
J. Appl. Prob. 46, 221–243 (2009)
Printed in England

© Applied Probability Trust 2009

ASYMPTOTIC PROPERTIES OF A MEAN-FIELD
MODEL WITH A CONTINUOUS-STATE-DEPENDENT
SWITCHING PROCESS

FUBAO XI,∗ Beijing Institute of Technology

G. YIN,∗∗ Wayne State University

Abstract

This work is concerned with a class of mean-field models given by a switching diffusion
with a continuous-state-dependent switching process. Focusing on asymptotic properties,
the regularity or nonexplosiveness, Feller continuity, and strong Feller continuity are
established by means of introducing certain auxiliary processes and by making use of the
truncations. Based on these results, exponential ergodicity is obtained under the Foster–
Lyapunov drift conditions. By virtue of the coupling methods, the strong ergodicity or
uniform ergodicity in the sense of convergence in the variation norm is established for the
mean-field model with a Markovian switching process. Besides this, several examples
are presented for demonstration and illustration.
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1. Introduction

Originating from statistical mechanics, mean-field models are concerned with many-body
systems with interactions. To overcome the difficulty of interactions due to the many bodies,
one of the main ideas is to replace all interactions to any one body with an average or effective
interaction. This reduces any multi-body problem to an effective one-body problem. Although
their main motivation and development are in statistical mechanics, such models have also
enjoyed recent applications in, for example, graphical models in artificial intelligence. It
should be mentioned that in financial engineering, a somewhat related formulation is termed a
mean-reversion model, in which the formulation uses a dynamic model that has a force pushing
the system towards its ‘equilibrium’ in a suitable way.

Intuitively, if the field or particle exhibits many interactions in the original system, the mean
field will be more accurate for such a system. The usefulness of such systems, the potential
impact on many practical situations, and the challenges they present to both physicists and
mathematicians have attracted much attention in recent years. Dawson [6] presented a detailed
study on the cooperative behavior of such systems, and, subsequently, in [7] delineated the law
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of large numbers and central limit theorem for jump mean fields; see also the related works
of Hitsuda and Mitoma [9] and Shiga and Tanaka [23], and the references therein. From a
probabilistic point of view, one of the many important problems is that of gaining an in depth
understanding of the ergodicity of such systems.

Owing to the rapid progress in technology, much more complicated systems are encountered
in applications. In response to such challenges, much effort has been devoted to the modeling
and analysis of more sophisticated systems. One of the ideas is to bring regime switching into the
formulation, so as to deal with the coexistence of continuous dynamics and discrete events. For
example, the underlying dynamic systems may not only be influenced by or subject to the usual
dynamics represented by differential equations, but also contain movements that exhibit jump
or switching behavior. These discrete events are used to depict random environments or other
uncertainties. One of the methods of formulating complex systems is to use a regime-switching
formulation, which largely enriched the applicability of the dynamic models. Continuing our
efforts in the study of regime-switching diffusions, this work is devoted to the study of ergodicity
of regime-switching mean-field models.

For motivational purposes, let us begin with two examples. When the switching component
Z(t), to be defined precisely in Section 2, is missing, these examples are used to study the
quenching problem in chemical systems; see Section 13 of [10].

Example 1.1. For simplicity, let us start with a one-body dynamic system given by

dX(t) = [α(Z(t))X(t) − X3(t)] dt + σ(X(t), Z(t)) dW(t), (1.1)

where α(·) and σ(·) are appropriate functions to be defined precisely in Section 2, W(t) is a
standard one-dimensional Wiener process, and Z(t) is a switching process depending on the
dynamics of X(t). When Z(t) is missing, the model defined by (1.1) is called the Schlögl
model with Gaussian white noise perturbation and it is an appropriate model for studying
the quenching problem (see Section 13.1 of [10]). This equation is also used to describe the
movement of a single anharmonic oscillator subject to Gaussian white noise perturbation (see
[6]).

Example 1.2. Consider a two-body problem with the dynamics given by

dX1(t) = [α(Z(t))X1(t) − X3
1(t) − β(Z(t))(X1(t) − X2(t))] dt

+ σ11(X(t), Z(t)) dW1(t),

dX2(t) = [α(Z(t))X2(t) − X3
2(t) − β(Z(t))(X2(t) − X1(t))] dt

+ σ22(X(t), Z(t)) dW2(t),

(1.2)

where β(·), σ11(·), and σ22(·) are appropriate functions to be defined precisely in Section 2, and
W(t) is a standard two-dimensional Wiener process. In statistical physics, the model defined
by (1.2) without Z(t) is known as the double-vessel diffusion Schlögl model with Gaussian
white noise perturbation and was used to study the quenching problem for multidimensional
or nonuniform systems in Section 13.3 of [10]. Moreover, adopting this modeling method
also enables us to avoid using stochastic partial differential equations, which are usually very
complex; see Section 13.3 of [10].

In this work we consider a class of mean-field models with randomly varying switching.
By concentrating on the two-component Markov process (X(t), Z(t)), we obtain the Feller
continuity and the strong Feller continuity by virtue of the truncation methods. Moreover,
we investigate the ergodic properties of diffusion processes with continuous-state-dependent
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switching. We prove the �-exponential ergodicity for (X(t), Z(t)) under the Foster–Lyapunov
drift condition. When the switching process Z(t) is independent of the component X(t)

(i.e. the case of Markovian switching), we establish the strong ergodicity or uniform ergodicity
for (X(t), Z(t)) by the coupling methods.

The rest of the paper is arranged as follows. The precise formulation of the problem is
presented in Section 2. Section 3 is devoted to the regularity and Feller continuity. Section 4
proceeds with the strong Feller property, and in Section 5 we exploit exponential ergodicity. In
Section 6 we establish strong ergodicity.

2. Formulation

For a vector or a matrix A, we use A� to denote its transpose. Let K be a positive integer, let
(�, F , P) be a probability space, let {Ft } be an increasing family of sub-σ -algebras of F , and
let W(t) = (W1(t), W2(t), . . . , WK(t))� be an Ft -adapted, standard, K-dimensional Wiener
process. Suppose that Z(t) is a right-continuous random process taking values in a finite state
space N = {1, 2, . . . , n0}. Consider a K-body mean-field model with switching described by
the following system of Itô stochastic differential equations. For i = 1, 2, . . . , K ,

dXi(t) = [α(Z(t))Xi(t)−X3
i (t)−β(Z(t))(Xi(t)−X̄(t))] dt+σii(X(t), Z(t)) dWi(t), (2.1)

where X̄(t) = K−1 ∑K
j=1 Xj(t), X(t) = (X1(t), X2(t), . . . , XK(t))�, and α(k) > 0 and

β(k) > 0 for k ∈ N . Moreover, the transition rules of Z(t) are specified by

P(Z(t + �) = l | Z(t) = k, X(t) = x) =
{

qkl(x)� + o(�) if k �= l,

1 + qkk(x)� + o(�) if k = l,
(2.2)

which hold uniformly in R
K as � ↓ 0. For x = (x1, x2, . . . , xK)� ∈ R

K and σ = (σij ) ∈
R

K × R
K , we use the usual Euclidean length and trace norm:

|x| =
√√√√ K∑

i=1

x2
i , |σ | =

√
tr(σσ�) =

√√√√ K∑
i,j=1

σ 2
ij .

Let N be endowed with the discrete topology, and let B(RK ×N) be the product σ -algebra on
R

K × N . We introduce a metric λ(·, ·) on R
K × N as follows:

λ((x, m), (y, n)) = ρ(x, y) + d(m, n),

where

ρ(x, y) = |x − y|, d(m, n) =
{

0, m = n,

1, m �= n.

Therefore, (RK ×N, λ(·, ·), B(RK ×N)) is a locally compact and separable metric space. For
the existence and uniqueness of the solution (X(t), Z(t)) satisfying system (2.1) and (2.2), we
make the following assumption.

Assumption 2.1. For all 1 ≤ i ≤ K and k �= l ∈ N , the functions σii(x, k) > 0 in (2.1)
and qkl(x) > 0 in (2.2) satisfy the local Lipschitz condition with respect to x. Moreover, for
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all 1 ≤ i ≤ K and k ∈ N , each σii(x, k) > 0 is infinitely differentiable in x and there exist
constants H > 0 and δ ∈ (0, 4] such that

K∑
i=1

σ 2
ii (x, k) ≤ H(|x|4−δ + 1). (2.3)

Analogously to the proof given in Section 6 of [28], under Assumption 2.1, adopting the
method of proof of Theorem 4.1 in Chapter III of [13], or Theorem 2.1 of [22] together with the
use of Lemma 3 in Chapter II of [24], we can also prove that the stochastic differential equation
(2.1) has a unique solution X(t) on R

K even though the drift coefficients in (2.1) satisfy neither
the Lipschitz condition nor the linear growth condition (see Section 3). Throughout the rest of
this paper, as a standing hypothesis, we assume that Assumption 2.1 holds. Hence, system (2.1)
and (2.2) has a unique solution (X(t), Z(t)). Moreover, the process (X(t), Z(t)) is a Markov
process with state space R

K × N . In what follows we often denote the process (X(t), Z(t))

determined by system (2.1) and (2.2) with the initial condition (X(0), Z(0)) = (x, k) by
(Xx,k(t), Zx,k(t)) if the emphasis on the initial data is needed.

The term −β(k)(Xi(t)− X̄(t)) on the right-hand side of (2.1) (when Z(t) = k ∈ N ) creates
a tendency for each component Xi(t) to move toward the arithmetic mean of the ensemble
X(t) = (X1(t), X2(t), . . . , XK(t))�. Thus, the model defined by (2.1) has a mean-field-
like interaction in which each component Xi(t) interacts with every other component Xj(t)

(j �= i) and then provides a simple model of a cooperative interaction. Here, the discrete
component Z(t) is the switching process and it represents the cooperative interaction of Xi(t)

(1 ≤ i ≤ K) evolving in a random environment which is otherwise not representable by
the traditional differential equations. Note also that the switching process depends on the
continuous component X(t). Therefore, our model defined by (X(t), Z(t)) using (2.1) can
be called a mean-field model with continuous-state-dependent switching. The Markov process
(X(t), Z(t)) is a continuous-state-dependent, regime-switching (or hybrid) diffusion. When the
functions qkl(x) in (2.2) are independent of x and the switching process Z(t) is a Markov chain,
itself being independent of W(t), the above continuous-state-dependent switching diffusion
reduces to the Markovian switching diffusion. As explained in [27], [28], and [32], the notion of
continuous-state-dependent switching is a nontrivial generalization of the notion of Markovian
switching.

When the switching component Z(t) is missing, the model defined by (2.1) reduces to a
classical mean-field model. For more detailed interpretation about this type of mean-field
model without continuous-state-dependent switching, an interested reader is referred to [6]
and the references therein. In fact, the mean-field method has many applications and is often
considered to be an approximation to describe the complicated original models in statistical
physics. Moreover, various mean-field models have been well investigated by many authors;
see [6], [7], [9], [23], and the references therein. However, these investigations mainly dealt
with limit theorems such as laws of large numbers and central limit theorems. In this paper we
focus on ergodic properties of the mean-field model with continuous-state-dependent switching
defined by (X(t), Z(t)).

In practice, stochastic systems with Markovian switching are often called Markovian jump
systems and are found to be useful in many applications; see [29, Chapters 3, 8–10], [30], and the
references therein. They have successfully been used to model flexible manufacturing systems,
production planning, power systems, and economic systems, among others. Meanwhile, such
systems could also be regarded as a class of stochastic systems in the Markovian random
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environment. Recently, stability of stochastic systems with Markovian switching has received
a great deal of attention. Stochastic stability, moment stability, robust stability, exponential
stability, stability in distribution, and stability in the total variation norm have been studied
extensively by many authors; see [1], [14], [16], [25], [26], [29, Chapters 3, 8–10], [30], [31],
and [32], among others. For example, stability in distribution of switching diffusion processes
with Markovian switching was studied in [1] and [31], and stability in the total variation was
discussed in [25] and [26]. Since convergence in total variation leads to weak convergence,
stability in total variation implies that of stability in distribution. To obtain the results of
convergence in total variation, the coupling methods in [25, Section 3] and [26, Section 3]
were used. As witnessed in many fields, coupling methods are effective and powerful. For
background on coupling methods and their applications, the reader is referred to [2, Chapter 2],
[3, Chapter 5], [4], and the references therein.

3. Nonexplosiveness and Feller continuity

In this section we prove the nonexplosiveness and Feller continuity of (X(t), Z(t)). To do
so, let us make some preparations first. For (x, k) ∈ R

K × N , set

b(x, k) =

⎛
⎜⎜⎜⎝

b1(x, k)

b2(x, k)
...

bK(x, k)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

α(k)x1 − x3
1 − β(k)(x1 − x̄)

α(k)x2 − x3
2 − β(k)(x2 − x̄)

...

α(k)xK − x3
K − β(k)(xK − x̄)

⎞
⎟⎟⎟⎟⎠ ∈ R

K (3.1)

and σ(x, k) = diag{σii(x, k)} ∈ R
K × R

K , where x̄ = K−1 ∑K
j=1 xj . Then the stochastic

differential equation (2.1) can be rewritten as

dX(t) = b(X(t), Z(t)) dt + σ(X(t), Z(t)) dW(t). (3.2)

Let C2(RK ; R+) denote the family of all nonnegative functions on R
K that are twice continu-

ously differentiable, where R+ = [0, ∞). As in [27] and [28], for each k ∈ N and any function
V (·, k) ∈ C2(RK ; R+), we define an operator L as follows:

LV (x, k) = 1

2

K∑
i=1

σ 2
ii (x, k)

∂2

∂x2
i

V (x, k) +
K∑

i=1

bi(x, k)
∂

∂xi

V (x, k)

+
∑
l∈N

qkl(x)(V (x, l) − V (x, k)). (3.3)

Next, for convenience, we recall the definitions of the Feller continuity and the strong Feller
continuity. As in [28], denote the family of transition probabilities of the Markov process
(X(t), Z(t)) by {P(t, (x, k), A) : t ≥ 0, (x, k) ∈ R

K × N, A ∈ B(RK × N)}. Moreover, for
any given t > 0, set

P(t) := {P(t, (x, k), A) : (x, k) ∈ R
K × N, A ∈ B(RK × N)}, (3.4)

which is the transition probability kernel of the Markov process (X(t), Z(t)). For any given
t > 0, if, for any bounded and continuous function f (x, k) on R

K × N ,

Pt f (x, k) :=
∑
l∈N

∫
RK

f (y, l) P(t, (x, k), dy × {l}) = E f (Xx,k(t), Zx,k(t))
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is still bounded and continuous with respect to (x, k), then we say that the transition probability
kernel P(t) is Feller continuous; if, for any bounded measurable function f (x, k) on R

K × N ,
Pt f (x, k) is bounded and continuous with respect to (x, k), then we say that the transition prob-
ability kernel P(t) is strong Feller continuous. Moreover, if the Markov process (X(t), Z(t))

has a Feller or strong Feller continuous transition probability kernel, we sometimes say that
(X(t), Z(t)) has the Feller or strong Feller property, respectively.

Remark 3.1. It follows from Proposition 6.1.1 of [20] that, for any t > 0, the transition
probability kernel P(t) is Feller continuous if and only if P(t, (x, k), O) is lower semicontinuous
with respect to (x, k) for any open set O ∈ B(RK × N); the transition probability kernel P(t)

is strong Feller continuous if and only if P(t, (x, k), A) is lower semicontinuous with respect
to (x, k) for any set A ∈ B(RK × N).

Remark 3.2. The b(·, k) given in (3.1) and Assumption 2.1 imply that b(·, k), σ(·, k), and
qkl(·) are locally bounded and locally Lipschitz. That is, for any M > 0, there exists a constant
HM > 0 such that

|b(x, k)| ≤ HM, |σ(x, k)| ≤ HM, qkl(x) ≤ HM,

|b(x, k) − b(y, k)| + |σ(x, k) − σ(y, k)| ≤ HM |x − y|,
and

|qkl(x) − qkl(y)| ≤ HM |x − y|,
for all x, y ∈ U(M) and k �= l ∈ N , where U(M) : = {x ∈ R

K : |x| ≤ M}. Moreover, setting
V (x, k) = |x|2 + 1, under Assumption 2.1, it is easy to verify that

LV (x, k) ≤ −V (x, k) + β for (x, k) ∈ R
K × N, (3.5)

where β > 0 is a constant. In fact, for all (x, k) ∈ R
K × N and 1 ≤ i ≤ K , it is obvious that

∂V (x, k)/∂xi = 2xi and ∂2V (x, k)/∂x2
i = 2. Substituting these into (3.3), we have

LV (x, k) =
K∑

i=1

σ 2
ii (x, k) + 2(α(k) − β(k))

K∑
i=1

x2
i − 2

K∑
i=1

x4
i + 2β(k)x̄

K∑
i=1

xi. (3.6)

Note that

|x|4 ≤ K

K∑
i=1

x4
i and x̄

K∑
i=1

xi ≤ |x|2.

Hence, it follows from (3.6) that

LV (x, k) ≤
K∑

i=1

σ 2
ii (x, k) + 2α(k)|x|2 − 2

K
|x|4

= −V (x, k)

[
2|x|4

K(|x|2 + 1)
− 2α(k)|x|2

|x|2 + 1
−

∑K
i=1 σ 2

ii (x, k)

|x|2 + 1

]
(3.7)

= −V (x, k)F̃ (x, k),

where F̃ (x, k) denotes the function in the square brackets. Meanwhile, it follows from (2.3)
that there exists a compact set C0 ⊂ R

K such that

F̃ (x, k) 1Cc
0×N(x, k) ≥ 1Cc

0×N(x, k),
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where 1Cc
0×N is the indicator function of the set Cc

0 × N . Combining this fact with (3.7), we
obtain (3.5).

In what follows we will prove the nonexplosiveness and Feller continuity for (X(t), Z(t))

determined by system (2.2) and (3.2) by making use of a truncation argument. We denote
by P(x,k) the distribution of (X(t), Z(t)) starting from (x, k), and we denote by E(x,k) the
corresponding expectation.

Theorem 3.1. Under Assumption 2.1, the system given by (2.2) and (3.2) has a unique nonex-
plosive solution (X(t), Z(t)), and it is a strong Markov process and has the Feller property.

Proof. Noting Remark 3.2, under Assumption 2.1, we can construct sequences of functions
{b(n)(x, k)}, {σ (n)(x, k)}, and {q(n)

kl (x)} such that, for all x ∈ On := {x ∈ R
K : |x| < n} and

k �= l ∈ N ,

b(n)(x, k) = b(x, k), σ (n)(x, k) = σ(x, k), q
(n)
kl (x) = qkl(x),

and, for each positive integer n, the newly constructed functions are bounded and continuously
differentiable in x, and satisfy the Lipschitz condition globally. Then we have a unique strong
Markov process (X(n)(t), Z(n)(t)) corresponding to the functions constructed above for system
(2.2) and (3.2). It is clear that (X(t), Z(t)) = (X(n)(t), Z(n)(t)) whenever t < γn, where
γn := inf{t ≥ 0 : (X(t), Z(t)) ∈ Oc

n × N}.
Denote by γ the exit time (i.e. explosion time) of the Markov process (X(t), Z(t)),

defined as γ = limn→∞ γn. To obtain the desired nonexplosiveness, we need only prove
that P(x,k)(γ = ∞) = 1. To this end, take V (x, k) = |x|2 + 1, as in Remark 3.2. it is easy to
see from (3.5) that, for some positive constant α0,

LV (x, k) ≤ α0V (x, k) for (x, k) ∈ R
K × N, (3.8)

inf{V (x, k) : |x| ≥ M, k ∈ N} → ∞ as M → ∞. (3.9)

Next, we define a function

W(x, t, k) = V (x, k) exp(−α0t).

From (3.3) and (3.8), [(∂/∂t) + L]W(x, t, k) ≤ 0. Therefore, by virtue of Dynkin’s formula
(cf. Lemma 3 in Chapter II of [24]), for γn(t) := min{γn, t}, we obtain

E(x,k)(V (X(γn(t)), Z(γn(t))) exp(−α0γn(t))) − V (x, k)

= E(x,k)

∫ γn(t)

0

(
∂

∂s
+ L

)
W(X(s), s, Z(s)) ds

≤ 0.

Noting the inequality γn(t) ≤ t and the nonnegativity of V (x, k), we arrive at

E(x,k) V (X(γn(t)), Z(γn(t))) ≤ V (x, k) exp(α0t).

From this we derive the estimate

P(x,k)(γn ≤ t) ≤ (inf{V (x, k) : |x| ≥ n})−1V (x, k) exp(α0t). (3.10)

Letting n → ∞ and using (3.9), we conclude that P(x,k)(γ = ∞) = 1.
Finally, we prove the Feller continuity. By virtue of Theorem 3.2 of [27], we need only

verify Assumptions 1.1 and 1.2 of [27]. Remark 3.2, (3.8), and (3.9) imply Assumptions 1.1
and 1.2 of [27]. The proof of the theorem is thus concluded.
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4. Strong Feller continuity

In this section we prove the strong Feller continuity for (X(t), Z(t)). For this purpose, we
introduce a family of diffusion processes. For each k ∈ N , let the single diffusion process
X(k)(t) satisfy the following stochastic differential equation in R

K :

dX(k)(t) = b(X(k)(t), k) dt + σ(X(k)(t), k) dW(t). (4.1)

In the sequel, we use {P(k)(t, x, A) : t ≥ 0, x ∈ R
K, A ∈ B(RK)} to denote a family of tran-

sition probabilities of the diffusion process X(k)(t). Moreover, for any given t > 0, set

P(k)(t) := {P(k)(t, x, A) : x ∈ R
K, A ∈ B(RK)},

which is the transition probability kernel of the Markov process X(k)(t). Correspondingly, we
denote by P(k)(x) the distribution of X(k)(t) starting from x. Hereafter, we denote the Lebesgue
measure on R

K by m(·).
Theorem 4.1. For any given k ∈ N , (4.1) has a unique nonexplosive solution X(k)(t). For
each t ≥ 0 and each x ∈ R

K , the transition probability P(k)(t, x, ·) is absolutely continuous
with respect to the Lebesgue measure m(·), and, for each t > 0, the transition probability
kernel P(k)(t) is strongly Feller continuous. Moreover, for each t > 0, the support of X(k)(t)

is equal to R
K .

Proof. For an arbitrary k ∈ N , the generator L(k) of (4.1) is given by

L(k) = 1

2

K∑
i=1

σ 2
ii (x, k)

∂2

∂x2
i

+
K∑

i=1

bi(x, k)
∂

∂xi

.

Set V (k)(x) = |x|2 + 1 for x ∈ R
K . Similarly to (3.5), we have

L(k)V (k)(x) ≤ −V (k)(x) + β for x ∈ R
K, (4.2)

where β > 0 is a constant as in Remark 3.2. Next, analogously to the proof of Theorem 3.1, we
can construct sequences of functions {b(k)(n)(x)} and {σ (k)(n)(x)} such that, for all x ∈ On :=
{x ∈ R

K : |x| < n},
b(k)(n)(x) = b(x, k), σ (k)(n)(x) = σ(x, k),

and, for each positive integer n,

b(k)(n)(x) = (b
(k)(n)
1 (x), . . . , b

(k)(n)
K (x))� : R

K → R
K

and
σ (k)(n)(x) = diag{σ (k)(n)

ii (x)} : R
K → R

K × R
K

are bounded smooth functions with bounded derivatives, and also that σ
(k)(n)
ii (x) > 0 for all

1 ≤ i ≤ K and x ∈ R
K . For each positive integer n, we have a unique strong Markov process

X(k)(n)(t) corresponding to the functions constructed above via (4.1). Moreover, it is clear that
X(k)(t) = X(k)(n)(t) whenever t < ξ

(k)
n , where ξ

(k)
n = inf{t ≥ 0 : X(k)(t) ∈ Oc

n}. Using (4.2),
similarly to the proof of Theorem 3.1 (see (3.8)–(3.10)), we can prove that, for each t > 0,

lim
n→∞ P(k)(x)(ξ (k)

n ≤ t) = 0 for x ∈ R
K, (4.3)

which implies the desired nonexplosiveness.
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Now we begin to prove the strong Feller continuity. For each positive integer n, let the C∞
vector fields A

(k)
0 , A

(k)
1 , . . . , A

(k)
K on R

K be defined as follows:

A
(k)(n)
0 (x) =

K∑
j=1

(
b

(k)(n)
j (x) − 1

2
σ

(k)(n)
jj (x)

∂

∂xj

σ
(k)(n)
jj (x)

)
∂

∂xj

,

A
(k)(n)
i (x) = σ

(k)(n)
ii (x)

∂

∂xi

, i = 1, 2, . . . , K.

Since σ
(k)(n)
ii (x) > 0, we have

dim Lie{A(k)
l (x) : 1 ≤ l ≤ K} = K for all x ∈ R

K, (4.4)

and so
dim Lie{A(k)

l (x) : 0 ≤ l ≤ K} = K for all x ∈ R
K. (4.5)

From (4.5), the hypoelliptic condition is satisfied (see [11] and [15] for the details). Therefore,
X(k)(n)(t) is a strong Feller process with a transition density p(k)(n)(t, x, y) with respect to the
Lebesgue measure m(·). Thus, for each x ∈ R

K and each t > 0, for each set A ∈ B(RK) with
m(A) = 0,

P(k)(x)(X(k)(t) ∈ A, ξ(k)
n ≥ t) = 0, (4.6)

as long as n is sufficiently large such that n > |x|. Meanwhile, we also have

P(k)(x)(X(k)(t) ∈ A) ≤ P(k)(x)(X(k)(t) ∈ A, ξ(k)
n ≥ t) + P(k)(x)(ξ (k)

n ≤ t).

This together with (4.3) and (4.6) shows that the transition probability P(k)(t, x, ·) is absolutely
continuous with respect to the Lebesgue measure m(·). In view of Theorem 3.1, the transition
probability kernel P(k)(t) is Feller continuous. For a set A ∈ B(RK), let A◦ and ∂A denote the
interior and the boundary of A, respectively. It easy to see that m(∂A) = 0 for all A ∈ B(RK).
Combining all these facts together with Remark 3.1, we obtain, for every x ∈ R

K and every
t > 0,

lim inf
y→x

P(k)(t, y, A) ≥ lim inf
y→x

P(k)(t, y, A◦) ≥ P(k)(t, x, A◦) = P(k)(t, x, A),

which implies that P(k)(t) is strong Feller continuous.
Finally, for each positive integer n, from (4.4) we also find that the support of X(k)(n)(t) is

equal to R
K for all t > 0 (see Section 8 in Chapter VI of [12]). Combining this fact with (4.3),

for each x ∈ R
K and each t > 0, we conclude that, for each set A ∈ B(RK) with m(A) > 0,

P(k)(x)(X(k)(t) ∈ A) ≥ P(k)(x)(X(k)(t) ∈ A, ξ(k)
n ≥ t)

= P(k)(x)(ξ (k)
n ≥ t) P(k)(x)(X(k)(t) ∈ A | ξ (k)

n ≥ t)

≥ 1
2 P(k)(x)(X(k)(t) ∈ A | ξ (k)

n ≥ t)

> 0

for sufficiently large n. This implies that, for each t > 0, the support of X(k)(t) is also equal
to R

K .

Remark 4.1. By virtue of the hypoellipticity we have proved the strong Feller continuity for
the solution X(k)(t) of (4.1). The main point is that the drift and diffusion coefficients are not
bounded, neither do they satisfy the linear growth condition. As a remedy, we have used the
truncation argument.
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Note that (X(t), Z(t)) could be viewed as the result of the family of diffusion processes
X(k)(t) , k ∈ N , switching from one to another according to the movement of process Z(t) that
also depends on process X(t). To prove the strong Feller continuity for (X(t), Z(t)), we still
need to give a result on the number of jumps of Z(t) on the interval [0, t] for any given t > 0.
To this end, we make the following interim assumption. Note that this assumption facilitates
our proof and it is used as a bridge in the process of deriving the desired result. Eventually, we
will remove it to obtain the desired result.

Assumption 4.1. There exists a positive constant H̃ > 0 such that

sup{qkl(x) : x ∈ R
K, k �= l ∈ N} ≤ H̃ < +∞.

Let us introduce another auxiliary process φ(t) as follows. Let φ(t) be a right-continuous
and time-homogeneous Markov chain with finite state space N such that

P(φ(t + �) = l | φ(t) = k) =
{

H̃� + o(�) if k �= l,

1 − (n0 − 1)H̃� + o(�) if k = l,

as � ↓ 0, where n0 is the number of elements in N .
Intuitively, Assumption 4.1 prevents Z(t) from jumping more quickly than φ(t). As in [28],

we let {ζ�} be the sequence of Markov times defined by

ζ0 = 0, ζ� = inf{s > ζ�−1 : Z(t) �= Z(ζ�−1)},
and set ζ = lim�→∞ ζ�. Then ζ is the first instant prior to which the second component of
the strong Markov process (X(t), Z(t)) has infinitely many jumps. Next, by the sequence of
Markov times {ζ�} we define J (t) = max{� : ζ� ≤ t}. Then J (t) is the number of jumps of
the second component of the strong Markov process (X(t), Z(t)) prior to t . Analogously to
the proof of Proposition 3.4 of [28], by virtue of the auxiliary process φ(t) we can prove the
following lemma; see Section 3 of [28] for a detailed proof.

Lemma 4.1. Suppose that Assumption 4.1 holds. For every (x, k) ∈ R
K × N , we have

P(x,k)(ζ = +∞) = 1, and, consequently, P(x,k)(J (t) < +∞) = 1 (4.7)

for every t > 0.

Proposition 4.1. Under Assumption 2.1, for each (x, k) ∈ R
K × N , each t > 0, and each set

D ∈ B(RK × N), we have

P(x,k)((X(t), Z(t)) ∈ D) =
∞∑

�=0

P(x,k)((X(t), Z(t)) ∈ D, J (t) = �). (4.8)

Proof. As in the proof of Theorem 3.1, noting Remark 3.2, under Assumption 2.1 only
(without Assumption 4.1), we can construct a sequence of functions {q(n)

kl (x)} such that, for
all x ∈ On = {x ∈ R

K : |x| < n} and k �= l ∈ N , q
(n)
kl (x) = qkl(x), and, for each positive

integer n, the newly constructed functions also satisfy Assumption 4.1. For each integer n ≥ 1,
set ςn := inf{t ≥ 0 : (X(t), Z(t)) ∈ Oc

n × N}. Using (3.5), similar to the proof of Theo-
rem 3.1 (see (3.8)–(3.10)), we can prove that, for every (x, k) ∈ R

K × N and every t > 0,
limn→∞ P(x,k)(ςn ≤ t) = 0. Thus, we have

{J (t) < +∞} =
∞⋂

n=1

{J (ςn ∧ t) < +∞} (4.9)
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almost everywhere with respect to P(x,k). On the other hand, for any given (x, k) ∈ R
K × N ,

by virtue of the second equality in (4.7), for each sufficiently large integer n satisfying n > |x|
and each t > 0, P(x,k)(J (ςn ∧ t) < +∞) = 1. Combining this fact with (4.9) and also noting
that

{J (ςn ∧ t) < +∞} ⊃ {J (ςn+1 ∧ t) < +∞},
we find that, for every (x, k) ∈ R

K × N and every t > 0,

P(x,k)(J (t) < +∞) = lim
n→∞ P(x,k)(J (ςn ∧ t) < +∞) = 1.

Then (4.8) follows.

For the subsequent uses, we introduce a reference measure. Hereafter, we let the reference
measure µ(·) be the product measure on R

K × N (the Lebesgue measure m(·) on R
K and the

counting measure on N ). Hereafter, for a given set D ∈ B(RK × N) and each k ∈ N , let

Dk = {x ∈ R
K : (x, k) ∈ D}

be the section of D at k. Then, the product measure theorem (cf. Theorem 1 in Section 6.3 of
[5]) gives us the following useful lemma.

Lemma 4.2. For any set D ∈ B(RK ×N) with µ(D) = 0, we have m(Dk) = 0 for all k ∈ N ,
where m(·) is just the Lebesgue measure on R

K .

Proposition 4.2. We have the following two assertions.

(i) For each (x, k) ∈ R
K × N , each t > 0, and each integer � ≥ 0,

P(x,k)((X(t), Z(t)) ∈ D, J (t) = �) = 0

for all sets D ∈ B(RK × N) satisfying µ(D) = 0.

(ii) For every (x, k) ∈ R
K × N and every t > 0,

P(x,k)((X(t), Z(t)) ∈ D) = 0

for all sets D ∈ B(RK × N) satisfying µ(D) = 0.

Proof. Note that, for each k ∈ N , the transition probability P(k)(t, x, ·) of the diffusion
process X(k)(t) determined in (4.1) is absolutely continuous with respect to the Lebesgue
measurem(·) that was proved inTheorem 4.1. Also, note that the first component of (X(t), Z(t))

coincides with the diffusion processX(k)(t)on the interval [ζ0, ζ1)whenZ(ζ0) = k. To proceed,
we prove Proposition 4.2(i) by mathematical induction on � ≥ 0. When � = 0, from the two
facts noted above and Lemma 4.2, we obtain

P(x,k)((X(t), Z(t)) ∈ D, J (t) = 0)

= P(X(t) ∈ Dk, Z(t) = k, ζ0 ≤ t < ζ1 | X(0) = x, Z(0) = k)

≤ P(X(k)(t) ∈ Dk | X(k)(0) = x)

= 0
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for any set D ∈ B(RK ×N) satisfying µ(D) = 0. Now, we suppose that assertion (i) holds for
J (t) = �. By virtue of the strong Markov property and the induction hypothesis, we conclude
that

P(x,k)((X(t), Z(t)) ∈ D, J (t) = � + 1)

= P(x,k)((X(t), Z(t)) ∈ D, ζ�+1 ≤ t < ζ�+2)

= E(x,k)(P(X(ζ1),Z(ζ1))((X(t), Z(t)) ∈ D, ζ� ≤ t < ζ�+1))

= 0

for any set D ∈ B(RK ×N) satisfying µ(D) = 0. This proves assertion (i) of Proposition 4.2,
while assertion (ii) follows from assertion (i) and (4.8) in Proposition 4.1.

Theorem 4.2. For each (x, k) ∈ R
K×N and each t > 0, the transition probability P(t, (x, k), ·)

of (X(t), Z(t)) is absolutely continuous with respect to µ(·). In addition, for any given t > 0,
the transition probability kernel P(t) defined in (3.4) is strong Feller continuous. Furthermore,
for each t > 0, the support of (X(t), Z(t)) is equal to R

K × N .

Proof. The first assertion follows from Proposition 4.2. We proceed to prove the second
assertion. For a set A ∈ B(RK ×N), let A◦ and ∂A denote the interior and the boundary of A,
respectively. It follows from the definition of the reference measure µ(·) that µ(∂A) = 0 for
all A ∈ B(RK ×N). Therefore, by virtue of the absolute continuity stated in the first assertion
and the Feller continuity proved in Theorem 3.1, and recalling Remark 3.1, we conclude that,
for every (x, k) ∈ R

K × N and every t > 0,

lim inf
y→x

P(t, (y, k), A) ≥ lim inf
y→x

P(t, (y, k), A◦)

≥ P(t, (x, k), A◦)
= P(t, (x, k), A),

which implies the second assertion. Finally, let us prove the third assertion. Note that, for any
given k ∈ N , the first component of (X(t), Z(t)) coincides with the diffusion process X(k)(t)

determined by (4.1) on the interval [ζ0, ζ1) when Z(ζ0) = k and the support of X(k)(t) is equal
to R

K for all t > 0 (see Theorem 4.1). Therefore, by virtue of the fact that 0 < qkl(x) < +∞
and by its continuity with respect to x for any k �= l ∈ N in Assumption 2.1, the third assertion
holds. The proof is completed.

5. Exponential ergodicity

In this section we investigate the exponential ergodicity for the strong Markov process
(X(t), Z(t)). As in [28], we first consider a form of stability called the boundedness in
probability on average for (X(t), Z(t)) (see Section 3 of [21] for more details about the
corresponding concept). The process (X(t), Z(t)) is called bounded in probability on average
if, for each (x, k) ∈ R

K × N and each ε > 0, there exists a compact subset C ⊂ R
K such that

lim inf
t→∞

1

t

∫ t

0
P(t, (x, k), C × N) ds ≥ 1 − ε.

We introduce a Foster–Lyapunov drift condition. For some α, β > 0, f (x, k) ≥ 1, a compact
set C ⊂ R

K , and some V (x, k) ≥ 0 that is twice continuously differentiable in x on R
K × N ,

LV (x, k) ≤ −αf (x, k) + β 1C×N(x, k), (x, k) ∈ Rd × N, (5.1)

where L is the operator defined in (3.3) and 1C×N is the indicator function of the set C × N .
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Theorem 5.1. The strong Markov process (X(t), Z(t)) is bounded in probability on average.

Proof. By virtue of Theorem 4.2, (X(t), Z(t)) is a strong Feller process and so it is a
so-called T -process (see [21] for the detailed definition of T -processes). From Theorem 3.1,
(X(t), Z(t)) is nonexplosive. Thus, (3.5) implies (5.1). Therefore, the desired result follows
from Theorem 4.7 of [22].

We proceed to investigate the exponential ergodicity for the strong Markov process (X(t),

Z(t)). As in [22], for any positive function �(x, k) ≥ 1 defined on R
K × N and any signed

measure ν(·) defined on B(RK × N), we write

‖ν‖� = sup{|ν(�)| : all measurable �(x, k) satisfying |�| ≤ �},

where

ν(�) =
∑
k∈N

∫
RK

�(x, k)ν(dx, k).

Note that the total variation norm ‖ν‖var is just ‖ν‖� in the case � ≡ 1.
For a function 1 ≤ � < ∞ on R

K × N , the Markov process (X(t), Z(t)) is said to be
�-exponentially ergodic if there exist a probability measure π(·), a positive constant θ < 1,
and a finite-valued function �(x, k) such that

‖P(t, (x, k), ·) − π(·)‖� ≤ �(x, k)θ t

for all t ≥ 0 and all (x, k) ∈ R
K × N . Moreover, a nonnegative function V (x, k) defined

on R
K × N is called a norm-like function if V (x, k) → ∞ as |x| → ∞ for all k ∈ N (also

known as radially unbounded in the literature of ordinary differential equations). For some
α, β > 0 and a norm-like function V (x, k) that is twice continuously differentiable in x, the
Foster–Lyapunov drift condition requires that

LV (x, k) ≤ −αV (x, k) + β, (x, k) ∈ R
K × N. (5.2)

Theorem 5.2. The strong Markov process (X(t), Z(t)) is �-exponentially ergodic with

�(x, k) = |x|2 + 1 and �(x, k) = B(|x|2 + 1),

where B is a finite constant.

Proof. By the proof of Theorem 5.1, (X(t), Z(t)) is a T -process. Since the support of
(X(t), Z(t)) is equal to R

K × N for all t > 0 (see Theorem 4.2), (X(t), Z(t)) is irreducible
with respect to the reference measure µ(·) defined in the previous section. Consequently,
(X(t), Z(t)) is a µ-irreducible T -process. Hence, for any given constant h > 0, the h-skeleton
chain (X(nh), Z(nh))n≥0 is an irreducible T -chain. By virtue of Theorem 3.1, (X(t), Z(t))

is nonexplosive. In view of Theorem 3.2 of [19], we find that all compact sets of the state
space R

K × N are petite for the h-skeleton chain (X(nh), Z(nh))n≥0 (see [19] for detailed
definitions of T -chains and petite sets). Clearly, (3.5) implies (5.2) with V (x, k) = |x|2 + 1.
Then, this implies (5.2) with V (x, k) = |x|2 too. Consequently, applying Theorem 6.1 of [22]
to the strong Markov process (X(t), Z(t)), we finally obtain the desired result. This completes
the proof.
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Remark 5.1. Because (X(t), Z(t)) is �-exponentially ergodic, (X(t), Z(t)) is automatically
positive Harris recurrent (see [8] and [21]). Moreover, since �-exponential ergodicity carries
over to the seemingly stronger context of �-uniform ergodicity, (X(t), Z(t)) is �-uniformly
ergodic; that is, for a positive constant θ < 1,

sup

{‖P(t, (x, k), ·) − π(·)‖�

�(x, k)
: (x, k) ∈ R

K × N

}
≤ Bθt for all t ≥ 0, (5.3)

where �(x, k) = |x|2 + 1 and B is a finite constant. In fact, the right-hand side of (5.3) can be
defined as an operator norm and it describes the �-uniform ergodicity which is a generalization
of the classical uniform ergodicity (or strong ergodicity). However, the denominator �(x, k)

is a radially unbounded function. Nevertheless, in the next section we will consider classical
uniform ergodicity (i.e. when �(x, k) ≡ 1) for (X(t), Z(t)) when it is in a Markovian switching
case.

Remark 5.2. Note that Theorems 3.1, 4.2, 5.1, and 5.2 can be applied to Example 1.1 and
Example 1.2.

6. Strong ergodicity

For Markov processes, the strong ergodicity or uniform ergodicity in the sense of convergence
in the variation norm is the strongest one; see [3, Chapter 4] and [20, Chapter 16]. Strong
ergodicity for some Markov processes, especially for one-dimensional diffusion processes and
birth–death processes, was studied in [17] and [18] using coupling methods. From the previous
section, the Markov process (X(t), Z(t)) that we are interested in admits a unique invariant
probability measure π(·). In this section we will use the coupling methods to obtain the strong
ergodicity for Markovian switching diffusion (X(t), Z(t)). To do so, we make an assumption.

Assumption 6.1. For all k �= l ∈ N , the functions qkl(x) ≡ qkl > 0 are independent of x

and the second component Z(t) determined by (2.2) is a Markov chain independent of W(t).
Moreover, the functions σ11(x, k) = σ22(x, k) = · · · = σKK(x, k) in (2.1) satisfy κ ≤
σ11(x, k) ≤ κ−1 with some constant κ ∈ (0, 1] for all (x, k) ∈ R

K × N .

Under Assumption 6.1, (X(t), Z(t)) described by (3.2) (or (2.1)) and (2.2) is a mean-field
model with Markovian switching, which is a special case of the general diffusion processes
with continuous-state-dependent switching. In what follows we will study the strong ergodicity
for this special case by making use of the coupling methods. More precisely, we will construct
a coupling of (X(t), Z(t)) and itself, and then estimate the coupling time to prove the desired
strong ergodicity. To proceed, let us cite the following definition of strong ergodicity.

Definition 6.1. ([18].) The Markov process (X(t), Z(t)) is said to be strongly ergodic in
variational norm (in short, strongly ergodic) if there exists an ε > 0 such that

sup{‖P(t, (x, k), ·) − π(·)‖var : (x, k) ∈ R
K × N} = O(e−εt ) as t → ∞.

For γ ≥ 2, define

α̂(γ ) = sup{ε ≥ 0 : sup{‖P(t, (x, k), ·) − π(·)‖var : (x, k) ∈ R
K × N} ≤ γ exp(−εt)

for all t ≥ 0}.
Furthermore, let α̂ := α̂(∞) = limγ→∞ α̂(γ ).
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We begin to construct the coupling of (X(t), Z(t)). We first construct the classical coupling
of the discrete component Z(t) as follows. Let (Z(t), Z′(t)) be the Markov chain with phase
space N × N and coupling operator (see [3] for details)

�f (k1, k2) = 1�c(k1, k2)

(∑
l1∈N

qk1l1(f (l1, k2) − f (k1, k2))

+
∑
l2∈N

qk2l2(f (k1, l2) − f (k1, k2))

)

+ 1�(k1, k2)
∑
l1∈N

qk1l1(f (l1, l1) − f (k1, k2)) for k1, k2 ∈ N, (6.1)

where f is a bounded function on N × N and � := {(k1, k2) ∈ N × N : k1 = k2}. Set

S = inf{t ≥ 0 : Z(t) = Z′(t)}.
Clearly, Z(t) and Z′(t) move independently until the moment S and they move together from
the moment S onwards. From [3], we can construct many kinds of couplings of Z(t). However,
in what follows we use only (Z(t), Z′(t)), the classical coupling constructed above.

Lemma 6.1. Suppose that Assumption 6.1 holds. Set

ε0 := min

{
min

{
(1 − e−qk )

qkl

qk

: l ∈ N \ {k}
}
, e−qk : k ∈ N

}
, (6.2)

where qk = ∑
l �=k qkl . Then, for any k, l ∈ N , we have

P(k,l)(S > t) ≤ (1 − ε0)
�t�, t > 0, (6.3)

E(k,l)(S) ≤ ε−1
0 < +∞, (6.4)

where P(k,l) and E(k,l) denote the probability and expectation for the coupling (Z(t), Z′(t))
starting from (k, l), respectively, and �t� denotes the integral part of t .

Proof. Let τ1 = inf{t ≥ 0 : Z(t) �= Z(0)} be the first jump time of the Markov chain Z(t).
Then, we have

P(Z(τ1) = l, τ1 < 1 | Z(0) = k) = (1 − e−qk )
qkl

qk

, l �= k,

P(τ1 ≥ 1 | Z(0) = k) = e−qk .

Thus, the classical coupling (Z(t), Z′(t)) constructed by (6.1) yields, for any k1 �= k2 ∈ N ,

P(k1,k2)(S ≤ 1) ≥
∑

l �=k1,k2

(1 − e−qk1 )
qk1l

qk1

(1 − e−qk2 )
qk2l

qk2

+ (1 − e−qk1 )
qk1k2

qk1

e−qk2 + (1 − e−qk2 )
qk2k1

qk2

e−qk1

≥ ε0

∑
l �=k1,k2

(1 − e−qk1 )
qk1l

qk1

+ ε0(1 − e−qk1 )
qk1k2

qk1

+ ε0e−qk1

= ε0.
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Meanwhile, for k1 = k2, we have P(k1,k2)(S ≤ 1) = 1 ≥ ε0. Combining these two facts, we
arrive at

P(k,l)(S > 1) ≤ (1 − ε0) for all k, l ∈ N.

From this and the Markov property, it is easy to prove (6.3) by the induction method. In fact,
suppose that P(k,l)(S > �t� − 1) ≤ (1 − ε0)

�t�−1. Then

P(k,l)(S > t) ≤ E(k,l)(1(S>�t�))
= E(k,l)(1(S>1) E(X(1),Z(1))(1(S>�t�−1)))

≤ (1 − ε0)
�t�−1 P(k,l)(S > 1)

≤ (1 − ε0)
�t�.

Finally, from (6.3) we obtain

E(k,l)(S) ≤
∞∑

n=1

n P(k,l)((n − 1) ≤ S < n) =
∞∑

n=1

P(k,l)(S ≥ (n − 1)) ≤ 1

ε0
,

which is just (6.4). This completes the proof.

Combining Lemma 4.1 of [18] and (6.4), we obtain the following proposition.

Proposition 6.1. Suppose that Assumption 6.1 holds. For any nonnegative integer n, we have

sup{E(k,l)(Sn) : k, l ∈ N} ≤ n!
εn

0
, (6.5)

where ε0 is defined in (6.2).

Now, for all x, y ∈ R
K and k ∈ N , set the K × K matrix

c(x, y, k) = σ11(x, k)σ11(y, k)

(
I − 2(x − y)(x − y)�

|x − y|2
)

,

where I denotes the K × K identity matrix. Next, set the 2K × 2K matrix

ã(x, y, k) =
(

σ 2
11(x, k)I c(x, y, k)

c(x, y, k)� σ 2
11(y, k)I

)
.

Moreover, recalling that (Z(t), Z′(t)) is the classical coupling constructed above, set

â(t, x, Z(t), y, Z′(t)) =
(

σ 2
11(x, Z(t))I ĉ(t, x, Z(t), y, Z′(t))

ĉ(t, x, Z(t), y, Z′(t))� σ 2
11(y, Z′(t))I

)
,

where ĉ(t, x, Z(t), y, Z′(t)) = 1[S,∞)(t)c(x, y, Z(t)). Thus, we can construct a coupling
of (X(t), Z(t)) and itself by letting (X(t), Y (t)) satisfy the following stochastic differential
equation in R

2K :

d

(
X(t)

Y (t)

)
=

(
b(X(t), Z(t))

b(Y (t), Z′(t))

)
dt + σ̂ (t, X(t), Z(t), Y (t), Z′(t)) dB(t), (6.6)

where
σ̂ (t, x, Z(t), y, Z′(t))σ̂ (t, x, Z(t), y, Z′(t))� = â(t, x, Z(t), y, Z′(t))
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and B(t) is a Brownian motion independent of (Z(t), Z′(t)) in R
2K . On the interval [0, S),

(X(t), Y (t)) given by (6.6) is the independent coupling of X(t) and Y (t), whereas on the
interval [S, ∞), (X(t), Y (t)) given by (6.6) is the coupling by reflection of X(t) and Y (t)

(see [4] for detailed definitions of various couplings). Hence, we have constructed a coupling
(X(t), Z(t), Y (t), Z′(t)). In what follows we let P(x,k,y,l) denote the distribution of the coupling
(X(t), Z(t), Y (t), Z′(t)) starting from (x, k, y, l), and let E(x,k,y,l) denote the corresponding
expectation. Set

T = inf{t ≥ 0 : X(t) = Y (t), Z(t) = Z′(t)}.
Then T is the coupling time of (X(t), Z(t)) and (Y (t), Z′(t)).

To estimate the coupling time T , as was done in [4], let us set

A(x, y, k) = σ 2
11(x, k)I + σ 2

11(y, k)I − 2c(x, y, k),

Ā(x, y, k) = 〈x − y, A(x, y, k)(x − y)〉
|x − y|2 , x �= y,

B̂(x, y, k) = 〈x − y, b(x, k) − b(y, k)〉,
for x, y ∈ R

K and k ∈ N , where 〈·, ·〉 denotes the inner product in R
K . With some

straightforward calculations, we have the following estimates on the above functions under
Assumption 6.1:

tr A(x, y, k) = Ā(x, y, k) = 4σ11(x, k)σ11(y, k), (6.7)

1

4
κ2 ≤ 1

Ā(x, y, k)
≤ 1

4
κ−2. (6.8)

Furthermore, it is readily seen that

B̂(x, y, k) = (α(k) − β(k))

K∑
i=1

(xi − yi)
2 −

K∑
i=1

(xi − yi)
2(x2

i + xiyi + y2
i )

+ β(k)

K

K∑
i=1

K∑
j=1

(xi − yi)(xj − yj ).

Noting that
x2
i + xiyi + y2

i ≥ 1
4 (xi − yi)

2,

(xi − yi)(xj − yj ) ≤ 1
2 [(xi − yi)

2 + (xj − yj )
2],

we have

B̂(x, y, k) ≤ α(k)

K∑
i=1

(xi − yi)
2 − 1

4

K∑
i=1

(xi − yi)
4.

It can be shown that
K∑

i=1

(xi − yi)
4 ≥ 1

K

( K∑
i=1

(xi − yi)
2
)2

.

Combining the last two inequalities, we obtain

B̂(x, y, k) ≤ α(k)

K∑
i=1

(xi − yi)
2 − 1

4K

( K∑
i=1

(xi − yi)
2
)2

= α(k)|x − y|2 − 1

4K
|x − y|4. (6.9)
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From (6.7), (6.8), and (6.9), we obtain

trA(x, y, k) − Ā(x, y, k) + 2B̂(x, y, k)

Ā(x, y, k)
≤ 1

2
κ−2α(k)|x − y|2 − 1

8K
κ2|x − y|4,

which gives us, for every r ∈ R+,

sup

{
trA(x, y, k) − Ā(x, y, k) + 2B̂(x, y, k)

Ā(x, y, k)
: |x − y| = r, k ∈ N

}

≤ 1

2
κ−2α̂r2 − 1

8K
κ2r4

= γ (r), (6.10)

where α̂ = max{α(k) : k ∈ N}, a positive constant, and γ (r) denotes the function on the second
line of (6.10). Moreover, we define two functions on R+ as follows:

C(r) = exp

(∫ r

1

γ (u)

u
du

)
, (6.11)

η(r) := 4κ2 ≤ inf{Ā(x, y, k) : |x − y| = r, k ∈ N}. (6.12)

Lemma 6.2. Suppose that Assumption 6.1 holds. We have

sup{E(x,k,y,k)(T ) : x, y ∈ R
K, k ∈ N} < ∞. (6.13)

Proof. Recall that S ≡ 0 if Z(0) = Z′(0). In this case, for all x, y ∈ R
K and t ≥ 0,

the diffusion matrix â(t, x, Z(t), y, Z′(t)), defined above (6.6), is identical to the matrix
ã(x, y, Z(t)). Analogously to the proofs of Theorems 4.2 and 5.1 of [4], for positive integers
� and n, we set

S� = inf{t ≥ 0 : |X(t) − Y (t)| > �}, � > 1,

Tn = inf

{
t ≥ 0 : |X(t) − Y (t)| <

1

n

}
, n > 1,

Tn,� = Tn ∧ S�,

Fn,�(r) = −
∫ r

1/n

C(s)−1 ds

∫ �

s

C(u)

η(u)
du,

1

n
≤ r ≤ �, n, � > 1.

It is easy to verify that
−∞ < Fn,�(r) ≤ 0, F ′

n,�(r) ≤ 0,

F ′′
n,�(r) + F ′

n,�(r)γ (r)

r
= 1

η(r)
. (6.14)

Using Equation (2.8) of [4] and noting (6.10), (6.12), and (6.14), we can verify that

2L̃(k)Fn,�(ρ(x, y)) ≥ 1 (6.15)

for all x, y ∈ R
K with 1/n ≤ ρ(x, y) ≤ � and all k ∈ N , where L̃(k) is the coupling differential

operator defined by the above ã(x, y, k) and b̃(x, y, k) := (b(x, k), b(y, k))�, as in [4].
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Set r = ρ(x, y). Using Dynkin’s formula (cf. Lemma 3 in Chapter II of [24]), from (6.15) we
deduce that

E(x,k,y,k) Fn,�(ρ(X(t ∧ Tn,�), Y (t ∧ Tn,�))) − Fn,�(r)

= E(x,k,y,k)

∫ t∧Tn,�

0
L̃(Z(u))Fn,�(ρ(X(u), Y (u))) du

≥ 1
2 E(x,k,y,k)(t ∧ Tn,�),

so that
E(x,k,y,k)(t ∧ Tn,�) ≤ −2Fn,�(r).

Letting t ↑ ∞, we arrive at

E(x,k,y,k)(Tn,�) ≤ −2Fn,�(r). (6.16)

Next, we define a function on R+ as follows:

F(r) := lim
n→∞ lim

�→∞ Fn,�(r) = −
∫ r

0
C(s)−1 ds

∫ ∞

s

C(u)

η(u)
du. (6.17)

Letting � ↑ ∞ and then n ↑ ∞ on the both sides of (6.16), we obtain

E(x,k,y,k)(T ) ≤ −2F(r). (6.18)

To prove (6.13), it suffices to show that

F(∞) := −
∫ ∞

0
C(s)−1 ds

∫ ∞

s

C(u)

η(u)
du > −∞. (6.19)

Using (6.10), (6.11) and (6.12), we obtain

C(s) = exp

(
1

4
κ−2α̂s2 − 1

4
κ−2α̂ − 1

32K
κ2s4 + 1

32K
κ2

)
.

Hence, for the integrand in (6.19), we have

C(s)−1
∫ ∞

s

C(u)

η(u)
du

= 1

4
κ−2 exp

(
1

32K
κ2s4 − 1

4
κ−2α̂s2

) ∫ ∞

s

exp

(
1

4
κ−2α̂u2 − 1

32K
κ2u4

)
du

= f (s), (6.20)

where f (s) denotes the function on the second line of (6.20). Define an auxiliary function

g(s) := 2Kκ−4

s3 , and note that
∫ ∞

1
g(s) ds < ∞. (6.21)

By virtue of l’Hôpital’s rule and with some lengthy but elementary calculations, we can verify
that lims→∞ f (s)/g(s) = 1. Combining this with (6.20) and (6.21), we obtain∫ ∞

1
C(s)−1 ds

∫ ∞

s

C(u)

η(u)
du < ∞. (6.22)
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Meanwhile, from (6.20) we have

∫ 1

0
C(s)−1 ds

∫ ∞

s

C(u)

η(u)
du < ∞. (6.23)

Then (6.22) and (6.23) imply (6.19), so (6.13) is proved. This completes the proof.

Proposition 6.2. Suppose that Assumption 6.1 holds. For any nonnegative integer n, we have

sup{E(x,k,y,k)(T n) : x, y ∈ R
K, k ∈ N} ≤ n! (−2F(∞))n, (6.24)

where F(∞) is defined in (6.19).

Proof. In view of (6.15), for the function F(r) defined in (6.17) and the coupling differential
operator L̃(k) defined by the ã(x, y, k) and b̃(x, y, k) as above, we have

L̃(k)(−2F(ρ(x, y))) ≤ −1, x �= y ∈ R
K, k ∈ N.

Therefore, from Theorem 5.18 and Equation (5.35) of [2], (6.24) holds.

Theorem 6.1. Suppose that Assumption 6.1 holds. We have

sup{E(x,k,y,l)(T ) : x, y ∈ R
K, k, l ∈ N} ≤ ε−1

0 − 2F(∞) < ∞, (6.25)

where ε0 and F(∞) are defined in (6.2) and (6.19), respectively. Furthermore, for any
nonnegative integer n, we have

sup{E(x,k,y,l)(T n) : x, y ∈ R
K, k, l ∈ N} ≤ n!

(
ε−1

0 − 2F(∞)

)n

. (6.26)

Moreover, the Markov process (X(t), Z(t)) is strongly ergodic with

α̂ ≥ [ε−1
0 − 2F(∞)]−1 > 0, (6.27)

where α̂ is the rate constant defined in Definition 6.1.

Proof. With a slight abuse of notation, we denote by θ the usual shift operator in what
follows. Hence, we obtain

E(x,k,y,l)(T ) = E(x,k,y,l)(S) + E(x,k,y,l)(θST ). (6.28)

Clearly, using (6.4), for the first term on the right-hand side of (6.28), we have

E(x,k,y,l)(S) = E(k,l)(S) ≤ ε−1
0 . (6.29)

On the other hand, by virtue of the strong Markov property, and (6.18) and (6.19), for the second
term on the right-hand side of (6.28), we have

E(x,k,y,l)(θST ) ≤ E(x,k,y,l)(E(X(S),Z(S),Y (S),Z′(S))(T )) ≤ −2F(∞). (6.30)

Substituting (6.29) and (6.30) into (6.28) yields (6.25).
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Next, we prove (6.26). Using the strong Markov property, we obtain

E(x,k,y,l)(T n) = E(x,k,y,l)((S + θST )n)

=
n∑

m=0

n!
m! (n − m)! E(x,k,y,l)(Sm(θST )n−m)

=
n∑

m=0

n!
m! (n − m)! E(x,k,y,l)(Sm E(X(S),Z(S),Y (S),Z′(S))(T n−m)). (6.31)

Substituting estimates (6.24) and (6.5) into (6.31) yields

E(x,k,y,l)(T n) ≤ n!
n∑

m=0

(−2F(∞))n−m

εm
0

≤ n!
n∑

m=0

n!
m! (n − m)!

(−2F(∞))n−m

εm
0

,

which implies (6.26).
Finally, we prove the strong ergodicity. Setting M := ε−1

0 − 2F(∞), from (6.26) we have,
for any λ < M−1,

E(x,k,y,l) eλT =
∞∑

n=0

λn

n! E(x,k,y,l)(T n) ≤
∞∑

n=0

λnMn = (1 − λM)−1 < ∞. (6.32)

Analogously to the proof of Theorem 4.2 of [18], by virtue of Theorem 2.1 of [18] and (6.32), we
prove that the Markov process (X(t), Z(t)) is strongly ergodic and that α̂(γ ) ≥ M−1(1−2/γ )

for γ > 2; hence, (6.27) holds.

To conclude this section, we provide an example for which Theorem 6.1 can be applied. To
do so, we return to the model introduced in Example 1.2.

Example 6.1. Take K = 2 and N = {1, 2}, and consider the model introduced in Example 1.2.
Let α(1) = 1, α(2) = 2, β(1) = 2, β(2) = 1,

Q := (qkl) =
(−1 1

2 −2

)
, and σ11(x, k) = σ22(x, k) ≡ 1

for all (x, k) ∈ R
2 × {1, 2}. Now, by (6.2), we first obtain ε0 = e−2. Next, α̂ = 2 and κ = 1,

and then we can take

γ (r) = r2 − r4

16
and η(r) ≡ 4.

Hence, we can take

C(r) = exp

(∫ r

1

γ (u)

u
du

)
= exp

(
r2

2
− 1

2
− r4

64
+ 1

64

)
.

Therefore, we obtain

F(∞) = −1

4

∫ ∞

0
exp

(
s4

64
− s2

2

)
ds

∫ ∞

s

exp

(
u2

2
− u4

64

)
du > −∞. (6.33)
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In summary, by virtue of Theorem 6.1, we conclude that (X(t), Z(t)) defined by the above
model is strongly ergodic with

α̂ ≥ [e2 − 2F(∞)]−1 > 0,

where F(∞) is calculated using (6.33).
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