Can. J. Math., Vol. XXX, No. 4, 1978, pp. 817-829

ON ALGEBRAS STABLY EQUIVALENT TO
AN HEREDITARY ARTIN ALGEBRA

MARIA INES PLATZECK

Introduction. Let A be an artin algebra, that is, an artin ring that is a
finitely generated module over its center C which is also an artin ring. We
denote by mod A the category of finitely generated left A-modules. We recall
that the category mod A of finitely generated modules modulo projectives is
the category given by the following data: the objects are the finitely generated
A-modules. The set of morphisms Hom (4, B) between two A-modules 4 and
B in mod A is Hom(4, B)/P(A, B), where P(4, B) is the C-submodule of
Hom (4, B) consisting of all the maps f: A — B that factor through a projec-
tive module. Two artin algebras A and A’ are stably equivalent if mod A and
mod A’ are equivalent [1].

Artin algebras stably equivalent to an hereditary artin algebra have been
characterized in [1] by M. Auslander and I. Reiten, who also gave a description
of an hereditary ring T stably equivalent to A. The purpose of this paper is to
give a different description of a hereditary ring T' stably equivalent to A
together with a functor /: mod A — mod T that induces a stable equivalence
between A and I'. The description is the following: let ¢ denote the two sided
ideal sum of the nonprojective simples of the socle of A and let b be the left
AJa O :I

a A/
We consider the I'-modules as triples (4, B, f), where 4 is a A/a-module, B
isa A/b-module and f: ¢ @ 4 — B isa A/b-homomorphism (see [1]). Then for
a A-module M, F(M) = (M/a M, aM, m), where m: a ® M/a M — al is
given by the multiplication map.

Many of the results about hereditary algebras obtained either by using
representations of diagrams and K-species (see, for example, [3]), or by using
the notions of almost split sequences and irreducible maps (see [2]), have been
extended to artin algebras that are stably equivalent to an hereditary algebra
in [4]. Most of the results obtained in [4] can be deduced from the hereditary
case by using the functor F: mod A — mod T that induces the stable equiva-

lence between A and the hereditary ring ' = [A{fa A(}b]' This is one of the

reasons why we are interested in this particular description of I' and F. On the
other hand, another reason why we are interested in giving this description,
different from that given in [1], is because it facilitates computations.

annihilator of ¢ in A. Thena isa A/b — A/a-bimodule and I' = [
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We assume throughout the paper that A is an artin algebra and that all the
modules are finitely generated. We recall from [1, ch. I, Th 1.6 and 2.1] that
A is stably equivalent to an hereditary algebra if and only if the following con-
ditions are satisfied:

1) Every indecomposable submodule of an indecomposable projective A-
module is projective or simple.

2) If S is a nonprojective simple submodule of a projective module then S
is a factor of an injective module.

We will prove here that when A satisfies the conditions 1) and 2), then A is
A/(lr 0

a A/b
different proof of part of the characterization just mentioned, that is, it proves
that conditions 1) and 2) imply that A is stably equivalent to an hereditary
algebra.

Since some of the results that we prove are true when only one of the two
conditions 1) or 2) is needed, we will study properties of artin algebras satis-
fying either 1) or 2). Then we will apply these results to our case, that is, to the
case when both properties hold.

When A is an artin algebra of radical square zero the conditions 1) and 2)
are satisfied, so A is stably equivalent to an hereditary ring. For this special
case, a construction similar to that which is used in this paper has been given
in [1, Ch. V]. It is proven there that if A is of radical square zero and » denotes

stably equivalent to the hereditary ring T' = |: :| This then gives a

. . . . L\ !
the radical of A, then A is stably equivalent to the ring I'; = |: r/l, ’\O/r].

o . A . .
While the rings I'y and T' = I:‘({(L /X(}b] are not always Morita equivalent,

they are closely related, since there is a semisimple ring 17 such that T is
Morita equivalent to T' X V.
. . . . AJa 0 .
We begin by proving that when A satisfies 1), then I' = VAL her-
(¢4 4

editary. Then we prove that if A also satisfies 2), then T is stably equivalent
to A. It has been proven in [1, Ch. I1I, § 2] that each stable equivalence class
contains essentially one hereditary algebra. More precisely, if A and A’ are
hereditary artin algebras, they are stably equivalent if and only if there are
simisimple algebras 17 and 7’ such that mod (A X 17) and mod (A" X V')
are equivalent. So in the stable equivalence class of A there is only one (up to
Morita equivalence) hereditary artin algebra T’ with no semisimple summands.
We end the paper by proving that if A has no semisimple summands then T
has no semisimple summands.

I would like to take this opportunity to thank Professor Maurice Auslander
for many helpful conversations and suggestions.

1. We keep the notations of the introduction: @ denotes the sum of the
nonprojective simples in the socle of A, b is the left annihilator of ¢« in A, and
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I = [A{{a A(;b]' A A-module M is said to be torsionless if it is a submodule

of a projective module. A A-module M is said to be torsion if the indecom-
posable submodules of M are not torsionless.

If M is a A-module and ¢ an ideal in A, then 7.(M) denotes the trace of ¢
over M, that is, the submodule of M generated by the images of the maps
from ¢ to M. We observe that when M is projective, then the multiplication
map ¢ & M — cM is an isomorphism.

We begin by recalling some results of [4] (Lemmas 5.1, 5.2, and Proposition
5.3) that will be used in this section.

LEMMA 1.1. Let A be an artin algebra and P o projective A-module. Then
aP = 7,(P) = trace of a over P.

LEMMA 1.2. Assume that A satisfies 1), let M be in mod (A), let P be a projective
A-module, ©: P — M an epimorphism, and K = Ker (w). Then K = V L Q,
where V C aP and Q 1s projective. For any decomposition of K of this type, the
sequence

0—Q/aQ — P/aP — M/aM —0
is exact.
COROLLARY 1.3. If A satisfies the condition 1), then A/a is an hereditary ring.
We also recall from [1, Ch. V, § 1] that if A; and A, are artin algebras and

M is a A, — A;-bimodule, then the category of modules over I' = I: j‘&/[l f(\):l

2
is equivalent to the category % of triples (4, B, f), where 4 is a A;-module,
B is a As-module and f: M ® 4,4 — B is a As-homomorphism. A morphism
(4, B, f) — (4', B’, f') between two objects in & is a pair of maps (g1, g2),
g1: A — A’, go: B — B’, such that the diagram

1,®
MeA 28 e a

fl l :

B i} B/

commutes.

Lete = [(1) g:l Then M = (1 — ¢)Te, and the equivalence G: mod I' -» %

isgivenby G(X) = (eX, (1 —e)X,f),wheref((1 —e)ye@Qem) = (1 —e)yem.
We will often describe the modules over T' as triples of the type that we

have indicated. AJa 0O
Our next aim is to prove that when A satisfies 1) then the ring l: A/b:|
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is hereditary. This will follow as an immediate consequence of Corollary 1.3
and the following result.

ProrositioN 1.4. Assume that A satisfies 1). Then the ring Ty = [ (11\ A(}b:l

also satisfies 1), and the sum of the nonprojective simples of the socle of Ty is the

. a 0
1deal l:o Ojl'

Proof. The indecomposable projective I';-modules correspond to the triples
(P, « ® P, id) and (O, S, O), where P is a projective indecomposable A-
module and S is a projective indecomposable, hence simple, module over the
semisimple ring A/b.

Let now (N1, N, f) be an indecomposable submodule of an indecomposable
projective module. We will see that it is projective or simple. Since A/b is
semisimple, Imf is a direct summand of N». Thus, we can write (N1, N,, f) =
(Ny, Imf, f) L (0, B, 0), for some A/b module B. Since (N1, N, f) is inde-
composable, then either B = 0 and f is an epimorphism, or N; = 0 and B is
simple. Since in the second case (N, No, f) = (O, B, O) is projective, we may
assume that f is an epimorphism. Let (g1, g2): (N1, N, f) — (P, « ® P, id) be
a monomorphism, with P indecomposable projective. Then g;: Ny — P is a
monomorphism. Therefore N is projective or simple torsionless nonprojective,
because A satisfies 1). If Ny is simple torsionless nonprojective, then we know
by Lemma 1.1, that g;(N;) € « P. From the commutative diagram

1®g1
QN —m>au®P

1) fl lid

0— N, L»('1,®P

we find that (1 ® ¢1) (@ N1) Ca®@ «P C«*@ P = 0550 gof = 0. But g,
is a monomorphism and f is an epimorphism. Therefore N. = 0;so (N, Ns, f)
= (N4, 0, 0) is simple torsionless nonprojective.

Assume now that N, is projective. We have the commutative diagram

1®g1
e Q@ Ny —>rau®P

l §1|(1N1 l

alN, —» aP.

Ny and P are projective, so, as we observed before, the vertical maps are
isomorphisms. Moreover, the map gi|«N; is a monomorphism. Therefore
1 ® g is also a monomorphism. From the diagram (1) we have that g.f =
1 ® g1, so the epimorphism f is also a monomorphism. Therefore (N, N, f) ~
(N1, a @ Ny, id) is projective.
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This proves that |: A :I satisfies the property 1), and also that the non-

0
a A/b
projective torsionless simple modules are of the form (S, O, 0) with S C a.
This ends the proof of the proposition.

The result that interests us now follows as a corollary.

CoROLLARY 1.5. If A satisfies Property 1) then the ring [ A({ ¢ A(;bjl is heredi-
tary.

Assume now that A is an arbitrary artin algebra and ¢ a two sided ideal in A
such that ¢2 = 0. Let N; be a A-module such that ¢cN1 =0, «: P—> N; a
projective cover for Nyand K = Ker @, We can then define a map e: ¢ @ N; —

K/cK by e(c® a(p)) = cp € K/cK.

LeEMMA 1.6. In the notations of the preceding paragraph, the sequence

0c® N SK/K-5P/cPE N —0

is exact, where @ and 7 are the maps 1nduced by o and the inclusion 1: K — P
respectively. If A/c is an hereditary ring then € is a splitable monomorphism.
Moreover, if K/cK = Im (e) L M, then M is projective.

Proof. 1t follows from the definition of e that Im(e) = Ker (7). We will
prove now that e is a monomorphism. The sequence

1 a
0-K—>P—>N—-0
induces an exact sequence

id® 1 id® «a
COK —> c QP — > c Q@ Ny — 0

K/cK.

If ee(id®a) O c;® p;) =0 then X c,p; € cK, so X cip; = > c/k;, with
k; € K,c;/ € c. Then the elements >_ c;® p;and X ¢/ ® 7(k;) have the same
image under the product map ¢ ® P — ¢P. But this map is an isomorphism
because P is projective, so >, c; X p; = > ¢/ ® i(k;) € Im(id ® 7). Thus
Ket(e.id ® «)) € Im(id ® ), and this proves that e is a monomorphism.

If A/c is hereditary then 7(K/cK) is projective, since it is a submodule of
the projective A/c-module P/c P. Then the map 7: K/cK — 1(K/cK) splits,
and therefore e splits. Moreover, a complement of Im(e) in K/cK is projective
because it is isomorphic to 7(K/cK).

Let ¢ be a two sided ideal of A, such that ¢ = 0 and let d be the left annihi-
lator of ¢ in A. Then ¢ is a A/d — A/c — bimodule. Let % be the category
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defined above, equivalent to mod I:AC/C A(}d
(4, B, f), where A isa A/c-module, Bisa A/d-module,and f: cQ 4 — Bisa
homomorphism. In all that follows, we will denote by %’; the full subcategory
of & consisting of the triples (4, B, f) in % such that f is an epimorphism.
Then we have the following result.

:l, whose objects are the triples

ProprosiTiON 1.7. Assume that ¢ 1s a two-sided ideal 1n A such that ¢* = 0 and
A/Jc is an hereditary ring. Then F: mod A — %y is dense.

Proof. Let (Ny, No, f) € %1 and let a: P — N, be a projective cover of the
A-module N;. Let K = Ker(a). We know by Lemma 1.6 that there is an
exact sequence

0—-c® N1—6>K/CK—>P/CP—a>N1——>O,
where ¢ is a splittable monomorphism. Let §: K/cK — ¢&® N; be such that
se = id, and denote by f: K — N, the composition

kL krikSeo MmN,

where p: K — K/cK is the canonical epimorphism. f is a composition of
epimorphisms and is, therefore, an epimorphism. Let N be the pushout of
1: K — P and f: K — N,. We have the diagram

()—————)K——}i P——Fa N1——>0

R

0 —> N, ]>N——>N1—+O.

We will prove that p: N — N; induces an isomorphism 5: N/cN — N, this
will prove that j(N.) = ¢N. j induces a map j: No/cNs— N/cN, and the
diagram

K/cK —7—'->P/CP > N: >0

o

Nof/cNs— 5 N/eN —P 3Ny — 50

Y

0
commutes. We know that K/cK ~ Im(e) U Ker(s). By the definition of f, we
know that f|{Ker(8) = 0. Then Im j = Im jf = jf(Im €¢) = Xi(Im ¢) = 0, because
Im ¢ = Ker 7. Therefore j = 0, so 5: N/cN — N, is an isomorphism. If we
consider NV as a factor of Ny X P, then5((0, p)) = a(p), for p € P. Using then
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that @ is an epimorphism, and that ée is the identity, so fée = f, it is not hard
to check that the diagram

1®5 !
¢® Ny —2> ¢ ® N/cN

1 J»

is commutative. Then (571, j): (N1, Ne, f) > F(N) = (N/cN, ¢N, m) is an
isomorphism; so F is dense.

This proposition applies to the special case when A satisfies 1) and ¢ = «.
We find that F: mod A — %, is dense. It is not true under this hypothesis that
Fis full. However, if we also assume that A satisfies 2), that is, that A is stably
equivalent to an hereditary algebra, then F is full. The next pages are devoted
to proving this. To prove that Fis full when A satisfies 2) we use the following
result of [4, Lemma 5.4].

LEMMA 1.8. Let A be an artin ring satisfying 2). If Q and P are projeciive
A-modules and if Q is indecomposable and contained in rP, then Q/rQ is torsion
or projective.

The next lemma describes the image of the map e defined above when A
satisfies 1).

LemMA 1.9. Let A be an artin algebra satisfying 1), let N be a A-module, and
let P — N be a projective cover for N. Consider the exact sequence

0—-1T4u QLP—>N/aN—>O,

with Q projective and V C aP. Then the image of the map ¢ a @ N/aN —
VLO® Aais VR AJa~T.

Proof. We know by Lemma 1.2 that the sequence

idA/a ® (N

0—> Q/aQ > P/aP — 5 N/aN ——> ()

is exact. Since V C a P, then V C Ker (ida;, ® 7). The lemma is a conse-
quence of these two facts and of the exactness of the sequence

0——>a®N/aN —>1 1 0/a0 2228 prup 3 N/aN — 50

(see Lemma 1.6).
We can prove now the following result.

ProrosiTioN 1.10. If A is stably equivalent to an hereditary ring then F is full.
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Proof. Let N be a A-module and let «: P — N be a projective cover. Since @
is contained in the radical of A, then the composition P - N — N/a N is a
projective cover of N/aN. We have the commutative diagram

0 ——> aN ——L—>N—7—r—>N/aN —>0

bkl

0 >» K —»P ——>» N/aN — 0,
17 T

where a; = oK and 7: aN — N, 7: K — P are, respectively, the kernels of
7 and ma.

Let p: K — K/aK denote the canonical epimorphism and let f: ¢ &
N/aN — aN/a*N = aN be the map induced by multiplication, that is,
fla® w(n)) = am. Then F(N) = (N/aN, aN, f).

Let now N, N’ be A-modules and assume that (g, g2): F(NV) = (N/aN,
aN, f) > F(N') = (N'/aN', aN', f') is a morphism. We want to prove that
(g1, g2) = F(g), for some g: N— N’. Let a: P — N, a’: P’ — N’ be projective
covers of IV and N’, respectively. We consider the commutative diagram

0 »aN —2> N —" 5 N/aN — >0

A
23] I&

0— K typ a:N/aN—_*O

I 0> 10 lgl

0 > K’ v yP' £ 3 N'/aN'——> 0

0——alN’ ——i,—+N’ 7»N’/aN’ — 0,

where §: P — P’ is a map such that g.a = &'0; V C oP, V' C oP’, P and P’
are projective modules, and 6, = 6|K. To define g: N — N’ such that F(g) =
(g1, g2) we will prove that o’8|Ker @« = 0. Then g will be the map P/Kera — N’
induced by 6.

We also have the map g;: aN — aN’. We will prove first that gsas = ay'6,.
We write K = V 1 Q,K' = V' L Q', with VC aP, V' CaP’, and Q, Q'
projective (Lemma 1.2). Since A satisfies 2) and Q C P, then we know by
Lemma 1.8 that the simples in Q/rQ are torsion or projective. Then Hom 4 (Q,
aN'") = 0 because aN’ is annihilated by b and is, therefore, a sum of torsionless
nonprojective simple modules. This proves that g.a|Q = a2'0:|Q = 0.
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We will prove now that gsas|V = a,'8;|V. The maps a; and «;’ can be fac-
tored as

- ’ -
K2 K/aK 254N and K L5 K'/aK' 225N,
respectively. Let 8,: K/aK — K'/aK’ denote the map induced by 6,: K — K'.
Then to prove that geas|V = a3'8:|V we only need to prove that gea|p(V) =
@:'05)p(V); that is, that g.@ze = @y'fz¢, since Im ¢ = p(V). (Lemma 1.9). We
have the diagram
K/aK

[ e

e ® N/aN ——» aN

g, 11 ® gll 2 lg2
;

a ® N'/JaN'—— aN’

e'l 3
-
K'/aK’ -

where the subdiagrams 1, 2, and 3 commute, and where also f:e = €1 Q) g, (as
one can check using the definitions of the maps).

As a consequence of the commutativity of this diagram it follows that
gatize = @'Bse. This proves that gsas = a2’6,. Using this equality and the com-
mutativity of diagram (I), one can check thata’6|Ker @ = 0. Then «’6 induces a
map g: N = P/Ker @« — N’, and this map verifies that F(g) = (g1, g2). This
proves that F is full and completes the proof of the proposition.

2. We assume for the rest of this paper that the artin algebra A is stably
equivalent to an hereditary artin algebra, that is, that A satisfies 1) and 2). We
have proven then that the ring T' = [A({ ¢ A(;b:l is hereditary and that the
functor F: mod A — %, is full and dense. Moreover, M in mod A is such that
F(M) is projective if and only if M is projective. If we identify the category %
of triples with mod T, then F induces a functor F: mod A — mod T. The
I'-modules that are not in the image of this functor correspond to the triples in
% that are not in %,, that is, those of the form (0, B, 0), where B isa A/a-
module. These are projective modules in mod T. So the projective T'-modules
are all the modules that are not in the image of F and those of the form F(P),
for some projective A-module P. Let mods A and modp I' denote, respectively,
the full subcategories of mod A and mod I' whose objects are the modules with
no nonzero projective summands. Then F induces a full dense functor, that
we will also denote by F:

F: modp A — modp I
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Let M, N be in modp A. Then it is easily seen that Homp(F(M), F(N)) =
Hom (M, N)/S(M, N), where S(M, N) is the subgroup of Hom, (M, N)
consisting of the morphisms f: M — N such that Im f € aN. The following
lemma will prove that F induces an equivalence I'; mod A — modp T’

LemMma 2.1. If M, N are in modp A, then S(M, N) is equal to P(M, N) =
{f € Hom (M, N): f factors through a projective module}.

Proof. Let f € S(M, N). Then Im(f) € aN, so f factors as

M /e S an C
where 7 is the canonical epimorphism. Let a: P — N be the projective cover of
N. Then a|aP: aP — aN is an epimorphism of A/b-modules. Since A/b is a
semisimple ring, alaP splits. Let ¢: aN — «P be such that a|¢P. ¢ = iduy.
Since ¢ is a A/b-homomorphism, then ¢ is also a A-homomorphism. We have
the diagram

i
MlZM/aMi: aN C N

Sl .

aP Cc P
7

Then f = ifr = i(alaP - ¢) - fr = a(i¢fr), so f factors through P. This proves
that S(M, N) € P(M, N).

Let now f € P(M, N). Then f factors through a projective P, i.e., there is a
commutative diagram

M———»N

N\

Since M isin modp A, the image of @ does not contain projective summands. Then
Im (@) is a sum of simple torsionless nonprojective A-modules, because A satis-
fies1).Solma C 7,(P) = aP (see Lemma 1.1). ThusIm f = ImBa = B(Ima) C
B(aP) € aN, thatis,f € S(M, N), and this proves that P (M, N) € S(JM,N).

Since T is an hereditary ring, a map f: M — N between M and N in mod T
factors through a projective if and only if f = 0. So mod,I' = mod T. We
obtain then the main result of this paper.

THEOREM 2.2. Let A be an artin algebra stably equivalent to an hereditary
algebra. Let F: mod A — mod [A({ « A(;b] be the functor defined above. Then F
induces an equivalence of categories F: mod (A) — mod (T).
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We give now an example describing the ring T' for some ring A which is
stably equivalent to a hereditary ring, but which is not hereditary and not of
radical square zero.

Example 2.3. Let K be a field and let A be the subring of M ;x;(K) defined by

a 0 O
A=<lar a O0|:eq,a;6 K
Az A4 «@

(See [1, Example 3.1] or [4, Example 5.19].)
The indecomposable projective A-modules are P, = A.e, P» = A.(1 — e),

where
1 00
e=10 0 O
0 0 1

Let S, = Py/rP,, S: = Py/rP,. The only proper submodules of P, are P,
and Sy, and the only proper submodule of P5 is Si. So A is not hereditary, and
r? %% 0. However, A satisfies 1) and 2). The two sided ideal « is

0 0 0]
a = 0 0 0 ’ 213,&4EK y
a; ag 0
S0
ai 0_
AJa ~ , apaxyaz€ K¢, A/b~F and
Az Az
(2, 0 0
I'~qla;, a3 0|, a;€K,2=1,...,6
Lagy Az Qas

3. We devote this section to proving that if A has no semisimple summands,

then ' = A(fa A(;b:l also has no semisimple summands and is therefore, the

only hereditary artin algebra with no semisimple summands stably equivalent
to A. (See [1, ch. III, Th. 2.1].) Since an artin algebra A has no semisimple
summands when there are no projective injective simple A-modules, we will
first describe the projective and the injective A-modules. Then it will follow
easily that the simple projective modules are not injective.

The following general fact will be helpful to describe the injective and pro-
jective T'-modules.

LEMMA 3.1. Let F: € — 2 be a full dense functor between two categories €
and 9.
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a) Let F satisfy: If f: A — B is a morphism in € such that F(f) is « mono-
morphism, then f is « monomorphism. Then, for every injective object in €, F(I)
is 1njective in 9.

b) Let I satisfy: If f: A — B is a morphism in € such that F(f) 1s an epimor-
phism, then f is an epimorphism. Then F(P) is projective in &, for every pro-
jective object P in € .

Proof. The conclusions follow in a straight forward manner from the defi-
nitions.

The functor F: mod A — mod T that we are considering satisfies the
property a) of the lemma. Therefore if Sy, ..., S, is a complete set of non-
isomorphic simple A-modules and 7,(S;) denotes the injective envelope of S,
then F([4(Sy)) = (Io(S;)/alo(Sy), alo(S;), my), 1 = 1, ..., n, are injective
I'-modules. To finish the description of the injective I'-modules, we need the
following result of [4, Lemma 5.5).

LEMMA 3.2. Assume that A satisfies 1), and let 1,(S) be the injective envelope
of the simple A-module S. Then aly(S) = S if S is nonprojective torsionless, and
aly (S) = 0 otherwise.

For a A/a-module 31, we denote by I,,,(M) the injective envelope of M.
Then one can prove the following lemma whose proof we omit.

LEMMA 3.3. Assume that A satisfies 1) and 2) and that S is a simple A-module.
Then (I4,,(S), 0, 0) is injective in mod T.

When S is torsion or projective thena - I1(S) = 0 (Lemma 3.2), and I ,,,(S) =
{x € Iy(S): ax = 0} = I,(S), so F(Iy(S)) = (I4,.(S), 0, 0). Combining the
preceding results, we obtain the following description of the injective modules.

ProrositioN 3.4. Assume that A is stably equivalent to an hereditary ring.
Then the indecomposable imjective T-modules arve the modules of the forms
(Iau (S), 0,0), where S is a simple A-module, and (I1,(S)/S, S, m), where m is
the multiplication map and S is a torsionless nonprojective simple A-module.

We can prove now the minimality of T.

THEOREM 3.5. Let A be an artin algebra with no semisimple summands stably
AJa O

a A/b
mands and 1s, therefore, the only hereditary ariin algebra stably equivalent to A
with no semisimple summands.

Proof. Let 4 be a simple I'module. If 4 = (0, S, O), where S is simple and
torsionless nonprojective, then I,(4) = (1,(S)/S, S, m). Since al,(S) = S and
aS = 0 (Lemma 3.2), then I,(S)/S # 0. Therefore 4 is not injective.

Assume now that 4 = (S, 0, 0), where S is simple. The projective cover of
(S, 0, 0) is F(Po(S)) = (Po(S)/aP(S), aPy(S), m), where Py(S) denotes

equivalent to an hereditary ring. Then T' = [ :I has no semisimple sum-
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the projective cover of S and m the map induced by multiplication. If 4 =
(S, 0, 0) is projective, then aPy(S) = 0and Py(S) = S, and so S is projective.
We know then by Proposition 3.4 that Io(4) = ({4, (S), 0, 0). If 4 is also
injective, then I, (S) = .S, and so S is projective injective, which contradicts
the hypotheses that A has no semisimple summands.

This proves that I' has no simple injective projective modules and completes
the proof of the theorem.
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