = E(X:k)= nm/2a-mG(m\n^hn).

(1.11) LEMMA. pmn = M*"'2'"1 2J_, (3mnk = j ; " G ( > \ ) .

(1.12) LEMMA. If conditions (1.5a) and (1.5b) hold, together with

(1.12a) for an even positive integer m g 4 , there exist numbers y^ and y2

(depending on m) such that
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for all sufficiently large t,

then

(112b) (Xo-^ -y iS limp™ So-7my2<=c.

The following corollary presents the Cramer asymptotic expansion in the
form we will use.

(1.13) COROLLARY. / / {Xnk : 1 S It S n, 1 S n < °°} is a triangular array of
random variables satisfying the conditions of Cramer's Asymptotic Expansion
(1.7), as well as (1.12b), then expansion (1.7h) holds with

(1.13a) \Rmn(x)\<Mn-""-2)'2,

where M is independent of n and x,
(1.13b) p,,^n{x)=e'2l2Pin{-<S>)

is a polynomial of degree 3/ — 1 in x, where

(1.13c) *%(-*) =

where the cqin's are uniformly bounded for all sufficiently large n, the bound
depending only on m, cru and y2, and

(1.13d) P,n(it) = t cqin(it)'
+1* = el2>2 f e'"dP,n(- <J>).

(The proofs of these facts can be found in Chapter 4 of Book (1970)).
Finally the following lemma isolates the most crucial step of the proof of

the main theorem:

(1.14) LEMMA. If m £ 4 is an even integer and {zn: 1 g n < »=} is a sequence
of positive numbers such that «"*£„—»°°; n~(m~iV2zn remains bounded away
from 0, and n~(m~2)/2zn—>0 as n—><x>, and

Bm(n)=BZ(n)+O(z3
n-

m)

for

B*(n) = 2f « " P i (" n

.. \2(q+p)V.
2"+p(q+p)\
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where, for notational purposes, we define

f(lYc i r
Z.V *•) L«°«2q+p{q + p)\ K ' 2"p\ '

then Bm(n) = 1 + O(n-<m-2)/2zn) as n^><*.

PROOF. We first note that O{zl~m) = O(n~(m~2)/2zn). Next

B * ( n ) = 1-f 1 _
P=i y-o

where the numbers

1 - 1 ""2q+p(q + p)\

are bounded in absolute value by K0(m), a number depending on m but not
on n (since the c,/n's are uniformly bounded in n), p, or j . Therefore

| B i(n) - 11 S K0(m) ^f 2 •H"2"*" '^-
p = l , = 0

In view of (1.5c) and (1.5d), we can replace X0(m)by a constant K,(m) which
differs only slightly and write, for sufficiently large n,

Defining

we have only to show that 6n(j,p) remains bounded under the assumption that
n"(m")/2zn is bounded away from 0 as n—>». But m - 5 § m -3-2p for
p = 1, and j ^ 2p, so that

which remains bounded as n ^ » under the assumptions.

2. The main theorem

We have the following theorem on the probabilities of very large
deviations of sums of iid random variables:
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[8] Probabilities of very large deviations 339

(2.1) THEOREM. / / {Xn : 1 g n < °°} is a sequence of iid absolutely continuous
random variables having £(X,) = 0, Var(X,) = 1, F(x) = F(X, g x), /(x) =
F'(;c), </>(0 = E(expfX,), andQ(t)= <j>'(t)l<t>(t) and satisfying the properties:

(2.1a) 4>(t)<°° for all t>0;

(2.1b) for all sufficiently large real numbers s, the functions

have uniformly bounded total variations vs, 0 < D

(1.5a) l i m O ( 0 = 0°;

(1.5b) there exist numbers o-\ and o-\ such that

for all sufficiently large t;
and
(1.12a) for an even positive integer m £ 4, there exist numbers y, and y2

(depending on m) such that

for all sufficiently large t, where

and {zn : 1 S n < =c} is a sequence of positive numbers such that n~*zn

n""4)/2zn remains bounded away from 0, andn~(m~2>/2zn—>Oas n—»<=,

x exp{-M-'zn0-(n- 'zn)+n log </>(0"'(n'zn))+/>„}
x{l + O(n^(m-2V2z0}

bn = — log {n22

is such that

j 'o-?)^ jimfen S log(o-7'o-2)<oo .

PROOF. In Lemma (1.2), we take h = hn and define
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e-h-'{Gn(y)-Gn(0)}dy.

We first obtain a Cramer asymptotic expansion of the form (1.7h), where
(1.13a) holds, of O,(y) = P (S^ , Ynk g y) = P(S^ , Xnk g y&V) where Xnt =
tin' Ynk. We proceed to verify the conditions of (1.7). Conditions (1.7a), (1.7b),
and (1.7c) hold because of Lemma (1.5) and conditions (1.5a) and (1.5b)
above. Condition (1.7d) is satisfied because of Lemma (1.9) and condition
(1.12a) above and (1.5d). Conditions (1.7e) and (1.7f) follow from (2.1b) and
the fact that Ynk has density

so that vnk = n^u*, where u* is the total variation of the function /,(u) =
{esu/<j)(s)}f(u). Here s = n"*&„-»<» as n^oo according to (1.5c). Finally,
condition (1.7g) follows from Lemma (1.12) and the fact that vnk does not
depend on k so that, for each n, {k : 1 ^ k § n} is either Qn or Q .̂ Therefore,
setting y = xan, we have the asymptotic expansion

where, in expression (1.13c) for f%( - <J>), x: is replaced by y&V and by (1.13a),
) \ ^ Mn-{m-2)n. We can write

/„ = I*n+O(n'(m 2y2),

where

Using (1.13d), we can find the "characteristic function" of Hmn(ya-~'), which is

/2d-2)ymn{tan)= 2, n-'"Pin(itvn)exp{- it'a'n).
; = o

We define

/"(y)= e""y for y SO

= 0 for y < 0.

Then g«(f) = /-« e"yfn(y)dy = (hn - if)"1 so by integration by parts and Parse-
val's formula

https://doi.org/10.1017/S144678870002108X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870002108X


[10] Probabilities of very large deviations 341

gn{t)ymn(t&n) dt

= (2TT)-* | j£-rt { f n -"2Pin(itan)exp(- |

applying a change of variables s = tcrn. Now

where |wn(s)| is bounded in n and s. Therefore

7r)'W: = ̂ ' 5 S f (-is/hnanyn~"2Pin(is)
r-0 i=0 J-»

+ dn
l 5 f (s/hna-n)

m~3Ms)n'll2Pin(
1=0 J-«

= *„• 2 n-"2 "2 ( - K*n)' \" (isYPin(is)d<i>(s)

by (1.13d) and the fact that <I> has finite moments of all orders. We now look at

From (1.13d), we have that

(is)'Pin(is)=
q - \

Since odd moments of the standard normal distribution vanish, namely
/"« s2p+ld<t>(s) = 0, it follows that /*,,,- = 0 whenever/ + r is odd. Recalling that
m is even, we can change variables as follows:

n'"2

2 2
p-0 >-0

(r+;=2p)

where r+j = 2p (since the terms vanish otherwise), and summing over
0^ r+y 'g2m - 7 and 0 ^ p ^ m - 4 . Multiplying through by znh^,\ we
obtain in view of (1.5c) that
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p=o y=o

from which it follows that

;=o

From (1.13d) and a knowledge of the even moments of the standard normal
distribution, we find that

4p£f for / = 0

2, 2''{q+p)\ 7P

It follows from this and Lemma (1.2) that

P(n*Sn S zn) = (2TryKhnan)-'e-z-''"<t,n(n-'hn){Bm(n)+ O(n(m-2)/2zn)}

where Bm(n) is as in Lemma (1.14). The proof is completed by applying
Lemmas (1.14) and (1.5) and expression (1.6).

Some comments on the conditions before we close this section: condition
(2.1b) plays a role akin to that of Cramer's Condition (C) for asymptotic
expansions of distribution functions. For example, see pages 81 and 84 of
Cramer's (1970) monograph or page 1020 of Bahadur and Ranga Rao's (1960)
article.

Condition (1.5a) guarantees that the random variable X, is not a.s.
bounded. If it were, then P(n~l2Sn § 2 , ) would be identically zero for all
sufficiently large n. If P ( X , g c ) = l , then c<f>(t) = c / i , e"dF(x)^
Jc-~xe"dF(x)=<t>'(t), so that Q(t) = <j>'(t)/4>(t)^c.

Conditions (1.12a) and (1.5b), where Q'(t)= G{2\t), are moment condi-
tions which serve to keep the tail probabilities of the same exponential order
as normal tail probabilities. While it may be possible to relax these slightly, it
seems that they form the normal analogue to the conditions in Heyde (1968),
Ibragimov and Linnik (1971), and Rohatgi (1973) on the tail behavior of the
underlying distribution function.

In Section 4 below, we will show that condition (2.1a) is necessary.
Finally, we show quickly that all conditions of Theorem 2.1 are satisfied

by the normal distribution and that the assertion of the theorem reduces to
the displayed equation at the beginning of Section 0. If <\>(t) = exp{|f2}, then
Q(t)= t and Q'(t)= 1 so that conditions (2.1a), (1.5a), and (1.5b) hold with
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a\ = cr\=\. Furthermore, a tedious computation shows that G(m)(f) is
constant for all t and equal to E(XT) so that (1.12a) holds with y, = y2 =
E(XT)- Finally, condition (2.1b) is satisfied, because

f,(u)=(2irpexp{-i(s + uf}

so that v „ = v * = V2/T7\ In the conclusion of Theorem 2.1 we have bn = 0 and
the other terms simplify as desired.

3. A version of the Erdos-Renyi law

If ip(x) is a continuous function of a real variable which increases
monotonically to » as x —>°°, we will be interested in the almost sure behavior
of

= max {K^(K)}-\Sn+k - Sn)
OSn SfVKn SfV-K

for various forms of K (depending on N) as N—»°°, where Sn is the nth
partial sum of a sequence of random variables. Erdos and Renyi (1970)
opened up the study of random variables of the form 2j,(N, K) by showing
what happens in the case t/'(x) = x. Some other aspects of the problem are
discussed in the expository article Book (1976).

Before proceeding to the theorem itself, we derive from Theorem (2.1)
some estimates of tail probabilities needed for the proof.

(3.1) COROLLARY. In the situation of Theorem (2.1), if i/f is such that
x~ltl/(x)—><x>, x*'mtli(x) is bounded away from 0, and x2~mip(x)—>0 asx—»°°,
then for every A > 0,

^ 3o-r'o-lexp{ - (A2/2o-2

where 6n—»°° as n—>°°.

PROOF. In the conclusion of Theorem (2.1), we define

>72Yi ? f n » Q ( n , ) - l o g » ( « , ) ]

where un = Q~\n~*zn)-*<x> as n—»<», and L ( f ) = fQ(f)~l°g<£(')• Because
L'(t) = tQ'(t)^>oc as r ^ t » , it follows from the fact that L(0) = 0 that
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as f-»°°. An application of L'Hopital's Rule then shows that the limiting
behavior of 2L{un)lQ

2{un) to be the same as that of {Q'(un)}\ from which it
follows that

Therefore, for n sufficiently large,

where 6*n—>0 as n—»°°. The desired string of inequalities now follows from
the conclusion of Theorem (2.1), upon setting zn = AVI/»(M).

We now have the following extension of the Erdds-Renyi law of large
numbers, the proof of which closely parallels that of the main theorem
(Theorem 2.2) of Book (1975).

(3.2) THEOREM. / / {Xn : 1 g n < <»} is a sequence of iid random variables
satisfying the conditions of Theorem (2.1), and </>(x) is a function of a real
variable having the properties
(3.2a) <KX) increases monotonically and continuously to °° as x—»°°;
(3.2b) i/»(x)/i/f(x + 1)-*1 as x^>°=; and
(3.2c) x~V(*)~-*°°> x*~m<p(x) is bounded away from 0 and

x2mip(x)-^0 as x^>0,
then, for every A > 0,

limsup 2*(N,[ l /r ' (2A-2o^logN)])gA a.s.

and

lim inf 2* (N, [i/T'(2A ~2a\ log N)]) g A a.s.

where [y] is the greatest integer not exceeding y.

If X, has the standard normal distribution, then o-] = o-\= \, and
condition (1.12a) holds for all values of m. It follows that

lim 2* (N, [</> '(2A "2 log N)]) = A a.s.

whenever x~1il/(x)—*^> as x—»«=.

4. The necessity of the existence of the mgf for all < > 0

For a sequence of iid random variables having partial sums {Sn: 1 S n <
oo}, Baum, Katz, and Read (1962) proved that, if there are numbers A > 0,
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C>0 , and 0< p < 1 such that P(n~'Sn^ \V~n)^ Cp" for all sufficiently
large n, then there must exist a number B, 0< B <»>, such that 4>(t) =
E(expfX,)<3° for 0 s / < B. Their result was improved and sharpened by
Petrov and Shirokova (1973).

It follows from Corollary (3.1) above that, under our conditions,
P{n~*Sn g A Vt/»(n)}S Cp*in) for all sufficiently large n. In this section, we
show that condition (2.1a) is necessary for this latter bound to hold and
therefore for the main theorem. In particular, using Petrov and Shirokova's
methods, we have:

(4.1) THEOREM. // {Xk : 1 g k < °°} is a sequence of iid random variables
with partial sums Sn = S£ = , Xk, g(n) is a monotonically increasing function of n
such that n~lg(n)—*x as n—>°°, and there exist numbers C >0 and 0 < p < 1
with

§ Cpg(n>

for all sufficiently large n, then the mgf $(t) = £(exp tXx) < *> for all t > 0.

PROOF. We first choose A > 0 so that P ( X , g - A ) > j ( l + p) , and we set

d = max (A, 1). Then

P{Sn S dVngin)} g P{X, § 26Vng(n)}P{S^, g - dVng{n)}.

But

P{Sn.> g - dVng(n)} g p{ n [Xk § - eVng(n) (n - I)"1]}

since Vng(n) (n - 1) ' g 1 for large n. Therefore

P{X, g 20Vng(n)} g Cp8(n){l(l + p)}1"

gC{2p (1 + p) 'I8*"' = C/S8'"'

where /3 = 2p (1 + p)M < 1, since {1(1 + p)}g(n)""+1 < 1. Setting a = (20/3)"1, we
have that

Now fix an arbitrarily large x > 0 and denote by nx the largest integer such
that 20\ /nxg(nI)gx. Then set Nx to be the smallest integer such that
x ^2dVNxg(Nx). Then for large x,
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P(Xt ̂ x)^ P{X, g 20 Vn,g(n,)}

g C exp { - 26aVNxg(Nx) yj^J^ Vg(n,)/m}

^ C exp {- ax Vg (n, )/nJ

Now, via an integration by parts, this implies that

4>(t)= I e"dF(x)= -P(Xl^x)e" + A e"P(X,£ x)dx
J-ac - • J-oo

^ Ct I e"e~axv«("'""'dx < °°

for all r >0 since t - Vg(nx)/nx<0 for sufficiently large x.
0
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